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EXPERIMENTS ON DRAG OF REVOLVING DISKS, CYLINDERS 

AND STREAMLINE RODS AT HIGH SPEEDS 

By Theodore Theodorsen and Arthur Regier 

SUMMARY 

An experimental investigation concerned primarily 

with the extension of test data on the drag of revolving 
disks, cylinders, and streamline rods to high Mach 

numbers and Reynolds numbers is presented. A Mach num-
ber of 2.7 was reached for revolving rods with Freon 113 
as the medium. The tests on disks extended to a 
Reynolds number of 7,000,000. Parts of the study are 
devoted to a reexamination of the von Karman-Prandtl 

logarithmic resistance law and the Ackeret-Taylor super-

sonic drag formula and conditions for their validity. 

The tests confirm, in general, earlier theories and add 

certain new results. A finding of first importance is 

that the skin friction does not depend on the Mach num-
ber, Of interest, also, are experimental results on 

revolving ros- atery_LlJh Mach numbers, which show 

drag curves of the type familiaifOnbalii-s-t1cs---j-

new result which may have general applicability is that 

the effect of surface roughness involves two distinct 

parameters, particle size and particle unit density. 

The particle size uniquely determines the Reynolds num-

ber at which the effect of the roughness first appears, 

whereas the particle unit density determines the behavior 

of the drag coefficient at higher Reynolds numbers. 

Beyond the critical Reynolds number at which the roughness 

effect aipears, the drag coefficient is found to be a 

function of unit density. In the limiting case of 

particle 'saturation," or a maximum density of particles, 

the drag coefficient remains constant as the Reynolds 

number is increased.
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THEOFETICAL BACKGROUND 

Von Ka'rmn-Frandtl Theory for Pipes 

Measurements of the value of the skin friction 
between a fluid anf.1 a solid constitute one of the means 
for studying the nature of turbulent flow. Most of the 
pioneer analytical work in this field is found in the 
papers by von Krmn (references 1 and 2) and Prandti 
(reference 3). The treatment used in the first part of 
this section follows the work of Prandtl which, in turn, 
is closely related to the von Krmn papers. The theory, 
which concerns the flow in pipes, is given in con-
siderable detail as it forms the basis for the succeeding 
discussion on flat -Plates, cylinders, and disks. The 
theoretical work in this section constitutes mainly an 
attempt, to analyze and organize earlier work found in 
many scattered articles. Considerable work along such 
lines has already been done by Goldstein, who is 
responsible for an expression for the drag on revolving 
disks. 

The von Krmtn-Prandt1 theory for flow in the 
turbulent layer is based on the following two assumptions: 

(1) The ratio of the velocity deficiency to the 
friction velocity is a function of geometric parameters 
only.

(2) Adiacent to the wall, but beyond. the laminar 
sublayer, the slope of the curve representing this ratio 
Is inversely proportIonal to the distance from the wall. 
The constant of nro .portionalit7 is a universal constant. 

The friction velocity is defined as 

UT 

and the corresponding friction length is defined as 

1) 

UT 

(All s ymbols used in this paper are defined in appendix A.) 
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A reference tire may be given as 

- L	U	L 

UT	UT 

The geometric conditions for a pipe are given by one 

parameter, the radius a. A revolving cylinder of 

infinite leng th represents another single-parameter 

case, in which the reference parameter is the radius 

of the cylinder. 

The equation of motion can be written in the form 

U-	fv t a 
771 T- 

f i y	' 
•: 

and, by adopting suitably defined mean values with 

respect to time, at a given profile 

U	• 	. ) 
I; I- 	

fy a 

\TJL 

Henceforth u will designate Such mean velocity. By 

measuring the velocity with respect to a velocity U0 

in a fixed geometrical position c = ka, 

-	 - 

UT	3L' 1.) 

is obtained. About 1950 von Krman showed that for the 

turbulent layer this function is essentially independent 

of L and dependent only on the geometry as indicated 

in assumption (I); therefore 

U - UC	/y 
= I t' 3aj 

This quite remarkable relationship, Which has been 

generally confirmed by Nikuradse, Wattendorf, and 
others (references 5 to 7), implies a similarity in 
the turbulent-field pattern away from the walls at all 

eynolds numbers. The basic reason for this similarity 

remains unknown.
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I t follow3 from assumption (2) that near the wall 

= f(y) 

	

1	y 
=	log f + Constant 

where i/K is the constant of proportionality. (Natural 

logarithm has been used throughout except where otherwise 

	

indicated.) Since u = at y	5, this relation 
reduces to

	

Li. - TTi5	1	
y 

TTT 
_____- = - 1-g - 

K 

This logarithmic rel.ationshiD holds to a certain value c 

of the significant parameter a (see fig. 1 1) , where 

c = ka with k a constant. The value of I - k is 

only a small fraction, so that the point c will be 

relative1 close to the wall. The velocity in the center 

of the pipe is therefore given  as the sum of three expres-
sions, that is,

max5 c 

UT	UT	
6	[f ( ay 

For the laminar sublayer

U5 
- = - 

U T	L 

and the equation may be rewritten as 

,.max	
f (Y) 

a -	log a+	log	+ - log	+ 

where

-I 
C 1 = a -	log a 

CONFIDENTIAL
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and

C2 = 

[, (,),a +	J., c 

The constant Cl is equal to the nondimensional velocity 

measured on the logarithmic velocity profile when this 

curve is extrapolated to y	L, and the constant 02 

is the excess velocity in the center of the pipe as corn-

p ared with that of the logarithmic line extended to 
Y	a. (See fig. 1.) When these constants are combined, 

the following general relation is obtained: 

	

TT max 1	a 
- C +	log 

The application of this theory to cases other than 

circular pipes is restricted to geometric configurations 

given by a single parameter. It is interesting to 
observe that both Q 1 and 1/K ae universal constants 

resulting from the second assum ption - namely, that the 
flow near a wall is a function of the distance from the 

wall only. The second constant 02 which gives the 

excess velocity as compared with the logarithmic dis-

tribution at a reference point, the location of which 

depends on the geometric dimensions involved, is not a 

universal constant but is dependent on the configuration 

and the Moice of-roferanve—leng-0411, 

The effect of surface- roughness may be treated in 

a similar manner. If the roughness parameter /L is 

less than a certain magnitude, there is obviously no 

effect at all. This value of E/L is found experi-

mentally to be 3.. For	> 3.3, t max/h is shown 

to be constant, or indeoemde.ntcf L, ecct for the 
so-called unsa-tirated condition- whtcthwiLL be defined 

later. Thus

max	
c+--lcg 

U	ft 

i 
C-4	. loo 3.+ --lo 

or

Umax	1	
aKI +:- log-i 

CONFIDENTIAL
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The velocity distribution is exactly as if there 

were a laminar layer Dresent of a thickness ô	3.5€ 

or as if the length L were	-he n L < 
3.3	 3.3 

the velocity distribution no longer changes with an 

increase in Reynolds number R. It seems, therefore, 

that the distance from the wall of the innermost 

disturbance, or the mean value of the thickness of the 

laminar layer, is of the order of three to four times 

the height of the irregularities or the grain size E. 

This fact is not inconsistent with the physical 

interpretation. 

The quantity Umax/UT is shown to equal

Further,	 D 

L =

max 
IT 

k)max UT 

and, therefore,

L	2 

where R is referred to the maximum velocity and is 

equalto Umaxa/U. The equation 

Tir,	1	a 
- C + - log 

•	 K	 L 

may thus be written 

FT = C + - log p/ED 

or

	

1	11	-- 
= 3 + T 2 log R '/D 

' 

	

\D	
V 
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where	 -	

log \/2 
K 

r the similarit y hypothesis, the mean velocity in a

nine differs from the maximum value by a constant, or 

IT
- Umax 

U	U 
I	I 

where U. is the mean value of the velocity. Prandtl 

gives 4. Q 7 for the value of K20 (See reference 3, 
p. 142. ) Dote further that the product RVCD remains 

tha same whether R and CD refer to the mean or the 

maximum value of the velocity; therefore, 

Lim  
= C - 1.07 ± 1 - log R/—

U T	
K	 2 

and, finally, with ii and CI) referring to the mean 

velocity,

-------------------------- 
= Cj ±	l-og--dh/f 

where

C - 4 .07 -	log/2 

With C = 5.5 and K = 

This value is not accurately established, as the various 

authors seem to differ. 

Drag of Flat Elates 

in order to obtain the drag formula for flat plates,, 

a calculation similar to the von !arm!n-Prandtl treatment 
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for pipes may he .De.rformed. The velocity deficiency Au 
is given by ithe reition

6u = f (Y) 

Tm 

where TJ	is a mean value between 0 and x, the 

distance, along the plate. The missing momentum may be 
1rjttefl as

M = J9,j2 (1 - ¶1)	d y 

or

-	O] u\2 

pU2 -	

dy - f	dy 

where U is the stream velocity and 6 1 is a significant 

length giving the thickness of the boundar y layer. 
Rewritten, this equation becomes 

=Ina(t)(1).2 Olf() d(fl 

or, by virtue of the similarity law, 

M	UTi	TJT
2 

	

=	
105  - -:;-	0 106 

Since the momentum is given directly as 

M = !pTJ2Cx 

the following identity is obtained: 

1	*IT 7	01 Dm 

	

°DmX	5105 -	6106 

or

\/T	6105	CX 1 + X 06) 
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which gives

I Dm 
61 - 1	V2 

- 5 
1-

5 V 2 

1Jsin, the logarithmic deficiency relation gives for C5 

the vaire	, or 2.5, and for c 6/c 5 the value	, or 5; 

thus

1 = 1 

x	2.
1	-.

I, 

By use of the von ETarna'r P:'andtl reament, the stream 
velocity is obtained in ess :iuLly the same form as 
for pipes. VJith email adjisteete, thorefore, 

U	. 
= i +

TI	 1) 
.ini 

By use of the expression for ô 1/x, the following equa 

RXCD 1	-	
+ 1-. 07 log10	

- 

Local Values of Drag Coefficient for Flat Plates 

It may be 
coefflcien:. op 
S.i'n.lar to tha 

Of a:a:.t wia...

noted that a reieion for the local drag 
a fa;	.ts i:1ej	found in a fashion 
. ueeJ	.er f'r	ciik. Conoider a plate 
for tee fall ien:th 1, 

I) = 1)l 

=J0 
0Px (:pU;dx 
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With the subscripts m and x referring to mean and 
local values, respectively, for the length x, 

CDmX 

=	0Dx dx 

dC or	

x	+ C Dfl1 - Dx 
dx

XTJ 

dCDN	
= 

di 

R 

Id(log 0Dm) i
i CDmI 

[ci(log R)
	

= 

Therefore

CDX = C(n + 1) 

where

n = d(log Cp) 

d(log R) 

Boun.dary Relation for Revolving Disks 

The moment coefficient is defined as 

"p .,,,) 2 a5 

- M 

'•'
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The moment may also be written 

	

N = 2pj	(211a)uruta dy 

= 2pw2a5(m) 
ofi 

2nU

TM UT d(Y) 

	

)	Urp\2 i 
= pW'a 5(--j -a-- 07 

where Ur is the variable radial velocity and Ut 

the tangential velocity, from which 

(UTm\2 6 
=07 

or

- Z Constant 
a 

The drag formula then reads 

A similar result was obtained by Goldstein in reference L. 

TESTS AND RESULTS 

Tests on disks, cylinders, and streamline rods 
were conducted to determine drag or moment coefficients. 
For the cylinder the two coefficients are equivalent; for 
the disk and the rod it is more convenient to employ the 
moment coefficient, which can be measured directly. In 
order to extend the range of Mach number, several tests 
were conducted with Freon 12 or Freon ll as the medium. 
The test results obtained are of technical interest 
because some of the data, particularly for the high Mach 
number range, were obtained for the first time. It 
may be pointed out that many of the earlier tests on 
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revolving disks and, in particular, on revolving cylinders 
were conducted on a rather small scale and in a limited 
range of Reynolds number. It may be noted that a con- 
siderable range of Reynolds number is generally needed 
in order to confirm with sufficient reliability a par- 
ticular theoretical formula. For instance, it may be 
impossible to obtain a measurable difference between 
logarithmic or oower formulas if a short range of 
Reynolds number IS available. This matter of distin-
guishing between the various types of formulas is of 
theoretical interest. 

Experiments on Revolving Disks. 

The moment coefficient is defined as 

po2a5 

This definition corresponds to the one for laminar flow 
on a revolving disk given by von Irmn in reference 1 
as:

0M = a1R 2 

where 

The constant al used ir von Tr fl was 1 .84 for one 
side or 3.68 -for both sides this value was later 
adjusted by Cochran (see reference 8, vol. I, p. 112) 
to a = 3.87. If this corrected value of al is 

insered, the formula for laminar flow read 

1 

0M = 3.87R 2 

The turbulent-flow formula as given by von Krmn for 
revolving disks is

CI = 0.46ii 5 

In figure 2 are shown the experimental results for 
tests of a series of revolving disks. The Reynolds 
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number ranged from about 1600 to more than 1,000,000. 

Note that the test poin ts lie along the theoretical 

curves given by the von Krmn formulas. The transi- 

tion from laminar flow is seen to occur at R = 51050000. 

This was the largest value reached with the most highly 

polished disk. 

The thickness of the laminar boundary layer is, 

according to von Karrnn, 

'5 = 2.58j 

or, which is equivalent,

1 

= 2.58R2 

Using R	
öwa
-s- leads to

1 
n	5

2.58R 
H	a	- 

For the transition Reynolds number, 510,000, 

RE = 2.58\/R 

- ------	
-------	 ---------------- --

which is of the same order as the minimum critical 

value obtained for nines. 

Several tests were conducted for the purpose of 

investigating the factors affecting the transition 

Re ynolds number. The first observation was that the 

transition Reynolds number could not be increased beyond 

the value 310,000 no matter how highly the surface was 

polished or whtever other precautions were taken. Like-

wise, it was unexpectedly difficult to decrease the 

transition Reynolds number. The application of coarse 

sand (60 mesh) glued to the surface of a disk (1-ft 
radius) onl y reduced the transition Reynolds number to 

about 220,000 (fig. 2). The reduction in the transition 

Reynolds number by initial turbulence was also studied. 

A small high-pressure air jet applied near the center 

of the disk produced the greatest observed reduction 

(fig. 2) and brought the transition to a point near the 
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intersection of the lines representing-the drag formulas 
for laminar and turbulent flow, which is the absolute. 
minimum. Note that the drag in the turbulent region 
Is q uite appreciably increased by surface roughness. 

The values of the moment coefficient given in 
figure 2 represent obviously an integrated drag over 
the disk. An expression may be obtained for the local 
drag coefficient CDX as a function of local Reynolds 

number as follows: 

M= CM(pw2a5): 

2J CDX(1pW2r2) (2 1rr2 ) dr 

M 

1 

2

= 4i1J	 d(r) 

=	
CDX(_) d() 

-

—1 

+ 5cM()	Lt1TCDX(.)
d (;^ )k 

•+ 5C •= I41TCDX 

By substituting

IRIO 
r 

d.0	
- 

+	
CM - CDX 
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or	

1d(log c 1)	i 
=	CM10(10g H) + 2j



and

log CDX = log CM + log	
21T 

where

d (log CM) 

d(log R) 

If

- j	- C... 

then

C5+2n 
Dx - _____

41T	
1W 

BT use of the expression for log CDX, some of the data 

of figure 2 are olotted in figure 3. Although the 
general picture does not change much, the abrupt nature 

of the transition becomes apparent. 

An illustration of the boundary-layerróTiIe 

for various radii or Reynolds numbers is given in fig- 

ure L, in which curves of equal velocity ut/wr are 
also plotted. Note that the thickness of the boundary 

layer in the laminar region is essentially constant. 

The transition value of H, 310 1 000, is shown approxi-
mately by the line marked "Ap prox. transition" in fig- 

ure ). The nominal laminar boundary-layer thickness 

consistently annears to be somewhat in excess of that 

given by von Kr,-4n in reference 1. There appears to 

he some discrepancy from the theoretical velocity 

distribution which is shown for the laminar boundary 

1aer as obtained from work b y Cochran. (See refer- 
ence 8, vol. I, . 112.) It is recognized that the 
experimental error in this case is of considerable 

magnitude. The turbulent boundary layer shows almost 

perfect agreement with the logarithmic curve, which 

is plotted for one profile in figure L. 

CONFIDENTIAL
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It may be remarked here that a series of hot-wire 

tests were run to study fluctuations in the boundary 

layer with the following results 

(1) No disturbances were noted in the laminar 

region 

(2) A pure tone of a frequency of about 200 cycles 

per second was observed in the transition 

regIon. 

() A random disturbance involving much higher 

frequencies was observed in the turbulent 

region 

In figure 5 the urvcer range of the Reynolds number 

has been considerably extended. The highest Reynolds 

number reached is 7,000,000. The 1-power law holds 

fairly well in the observed range which, however, is 

too limited to ermit a distinction between the power 

law and the logarithmic law for the velocity distribu-

lion. The main nurtose of the tests, the results of 

which are shown in fi'ure 5, was to investigate the 

effect of the ach number.	The first run taken with

air as the medium extended to. a Reynolds number of 

about 2,000,000 and a Mach number of 0.62. By using 

Freon 12 as the medium, the range of Reynolds number 

was extended to '7,00 ,0,000. At the lowest pressure, 

the highest- value of the iach number reached was 1.69. 
All the data for Freon 12 shqw a slightly higher drag 

than that given	v by the on Karman formula, apparently 

because of some systematic error. The significant 

result of this investigation is that the drag coeffi-

cient is absolutely independent of the Mach number. 

A separate extension of the experiments to a Mach 

number of slightly more than two further confirmed this 

independence of the Mach number. 

Experiments on Revolving Cylinders 

The experimental results for revolving cylinders 

are shown in figure 6 as a plot of log 0r*,	against

w 
log10R, where F =	The drag formula for laminar

flow on a revolving cylinder is obtained from Lamb 

C0N'IDEiTIAL
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(reference 9, p. 589) as

CD -L -
R 

where

C	
P 

l) - 
qS 

- M 

qSa 

In this formula 

radius. In this 

instead of CM, 

disk, because no 

curve is shown i 
by

S is the surface area and a the 

case it is convenient to use C1) 

which was used for the revolving 

integration is involved. The laminar 

a figure b. The drag relation given 

'1 
D 

= -o.6 + .07 iog10R\/c1) 

for the turbulent flow is also shown in figure 6. 

The experimental results are replotted in fig-

is shown as a function of 

VCD 
log10R. The relation for the turbulent flow 

\JUp 

= -o.6 + 4.07 log10R\jc1) 

appears in figure 7 as a straight line. The coeffi-
cient C--, in this formula corresponds to a value 

of 0.4 for von Krm(n's universal constant K. The 

relation for the laminar regiQn	=	appears as 

.c-ved-'l 1tie near the origin. 

It is noted that the 

cylinders is dependent on 
where E is the size of 
of the Cylinder (see fig. 

size the drag coefficient

drag coefficient for rough 

the relative grain size C/a, 

he sand and .a is the radius 
8), and that for each grain 
remains constant and 
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independent of the Re ynolds number beyond a certain 

minimum or critical value, which lies on the line for 

turbulent flow. In regard to the magnitude of the 

drag coefficient as a function of relative grain size 

for particle"saturation" of the surface, it may be 

remarked that the value of 5 is a measure of the 

thickness of the sublayer or, what amounts to the 

same thing, a measure of the minimum grain size of 

the turbulence. It is therefore to be expected that 

the surface roughness will become effective at the 

Reynolds number for which Ecr' 
the critical value 

of C. becomes less than the grain size E	Inversely, 

it may be seen that, if the Reynolds number becomes 

smaller than this critical value, the grain size of 

the turbulence is too large to be affected by the 

surface roughness. With € greater than € cr, which 

is 3.3L, the following relation is approximately true 
for the drag coefficient beyond the critical Reynolds 

number for surface roughness of saturation density: 

-	-0.6 + 4.07 log10 3.31f 
D

= 2.12 + 4.07 log10 

In figure 9 the experimental points are shown to 
satisfy this theoretical relation with sufficient 

accuracy. 

Tests were made to determine the effect of the 

density of spacing of grains of a given size, and the 

results are presented in figure 10. Such tests were 

made with a certain unit grain size but with the sur-

face density in grains per square inch varied between 

90 and 2200. The grain size used corresponds to the 

size S	0. 03, also used for the preceding experi-
a 

mental results shown in figure 8. It is verified that 
the critical Reynolds number depends on the grain 

size only, and it is further shown that the slope of 

the drag curve beyond the critical Reynolds number is 

a function of the density. A saturation condition 

evidently always exists, in which the drag coefficient 

remains approximately constant and equal to the 

critical value.
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Experiments on Streamline Rods 

In figure 11 results are given for certain more 

or less streamline bodies, each tested in two or more 

different mediums. The tests were obtained by using 

actual propellers of 12-inch diameter, which are 

designated propellers B and C. Propeller B had a 

section of double symmetry with a circular-arc contour 

line. Propeller C was obtained by reducing the chord 

of propeller B by removal of about one-fifth of the 

chord near one extremity to obtain a blunt-nose air-

foil. By running propeller C backwards an airfoil 

with a blunt trailing edge could also he studied. The 

drag coefficient used in figures 11, 12, and 13 is the 

standard torque coefficient used for propellers 

-	
.-j C- 

pnD) 

For the simm.etrical airfoil B, a value of the 
Mach numberLcf about one was reached in air, the range 

was extended to 1.6 in Freon 12, and the characteristic 

decrease in the drag coefficient was finally reached 

in Freon 113. A considerable decrease in drag coeffi-

cient was noted at the largest. Mach number, 2.7, which 

to the knowledge of the authors Is the highest Mach 

number reached except for a few cases of projectiles. 

-- . The bmnnt-nose airfoil section C showed a pproxi-
ma te l y f he sa'e Low- soeed - esi-s bance as the- -symmetrical 
sharp-ncse section B but had a maximum torque coeffi-

ciect very much in excess of that of section B. The 

test extended only to near the peak of the torque curve 

with Freon 12 as the medium. By reversing the direc- 

tion of motion of propeller C to obtain a blunt rear, 

the expected large increase in drag at low Mach numbers 

was observed. The arnreciable difference in Reynolds 

number for air and Frecn 12 is apparent from the 

difference in drag coefficients in the range below a 

Mach number of unity. For higher Macli numbers, the 

drag coefficient of the section with the blunt rear 

lies between the drag coefficients of the doubly 

streamline section and the blunt-nose type; the stream-

line leading edge is ap proximately twice as effective 

as the streamline trailing edge, a result in general 

agreement with earlier observations. It should be 

noted, however, that the lowest drag is obtained with 

both le8ding and trailing edges streamlined. 

Note that the Mach numbers used in figures 11, 12, 
13 are based on the tip radius. 
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The effect f the Re ynolds number is also shown 

in figure 12, which gives the results of tests to 

study how the scale effect is superimposed on the 

Mach number effect. It should be noted again that 

the Remolds rumber effect appears only for a Mach 
number below unity. A wide variation in the Reynolds 
number shows no consistent measurable effect on the 

drag for a Mach number greater than unity. Similar 
data for a small angle of attack, instead of zero angle 
of attack as used in the preceding discussion, were used 
in one case, for which results are given in figure 13. 

The four propellers referred to in figures 11 

to 13 are shown in a photograph (fig. 1L) and the 
dimensions of the propeller3 are given in table I. 

It is of some interest to interject a superficial 

analysis of the results presented herein, in view of 

Ackeret's formula as given by Taylor (reference 10). 

For the local section Ackeret gives the drag coeffi-
cient as

1 

C=2.- 1)2a2 
*here the bar indicates the mean value. 

For zero angle of attack and a syümetric section 

with ID, 1=
	this relation becomes 

0D = 

For a circular-arc section	2 

the maximum angle. This angle 

equal to twice the thickness r 

total thickness divided by the 

ections, therefore,

-f-	, where	is max	max 

is, in turn, approximately 
atlo t, which is the 

chard. For circular-arc 

CD
= 16(v2 - i)t2

Figure 15 shows Cp plotted against Mach niunber 

for different values of t. At M = 1.0, the curves 

tend erroneously to infinity. This effect follows 
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from a siimlifvtng assumption used in the derivation of 
Acke ret' s formula. 

By using the general form f(M) instead of the 

Mach number function - - 1 1 the drag coefficient 

may be written	a

-	-' +-	-p l. - - 

The torque boefficient is imown experimentally to 
he a function of the Mach number, or --'L/X1, where x1. 

is the fraction of radius at which the Mac1 number is 
unity; thus, the following integral relation is obtained: 

= 2j xc@b2) f() dx 

There are several ways of hard1in this relation. The 
non-dimensional chord c and the thic k.ness t may be 
taken to represent a preferred section at approximately 
30 percent of the radius. By assuming an initial drag 
coefficient CD any desired accuracy may be obtained 

-	-. 

The I mctn f(M) shown in figure 16 has been 
obtained for propeller B by such a process based on 
the experimental data given in figure 11. Note that 
the drag coefficient approaches the value given by 
the Ack:eret formula for large valves of M, for 

which f(M) approaches (N 2 - 1) 2 . Note further that 

the maximum value of the drag coefficient occurs 
at N = 1.2 with f(M) almost exactly equal to unity. 
It is, of course, not to be concluded that the func- 
tion f(M) has general validity; the function is 
given here for propeller B for the purunse of corn-
raring the data with the Ackeret theory. 

CONCLTJDING =MARKS 

Experimental results on the drag of revolving 
disks have been nresented, v;hich substantiate to a 
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remarkable degree drag formulas based on the von •Krmn-

Prandtl theory of skin friction. The range of the 

investigation was extended to a Mach number of 1.69, 
which is beyond the range of any earlier test, and 

to a Reynolds number of 7,000,000. It was established 

that the skin friction is independent of the Mach 

number up to this value and appears to be a function of 

the Re ynolds number only. 

The drag at supersonic speedwas studied with 

revolving rods or propeller sections. Mach numbers 

as high as 2.7 were attained in the tests. The drag 

at supersonic speeds is a function of the Mach number 

only, as it appears to he essentially independent of 

both the Reynolds number and the nature of the medium. 

The characterstic peak in the drag curve observed for 

projectiles was obtained. For thin streamline bodies, 

this peak appears at Mach numbers only slightly beyond 

unity; in fact, it appears at a Mach number of 

about 1.2. Systematic tests were conducted on stream-

line bodies with ccmbinations of sharp and blunt leading 

and trailing edges for the purpose of obtaining the 

relative merits of such features. It was found that 

the increase in the peak value of the drag coefficient 

resulting from a blunt nose is about twice that 

resulting from a blunt trailing edge, when both drag 

coefficients are comnared with the drag coefficient 

of a section with strea'iline leading and. trailing 

rdges, which has the lowest value. 

Significant results were obtained on revolving 

free cylinders for which references to earlier tests 

seem to be lacking. It was found that, at very low 
Reynolds numbers, the drag asym ptotically approaches 
tile laminar drag of the classical theory whereas, 

at higher Reynolds numbers, the drag is found to 

conform to a logaritnmc formula of the von Karirian 

type. Thereis no distinct transition from laminar 

to turbulent flow, as is found in pipes and on 

revolving disks. The flow is essentially turbulent 

down to the smallest Reynolds numbers. 

The effect of initial turbulence was particularly 

studied in connection with tests of revolving disks. 

It was found that the transition Reynolds number was 

very slightly affected. The critical Reynolds number 

at which the roughness effect appears depends on 

particle size only and is not a function of particle 
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density . Beyond th i s value of the Reynolds number, 
the drag coefficient is constant only when the surface 
is "saturated," that is, when the density of the 
individual particles attains a maximum value. For 
a roughness of less than this particle density, the 
drag coefficient decreases with Reynolds number. 

It is interesting further to note the persistence 

of the logarithmic relationship. When l/J zis 
plotted, as a function of log R jCD (where CD--- is the 
drag coefficient and R is the Reynolds number), the 
lines representing turbulent flow are invariably straight. 
A rather critical demonstration of the logarithmic 
velocity pattern near the surface is thus shown. The 
range investigated is of considerable extent. 

Langley Memorial Aeronautical Laboratory 
National Advisor y Committee for Aeronautics 

Langley Field, Va. 
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AID- PE1JDIX A

SYMBOLS 

U7 friction veiocitT) 

To shear per unit area at surface 

P mass of air per unit volume 

Tm
mean friction velocit y (from 0 to x.) 

TI stream velocity for flat plates 

T-Tn ax maximum velocity 

mean velocity (in pipes) 

Tj0 reference velocity (at a given fraction of radius 
or of other reference dimension) 

U5 velocity at	S 

u absolute variable velocity of fluid .in boundary 

layer 

velocity deficiency, stream velocity minus local 
velocity for flat plates 

Ur radial velocity for disks 

lit tangential velocity for disks 

CO angular velocity,	radians 

5 thickness of laminar sublayer 

boundary-layer thickness 

L friction length	(i/u7) 

7, total length of plate 

T reference time	(L/U1) 

t time; also,	thickness ratio for propeller section, 

thickness of airfoil 

chord 
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coefficient of kinematic viscosity 

coefficient of viscosity 

r	variable radius of pipe, disk, or propeller 

a	radius of pipe, cylinder, or disk; also, velocity 
of sound in fluid 

x	distance from leading edge of flat plate in 
direction of flow also, fraction of propeller 

radius (x =	where R denotes radius of 

propeller tip) 

X i	fraction of propeller radius at which Mach number 
is unity 

Y	distance normal to surface 

nondimesional profile constant for turbulent 
flow near walls 

Cl	fraction of reference dimension	k); also, 
chord 

nondimensional chord of airfoil,,  
radius 

a angle of attack of airfoil; also, profile 
consbaitb/L)	- 

CD totaldrag coefficient	(Many authors usa	f,	e, 

or	instead 01CD	for pipes 

mean drag coefficient	(from 0 to x) 

CDX local drag coefficient 

D dreg; also, proreller diameter 

D drag of plate	(from 0 to x) 

grain size of roughness 

cr grain size of critical roughness for particular 
value of drag coefficient

moment coefficient for revolving disks 

M	missing momentum; moment for disks; or Mach number 

CONFIDENTIAL 
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Reynolds number 

Reynolds number based on thickness of 
boundary layer. 

RX Reynolds number based on distance from leading 
edge of flat plate or on local radius of disk 

Rd .	Reynolds number based on pipe diameter 

Ra Reynolds. number based on pipe radius 

V velocity (Ackeret formula) 

q dynamic pressure (for cylinders,	q =	pw)a2) 

S area of cylinder 

torque coefficient	(Q/pn2D5) 

torque 

N number of blades

n	rotational speed, revolutions per second; 
also, coeffic i ent in powerlaw 

angles nhch upper and lower surfaces of 
airfoil make with center line 

Pmax	maximum angle which circular-arc section
makes .wtth cenber line 

0 1	nondimensional velocity measured on logarithmic 
velocity pr ohio when. this carve is 
extrapolated to y = L 

02	nondimensional excess velocity at y = a over 
that of logarithmic Ine extended - to y = a 

C = C1 + 02

constants 

• .const ant- s 

k	constant 

a 1	constant in equation for moment coefficient 
of revolving disks 
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APPENDIX B 

NUMERICAL VALUES OF POWER REQUIREMENTS FOR

REVOLVING DISKS AND CYLINDERS 

A chart is presented (fig. 17) which gives the 
horsepower required to drive a smooth disk in standard 
air (760 mm and 15 0 C, p = 0.0028 slugs/cu ft and 
= 0.000159 ft 2/sec). Lines of constant horsepower 

ranging in value from 001 to 1000 are plotted with 
disk rotational speed (in rpm) as abscissa and disk 
diameter (in ft) as ordinate. The dashed line in 
figure 17 represents a Reynolds number of about 400,000, 

consideredich is considered the transition Reynolds number. 

The following	were used to calculate the 
power for disks operating in the turbulent region.: 

/	rz' 
=	. C 

1 
pa-'w7 

1 

C = 0.116R5

111 

Horsepower	
MW 

_) J 

_0j6 .p0•8a)4s62.8O.2 
550 x2 

Inasmuch as the formula for C	is based on the

power for velocity distribution, the calculated values 

of C	are too low for high Reynolds numbers. This 

error may become appreciable for the highest power, 
since the chart (fig. 17) covers a range of Reynolds 
numbers to 60,000,000.

- 
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A chart is also nresented (fig. 18) which. gives 
the horsepower re q uired to rotate a smooth cylinder of 
unit length (1 ft) in standard air. The following 
formulas have been used in ca1ulating the curves: 

= CqSaw 

CD.pw2a2 
=ira	—'aW 

2 

Horsepower =
550 

C 1)TVO 84W3 

550 

where, for smooth. cylinders, 

= -o6 ^ 24 .07 icg10r 

&nd, for rough cliners,	> 
Or 

= 2.12 + .07 log 
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APPENDIX C - 

COLLECTED SKIN-FRICTION FORMULAS 

FLAT PLATES (ONE SIDE) 

Symbols 

The fO1lOWifl ) symbols are used in the formulas for 
flat plates collected herein: 

OD	total drag coefficient 

CD-?	local drag coefficient at point x 

x	distance from leading edge of flat plate in 
direction of flow 

length of flat plate in direction of flow. 

R	Reynolds number based on 1 

R...	Reynolds number based on x 

nai' Flow 

The formula for total drag coefficient 

1 

CD	l.328R 2 

is based on. the simplified hydrodynamic equations 
developed by i'randtl in 190). (See reference 2, p. 2.) 
The constant, which was calculated by Elasius in 1908 
as 1.327, was calculated by TOpfer in 1912 as 1.328. 
(See reference 3, p. 89. ) The formula for local drag 
Coe fficier.t is

•1 

0Dx = o.66)R2

29 

CONFIDENT IAL



30	CONFIDENTIAL	NACA ACR No, LLF16 

Von Krmn, Schoenherr, and others have indicated that, 
if the total drag coefficient is 

C = Constant R 

the local drag coefficient is given as 

= (n + 1) CD 

This relation is derived in the section entitled "Local 
Values of Drag Coefficient for Fiat Platest In this 
parer. All formulas given in thic ap pendix for the local 
drag on flat plates are in confonaty :t.th his derivatton. 

Thrbuler.tt Flow -- Omooth <inn ace 

The foren.Ja a

1 

CI) = 0,07R 5 

and

CDX = O,059R15 

were first calculated h von Kr-inn in 1920. (See 
references 1 and 2.) Based on reuis from pipes and on 

the -rower law for velocity distribution, they are 

consequently valid in the lower deynoids number range, 
R < 109000,000. 

Some writers use the followin formulas of the same 
tyre, which ore fairly accurate to a Feynolcts number of 
500,000,000

CD = 0,0702 

0Dx = OO26R?

C C- R'71  I DL Ifl LtL
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Of more general validity are the so-called loga-
rithmic drag formulas of the type 

-:: = L.15 lOg1QRC 

The form of this relation was determined by von Ka'rrna'n 
with constants adjusted to conform with data by Schoenherr 
and. others. (See reference 2, p. 12.) In the present 
paper a different form has been developed, which is in 

somewhat stricter theoretical conformity with the physical 

relations involved

- 
= 4 .07 log10 1 - 

	

D	 CD 

Prandtl has developed an explicit expression which 
gives essentially the same results as the logarithmic 
formulas. It is

CD = 0.455(log10R) 

	

(ëè	ferne-3--	--l5

 

) - -The-local - drag coefficient 
has also been given by von Karman in a logarithñ1foDi 
with the constants adjusted to fit the experiments of 
Kemp, which inducted measurements on small movable plates 
inserted on a long pontoon. This formula is 

= 1.7 + 4.15 1og10RC 

V -' Dx 

(See reference 2, p. 12. 
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TuTbulent Flow, - Rough Surface 

Schlichting (see reference 8, P. 382) gives the two 
following formulas for the tot.l and-the local drag coef-
ficients for rough flat plates, respectively: 

-2.5 

CD = (1.89 ± 1.62 ioj	) 

0Dx = (2.87 + 1.58 log10 

Von Ka'run (reference 2, p. 18) gives for the local drag 
coefficient for rough surfaces a formula of the loga- 
rithmic type

-4- = 5.8 +	log10 /ö 

PIPES 

S ymb ols 

he symbol 

Reynolds number 
flow velocity, 

number based on 
instead of 

=

H4 used in this 

based on the pipe 
and the snnh3l Ha 

pipe radius. Sori 
used herein, and

section refers to the 

diameter and the mean 
refers to the Reynolds 

writers use £ or
others use ?'. where 

ar Flow 

For laminar flow in p i pes the formula for drag coef-
ficient is

16 
CD 

This formula is attributed to Poiseuille and Wiedenian. 
(See reference 3, P. 38, and reference 8, p. 298.) 
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Turbulent Flow - Smooth Surface 

The formula for drag coefficient for turbulent flow 

in smooth pipes is

•1 

CI) = 0.079Rd 

This forrrula is based on the experimental work of Blasius 
(see reference 3, P . 136), for which the Reynolds number 
range was rather limited. Later work by Nikuradse (ref-
erence ) extended the range of Reynolds number to a 
much 1igher value. The following formula of the type 
developed by von Ka'rnsn fits the data better: 

= -0J0 + ).00 logR1JC 

(See reference 	p. 338.) In the present paper a 
forni:ula of this type with different constants is developed: 

- /C = OJC) + 2.O7 1091ORa\/CD 

Turbulent Flow - ? oti Surface	-	-	- 

:or turbulent flow in rough pipes 

= 3,L6 + E.00 iog1 

The experimental work in deriving this formula was done 
by N	d ikurase. (See reference , P. 380, and reference 6.) 
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REVOLVING DI3KE. 

S ymb 0 is 

The following symbols are used in the formulas for 
revolving disks: 

CM	moment coefficient 

DIX	
local drag coefficient at radius 

Reynolds number at radius x 

Laminar Flow 

For laminar flow

1 

= 

and

1 

- 

x -,	
1l.x

Tr 

This formula for local drag coefficient is derived from 
the relation

CDx	14.11'	N 

For the development of this relation and for references, 
see the section entitled xperiments on Revolving Disks" 
in this paper.

Turbulent Flow 

or turbulent flow 

C M = O.lL6R 5 
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and

1. 

CDX = O.o53Rx5 

The formula for the local drag coefficient CDX is 

derived from the equation for the moment coefficient CM 

in the same way as for the case of laminar flow. The 
local drag coefficient in logarithmic form may be given 
as

= -2.05 + .07 logRi/ 

The constant -2.05 has been adjusted to fit the data 
of figure 3.

REVOLVING CYLINDERS 

For laminar flow

--c----- 4 
D H 

For turbulent flow on smooth cylinders 

= -o.6 + L, . 07 10910Ri/ 

i/CD 

For turbulent flow on rough cylinders 

= 2.1 + 4.0 log0 

The development of these formulas and the references are 
iven in the section entitled "Experiments on Revolving 

Cylinders,"

CONFIDENTIAL



36	 CONFIDEIrIAr	NACA ACR No. L4F1.6 

REFERENCES 

1. von Krmn, Th.: Uber larninare und turbulente 
Reihung. Z.f.a.M.M., Bd. 1, Heft L, Aug. 1921, 
pp. 233-252. 

2. von Krm.n, Th.: Turbulence and Skin Friction. 
Jour. Aero. Sc., vol. 1, no. 1, Jan. 1934, 
pp. 1-20. 

. I'randtl, L.: The Mechanics of Viscous Fluids. 
Vol. III of Aerodynamic Theory, div. G, 
W. F. Durand. ed., Julius Springer (Berlin), 
1935, pp. 34-20. 

1.. Goldstein, S.: On the Resistance to the Rotation 
of a Disc Immersed in a Fluid. Proc. Cambridge 
Phil. Soc., vol. XXXI, pt. II, April 1935, 
pp. 232-24. 

5. I'Iikuradse, J.: Geetzmisstgkeiten der turbulenten 
Str3mung in glatten Rohren. Porschungsheft 3.56, 
Forschtu-ig auf dem Gebiete des Ingenieurwesens, 
Ausg. B, Bd. 3, Sept.-Oct. 1932, 

6. Nur ad. ss, J.	Stromungsgesetze in rauhen tLohren. 
Fors chun.sheft 3.61, Bellage zu Forechung auf dem 
Gabiete des Ingenieurwesens, Ausg. B, Bd. 41 
July-Aug. 1933. 

7. Wattandorf, F. L.: A Study of the Effect of 
Curvature on Fully Developed Turbulent Flow. 
Proc. Roy. Soc. (London), ser-, A, vol. 148, 
no. 865, Feb. 1935, pp. 565-598. 

8. Fluid Motion Panel of the Aeronautical Research 
Commitbee and Others:' Modern Developments in 
Fluid Dynamics. Vols. I and II. S. Goldstein, 
ed., Oxford at th .e Clarendon Press 1938. 

9. Lamb, Horace: Hydrodynamics. Sixth ed., Carrihridge 
Univ. Press, 1932. 

10. Taylor, G. I.: Applications to Aeronautics of 
Ackeret's Theory of Aerofoils Moving at Speeds 
Greater Than That of Sound. R. & M. No. 1467, 
British A.R.C., 1932. 

CONFIDENTIAL



NACA ACR No. 1.i6	CONFIDENTIAL	 37 

TABLE I 

DIMENSIONS OF PROPELLERS OR REVOLVING RODS 

FOR TESTS AT HIGH MACH NTJBERS 

[All propellers have a straight taper in chord and thick-



ness.. The tips are rounded as shown in fig. iL.j 

0	

-

 

At 5 0 percent At 92 percent 

IProDeller - Airfoil Pitci
radius. 

______  
radius 

nation I (deg) Chord Thickness Chord Thickness 
(in.)	(in.) (in.)	(in.) 

Circular 
are 0 1.75	0.31 1.07	0.1)4. 

C Blunt nose 0 1.30	.35 .82	.15 

D
Circular 

are 25 l.	.18 .1.03	.11 

E
. Circular

.83 52 
arc

half of the blade had an angle of attack. 
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Figure 1.. parameters and functions of the velocity profile by the von Krmn-Prandtl theory.
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Figure 17.- Power requirement for smooth diske.
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Fig. 18 
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Figure 18.- power requirement for smooth cylinders (1-ft length).
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