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1

Introduction

1.1 Turbulence

In general, the words turbulent and turbulence are used to describe situations
that are wild, stormy, tumultuous, agitated, and above all unpredictable. To a
certain degree, these descriptions are also true for turbulent flows. Most flows,
both in nature and in technological applications, are turbulent. Atmospheric
flow is turbulent, which is one of the causes of the unpredictable nature of
our weather. Turbulence in the seas and oceans directly impacts our climate,
and affects the distribution of, for instance, plankton, but also of algae and
pollution. The chaotic motion inherent to turbulence is used for stirring and
mixing chemicals in industrial applications, and, on a much smaller scale, in
distributing milk and or sugar through a cup of tea. Combustion, for instance
in power plants and car engines, is a turbulent process. In order to understand
all these processes, and in case of technological applications in order to improve
their efficiency, understanding turbulence is essential.

The equation of motion for a fluid is the well-known Navier-Stokes equation,
which in essence is Newton’s second law of motion applied to a fluid parcel ∗:

Du(x, t)

Dt
= −1

ρ
∇p(x, t) + g + ν∇2u(x, t). (1.1)

In this equation, u(x, t) is the fluid velocity at a location x and a time t, ρ is
the density of the fluid, p(x, t) is the pressure, g is the gravitational accelera-
tion, and ν is the (kinematic) viscosity of the fluid. In principle, this equation,
together with the continuity equation: ∇ · u = 0, fully describes the motion
of a fluid, including that in turbulent flows. However, even though the basic
equations that describe the fluid motion are known and have been known for

∗Already indicating some limitations, this equation as formulated here is only valid
for a homogeneous, incompressible, and Newtonian fluid, without background rotation.
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more than a century, turbulence essentially is an unsolved problem. The equa-
tions allow solutions of a bewildering complexity and exact solutions have only
been found for rare and decidedly non-turbulent cases.

A feature of turbulent flows is the occurrence of structures, often called
eddies, associated with rapidly fluctuating vorticity. The motion in a turbulent
flow occurs over a wide range of length- and time scales. By vortex-stretching
and vortex-breakup, two non-linear processes, the energy that is contained in
large scale eddies is transferred to smaller structures, in what has become known
as the energy cascade. Because of the unpredictable and seemingly random mo-
tions in turbulence, almost all descriptions and measurements of turbulence deal
with statistical quantities such as averages, variances, correlation functions, and
energy spectra. A major breakthrough in the development of a statistical de-
scription of turbulence was the work by A.N. Kolmogorov. Based on the notion
of the energy cascade, he postulated that for strong turbulence the energy that
is transferred from larger to smaller scales is dissipated by viscous effects only
on the smallest scales in the turbulence. Accordingly, the turbulence statis-
tics on the smallest scales depend on both the energy dissipation rate ǫ and
the viscosity of the fluid. By dimensional arguments Kolmogorov found that,
thus, these smallest scales were of a size: η = (ν3/ǫ)1/4. He also hypothe-
sised that, since viscosity does not play a role on larger scales, the statistics for
these larger scales depend only on the energy dissipation rate. From this he
derived his now-famous five-third law for the turbulent energy spectrum. The
definition of the energy spectrum, which we will call E(k), is based on Fourier-
analysis: E(k)dk is the kinetic energy density in the velocity field contained
in Fourier-modes with wavenumbers between k and k + dk. By dimensional
analysis, Kolmogorov concluded that for scales in the flow larger than η (but
smaller than the largest scales) the energy spectrum shows algebraic scaling
with a scaling exponent of −5/3:

E(k) = Cǫ
2

3 k− 5

3 , (1.2)

with a constant C that is most probably universal, but for which no theory
exists, unless the turbulence problem is solved. This scaling behaviour has
since been observed in a wide variety of turbulent flows, including very large
scale flows in the atmosphere and smaller scale flows in, for instance, wind
tunnels. This theory will be the framework for interpreting our turbulence
measurements. In particular, our question will be how this multitude of scales
in turbulence is reflected in the size of structures that can be found at the
free surface of the flow. A more detailed description of the theory and its
consequences and limitations can be found in turbulence textbooks, such as the
books by Frisch (1995) and Pope (2000).
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1.2 Free-surface deformations

Turbulent flows in seas and oceans, as well as flows in rivers and channels, for
instance, are special in the sense that they have a free surface. Turbulence close
to the interface between water and air behaves very differently from turbulence
near fixed walls, such as the walls of a flow channel or the ocean floor. One of the
most obvious features of the air-water interface is that it is deformable. The
small-scale roughness of the ocean’s surface determines the exchange of heat
and mass between the atmosphere and the ocean. These transport processes
are crucial for the global distribution of momentum, heat and chemical species.

By far the most common type of surface deformation to occur in nature are
waves, ranging from tiny thermally driven capillary waves, with wavelengths
of a few micrometers and amplitudes of a few nanometers (Aarts et al., 2004),
to monstrous waves induced by earth-quakes, that can travel across the entire
globe and that can reach heights of several meters (Titov et al., 2005). A
more common source of waves on the sea or ocean surface is turbulence in the
wind above it, and pressure fluctuations and fluctuating shear stresses on the
surface associated with this. The interaction of waves and wind is a complicated
problem that has been studied for decades (see Phillips, 1957) and is in fact
still being investigated.

The shape of the surface is determined by a delicate balance between vertical
acceleration and pressure in the flow below the surface on one hand, and gravity
and interfacial tension, i.e. stresses associated with surface curvature, on the
other hand. Which force dominates this balance depends on the scale of the
deformation. Generally, for large scale surface deformations, gravity balances
vertical accelerations in the fluid, whereas for smaller scales surface tension
plays a more important role. In a recent paper, Brocchini & Peregrine (2001)
have classified the different types of structures and the behaviour that can occur
at a free surface above turbulent flow, depending on which force dominates.
Structures, other than waves, commonly seen on a free surface above turbulence
are scars; sharp lines on the surface, most often associated with up- or down-
welling of fluid at the surface. Additionally, low pressure in the core of sub-
surface eddies can lead to dimples in the surface. These too are fairly common
structures, visible in the wake behind bridge pillars in a river, behind oars on
a boat, or in a cup of tea that is stirred with a spoon. Brocchini & Peregrine
(2001) distinguish four different regimes of free surface distortions as a result
of sub-surface turbulence, depending on a typical length-scale L and typical
velocity scale U of the turbulence. Based on these scales, they define two
dimensionless numbers: the Froude number, which is a measure of the potential
energy due to gravity relative to the kinetic energy in the flow:

Fr =
U√
2gL

, (1.3)

where g is the gravitational acceleration, and the Weber number, which gauges
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the balance between inertial and surface tension forces:

We =
U2Lρ

2σ
, (1.4)

where σ is the surface tension coefficient†. Depending on the values of the
Froude and Weber numbers the following four regimes can be distinguished:

Weak turbulence Fr << 1,We << 1: The turbulence is not strong enough
to cause significant surface disturbances.

’Knobbly’ flow Fr >> 1,We << 1: The turbulence is strong enough to
deform the surface against gravity, but its length-scale is small. Surface
tension causes the surface shape to be very smooth and rounded.

Turbulence dominated by gravity Fr << 1,We >> 1: Surface distor-
tions are primarily countered by gravity, resulting in a nearly flat free
surface. The turbulent energy is sufficient to disturb the surface at rela-
tively small scales, leading to small regions of waves, vortex dimples, and
scars. This is the most common state in nature.

Strong turbulence Fr >> 1,We >> 1: The turbulence is strong enough to
counter gravity and surface tension is no longer sufficient to prevent the
surface from breaking up into droplets and bubbles.

Since turbulence, by its very nature, does not have a single length-scale or time-
scale, in the real world, one can expect to see many of these features occurring
side-by-side, as was also pointed out by Brocchini & Peregrine (2001). For
instance, even in relatively weak turbulence, localised events can lead to surface
deformations.

1.3 Experiments

In this thesis we will study the wrinkling of the surface in still air, which is
determined by the interaction between the free surface and the turbulent flow
beneath it. The interaction between turbulence and a free surface is also known
as free-surface turbulence (see, for instance, Rood & Katz, 1994; Shen et al.,
1999). The complexity of the boundary conditions on the free surface makes
simulating the free-surface turbulence a daunting task. Experiments can reveal
much information about this interaction that is not present in such simulations.
This is in part due to the linearisations of the boundary conditions required in
the numerical modeling and in part due to the high computational costs involved
in simulating strong turbulence. Hence, we study free-surface turbulence in
experiments in a water channel, in which we generate turbulence by means of
a so-called active grid.

†For a clean air-water interface at room temperature σ = 0.73 · 10−3N/m.
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(a)

(b)

Figure 1.1 — (a) Photograph of the free surface over the full width
of the water channel (0.3 m) used in our experiments, from the active
grid (located close to the top of the picture) to about 1.5 m down-
stream (b) Details of the surface at 2 m from the grid. The width of
the photograph corresponds to approximately 0.1 m. See chapter 3
for details of the set-up and the turbulence generating grid.
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Visual observations play an important role in fluid dynamics. This is cer-
tainly true for free-surface turbulence. Careful observations of features of the
surface can provide a general idea of the nature of the surface deformations.
Figure 1.1 shows photographs of light reflected in the surface above the turbu-
lence we generate in our experiments. These photographs clearly show that the
surface exhibits deformations on many different length-scales and in different
directions. Obviously, photographs do not show either the turbulence or the
dynamics of the surface. Even from video, that does show time-dependence,
inferring whether, for instance, the surface deformations move at the same
velocity as the mean stream velocity in the turbulence is almost impossible.
Hence, instead of on observation, the focus in the experiments described in this
thesis is on detailed measurements of the statistics of both the surface shape and
of the turbulence beneath it. In order to be able to properly characterise the
turbulence in terms of the Kolmogorov framework and to make the turbulence
reproduceable, we have chosen to use homogeneous and isotropic turbulence,
which is generated by the active grid.

Measurement techniques in fluid dynamics have progressed rapidly in the

-0.01
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Figure 1.2 — Scan of the surface above grid-generated turbulence,
at 2 m from the grid. The vectors indicate the local surface slope.
The grey in the background is a measure for the slope magnitude.
It was obtained from measuring the slope along a line in spanwise
(x-) direction. The scans were extended in the streamwise (y-) direc-
tion by means of Taylors’ frozen turbulence hypothesis. It should be
noted that because of this, the image cannot be directly compared
to a snapshot of the surface. See chapter 6 for more details on the
measurement technique and chapter 8 for an explanation of Taylor’s
hypothesis as applied to a free surface above turbulence.
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last decades, in part due to the increasing computational power of affordable
computers, as well as, for instance, due to the development of digital cameras.
These developments enable us to measure both the sub-surface velocity field
and the surface gradient field with a sufficiently high resolution. The former
is done with Particle-Image Velocimetry, an existing technique based on cross-
correlating digital images of particle distributions in the flow, illuminated by
means of a laser light sheet. For the surface shape measurements we have
developed a new technique based on scanning the surface with a laser beam.
Figure 1.2 shows the surface slope field above active-grid-generated turbulence,
derived from these surface scans.

If we take U to be the root-mean-square velocity measured in our experi-
ments and L the integral length-scale of the turbulence, which is a measure of
the largest structures, we find We ≈ 15 and Fr ≈ 0.01‡. Hence, the surface
distortions are relatively small. This can also be seen from the values of the
slope in figure 1.2. However, even this case is understood only poorly. For
instance, how the shape of the free surface is connected to the sub-surface tur-
bulence is essentially unknown. Our measurements will allow us to compare the
statistics of both, and see what part of the turbulence, if any, is directly visible
in the surface shape. This is of prime importance for interpreting geophysical
observations of the surface shape, obtained by novel remote sensing techniques
(Forbes et al., 1993; Stammer, 1997).

1.4 Overview of this thesis

Much of this thesis is devoted to the description of and to tests of our measure-
ment techniques, but we start in chapter 2 with formal definitions of the bound-
ary conditions at a free surface and, based on these, mathematical descriptions
of two distinctly different types of free-surface deformations: gravity capillary
waves and dimples in the surface associated with low pressure in the cores of
sub-surface vortices. These two examples illustrate some of the behaviour that
can occur at a free surface and provide a framework for our results. Chapter
2 also gives an overview of previous studies of how the presence of the surface
influences the turbulence and of the intricate interactions between structures
in the turbulence and the surface.

As was already mentioned, the turbulence in most of our experiment is
generated by actively stirring the flow by means of a so-called active grid. This
type of grid can be used to generate the moderately strong turbulence we need
and allows us to change the properties of the turbulence to some degree. A
detailed description of the grid is given in chapter 3, as well as properties of the
turbulence it generates. These properties were measured by means of point-
measurements of the velocity with Laser-Doppler Velocimetry. A question that

‡Details of these measurements can be found in chapter 3.
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receives particular attention in this chapter is how the forcing influences the
isotropy of the turbulence.

Chapter 4 describes Particle Image Velocimetry (PIV). Unlike Laser-Doppler
measurements, this technique provides a spatial measurement of the velocity:
two components of the velocity in horizontal planes below the surface, in our
case. This allows us to measure spatial correlations, derivatives of the velocity,
and vorticity. However, the spatial information provided by PIV is in fact a
spatially filtered representation of the actual velocity field. By evaluating syn-
thesised particle images, generated with kinematic simulations of turbulence,
the effects of this inherent averaging on the measured turbulence statistics are
evaluated. A comparison is also given between results of PIV experiments in
our water channel and measurements obtained with LDV.

The statistical analysis of turbulence in chapters 3 and 4, as well as in most
turbulence text-books, involves spatial Fourier transforms and spatial correla-
tions. Chapter 5 will show how, especially in the case of surface waves, a sta-
tistical description of the surface shape requires Fourier-analysis both in space
and in time. Chapter 5 also provides a description of statistical properties for
an isotropically deformed surface. This description and the space-time Fourier
analysis that precedes it, provide a framework for interpreting our measure-
ments of the surface shape.

Since it is essential to measure the surface shape in space and time, a novel
measurement technique has been developed, based on scanning the surface
along a line. This is done by means of a swiveling laser beam. The tech-
nique is described in chapter 6. Based on measurements of the free-surface
above grid-generated turbulence, a number of features as well as limitations of
this measurement technique are discussed.

Finally, with the sub-surface turbulence having been characterised and the
measurement techniques detailed, in chapter 7 we proceed with the actual in-
vestigation of the relation between the sub-surface turbulence and the shape of
the free surface. This is done by means of more space-time measurements of
the free surface above active-grid-generated turbulence and includes a study of
isotropy of the surface shape and its relation to the isotropy of the sub-surface
turbulence.

The investigation into the relation between the surface shape and the tur-
bulence is continued in chapter 8. In this chapter, we describe simultaneous
measurements of the surface slope with our laser scanning technique and si-
multaneous PIV measurements of the sub-surface velocity field, in orders to see
what part of the surface shape is directly connected to the sub-surface turbu-
lence.



2

Free-surface turbulence

As was already indicated in the Introduction, different types of surface deforma-
tions can co-exist above sub-surface turbulence. In this chapter, more detailed
mathematical descriptions of two of these deformations will be given: gravity-
capillary waves and dimples in the surface associated with sub-surface vortices.
These descriptions are based on a formal definition of the equations of motion
and the boundary conditions at the surface. Even though they cannot fully
describe the shape of a free surface above turbulence, they will later form the
reference frame for the interpretation of our experimental results. We will also
take a closer look at how having a free surface as a boundary condition influ-
ences the sub-surface turbulence, a problem that has received a lot of attention
in literature. This is followed by a description of how sub-surface turbulence
can generate waves.

2.1 Boundary conditions at a free surface

Several different mathematical formulations of flows involving a free surface
exist, involving different linearisations, different ways of expressing the pressure,
numerous non-dimensionalised forms, and various different coordinate systems.
Hence, we feel, it is important to mention the full nonlinear boundary conditions
here. They define a free surface and serve as the basis for two distinctive free-
surface deformations that can occur.

The full set of non-linear equations, albeit in a different coordinate system,
can be found in Wehousen & Laitone (1960) and in a more concise manner in,
for example, Tsai & Yue (1996) and Sarpkaya (1996). As mentioned in chapter
1, the governing equations for the fluid motion are the continuity equation (for
an incompressible flow):

∇ · u = 0 (2.1)



10 Free-surface turbulence | Chapter 2

and the Navier-Stokes equation:

∂u

∂t
+ u · ∇u = −∇p

ρ
+ ν∇2u − gez, (2.2)

with the z-coordinate pointing upwards from the surface. The influence of
gravity can be incorporated into the pressure by defining the dynamic pressure
pd as:

pd = p + ρgz. (2.3)

This can be introduced into the Navier-Stokes equation:

∂u

∂t
+ u · ∇u = −∇pd

ρ
+ ν∇2u. (2.4)

For two viscous, immiscible fluids separated by an interface S(x, t) = 0 a num-
ber of boundary conditions exist:

1. At the interface the tangential velocity is continuous.

2. The kinematic boundary condition: a fluid parcel cannot pass through
the interface.

3. The dynamic boundary conditions: tangential stress at the interface is
continuous, and, due to surface tension, a jump occurs in the normal
stress, proportional to the curvature of the interface.

In order for the interface to be considered a free surface density, the velocity
and the viscosity in the upper fluid are considered negligible. In our case,
the free surface is the interface between air and water∗. Since the velocity of
air is considered negligible, for the free surface the first boundary condition
becomes irrelevant: the tangential velocity at the surface no longer needs to
be continuous. Hence, the tangential velocity in the water at the surface is
unbounded. The kinematic boundary condition can be formulated as follows:
the material derivative of the function S(x, t) that describes the interface is
equal to zero. Hence:

DS

Dt
=

∂S

∂t
+ u · ∇S = 0 on z = h(x, y, t), (2.5)

where u is the velocity, now only in the water, and h(x, y) is the surface ele-
vation. This is directly related to S through S(x, y, z, t) = z − h(x, y, t). Since
the viscosity of air is negligibly small compared to that of water, a consequence

∗At room temperature, for water the density is ρ = 0.998 · 103 kg/m3 and the
dynamic viscosity µ = ρν = 1 · 10−3 kgm−1s−1, whereas for air ρ = 1.23 kg/m3 and
dynamic viscosity µ = 1.27 · 10−6 kgm−1s−1
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of the dynamic boundary condition is that in the water the tangential stresses
at the interface are zero. The normal stress in the water is balanced by the
pressure in the air and the surface tension. These conditions can be combined
in the following equation (Tsai & Yue, 1996):

T · n = (σκ)n + Pa on z = h(x, y), (2.6)

where Pa is the atmospheric pressure, i.e. the pressure in the air above the sur-
face, n is the unit normal vector to the surface, κ is the local surface curvature,
σ is the surface tension coefficient, and T is the stress tensor. For a Newtonian
fluid the elements of the stress tensor are given by:

Tij = δijp − µ

(
∂ui

∂xj
+

∂uj

∂xi

)
, (2.7)

in which µ = ρν is the dynamic viscosity of water. The local curvature of the
surface can be written as:

κ =
1

R1
+

1

R2
, (2.8)

where R1 and R2 are the local radii of curvature at the surface. A very common
way to linearise this boundary condition is by substituting the second-order
derivatives of the surface elevation for the curvature:

κ =
∂2h

∂x2
+

∂2h

∂y2
. (2.9)

In principle, equations 2.1 to 2.7 fully describe the flow of a Newtonian fluid
under a free surface.

In order to be able to understand the relative importance of the various
forces acting on the surface, and to more formally establish the relevant non-
dimensional numbers, these equations can be written in non-dimensional form,
by scaling the velocities with a characteristic velocity scale U , length-scales with
a characteristic length-scale L and the pressure as p′ = p/(ρU2), and similarly
Pa′ = Pa/(ρU2). For a turbulent flow U could, for instance, be the root-mean-
square velocity and L could be the integral length-scale. This scaling is similar
to the scaling used by Tsai (1998). The continuity equation changes very little:

∇ · u′ = 0, (2.10)

where the prime denotes a non-dimensional quantity. The non-dimensionalised
Navier-Stokes equation becomes:

∂u′

∂t′
+ u′ · ∇u′ = −∇p′d +

1

Re
∇2u′, (2.11)

with the Reynolds number:

Re =
UL

ν
. (2.12)
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The non-dimensional dynamic pressure is:

p′d = p′ +
z′

Fr2
, (2.13)

where Fr is the Froude number, now defined as:

Fr =
U√
gL

. (2.14)

The dynamic boundary condition becomes:
(

δij

(
p′d −

h′

Fr2

)
− 1

Re

(
∂u′

i

∂x′
j

+
∂u′

j

∂x′
i

))
· n =

(
1

We
κ′ + Pa′

)
n. (2.15)

with the Weber number:

We =
ρU2L

σ
. (2.16)

We have formally derived the Weber and Froude numbers that were used by
Brocchini & Peregrine (2001) and were already mentioned in chapter 1. How-
ever, the definitions here are slightly different from those given in chapter 1:
We = ρU2L/2σ and Fr = U/

√
(2gL). The difference, a constant factor 2 and√

2, respectively, is likely due to the latter definitions following from the non-
dimensionalised energy equation, see for instance Tsai (1998). In any case, the
Weber number indicates the relative importance of capillary forces at the sur-
face, whereas the Froude number is an indication of the importance of gravity.

As can be seen from equations (2.11), (2.13), and (2.15), the choice of
whether one uses dynamic pressure or not, only determines whether the influ-
ence of gravity (coupled to the Froude number) is visible in the Navier-Stokes
equation itself or in the boundary condition at the surface. The latter is com-
mon in literature concerning free surfaces.

In order to find solutions to this set of non-linear equations, usually they
are linearised. Two very different types of free-surface deformations, based on
linearised boundary conditions, will now be introduced.

2.1.1 Linear gravity-capillary waves

Waves are probably the most common surface deformation to occur in nature,
as was indicated in chapter 1. We will briefly look at waves in a fluid of finite
depth h0 that propagate in one direction. This derivation can also be found in
common fluid dynamics textbooks (see Kundu, 1990; Lighthill, 1978). Gravity-
capillary waves are considered to be inviscid and irrotational †. This means

†The effect of viscosity is twofold: waves are damped, the damping becoming larger
as the wavelength of the waves decreases and even small waves can actually generate
vorticity (Sajjadi, 2002).
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that the flow can be treated as a potential flow with the potential φ given by:

∇φ = u. (2.17)

Since the velocity field u(x, y, z) is incompressible, the potential φ satisfies the
Poisson equation:

∇2φ = 0. (2.18)

This can now be solved with the appropriate boundary conditions. At the
bottom the normal velocity w is zero. Hence:

∂φ

∂z
= 0 at z = −h0, (2.19)

where the z-coordinate points upwards and its origin z = 0 is located at the
undisturbed surface. For waves with a small amplitude compared to their
length, the kinematic and dynamic boundary conditions can be linearised: they
are evaluated at z = 0 instead of at z = h. The kinematic boundary condition
reduces to:

∂φ

∂z
=

∂h

∂t
at z = 0, (2.20)

with h(x, y, t) the free surface elevation. Since the flow is considered to be
inviscid, the dynamic boundary conditions for the tangential stresses are met:
they are zero by definition. Since the flow is also irrotational, instead of the
Navier-Stokes equation, a linearised form of Bernoulli’s equation can be used:

∂φ

∂t
+

p

ρ
+ gz = 0 (2.21)

Combining this with the dynamic boundary condition given in (2.6), which
gives the pressure at the surface, and with the surface curvature being approxi-
mated by equation (2.9), the dynamic boundary condition for the normal stress
becomes:

∂φ

∂t
=

σ

ρ

(
∂2h

∂x2
+

∂2h

∂y2

)
− gh at z = 0, (2.22)

where the atmospheric pressure Pa = 0. To summarise, instead of a complex
set of non-linear equations, now we need to solve the Poission equation (2.18),
which is linear, with linearised boundary conditions (2.19), (2.20), and (2.22).
The type of solution we are aiming for is, of course, in the form of a harmonic
surface wave, with amplitude a, wavenumber vector k, and frequency ωd:

h(x, y, t) = a cos(k · x − ωdt). (2.23)

Substituting this in the Poisson equation, using separation of variables, and
applying the boundary conditions gives:

φ =
aω

k

cosh k(z + h0)

sinh kh0
sin(k · x − ωdt), (2.24)
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in which k is the length of vector k. In principle, the vertical and horizontal
velocities associated with the wave motion can be calculated from this expres-
sion. Far more interesting, however, is the dispersion relation: the relation
between the wavenumber and frequency for surface waves. This follows from
the dynamic boundary condition, by substituting (2.23) and (2.24) in (2.22):

ωd(k) =

√(
gk +

k3σ

ρ

)
tanh(kh0), (2.25)

It is clear that this set of equations — of irrotational flow with linearised bound-
ary conditions — allows a whole range of harmonic solutions, with different
length-scales, time-scales, and velocities. In principle, a wavy surface can be
described in terms of a sum of waves with different wavelengths, amplitudes and
phases. For waves with small wavelengths/large wavenumbers k the dispersion
relation is dominated by the term k3/σ. The nature of such waves — capillary
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Figure 2.1 — The phase velocity of gravity-capillary waves as a
function of their wavelength.

waves — is determined by a balance between vertical acceleration and surface
tension. For waves with large wavelengths, gravity waves, the dispersion re-
lation is dominated by the term gk. At the surface a balance exists between
vertical acceleration and gravity. A consequence of the dispersion relation is
that waves of different wavelengths have different phase-velocities vf (k):

vf =

√(
g

k
+

σk

ρ

)
tanh(kh0) =

√(
gλ

2π
+

2πσ

ρλ

)
tanh

2πh0

λ
(2.26)

with λ = 2π/k the wavelength. A graph of the phase velocity as a function of
the wavelength is shown in figure 2.1. As can be seen in this graph, the phase
velocity has a minimum value close to 23 cm/s for a wavelength of close to
17 mm.
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Depending on their scale, the surface deformations are dominated by gravity
or capillary forces. This is similar to the picture of surface distortions due to
free-surface turbulence by Brocchini & Peregrine (2001), described in chapter 1.
However, it is clear that describing the free surface above turbulence in terms of
a superposition of linear waves is not realistic. The description of these waves is
based on irrotational flow, which is incompatible with the importance of eddies
and vortices in turbulence.

2.1.2 Sub-surface structures

The governing equations and boundary conditions at a free surface also allow
a different type of surface deformation, closely associated with vorticity. In
section 2.2 we will see that other researchers who study free-surface turbulence
find correlation between the vertical component of vorticity and the surface ele-
vation. The mechanism behind this is fairly straightforward. A core of a vortex
is associated with a local maximum in vorticity and with a local pressure min-
imum. A consequence of this low pressure can be that the free surface above a
sub-surface vortex shows a characteristic indentation. This can be illustrated
from the following simple example, which was explored in more detail by Ander-
sen (2003). As will become clear later, this model is much simplified, and cannot
account for all the intricacies of free-surface turbulence. However, it allows us
to illustrate the mechanism through which vorticity and the surface elevation
are coupled and allows us to find a straightforward solution. For a weakly de-
formed surface — with a relatively small Froude number — the vertical velocity
component is very small compared to the horizontal component. If we further-
more assume that the velocity does not depend on the depth, the flow can be
assumed to be two-dimensional. If, in addition, we ignore the effect of viscosity
(i.e. the Reynolds number is relatively large) and surface tension (the Weber
number is relatively large) the flow becomes stationary and the Navier-Stokes
equation reduces to the Euler equation, still in non-dimensionalised form:

(u′ · ∇)u′ = −∇p′d. (2.27)

In this two-dimensional case, tangential stresses are zero by definition and thus
the dynamic boundary condition, given by equation (2.15), can be reduced to
a scalar equation for normal stress alone:

p′d −
h′

Fr2
= Pa′. (2.28)

This equation provides a clear link between the (dynamic) pressure and the
surface deformation. Substituting this into the Euler equation leads to:

(u′ · ∇)u′ = − 1

Fr2
∇h′. (2.29)
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The kinematic boundary equation tells us that:

u′ · ∇S = 0 (2.30)

and, hence, that the gradient of the surface — the local surface slope — is
perpendicular to the sub-surface velocity. In dimensional form we can write the
total pressure as:

p(x, y) = ρg[h(x, y) − z] + Pa (2.31)

which is simply a hydrostatic pressure distribution. Consequently, the two
components of the Euler equation, now in dimensional form, become:

u
∂u

∂x
+ v

∂u

∂y
= −g

∂h

∂x

u
∂v

∂x
+ v

∂v

∂y
= −g

∂h

∂y
. (2.32)

These describe a balance between the advective acceleration on the left-hand
side and the hydrostatic pressure distribution on the right-hand side. The
kinematic boundary condition becomes:

u
∂h

∂y
+ v

∂h

∂x
= 0 (2.33)

Through equations (2.32) and (2.31), we can directly relate a property of the
surface, namely the local surface slope, to properties of the velocity field, albeit
under a number of very specific conditions.

One solution to this set of equations is a columnar vortex with an arbitrary
tangential velocity profile vθ(r) and no radial velocity. By rewriting the Euler
equations in polar coordinates we end up with a single scalar equation that
relates the local surface slope to the velocity:

v2
θ

r
= g

dh

dr
. (2.34)

A cylindrically symmetric vortex has a core that is dominated by vorticity and
an outer region that is dominated by strain. The vorticity, which in this case
only has a component in the z-direction, can be expressed as:

ωz =
1

r

d(rvθ)

dr
=

d(vθ)

dr
+

vθ

r
. (2.35)

while the strain is given by:

σz = r
d

dr

(vθ

r

)
=

d(vθ)

dr
− vθ

r
. (2.36)
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We can now rewrite equation (2.34) in terms of vorticity and strain:

dh

dr
=

1

2g
vθ(ωz − σz). (2.37)

Before proceeding to prescribing a velocity profile for the vortex, it is useful to
rewrite these equations in non-dimensional form. With a typical velocity scale
U and a length-scale L, we can rewrite equation (2.34) as

dh′

dr′
= Fr2 v′θ

2

r′
, (2.38)

where again non-dimensional variables are denoted by a prime. Similarly, we
can rewrite equation (2.37) as:

dh′

dr′
= Fr2v′θ(ω

′
z − σ′

z). (2.39)

Now, take vθ in the form of a modified Rankine vortex‡:

vθ =
Ωr

1 + (r/a)2
, (2.40)

with Ω a measure of the strength of the vortex and a the vortex radius. In
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Figure 2.2 — Radial profiles of (a) non-dimensional tangential ve-
locity v′

θ and (b) the corresponding profiles for vorticity and strain.

‡A regular Rankine vortex is characterised by a core of radius a. Inside this core
vθ = Ωr (solid body rotation) and outside the core vθ = a2Ω/r. For this profile, the
derivative of the velocity is discontinuous at r = a, which is why a smoothed version
is used here instead.
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order to non-dimensionalise this velocity profile, we take L = a as the length
scale and we take U = aΩ as the velocity scale. This leads to:

v′θ =
r′

1 + (r′)2
. (2.41)

We can now calculate the strain and vorticity and, using equation (2.39), we can
calculate their contributions to the slope. The velocity profile and the associated
strain and vorticity are shown in figure 2.2. The vorticity is highest in the center
of the vortex and decreases rapidly as r ′ increases towards r = 1. The absolute
value of the strain has its maximum at r ′ = 1 and then slowly decreases as r′

increases. For this particular velocity profile, we can also explicitly calculate
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Figure 2.3 — Radial profiles of (a) the surface slope and contribu-
tions to it by strain and vorticity and (b) the surface height.

the surface elevation by integrating equation (2.38) over r ′ and taking h′ = 0
for r′ → ∞, with the following result:

h′ = −Fr2

2

1

1 + r′2
, (2.42)

which shows that as the Froude number increases, the depression becomes
deeper. The contribution of strain and vorticity to the slope and the resulting
surface elevation are shown in figure 2.3. For this very much simplified model,
as indicated by equation (2.37), the exact shape of the surface depends on a
mix of vorticity and strain. However, the deepest part of the depression in the
surface coincides with the location where the vorticity has its maximum value.

Dimples in the surfaced above sub-surface vortices can quite commonly be
seen in the wake of bridge pillars in a river. In chapter 8 we use a similar
configuration — vortices shed behind a surface-piercing cylinder — in order to
test our set-up for simultaneously measuring the sub-surface velocity field and
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the surface shape. In that case, we can expect a relatively strong link between
vorticity and elevation as well as between the Euler terms in equation (2.32)
and the surface slopes.

The model described here is essentially two-dimensional. It describes a sta-
tionary columnar vortex that ends at the surface, without vertical velocities
and with the velocity independent on the depth. It is clear that in reality, cer-
tainly for smaller vortices with a relatively low Reynolds number, viscosity will
become more important, and the vortex will decay. This decay is coupled to a
change in the shape of the surface, and consequently, at the surface, the velocity
will no longer be purely tangential. Obviously, similar to the earlier description
of linear waves, this model cannot completely describe the link between the
surface slope and a turbulent sub-surface velocity field. Still, vortices in the
sub-surface turbulence, with a concentration of vertical vorticity, will lead to
depressions in the surface, essentially through the mechanism described here.
Whether this holds in an experiment and whether it can explain the shape of
the surface spectra will be key issues of this thesis. We can already say that
at small scales surface tension must start to play a role, an effect that was
excluded from the dynamic boundary condition in equation (2.28), and conse-
quently in the balance between advective acceleration and hydrostatic pressure,
equations (2.32), as well. A more complete model of the interaction between
structures and the surface shape should also include vertical velocities.

2.2 Phenomenology of free-surface turbulence

2.2.1 Turbulence statistics under a free surface.

In the preceding section we have looked at the consequences of the fact that,
unlike a fixed wall, a free-surface is deformable. However, another important
difference between a free surface and a fixed wall is that at a fixed wall the ve-
locity equals zero. Accordingly, unlike at a free surface, at a fixed wall vorticity
cannot be present. The turbulence does not only influence the shape of the
free surface, but the presence of the free surface also influences the turbulence.
Because of its obvious technological importance, for instance for ship or aircraft
design, the behaviour of turbulence near fixed walls has been extensively stud-
ied for more than a century. Turbulent boundary layers near fixed-walls have
become a standard ingredient for textbooks on turbulence. Not surprisingly,
how the very different conditions at a free surface influence the sub-surface
turbulence has also received considerable attention.

Many of the descriptions of the behaviour of turbulence near a free surface
refer to the work of Hunt & Graham (1978), who described how turbulence
statistics change, when an initially homogeneous turbulent flow, for instance in
a wind tunnel, is convected past a wall moving at the same speed. They aimed
to explain experimental results obtained in wind tunnels with a moving wall in
the form of a conveyor belt mounted on one of the walls. In their study, Hunt
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& Graham (1978) introduced the concept of two boundary layers at the wall.
In a layer, which they called the “source layer”, with a depth approximately
equal to the integral length of the turbulence, the vertical fluctuations are
reduced from their values in the bulk to zero at the wall, by a source-like
velocity distribution. In a much thinner viscous layer just below the surface,
the horizontal fluctuations are reduced to zero at the wall. Using linear rapid-
distortion theory, they showed that inside the source layer, while the vertical
velocity fluctuations decrease, tangential fluctuations as well as integral scales
actually increase. This linear model is only formally valid for short times, when
non-linear terms in the equations of motion are negligible. Hunt and Graham’s
results showed generally good agreement with the experiments with a moving
wall.

Of course, turbulence moving past a wall moving with the same velocity is
not the same as a free surface. Unlike a free surface, the wall is non-deformable
and while the absence of a mean shear on the moving wall means that no
turbulence is produced at the wall, the velocity fluctuation is zero, whereas
for a free surface only the surface-normal gradient of the tangential velocity is
zero. In a later paper Hunt (1984) gave a general description of the interaction
between turbulence and a deformable free surface in terms of a source layer
and a viscous sublayer. More recently, rapid-distortion theory, based on the
work by Hunt & Graham (1978), has been applied to a flat stress-free surface
by Teixeira (2000) and Teixeira & Belcher (2000), also showing an increase
in horizontal velocity fluctuations close to a free surface. A flat stress-free
boundary condition corresponds to a free surface with a small Froude and small
Weber number, where the turbulence is not strong enough to deform the surface
against gravity and surface tension.

The presence of the source layer, also called the “blockage layer” by other
researchers, in which a decrease in vertical turbulence fluctuations coincides
with an increase in horizontal fluctuations, has been confirmed both by nu-
merical simulations and experiments. Most of the numerical studies use a flat
non-deformable stress-free boundary as a model of a free surface. Handler
et al. (1993), Pan & Banerjee (1995), Nagaosa (1999), and Nagaosa & Handler
(2003), have used direct numerical simulations to study turbulent channel flow,
in which the turbulence at the free surface originates in the turbulent bottom
boundary layer. Perot & Moin (1995) as well as Walker et al. (1996) used di-
rect numerical simulations in a slightly different configuration: by numerically
inserting no-slip walls in initially homogeneous turbulence. Most experiments
on free-surface turbulence have dealt with relatively weak turbulence, so with a
nearly flat surface as well. By using a split film anemometer probe to measure
horizontal and vertical velocities, Brumley & Jirka (1987) studied the behaviour
of turbulence below a free surface, in a set-up in which turbulence was produced
by means of a vertically oscillating grid. Loewen et al. (1986) studied decaying
free-surface turbulence, generated by towing a vertical bar grid through a tank.
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They studied structures by means of streak-line images, with aluminium tracer
particles sprinkled on top of the free surface. Also using streak-line images,
in their case with oxygen bubbles used as tracers, Rashidi & Banerjee (1988)
studied the free-surface turbulence in a turbulent channel flow. The turbulence
in these experiments originated in the turbulent bottom boundary layer in their
water channel. In a later paper, Kumar, Gupta & Banerjee (1998) studied this
problem by means of Particle Image Velocimetry to measure velocity fields and
to study structures.

From their experiments (Rashidi & Banerjee, 1988; Kumar, Gupta & Baner-
jee, 1998), as well as from their numerical simulations (Pan & Banerjee, 1995),
Banerjee and coworkers conclude that the turbulence near the surface is dom-
inated by structures: upwellings, which are blobs of fluid impinging on the
surface that originate from hairpin vortices in the bottom boundary layer, sep-
arated by downdraughts, where fluid from adjacent upwellings is forced down-
ward, and spiral vortices. These originate from vortex tubes below that attach
to the surface, in a process known as vortex (dis)connection. This will be ex-
plained in more detail shortly. Upwellings and downdraughts, also known as
“splats” and “anti-splats”, were also noted by Perot & Moin (1995), Walker
et al. (1996), and by Nagaosa (1999). These researchers agree that the inter-
component energy transfer close to the free surface is the result of a net im-
balance between upwellings and downdraughts. An upwelling leads to a stag-
nation point on the surface, with high pressure and a negative gradient of the
normal velocity. This has consequences for the pressure-strain correlation. In a
stagnation point, the pressure has a maximum. Consequently, the vertical com-
ponent of the pressure-strain correlation is negative. This leads to a transfer
of momentum to surface-parallel fluctuations. In downdraughts the situation
is reversed. The vertical velocity gradient in that case is positive, and conse-
quently, energy is transferred from horizontal to vertical fluctuations. Some
controversy has arisen over the cause of this net imbalance. Nagaosa (1999)
attributes it to the interaction of streamwise vortices with the surface, Perot &
Moin (1995) attribute it to viscous effects, and Walker et al. (1996) attribute
the growth in horizontal fluctuations to the anisotropy due to the vanishing
vertical fluctuation. The latter argument is purely kinematic, similar to the
rapid-distortion theory by Hunt & Graham (1978). This is supported by recent
large-eddy-simulations by Calmet & Magnaudet (2003), who simulated open
channel flow, with more intense turbulence than in previous simulations and
experiments. Their results show quantitative agreement with the predictions
by Hunt & Graham (1978) and Teixeira & Belcher (2000). More recently, by
including vortical corrections to the rapid distortion theory, Magnaudet (2003)
was able to extend the rapid distortion predictions to longer time-scales and
showed that the inter-component energy transfer also depends on (an)isotropy
of the turbulence below the free surface and on whether it is decaying or not.
Consequently the behaviour close to the surface for isotropic decaying turbu-
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lence, as generated with a grid, is expected to be slightly different from the
anisotrpoic turbulence emerging from a turbulent bottom boundary layer.

Banerjee and coworkers note that one-dimensional velocity spectra obtained
in their simulations (Pan & Banerjee, 1995), as well as the spectra measured
in their experiments (Kumar, Gupta & Banerjee, 1998), show a scaling region
∼ k−3, which is consistent with the prediction for purely two-dimensional tur-
bulence by Kraichnan (1967). According to Handler et al. (1993) typical eddies
near the surface are flattened, as indicated from an increase in the spanwise
scale of the streamwise velocity and, similarly, an increase in the streamwise
scale of the spanwise velocity. Vortical structures in the source layer become
more prominent as the turbulence decays. Pan & Banerjee (1995) note that if
the turbulence decays, which in their numerical simulation can be achieved by
’switching off’ the bottom no-slip wall that causes the turbulent bottom bound-
ary layer, the turbulence near the surface becomes more and more dominated
by long-lived attached vortices. These vortices interact and merge to form ever
larger vortices. This was also noticed by Loewen et al. (1986) in their towed-
grid experiments. The emergence of strong coherent vortices and their interac-
tions, such as vortex merger, are crucial processes in two-dimensional turbulence
(McWilliams, 1984; Maassen, 2000). However, Walker et al. (1996) showed that
the contribution by vortex-stretching to the production of surface normal vor-
ticity, which is associated with these spiral vortices or pancake-like eddies under
the surface, has its maximum near the free surface. Vortex-stretching is a pro-
cess that, by definition, is absent in two-dimensional flows, and accordingly, the
turbulence can only be considered as fully three-dimensional.

2.2.2 Free-surface deformations

The theoretical, numerical, and experimental work on free-surface turbulence
described so far does not deal specifically with surface deformations. The free
surface was modeled as a non-deformable stress-free wall, corresponding to a
situation in which surface deformations are effectively countered. In experi-
ments, surface deformations were small, and received little attention, probably
in part due to the difficulties involved in measuring them. We have also seen the
importance attributed to various types of structures emerging in the turbulence
and interacting with the surface. Understandably, in attempts to understand
the more complicated interaction between turbulence and a free surface, inter-
actions between individual structures and a free surface have been extensively
studied.

In a review article, Sarpkaya (1996) identifies a whole range of vortical
structures that can occur in turbulence, with the common property that they
can connect to the free surface, resulting in a surface depression akin to the
columnar vortex under a free surface, described in the previous section. The
process of vortex tubes breaking up and attaching to the surface is known as
vortex (dis)connection. It is illustrated in the cartoon in figure 2.4. Vortex
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connection and vortex disconnection are in essence two different names for the
same process. As a vortex-tube that is parallel to the surface, for instance
the head of a hairpin vortex ejected from a turbulent bottom boundary layer
or the front of a vortex-ring, approaches the surface, it tends to break into
two sections (vortex disconnection). Subsequently, each of the ends attaches
to the surface (vortex connection). A vortex ring is a structure that has been

Figure 2.4 — Cartoon of vortex (dis)connection. A vortex tube that
approaches the surface can break up into two separate parts (vortex-
disconnection) that attach to the surface (vortex-connection).

commonly used in order to study vortex (dis)connection, both in experiments,
for instance by Bernal & Kwon (1989), Song et al. (1992), Gharib & Weigand
(1996) and Weigand (1996), and in numerical simulations by Zhang et al. (1999)
among others. As a vortex ring approaches a free surface, it too tends to break
up into smaller vortex tubes that end at the surface. In Weigand’s experiments
on vortex rings colliding with a free surface (Weigand, 1996), he combined
shadowgraphy and Particle Image Velocimetry and found that the locations
of large vertical vorticity magnitude corresponded to those of dimples in the
surface. Song et al. (1992), who used shadowgraphy to visualise the free surface
shape, report that the process of connection and disconnection is accompanied
by the generation of short waves.

One of the few experiments in which velocity measurements were combined
with a quantitative surface shape measurement technique was performed by
Dabiri (2003). Particle Image Velocimetry was combined with a two-dimensional
free-surface gradient detector developed by Zhang & Cox (1994). The flow be-
ing studied was a vertical shear layer, formed between two adjacent flows with
different velocities into a channel. Dabiri notes a strong (≈ 0.8) correlation
between the magnitude of the vertical vorticity and the surface elevation. How-
ever, Zhang et al. (1999) note that the locations of the maxima of vorticity at
the surface and the mimimal surface elevation do not coincide, even for these
very localised structures, unless the distribution of vertical vorticity at the sur-
face associated with the structure, is cylindrically symmetric. They show this
by calculating the free surface shape above a columnar vortex, the axis of which
is not normal to the surface. For the example of a columnar vortex under a
free surface in the previous section, the vorticity distribution was circular and
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the maximum value of the vorticity coincided with the pressure minimum. The
strong correlation found by Dabiri (2003), suggests that in a vertical shear
layer, the vortices that have the largest influence on the surface in both cases,
are large columnar structures. Using the direct link between pressure and the
surface elevation, equation (2.28), Dabiri concludes that, since the pressure and
the surface elevation are directly correlated, a measurement of the surface el-
evation over an area can be used to measure the spectrum of the sub-surface
pressure. Due to difficulties inherent in measuring it, the pressure spectrum
has proven to be elusive, although theoretical work (Batchelor, 1951; Monin &
Yaglom, 1975) based on Kolmogorov’s turbulence scaling theory has predicted
an inertial range in the pressure spectrum with a -7/3 scaling exponent, while
theoretical work by George et al. (1984) has indicated that for an unbounded
flow with a shear layer, the pressure spectrum has a scaling exponent of -11/3.
Dabiri (2003) measured frequency spectra of the surface elevation above the
vertical shear layer up to frequencies of 15 Hz. These spectra show a fairly
steep scaling range with a scaling exponent of approximately -10/3. Sadly, the
spatial resolution apparently was insufficient to measure spatial spectra as well.

Simulations of turbulence with a deformable interface, and not merely of
isolated structures, have been performed by Shen et al. (1999) and Tsai (1998).
Tsai uses weakly non-linear boundary conditions and direct numerical simu-
lations. The initial condition in these simulations is a two-dimensional shear
flow with an added three-dimensional fluctuation. Tsai shows that the correla-
tion between the surface elevation and the absolute normal vorticity is rather
low (≈ 0.5), while the correlation between dynamic pressure and the surface
elevation is much higher, as can be expected from equation (2.28). Obviously,
the high pressure associated with the stagnation points that occur above up-
wellings and downdraughts is also expected to cause surface deformations, as
was observed by Brocchini & Peregrine (2001), already referred to in chapter
1. Tsai shows a relatively strong correlation between tangential components
of the vorticity below the surface and the surface elevation. Shen et al. (1999)
investigate the same configuration, and compare a deformable surface with lin-
earised boundary conditions to a flat-non-deformable surface. According to
Shen et al. (1999), pressure variations due to splats and anti-splats are less
pronounced for a deformable surface, since surface ripples tend to smooth local
pressure fluctuations. They also remark on the effect of the turbulence genera-
tion: anisotropic turbulence generated in a mean shear flow or emerging from a
turbulent bottom boundary layer on one hand and more isotropic turbulence,
akin to grid-generated turbulence, on the other hand. In the latter case, up-
wellings and downdraughts are much more rare, and consequently, Shen et al.

(1999) conclude that the inter-component energy transfer in case of homoge-
neous (decaying) turbulence is less prominent. As we have seen, Magnaudet
(2003) reached this same conclusion based on rapid-distortion theory. With the
exception of Song et al. (1992), few researchers have mentioned the formation
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of waves.

2.2.3 The generation of waves by turbulence

Work on the interaction between turbulence and free-surface waves has mainly
been focused on the effect of wind-generated waves. The waves one sees at
a water surface generally are the result of turbulence in the wind above the
surface, instead of sub-surface turbulence. In a ground-breaking paper, Phillips
(1957) expresses the growth of a Fourier component of the surface elevation
in terms of Fourier components of the turbulent pressure fluctuations moving
with the wind. The surface elevation and the pressure are coupled through the
linearised dynamic boundary condition:

∂φ

∂t
=

σ

ρ

(
∂2h

∂x2
+

∂2h

∂y2

)
− gh − p

ρ
at z = 0, (2.43)

with p = p(x, t) the pressure at the surface. The only difference with the
boundary condition for regular linear gravity-capillary waves, equation (2.22),
is that now the pressure is no longer constant. The desired relation is found
by solving the Poisson equation with this dynamic boundary condition and the
kinematic boundary condition given in equation (2.20). This is done in a frame
of reference that moves with a convection velocity U c. A solution is found in
terms of Fourier transforms of the pressure and the surface elevation in time
and space.

Phillips finds that a turbulent pressure fluctuation in the wind, with a
wavenumber k, can excite modes in the surface elevation spectrum, i.e. waves
with wavenumber k traveling under an angle α relative to the direction of the
wind, if the pressure fluctuation moves with velocity Uc(k) such that:

Uc(k) cos(α) = vf (k), (2.44)

where vf (k) = ω/k is the phase velocity of the gravity-capillary wave in ques-
tion. In other words, if the projection in a certain direction of the velocity with
which the pressure fluctuations move, matches the phase-velocity of gravity-
capillary waves of a similar length-scale, gravity-capillary waves can be excited
in that direction. Phillips was hindered in comparing the results of his model to
observed spectra by the very limited measurements of the pressure spectrum in
the wind. Unfortunately, almost fifty years later this quantity remains elusive.

Although the problem of wind-driven water waves is different from the prob-
lem we study, the basic concept of how wind can lead to the growth of waves
on a free surface can potentially provide a basis for understanding how sub-
surface turbulence can lead to gravity-capillary waves. Such a mechanism is
briefly mentioned by Brocchini & Peregrine (2001). Simply stated, if a tur-
bulent pressure fluctuation of a certain length-scale L below the surface, for
instance due to the presence of a sub-surface vortex, moves with a velocity
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that matches the phase velocity corresponding to λ = L, then the turbulence
can excite waves. However, since the phase-velocity of free-surface waves has a
minimum of approximately 23 cm/s, as we have seen, this mechanism can only
work if the turbulent velocity fluctuations are larger than 23 cm/s. Teixeira
(2000), has attempted to use a Rapid-distortion model, based on the model by
Hunt & Graham (1978) to study the generation of waves due to sub-surface
turbulence. However, Teixeira also was hindered by the difficulties involved
in finding a correct pressure evolution. This was further complicated by the
nature of rapid-distortion theory, which in essence is kinematic.

In a notable experiment on wind-driven waves in a water tank, Zhang (1995)
measured wavenumber spectra of wind-driven waves, by means of the free-
surface gradient detector (see Zhang & Cox, 1994), which was also used by
Dabiri (2003). Also in a study on wind-generated waves and their influence
on sub-surface turbulence, Borue et al. (1995) performed direct numerical sim-
ulations of turbulence under a deformable interface with linearised boundary
conditions and with wind-induced stress on the surface. This work is notable
in the context of the problem we study because of one of the situations stud-
ied by Borue: surface waves in the absence of wind, i.e.waves generated by
the sub-surface turbulence. Borue et al. (1995) show that the surface rip-
ples agree reasonably well with the theoretical dispersion relation for linear
gravity-capillary waves, equation (2.25), except for small wavenumbers. They
also show wavenumber spectra of the surface elevation for these waves. These
spectra exhibit a scaling range with a slope of approximately -4.5. The rela-
tively low-intensity turbulence in this case was generated by means of a no-
slip bottom wall, in combination with initial three-dimensional perturbations.
Unfortunately, it is unclear whether the turbulent fluctuations exceed the min-
imum phase velocity for surface waves and Borue et al. (1995) remark that
the coupling between sub-surface turbulence and these surface waves is not yet
understood.

The interaction between sub-surface turbulence and the surface elevation
is too complex to be captured in a simple model. Although the equations of
motion and the boundary conditions at a free surface are known, they only
have solutions for very specific linearised cases. Most of the previous work on
the interaction between turbulence and the free surface has either focused on
how the turbulence is affected by the presence of a free-surface, or — in studies
that deal explicitly with free surface deformations — has focused on isolated
structures, such as vortex rings that can emerge in turbulence. Although Tsai
(1998), Teixeira (2000), and Borue et al. (1995), have studied the statistical
properties of the surface deformations due to fully-developed three-dimensional
turbulence below the surface, as far as we are aware, these statistical properties
have never been measured in experiments. The potential formation of waves
under influence of the sub-surface turbulence has also never been investigated
in an experiment, and, as Borue et al. (1995) remark, indeed is not understood.
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Basic properties of the turbulence

For our experiments it is desirable to use relatively strong and well-controlled
turbulence, that preferably is both homogeneous and isotropic. Isotropic turbu-
lence is rare in nature, but it is reproducable and relatively easlily characterised.
In experiments homogeneous and isotropic turbulence can be approximated by
passing a mean flow through a grid. By using a so-called active grid, which uses
moving rods with vanes attached to them to stir the flow, stronger turbulence
can be produced than with a regular grid. The use of an active grid also allows
us to control the properties of the turbulence to a certain degree. Laser-Doppler
velocimetry is used to compare active-grid-generated turbulence to turbulence
behind a similarly dimensioned static grid. The primary goal is to characterise
the turbulence, in order to be able to later compare properties of the surface
to those of the turbulence. This will be done in chapters 6, 7 and 8.

3.1 Active-grid-generated turbulence

Because of its relative simplicity, turbulence that is both homogeneous and
isotropic has received considerable attention in both theory and experiments.
In this context “homogeneous” means that the statistical properties of the tur-
bulence are independent of the position in the flow and “isotropic” means that
they do not depend on the orientation, or in other words are invariant under
rotation. A standard method to generate turbulence in a laboratory setting,
for instance in a wind tunnel or water channel, is by passing the flow through a
grid consisting of vertical and horizontal bars. At a distance of approximately
40 times the mesh size behind the grid and outside of the boundary layers the
generated turbulence is a fair approximation of homogeneous and isotropic tur-
bulence, as was shown by for instance Comte-Bellot & Corrsin (1966). For a
comparison of different grids a number of parameters can be used. One of these
is the mesh Reynolds number, defined as:

ReM =
Mv0

ν
(3.1)
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in which v0 is the mean stream velocity, M is the mesh size of the grid and
ν is the viscosity of the fluid. A further parameter is the grid solidity, which
is the ratio of the area blocked by the grid divided by the total area of the
cross-section of the tunnel or channel. The third parameter that characterises
the turbulence itself is the well-known Taylor micro-scale Reynolds number,
defined as:

Reλ =
vrmsλ

ν
, (3.2)

in which λ is the Taylor micro-scale of the turbulence, vrms is the root-mean-
square velocity and ν is the viscosity.

Within the Kolmogorov framework, the mesh Reynolds number and the
Taylor micro-scale Reynolds number are related as:

Reλ = Cf

√
Rem, (3.3)

with a constant Cf which depends on the details of the forcing. In case of
grid turbulence Cf depends on the type and the solidity of the grid. Increasing
the Taylor-based Reynolds number and thus the intensity of the turbulence in
an existing set-up can be achieved through a number of means. One, often
impractical option is increasing the mesh Reynolds-number, either by using
larger grid-cells, or by increasing the mean-stream velocity, or perhaps even by
using a fluid with different viscosity. As an alternative the grid geometry can be
changed such that Cf becomes larger. A comparison by Comte-Bellot & Corrsin
(1966) between different types of grids, with either round or square bars and
of different solidity ratios, has shown that for a given mesh Reynolds number
a large range of turbulence intensities and degrees of anisotropy is possible.
Generally, increasing the solidity leads to an increase in turbulence intensity,
but also to an increase in anisotropy. Using a so-called Norman grid -a static
grid in which every other grid cell is blocked to form a checkerboard pattern-
Pearson et al. (2002) have achieved a higher value of Reλ than for similarly
sized static grids, but also at the expense of higher anisotropy. More recent
experiments by Hurst & Vassilicos (2004) with various types of fractal grids
have shown an increase in Reλ compared to regular static grids, with only a
moderate increase in anisotropy.

A special type of grid is the so-called active grid, which was first used in a
wind tunnel by Makita (1991) and later used by Mydlarski & Warhaft (1990).
Poorte (1998) and Poorte & Biesheuvel (2002) used a similar grid in a water
tunnel. An active grid consists of an array of axes with metal agitator wings
attached to them. Each axis is driven in a random fashion by an electric motor
according to a certain forcing protocol. Poorte (1998) has compared numerous
experiments in which turbulence was generated with static grids, finding Cf to
be approximately 0.5. Comparison of his own experiments, those by Makita,
and those by Mydlarski and Warhaft showed that the value of Cf for active
grids is close to 2.
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3.1.1 Grid geometry

In our experiments we use both a static grid and an active grid. The grid is
primarily intended as a tool to generate relatively strong turbulence and it is not
our intention to study the effects of forcing with an active grid in detail. Thus,
we do not want to stray too far from the territory already explored by Poorte
(1998); Poorte & Biesheuvel (2002). Their active grid is the basis for the design
of the grid used in the experiments described here. Poorte and Biesheuvel’s
grid was placed in a vertical water tunnel with a cross-section measuring 0.45
× 0.45 m2 with a maximum mean stream velocity of 0.4 m/s. The grid had 12
× 12 mesh cells, with a mesh size of 3.75 cm. Hence ReM = 15, 000. Poorte
(1998) concludes that in order to generate a fair approximation of isotropic
decaying turbulence by use of an active grid one should use a so-called staggered
configuration, in which neighbouring agitator wings on each axis of the grid are
perpendicular to each other, as shown in figure 3.2 (a). This configuration
limits both the fluctuation and the maximum value of the solidity. However,
since generally a higher solidity leads to a higher turbulence intensity, using
a staggered configuration leads to a somewhat smaller turbulence intensit, as
was shown by Poorte (1998). Our experiments are done in a water channel

a c t i v e  g r i d

L D V  p h o t o
d i o d e s
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x - a x i s

z - a x i s

y - a x i s

L D V  o p t i c s

Figure 3.1 — Set-up for measuring properties of grid-generated tur-
bulence.

with a width of 0.3 m, a water depth of approximately 0.31 m with a mean
stream velocity from 0 m/s up to 0.3 m/s∗ with a measurement section that is

∗The actual maximum velocity depends on the blockage due to the grid. For a static
grid the blockage is less than for an active grid, resulting in a lower maximum mean
velocity in the latter case
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approximately 7.4 m long. It is illustrated in figure 3.1. The water channel itself
was an already existing facility, previously used to study turbulent boundary
layers over grooved surfaces (Pulles, 1988; van Manen, 1992). The regular

c h a n n e l  c r o s s  s e c t i o n

m o t o r s

(a)
(b)

Figure 3.2 — (a) Picture of the active grid, with the vanes in non-
staggered position. The part of the grid coinciding with the cross-
section of the measurement section of the water channel is indicated
by the white dashed line. (b) A schematic drawing of the grid, showing
the vanes in staggered configuration and also showing the orientation
of the motors. On the real grid, the horizontal axis are driven through
belt-drives.

static grid used in our experiments consists of 6 × 6 mesh openings. The
mesh size M= 30/6 = 5 cm. The open area of each cell measures an area
of close to 4 × 4 cm2, the cells are separated by square rods with an 8 × 8
mm2 cross-section and the overall solidity is 0.34. With a mean stream velocity
of 0.3 m/s the mesh Reynolds number for this grid is ReM = 15, 000, which
is the same as Poorte’s active grid. Taking Cf = 0.5 in equation (3.3), the
Taylor-based Reynolds number Reλ = 60. Obviously, the turbulence intensity
that can be achieved with this static grid is rather low. In order to have
the same ReM for our active grid, it needs to have M = 5 cm as well. The
vanes are mounted in staggered configuration on rods of 5 mm in diameter
and have a chord of 4.8 cm. A photograph of the grid is shown in figure 3.2
(a) and a schematic drawing of the grid is shown in 3.2 (b). The width of
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the channel at its entrance is larger than in the measurement section. The
difference in width is overcome by a contraction made out of PVC plating.
This allowed building the grid as a self-contained unit that can be slotted into
the channel from above by means of a small purpose-built crane. The horizontal
axes are driven by belt-drives that run inside the grid’s vertical supports and
that are attached to motors mounted above the channel. This arrangement
obviates the need for holes in the channel walls, thereby reducing the risk of
leaks occurring and of the motors and associated electronics coming into contact
with water. Because of the combination of high speeds and torque required,
quite strong DC motors (Maxon Motors RE 40, 150 W, 48 V) in combination
with a 1:4.3 reduction gear (Maxon Motors GP 42) were chosen to force each
axis. Each motor is equipped with its own tacho encoder as well as an amplifier
(Maxon ADS-E 12-50V, 5 A). A feedback-system, based on the velocity signal
obtained from the tacho controllers, is used to ensure that each axis rotates
at the prescribed velocity. The amplifiers are controlled through a PC (via a
four-channel National Instruments PCI6711 and eight channel PCI6713 PCI-
card in turn controlled through a LabView interface). The velocity of each axis,
prescribed by the forcing protocol, is updated at a frequency of 20 Hz. A test
of a single motor driving an axis back and forth at 7 Hz at ± 7 revolutions per
second showed that in order to prevent overheating the motors needed to be
cooled. Hence the motors and the electronics of the grid are water-cooled. The
same test also showed that the motor was able to switch from -7 to +7 rev/s
within only 10 ms.

3.1.2 Forcing protocols

Our forcing protocols are based on those used by Poorte (1998); Poorte &
Biesheuvel (2002). The type of protocol we use corresponds to what Poorte
and Biesheuvel call double-random forcing protocols: each axis has a random
angular velocity that is changed at random times. According to Poorte two
dimensionless numbers are sufficient to describe forcing protocols for a given
grid geometry. The first is the dimensionless angular velocity Ω∗ based on a
comparison of the wing’s tip velocity and the mean stream. It is defined by:

Ω∗ =
πΩ0c

v0
=

Vtip

v0
(3.4)

in which c is the agitator wing chord, v0 is the mean stream velocity, Vtip is
the root-mean-square wing tip velocity and Ω0 is the root-mean-square angular
velocity. The second dimensionless number is dimensionless time T ∗ defined as:

T ∗ =
v0T0

c
(3.5)

where T0 is the integral time-scale of the forcing protocol. This can be found
by integrating the auto-correlation function C(τ) of the angular velocity of a
given rod over time.
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According to Poorte, in order to get homogeneous and isotropic turbulence
both dimensionless numbers should be close to unity. However, for none of
the protocols listed in Poorte (1998) and Poorte & Biesheuvel (2002) they
indeed are both close to unity. In practical terms the actual protocol is defined
by two settings: the maximum number of time-steps during which a given
rod maintains its angular velocity and the maximum angular velocity. These
determine T0 and Ω0 and accordingly the dimensionless numbers T ∗ and Ω∗.
However, the dimensionless numbers are hard to determine à priori and hence
they are determined after the protocol has been generated. The calculated auto-
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Figure 3.3 — Auto-correlation C(τ) of the angular velocity for a
single axis for protocols 25dr1, 25dr2, 25dr3, and 25opt.

correlation function for several protocols for a mean-stream velocity close to 0.25
m/s are shown in figure 3.3. In these cases the velocity is already uncorrelated
after less than two seconds. All protocols which we use are listed in table 3.1.

Table 3.1 — Forcing protocols for the active grid

name v0 (m/s) (approx.) Ωmax (Hz) ∆tmax (s) Ω∗ T ∗

25dr1 0.25 0.85 2.25 0.28 5.5
25dr2 0.25 5.12 0.24 1.71 0.34
25dr3 0.25 5.12 1.09 1.71 2.48

25opt 0.25 2.70 0.42 0.90 0.74
20opt 0.20 2.10 0.52 0.87 0.83
15opt 0.15 1.60 0.70 0.86 1.03
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The protocols will be referred to by the names listed in the first column in
the remainder of this thesis. Protocols (25dr1), (25dr2), and (25dr3) are
intended to show some of the effects of changing Ω∗ and T ∗. Since we vary the
mean-stream velocity for some of our experiments, we need different protocols
matched to the respective velocities. For these protocols, (15opt), (20opt),
and (25opt), both Ω∗ and T ∗ are close to unity. As an example, figure 3.4 (a)
shows part of double random protocol (25opt). In addition to these double-
random protocols we also use a protocol (25ran) in which each axis receives
a different random angular velocity that is changed at a fixed frequency. The
maximum velocity is 14 rev/s, much higher than for any of the others, and the
velocity is changed at a fixed frequency of 7 Hz. Part of this protocol is shown
in figure 3.4 (b).
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Figure 3.4 — Angular velocity for a single axis of the grid as a
function of time for (a) double random forcing protocol (25opt) and
(b) the anisotropic protocol (25ran).

3.2 Laser Doppler Velocimetry

In order to study the properties of the turbulence in our experiments we use
Laser-Doppler Velocimetry (LDV). This has been the most important measure-
ment technique for time-dependent measurements of the velocity in turbulent
flows of water for decades. A detailed description of the fundamentals and ap-
plications of LDV can be found in Durst et al. (1981) and in a more recent
article by Adrian (1996).

3.2.1 Principle of LDV

Laser-Doppler Velocimetry is based on measuring a frequency shift due to the
Doppler effect occurring in (laser) light scattered off particles which are moving
with the flow. Light from a laser beam pointing in a direction s is scattered on
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Figure 3.5 — Laser-Doppler velocimetry configuration.

a particle. The scattered light falls onto a detector located in direction r. Both
s and r are unit length, see figure 3.5. The Doppler-shift in the frequency of
the light on the detector is given by:

fd = (u · (r − s))/λ, (3.6)

in which λ is the wavenumber of the incident light on the particle and u is
the velocity of the particle. The equation shows that the Doppler-shift has two
velocity-dependent terms. One is proportional to u ·r and is due to the velocity
component of the particle relative to the detector; the other is proportional to
u · s and is the result of the velocity of the particle relative to the light source.
The combination of these two leads to the Doppler-shift being proportional
to the length of the velocity component in the direction r − s (the scattering
vector), so:

fd = 2u sin(ϕ/2)/λ (3.7)

in which u now is the magnitude of the component of the velocity in the plane
formed by r and s, and ϕ is the angle between the incident beam and the light
that hits the detector; the angle between vectors s and r. A measurement of
this frequency would reveal the magnitude of the velocity, but not its direction,
since one can only measure positive frequencies f = |fd|.

In most practical situations the frequency shift is very small compared to
the frequency of the light itself. Because of this it is generally measured through
interference. The method used for the measurements described here is the so-
called reference beam method, which requires two beams to measure a velocity
component: a so-called scattering beam and a reference beam. The principle is
based on mixing of the scattered light, which includes the Doppler shift, with
light of which the frequency is unchanged. The geometry is illustrated in figure
3.6. The detector receives light from a number of sources. Light from the
reference beam is scattered by particles, but this does not lead to a Doppler-
shift, since r = s. The two sources that matter are the reference beam itself,
with frequency fref and light from the scattering beam, scattered by particles
moving through it. The latter is Doppler shifted and has a frequency fsct + fd,
in which fd is the Doppler shift and fsct is the frequency of the scattering beam.
The detector, a photo diode in our case, operates as a quadratic detector with
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Figure 3.6 — Principle of the reference beam method for LDV mea-
surements.

a limited frequency response, which only sees the difference of the incoming
frequencies:

f = |fsct + fd − fref |. (3.8)

This interference on the detector can only occur when the wave-fronts are par-
allel, that is when the scattered light originates from the intersection of the
scattering- and reference beams (Adrian & Goldstein, 1971). Ideally this mea-
surement volume lies in the waist of both beams since in that case the location
is well-defined and the signal-to-noise ratio is improved due to the light in-
tensity being higher inside the smaller volume. Furthermore, in this case the
frequency measured does not depend on where the particle passes through the
measurement volume (Durst & Stevenson, 1979).

It is customary to use a single laser in combination with a beam splitter to
produce the scattering and the reference beams. This does mean that, without
any further measures being taken, the measured velocity would be directionally
ambiguous since fsct = fref in equation (3.8). This can be overcome by shifting
the frequency of one of the beams. In the set-up used for our experiments this
is done by using a Bragg-cell placed in one of the beams. Light falling onto
a crystal under the so-called Bragg-angle results in an interference pattern on
the other side of the crystal. In the Bragg-cell a crystal is forced to resonate
at a certain frequency under influence of an acoustic wave. As a result the
interference maxima undergo a frequency shift equal to the acoustic frequency
at which the Bragg cell is driven. The first maximum of the interference pattern
is used as the scattering beam. The measured frequency now becomes:

f = |(fref + fs + fd) − fref |. (3.9)

As long as fs is chosen to exceed |2u sin(ϕ/2)/λ|, this is directly related to the
velocity through:

f = |fs + fd| = fs + 2u sin(ϕ/2)/λ. (3.10)

without any directional ambiguity.
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3.2.2 The set-up for Laser-Doppler measurements

A schematic picture of the Laser-Doppler set-up is shown in figure 3.7. It uses
a modular Dantec X55 optical system. The LDV optical system was built out
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Figure 3.7 — The 55X LDV system for the water-channel.

of a number of Dantec X55 modules. These cylindrical modules contain the
beam-splitters, a Bragg-cell and mirrors needed to create three beams, one of
which has a pre-shift fs of 40 MHz due to the inclusion of the Bragg-cell. This
beam is used as the scattering beam. The other two unshifted beams are the
reference beams. The use of two reference beams enables measurements of two
velocity components. The change in optical path length in the scattering beam,
resulting from its passage through the Bragg-cell is compensated for in the
reference beams by passing them through a glass rod. This enables the use of
lasers with a small coherence length. The entire cylinder can be rotated around
its axis, facilitating the alignment. The entire optical system is mounted on a
moveable yoke. This allows the measurement volume to be placed anywhere in
the channel, from a depth of 23 cm up to the surface. As indicated in figure 3.7,
we have chosen to use a coordinate system in which the x-axis corresponds to
the spanwise direction, the y axis corresponds to the streamwise direction (with
increasing y as the distance to the grid increases) and with the z-axis pointing
upwards from the surface. The average height of the surface corresponds to
z = 0 and x = 0 corresponds to the centre line of the channel. The orientation
of the beams is such that it allows measurement of two velocity components: a
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component in the plane formed by reference beam 1 and the scattering beam
and a second component, perpendicular to the first, which lies in the plane
formed by reference beam 2 and the scattering beam. These planes and the
corresponding velocity components are illustrated in figure 3.8. The detectors
are Dantec 55L21 photo-diodes. The Doppler shift fd1 in the signal measured

u

z - a x i s

y - a x i s

v

- w

v 2v 1

d e t e c t o r  1 d e t e c t o r  2

Figure 3.8 — Orientation of the velocity components in a plane
x =constant, through the measurement volume. We directly measure
components v1 and v2 of the velocity projected in the x = 0 plane. In
post-processing they are converted to vertical and streamwise com-
ponents, w and v, respectively.

by detector 1 can be expressed as:

fd1 = v1
2 sin(ϕ/2)

λ
, (3.11)

and the Doppler-shift fd2 in the signal measured by detector 2 is:

fd2 = v2
2 sin(ϕ/2)

λ
. (3.12)

in which v1 and v2 are the velocity components in both planes and ϕ is the
angle between either reference beams and the scattering beam. Through two
straightforward geometrical relations the actual streamwise velocity component
v and the vertical component w can be calculated:

v1 =
1√
2
(−v − w) (3.13)

and

v2 =
1√
2
(v − w). (3.14)

The signals from both detectors are each passed to a Dantec 55N12 shifter
unit. These units electronically subtract the original pre-shift of 40 MHz and
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Figure 3.9 — Components of the signal processing.

add a selectable shift between 1 and 9000 kHz, because simply subtracting
the optically introduced pre-shift of 40 MHz would reintroduce the directional
ambiguity that was the reason for introducing a pre-shift in the first place. The
signals with their new pre-shifts are sent to Dantec 55N20/55N21 tracker units.
These use a phased-locked-loop to measure the frequency (Gardner, 1979). The
tracker’s output voltage is linearly dependent on the frequency in the incoming
signal. A second output on the tracker indicates whether the phased-lock loop
indeed is locked and can be used to the assess the quality of the data. The
trackers have a built-in low-pass filter with a cut-off at 100 Hz. The two signals
for each tracker are sent to a 1 kHz PARSAM (parallel sampling) unit for
A/D conversion, storage, and processing by a PC. In a measurement at any
given location typically a million samples of each component were obtained, for
a total duration of approximately 17 minutes. A set of Fortran programmes
was used to convert the tracker’s frequency signals to actual streamwise and
vertical velocities through equations (3.10), (3.13) and (3.14). The angle ϕ was
determined by the distance of the beams to the rotation axis of the X-55 system
before placement of the final focusing lens combined with the focal length of
that lens and, of course, the refractive index of the water.
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3.3 Properties of the turbulence

3.3.1 Homogeneity

Since the location of the measurement volume of the laser-Doppler set-up can
be changed in both vertical and spanwise direction it is possible to check the
homogeneity of the turbulence in cross-sections of the channel. These measure-
ments are done at 40 times the mesh size behind the grid, so at 2 m, where the
turbulence can be expected to be fully developed. Figure 3.10 shows horizontal
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Figure 3.10 — Profiles of the mean-stream velocity for both the
active grid with protocol 25opt and the static grid.

profiles of the mean-stream velocity for both for the active and the static grid,
for the same setting of the water-channel pump. As can be expected in turbu-
lent channel flow, these profiles show a region near the channel centre where the
mean-stream velocity is practically constant, flanked by regions, the boundary
layers from the channel walls, where the mean-stream velocity is lower. Due to
the higher blockage of the active grid, the mean-stream velocity is somewhat
lower than in case of the static grid. In the wall boundary layers the stream-
wise fluctuation velocity is higher than in the centre. In the boundary layers the
measured fluctuation velocities, which are tangential to the channel side-walls,
are higher than near the channel centre. The increase is the strongest in the
streamwise velocity component, which is obviously associated with anisotropy
in the boundary layers. Spanwise measurements of both the streamwise and
vertical components of the fluctuation velocity are shown in figure 3.11. Simi-
lar measurements in the vertical direction, shown in figure 3.12, show that the
turbulence fluctuation is practically constant up to a certain depth below the
surface, for both the streamwise and the spanwise fluctuations. Consequently,
the ratio of vrms/wrms, shown in figure 3.13, is practically constant up to a cer-
tain depth. This observation is in full agreement with the existence of a source
layer as described in the previous chapter: a layer below the surface, with a
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Figure 3.11 — Spanwise profiles of (a) streamwise turbulence fluc-
tuation vrms and (b) wrms measured at 10 cm below the surface at 2
m from the grid.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0  0.05  0.1  0.15  0.2  0.25

v r
m

s 
(m

/s
)

-z (m)

static
25OPT

(a)

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0  0.05  0.1  0.15  0.2  0.25

w
rm

s 
(m

/s
)

-z (m)

static
25OPT

(b)

Figure 3.12 — Vertical profiles of (a) streamwise fluctuation velocity
vrms and (b) and the spanwise fluctuation velocity wrms measured at
the centre line of the channel (x = 0) at 2 m from the grid.

thickness of roughly one integral length-scale, in which energy is redistributed
from vertical to horizontal fluctuations. The bottom boundary layer can not be
seen in these measurements, since it lies outside of the vertical range over which
the measurement volume can be traversed. Figure 3.14 shows measurements
of the velocity fluctuations with Laser-Doppler Velocimetry at approximately 7
cm below the surface. For isotropic decaying turbulence, the turbulence inten-
sity scales algebraically with the distance to the grid. In our coordinate system,
with y being the streamwise direction Mohamed & LaRue (1990):

(
vrms(y)

v0

)2

∼
( y

M

)n
, (3.15)
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with a scaling exponent n ≈ −1.3, and M the grid mesh size. A line with this
slope is also shown in Figure 3.14. The turbulence generated with the active
grid indeed seems to scale algebraically with the distance to the grid, albeit with
a slightly different scaling exponent. The turbulence generated with the static
grid decays more slowly for distances over 2 m and (y/M > 40). A possible
explanation for this is that, even though at 2 m it is nearly isotropic, beyond
2 m from the grid, the relatively weak turbulence generated by the static grid
has decayed sufficiently for the turbulence from the bottom and side-walls of
the channel to become important.

Overall, these measurements show that at 2 m behind the grid in a region of
approximately 10 cm wide near the centre of the channel and up to about 6 cm
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below the surface the turbulence generated by both the active and the static grid
is approximately homogeneous in both the spanwise and vertical directions. Due
to the presence of the surface and the associated source layer, the turbulence in
no longer homogenous as we move closer to the surface, and it obviously is not
homogeneous inside the boundary layers formed on the channel walls. Since
the turbulence decays, the turbulence is obviously not homogeneous in the
streamwise direction. However, since at 2 m we are relatively far removed from
the grid the turbulence decays relatively slowly. Consequently, over a relatively
small volume at 2 m from the grid, far below the surface and near the channel
centre line, the turbulence can be considered approximately homogeneous.

3.3.2 Turbulent scales

Our LDV measurements correspond to the most common way of measuring
turbulence properties: through a point-measurement of one or multiple compo-
nents of the velocity as a function of time. The turbulence properties measured

Table 3.2 — Overview of turbulence properties measured on the
centre line of the channel at 2 m behind the grid and 10 cm below
the surface.

name v0 vrms
vrms

v0

vrms

wrms
ǫ λt,E λt,C Reλ

(m/s) (m/s) (m2s−3) (cm) (cm)

25dr1 0.270 1.52·10−2 5.6% 1.08 4.1·10−5 0.92 1.0 140
25dr2 0.269 1.80·10−2 6.7% 1.10 4.8·10−5 1.0 1.2 180
25dr3 0.270 2.37·10−2 8.8% 1.14 7.2·10−5 1.1 1.3 256

25opt 0.271 1.62·10−2 6.0% 1.10 3.4·10−5 1.1 1.2 173
20opt 0.221 1.27·10−2 5.7% 1.05 2.4·10−5 1.0 1.1 128
15opt 0.166 9.70·10−3 5.8% 1.05 8.5·10−6 1.3 1.3 126

25ran 0.266 2.29·10−2 8.7% 1.15 6.2·10−5 1.1 1.2 252
25stat 0.289 7.50·10−3 2.6% 1.10 9.7·10−6 0.73 0.83 70

for the different forcing protocols as well as the static grid are listed in table
3.2. It is immediately clear from this table that the streamwise fluctuation
velocity vrms varies widely with the forcing. The static grid leads to the lowest
turbulence intensity, 2.6%, while depending on the protocol for the active grid
it varies from 5.6% to 8.8%. The forcing by the active grid is such that the
active grid at a low mean-stream velocity, protocol (15opt), produces not only
a higher turbulence intensity but actually a higher absolute value of vrms than
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the static grid at a mean-stream velocity that is almost twice as high, protocol
(25stat).

How the various other scales of the turbulence can be determined from point
measurements can be found in standard textbooks on turbulence such as Frisch
(1995) or Pope (2000). Hence, the description given here is somewhat concise.
In the wave-number domain the inertial range behaviour of the one-dimensional
longitudinal wavenumber spectrum of the velocity is given by:

ELL(k) = αk−5/3ǫ2/3 (3.16)

in which α ≃ 0.55 is an empirical constant, see for instance Mohamed & LaRue
(1990) and Pearson et al. (2002), and ǫ is the dissipation. With LDV we can

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

E
(f

) 
(m

2
 s

-1
)

f=ω/(2π) (Hz)

25STAT
25OPT

slope -5/3

Figure 3.15 — Longitudinal energy spectra for the static grid and
the active grid with protocol (25opt), measured at 10 cm below the
surface and 2 m behind the grid.

measure the frequency spectrum Ev(f) of the streamwise velocity component
v. Assuming that Taylor’s hypothesis can be used, we can relate this frequency
spectrum to the longitudinal wavenumber spectrum, given in equation (3.16),
through:

Ev(f) = ELL(k(f))
dk(f)

df
, (3.17)

with Taylor’s hypothesis entering into:

k(f) =
2π

v0
f, (3.18)

where v0 is the mean of the streamwise velocity. Similarly, from our measure-
ment of the vertical component of the velocity, we could in principle calculate
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the transverse wavenumber spectrum of the turbulence. The inertial range
behaviour in the measured frequency spectrum of v can be expressed as:

Ev(f) =

(
2π

v0

)−2/3

αf−5/3ǫ2/3 (3.19)

Hence, the dissipation ǫ can be determined by fitting a line with slope -5/3
to measured frequency spectra. Two examples of such frequency spectra, one
measured behind the active grid with protocol (25opt) and the other measured
behind the static grid, are shown in figure 3.15. The higher turbulence intensity
obtained with the active grid is clearly visible in the larger area of the spectrum.
Furthermore, the spectrum for the more intense turbulence generated with the
active grid shows a clear range with Kolmogorov -5/3 scaling, whereas this is
not clearly present in the spectrum for weaker static-grid-generated turbulence.

The difference between the active and static grid becomes clearer when
comparing their Taylor-microscale based Reynolds numbers, given previously
in equation (3.2). The Taylor-microscale can be measured in a number of ways.
The first of these is by means of the velocity auto-correlation function. The
transverse Taylor-microscale λt can be measured from the transverse velocity
auto-correlation function†, which for small separations ry can be written as:

CTT (ry) = 1 −
(

ry

λt

)2

. (3.20)

In our measurements the transverse correlation function CTT (ry) is represented
by the correlation C(τ) of the vertical velocity component w in time. This is
transformed into CTT (r) by again invoking Taylor’s hypothesis: rx = v0τ . As
an example, the measured the transverse correlation function for two different
protocols is shown in figure 3.16, together with two parabolic functions used to
find λt. A second way of measuring the Taylor-microscale is through the dissi-
pation found from the velocity energy spectrum. Provided that the turbulence
is isotropic:

ǫ = 15ν
v2
rms

λ2
t

. (3.21)

The transverse Taylor micro-scales for the various forcing protocols found from
both the spectra and the correlation functions, denoted as λt,E and λt,C , re-
spectively, are listed in table 3.2. In our measurements the difference between
the two micro-scales generally is about 10 %, which gives an indication of the
accuracy of the measurements.

With these Taylor-microscales we can see that, for the cases of which spectra
were shown in figure 3.15, Reλ=70 for the static grid, whereas for the active grid

†In a similar fashion one can define a longitudinal Taylor microscale λl from the
longitudinal correlation function. For isotropic turbulence λl =

√
2λt (Pope, 2000).
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Figure 3.16 — Transverse velocity correlation function for the static
grid and the active grid with protocol (25opt), measured at 10 cm
below the surface and 2 m behind the grid.

with protocol (25opt) Reλ=173, despite a slightly lower mean stream velocity
in the latter case. The forcing constant Cf in equation (3.3) is 0.6 for the static
grid and 1.5 for protocol (25opt). The largest value Reλ = 256 was reached
for protocol (25dr3), with Cf = 2.2. Interestingly, the very different protocol
(25ran) gives a very similar Reλ.

Another length-scale that can be derived from the auto-correlation function
is the integral length-scale. It follows from integrating the auto-covariance
function over space. In longitudinal direction this becomes:

LL =

∫ ∞

0
CLL(r)d(r), (3.22)

where the spatial coordinate follows from time through Taylor’s hypothesis‡.
This equation shows that the integral length-scale is a measure for the longest
distance over which motions in the turbulence are still correlated. It can be
considered as the length-scale of the largest structures in the turbulence. These
largest structures often reflect a typical length-scale of the forcing. For instance,
in static-grid-generated turbulence this integral length-scale is generally close to
the mesh-size of the actual grid. In practice one cannot measure over indefinitely
long periods and measurements of the correlation over large separations are
fraught with difficulty. Hence, in practice, it is fairly common to use a some
sort of curve-fitting procedure to the measured correlation function. In our
case we used the function 1 − exp(r/L), with L the integral scale. Obviously

‡Of course a similar relation exists for the transverse integral length-scale Lt. For
isotropic turbulence LL = 2LT (Pope, 2000).
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Table 3.3 — Integral length-scales and the Kolmogorov scales for
the static grid and two protocols for the active grid.

static 25opt 25dr3 25ran

LL (m) 2.6·10−2 8.5·10−2 8.3·10−2 6.5·10−2

ηk (m) 5.7·10−4 4.1·10−4 3.4·10−4 3.6·10−4

τk (s) 0.32 0.17 0.12 0.13
vk (m/s) 1.8·10−3 2.4·10−3 2.9·10−3 2.8·10−3

this method only provides a fairly rough indication of the integral scale, but
good enough to compare the different types of forcing. Some results are listed
in table 3.3. It is obvious that turbulence produced with the active grid has
a far larger integral scale than the static grid. In fact it would appear to be
larger than the mesh-size of the grid, which can be understood as follows: the
opening and closing of adjacent grid-cells due to the random movement of the
agitator wings can produce a pattern with larger length-scales than the scale
of each individual cell. Further scales often used to characterise the turbulence
are the Kolmogorov scales, that follow from the following equations (Frisch,
1995): The Kolmogorov length-scale:

ηk =

(
ν3

ǫ

) 1

4

, (3.23)

the time-scale:

τk =
(ν

ǫ

) 1

2

, (3.24)

and the corresponding velocity scale:

vk = (νǫ)
1

4 . (3.25)

The Kolmogorov scales for a number of different protocols are also listed in
table 3.3. We see that the Kolmogorov lengths, associated with the smallest
vortices in the turbulent flow are smaller for the active grid than for the static
grid, consistent with the turbulence being stronger in the former case.

3.3.3 Isotropy

For grid-generated turbulence, outside of the boundary layers, isotropy in planes
perpendicular to the mean-stream direction is practically assured. However,
measurements in other planes often show anisotropy. Isotropy can be defined
in a number of different ways. The simplest measure of isotropy is the ratio
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of fluctuation velocity components, in our case the ratio of vrms over wrms.
Its value for the various protocols is listed in table 3.2. For static grids a
difference between the streamwise and vertical root-mean-square velocities of
up to 10 percent is fairly common Comte-Bellot & Corrsin (1966), and indeed
for our static grid we find a 10% difference. The difference for the active grid
ranges from 8% up to 15%. Interestingly, an increase of turbulence intensity is
accompanied by an increase in the difference between vrms and wrms, something
which was already noted for the comparison of various static grids by Comte-
Bellot & Corrsin (1966).

A comparison of the turbulent velocities only reveals anisotropy existing at
large scales. Scale-dependent anisotropy information can be obtained through
analysing correlation functions. For incompressible three-dimensional isotropic
turbulence the longitudinal and transverse correlation functions are related
through (Pope, 2000):

CTT (r) = CLL(r) +
1

2
r

d

dr
CLL(r) (3.26)

Hence, the measured transverse correlation function can be compared to the
transverse correlation function that follows from the measured longitudinal cor-
relation function through equation (3.26). If they lie close together, this is an
indication of isotropy. However, since the correlation functions are normalised
with the respective root-mean-square velocities, such a comparison does not
show the difference between vrms and wrms. This may be cured by consider-
ing the structure functions instead. These are related to the auto-correlations
through:

S2,L = 〈(v(y + r) − v(y))2〉 = 2(vrms)
2(1 − CLL(r)) (3.27)

and
S2,T = 〈(w(y + r) − w(y))2〉 = 2(wrms)

2(1 − CLL(r)). (3.28)

In case of isotropy, vrms = wrms and hence we can find a relation between the
longitudinal and transverse 2nd-order structure functions for isotropic turbu-
lence. Analogous to equation (3.26), in isotropic turbulence they are related
through:

S2,T (r) = S2,L(r) +
1

2
r

d

dr
S2,L(r). (3.29)

We can now compare the actually measured transverse 2nd-order structure
function with that which follows from the measured longitudinal 2nd-order
structure function through this equation.

Figure 3.17 shows results for all different types of forcing for the maximum
mean stream velocity. Since one cannot expect there to be isotropy beyond
the integral length-scale, the distance r for which the structure functions are
shown ranges from 0 to r/LL = 1. The structure functions shown in these
graphs are actual measurements, while a fourth-order polynomial fit was used
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Figure 3.17 — Longitudinal and transverse 2nd-order structure
functions for different forcing: (a) 25stat, (b) 25opt, (c) 25dr1,
(d) 25dr2, (e) 25dr3, and (f) 25ran. the solid line represents the
measured transverse structure function and the dashed line represents
the transverse structure function that follows from the measured lon-
gitudinal structure function through the relation for isotropic turbu-
lence, equation (3.29).

to calculate the derivative of SLL. For the static grid generated turbulence
(25stat) in figure 3.17 (a) the calculated and measured transverse structure
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functions indeed lie fairly close together, although they start to deviate for
larger separations. Thus the turbulence would seem to be practically isotropic.
The structure functions for the three protocols intended to show the influence of
the dimensionless parameters Ω∗ and T ∗, (25dr1), (25dr2), and (25dr3) are
shown in figures (c),(d) and (e). With the exception of the strongest turbulence,
protocol (25dr3), they are broadly similar. For protocol (25dr3) as well as
(25ran) the calculated and measured CTT already differ for small separations.
This difference becomes even larger as the separation increases. Clearly the
turbulence is anisotropic, as was already indicated by the ratio of urms/wrms.
Overall the forcing protocol with both dimensionless variables Ω∗ and T ∗ closest
to one, (25opt) shown in figure (b), offers a fair compromise between turbulence
intensity and isotropy. The slightly stronger turbulence generated with protocol
(25dr2), for which both dimensionless parameters are also fairly close to unity,
see table 3.1, is very similar.

3.4 Conclusions

Using Laser-Doppler measurements we have compared the statisics of turbu-
lence generated by an active grid to turbulence generated by a similarly di-
mensioned static grid. One of the reasons for using grid turbulence was that,
typically, it is a fair a approximation of homogeneous and isotropic turbulence.
Our measurements show that for both the active grid and the static grid, out-
side of the boundary layers and relatively far below the surface, the turbulence
can indeed be considered approximately homogenous. As was already clear
from the literature, the active grid produces far stronger turbulence than the
static grid, in our experiments with a Taylor-microscale based Reynolds number
Reλ = 70 for the latter and up to Reλ = 256 with the former. Because of the
larger intensity, the active-grid-generated turbulence exhibits clear Kolmogorov
scaling. As an indication of the accuracy of our measurements, we have derived
the Taylor length-scale in two different manners: via dissipation calculated from
the spectrum and, more directly, through the velocity correlation function. The
difference between both values is less than 10%. Coupled to the larger turbu-
lence intensity, the integral lenght-scale of active-grid-generated turbulence is
larger (≈ 8 cm) than that of turbulence generated by the static grid (≈ 3 cm).
Another advantage of the active grid is that, by changing the forcing protocol,
the isotropy of the turbulence can be changed. Our Laser-Doppler set-up is
limited to measuring the vertical and the streamwise components of the veloc-
ity. Hence, we can only measure isotropy in those directions. We see that, in
general, for protocols that generate the strongest turbulence the turbulence is
also the most anisotropic. By scaling the protocol such that the dimensionless
rotation velocity and dimensionless time given in equations (3.4) and (3.5) are
close to unity, as suggested by Poorte (1998) and Poorte & Biesheuvel (2002),
the active-grid-generated turbulence is very close to isotropic. The importance



50 Basic properties of the turbulence | Chapter 3

of the isotropy will become more clear in chapter 7, where we describe mea-
surements of the isotropy of the surface above the turbulence.



4

Measuring turbulence properties with

PIV

4.1 Introduction

Particle Image Velocimetry (PIV) is a technique for measuring fluid velocities
and velocity gradients in a plane. In our experiments on free-surface turbulence
PIV is used to measure the turbulent sub-surface velocity field in our water-
channel in order to compare it to the free-surface deformation connected with
the turbulence.

PIV has seen widespread use in fluid dynamics, especially since the intro-
duction of digital cameras with a sufficiently high frame rate and relatively
high spatial resolution, (Willert & Gharib, 1991; Westerweel, 1993). The prin-
ciple of PIV is very straightforward: small particles suspended in the flow are
illuminated by a laser light sheet and the local fluid velocity is inferred from
their displacement. In most applications for measuring turbulence, series of
image pairs are recorded by a digital CCD camera. These digital images are
sub-divided into smaller, usually square, areas called interrogation windows.
If sufficient particles are present in the corresponding interrogation windows
in two subsequent images, the cross-correlation of the intensity distributions
in the windows has a distinct peak. The peak’s position is a measure of the
displacement of the particles in the interrogation window. The positions of
the peaks from all of the interrogation window pairs in two subsequent images
result in a vector field, which represents a snapshot of the velocity field in the
plane illuminated by the laser∗.

The fact that PIV can be used to measure the velocity field in a plane offers a
major advantage over the other velocimetry technique used in the water channel,
Laser Doppler Velocimetry (LDV), which is a point measurement of the velocity

∗This assumes that the time between two images is short enough to consider the
displacement as equivalent to the velocity.
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as a function of time. In principle PIV can be used to obtain specific spatial
information such as velocity gradients and vorticity. Spatial spectra of velocity,
spatial velocity correlation functions and vorticity are also of interest. Unlike
LDV, PIV does not require the use of Taylor’s frozen turbulence hypothesis for
obtaining spatial spectra and correlations. However, as is already clear from
the description of the principle of PIV, the obtained velocity field is a spatially
filtered representation of the actual velocity field. Obviously, structures that are
larger than the region in the flow corresponding to the image cannot be seen, as
well as structures in the flow that are smaller than the interrogation windows.
Measuring turbulence by means of PIV requires a compromise: on one hand
large interrogation windows improve the accuracy, as will be explained shortly.
On the other hand using large interrogation windows compromises the spatial
resolution that can be resolved.

We seek to answer the question what the relation is between the measured
velocity field and the actual velocity field in a turbulent flow, focusing on the
effect that PIV has on turbulence statistics such as velocity spectra and corre-
lation functions as well as velocity gradients. Keane & Adrian (1991) showed
that the measured velocity is a weighted spatial average of the actual velocity
in the interrogation window. The low-pass filtering effect of this averaging on
measured turbulence spectra was first described by Lourenco & Krothapalli
(2000). There are further subtle issues that depend on the interrogation win-
dow size and that may have a dramatic effect on measured turbulence spectra.
For example, choosing too small interrogation windows may result in noise, due
to the emergence of spurious vectors.

It is fairly common to test the accuracy of PIV and new PIV algorithms by
using a known velocity field to generate synthetic images and then comparing
the actual field to the field obtained from evaluating those images with PIV.
Some researchers have studied PIV by using single images based on a known
velocity field of, for instance, a single Oseen vortex (Luff et al., 1999), series
of images derived from Monte-Carlo simulations (Keane & Adrian, 1990; West-
erweel, 1993), or even images with uniform displacement (Forliti et al., 2000).
However, relatively few researchers have used spectra in their comparisons, de-
spite the obvious benefits of using such a method. Understanding how PIV
influences the spectrum also allows one to understand how the spatial aver-
aging influences all other second-order statistics and allows an assessment of
the influence of measurement noise. Foucaut & Stanislas (2002) and Foucaut,
Carlier & Stanislas (2004) have compared spectra measured with PIV to spec-
tra measured with hot-wire anemometry, confirming the description of PIV as
a low-pass filter, and have also studied the influence of measurement noise on
derivative calculations. Lecordier et al. (2001) have used direct numerical simu-
lations to generate synthetic images and have compared spectrum obtained with
PIV to those obtained from the numerical simulation, also using the spectrum
as a tool for understanding how PIV measures root-mean square velocities.
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We will take a look at the effect the filtering has on the spectrum based on
results of kinematic simulations. These simulations are used to generate realistic
PIV images of a turbulent velocity field with a prescribed velocity spectrum.
The images are subsequently evaluated with PIV to allow us to compare the
actual spectrum and the measured spectrum. Our method is unique as the
input spectrum can be changed easily, in contrast to that of a direct numerical
simulation, or that of an actual experiment. Rather than defining the quality
of PIV through comparison of true and measured velocity fields, we define it
through the statistical properties of the velocity field. Such an approach is most
appropriate to our problem, as we will be interested in the statistical connection
between the surface and the velocity field. From these spectra, other quantities
— such as correlation functions — follow readily.

4.2 The principle of PIV

Before proceeding to describe the spectral issues, we will start by taking a closer
look at a number of issues associated with PIV. The accuracy of the results that
can be obtained by PIV is in part determined by the algorithm. Hence, it is
important to describe its details. A schematic overview of the steps taken in
the algorithm is shown in figure 4.1.

As a first step the images are sub-divided into interrogation windows and the
cross-correlation functions between the intensity distributions in corresponding
windows in subsequent images are calculated. This cross-correlation function
contains a number of contributions: random correlations between particle im-
ages, correlation between the background intensities, noise, and a contribution
due to the particle displacement†. The latter, the so-called displacement peak,
is obviously the contribution that is important for PIV. The algorithm searches
for the highest peak in the cross-correlation function. In order for this high-
est peak to actually be the displacement peak, a sufficiently large number of
particles present in the interrogation window in the first image should also be
present in the second image. Figure 4.2 shows the volume in the light sheet that
corresponds to a single interrogation window. Particles that are present within
this volume when the first image of a particle image pair is taken will have
moved into a slightly deformed and slightly displaced volume by the time the
second image is taken a time ∆t later. Hence, some of the particles that were
present within the interrogation volume in the first image will have moved out
of the interrogation volume by the time the second image is taken. Similarly,

†Non-uniform background illumination typically leads to a contribution to the cross-
correlation function with a maximum at zero displacement. Noise in the images is
primarily the result of thermal noise in the camera. The effects of both non-uniform
background radiation and thermal noise can be reduced by suitably pre-processing the
images with a digital filter. However, these filters can have an adverse effect on the
accuracy of the sub-pixel algorithms common in PIV codes.
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Figure 4.1 — Overview of the PIV-algorithm.

in the time between the two images, some particles will have moved into the
interrogation volume. Only particles that are present in the overlap between
both volumes will be present in both particle images and only those particles
lead to a to the displacement peak. This effect is commonly called particle loss‡.

The result of too few particles being present in both images, which can be
the result of particle loss, but also of too few particles being present in the
flow overall, is a decrease in the relative size of the displacement peak in the
cross-correlation function. The peak’s height is also decreased by velocity gra-

‡Since it is associated both with particles being advected out of the interrogation
volume as well as with particles being advected into it, i.e. particle gain, the term par-
ticle loss is somewhat misleading. Particle image pair loss would be a more appropriate
term. However, since particle loss is the name used in most literature it will also be
used here.
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Figure 4.2 — An interrogation window corresponds to a volume
within the light sheet. Due to turbulence, the material volume oc-
cupied by the particles when the first image is taken will be slightly
deformed and displaced by the time that the second image is taken.
As a consequence, particles move out of the interrogation volume and
other particles enter the interrogation volume in the time between the
two images. Only particles in the overlapping volume, indicated in
grey in this figure, are present in both images.

dients inside of the interrogation window. In the worst case other contributions
dominate the cross-correlation function and the algorithm will no longer iden-
tify the displacement. The result of this is commonly called a spurious vector.
Usually, a spurious vector differs dramatically from its neighbours. Because of
this, spurious vectors have a large detrimental effect on gradients and spectra
calculated from the velocity field. However, this also makes spurious vectors
relatively easy to identify. The likelihood of the occurrence of spurious vectors
can be reduced by choosing the parameters of the PIV-experiment according
to criteria derived by Keane & Adrian (1990, 1991):

• At least 15 particles should be present in an interrogation window.

• The time interval ∆t between two images in a pair is a compromise be-
tween having a decent dynamic range and preventing in-plane particle
loss. For the former the maximum displacement should be as large as
possible, which will be explained in more detail later. For the latter, the
in-plane displacement should be at most one quarter of the width Lp of
the interrogation window or:

|U |∆t

Lp
< 0.25, (4.1)
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where U is the in-plane component of the velocity field.

• Similarly, particles being advected perpendicular to the light sheet, so-
called out-of-plane particle loss, can be limited by matching the depth d
of the light sheet and the time between images ∆t to the normal velocity
such that:

|w|∆t

d
< 0.25, (4.2)

where w is the velocity normal to the light sheet.

In addition to increasing the likelihood of the occurrence of spurious vectors,
in-plane particle loss can be expected to lead to a bias towards lower veloci-
ties, since particles in regions of fast-moving fluid are more likely to leave the
interrogation window than slowly traveling particles.

Clearly, in a turbulent flow, the smallest length-scale that can be resolved,
the smallest velocity difference that can be measured, and the time-delay ∆t
have to be compared to the Kolmogorov length-, velocity-, and time-scales, re-
spectively. Typically, the turbulent energy E(k) is a rapidly decreasing function
of the wavenumber k, and it is clear that spurious vectors especially influence
the high wavenumbers and lead to larger errors in measured spectra.

Because of the use of a digital camera, the cross-correlation function can
only be calculated in discrete points, meaning that the location of the peak
in the correlation function can be resolved with a resolution of one pixel. As
in most other algorithms, in our algorithm the cross-correlations is calculated
using Fast-Fourier transforms. In many practical cases, to ensure a large enough
number of particles in the interrogation window, an interrogation window size
of 32 × 32 pixels is a practical minimum. In that case the maximum allowed
displacement is 8 pixels. Hence, the dynamic range of the measured velocities
is very limited. Of course, increasing the size of the interrogation windows
increases the dynamic range.

Most PIV algorithms, as well as ours, use Gaussian interpolation of the
correlation peak in order to find the sub-pixel coordinates of the displacement
peak, thereby increasing the dynamic range. This approach makes sense since
the point-spread function, that describes how a small illuminated particle is
imaged by a camera system, is approximately of Gaussian shape and the cross-
correlation function of two Gaussian distributions is Gaussian as well. Sub-pixel
resolution does require that the point spread function of the particles in the
digital images covers multiple pixels, preferably an area of about 2 × 2 pixels
(Raffel et al., 1998). If the particle diameters are small, the sub-pixel algorithm
is biased towards integer pixel displacements. This effect is called pixel-locking.
The root-mean-square error in the sub-pixel displacement is at best 0.05 (West-
erweel et al., 1997) to 0.1 pixel (H. Huang et al., 1997). In order to improve the
accuracy of the sub-pixel resolution the relative height of the displacement peak
should be increased. Obviously, one way to do this is by having more particles
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present in the interrogation window, which in an experiment can easily be done
by increasing the size of the interrogation windows. This has the added benefit
of decreasing in-plane particle loss. Not only does particle loss decrease the
height of the displacement peak, it also increases the random correlations and
particle loss is a major contributor to noise. Thus, having large interrogation
windows increases sub-pixel accuracy, by decreasing in-plane particle loss and
by increasing the number of particles present in each window. However, these
trends are opposite to what is needed for a faithful measurement of turbulent
flows: small velocity fluctuations — for which precise measurements help —
occur at small scales, which are averaged over in large interrogation windows.

Another way to decrease the influence of particle loss and to increase the
sub-pixel accuracy is by a technique called window shifting (Westerweel et al.,
1997). In this technique the second window in each pair is shifted over the
integer number of pixels corresponding to the mean velocity in each window,
after which the cross-correlation function is recalculated. This is used in many
recent PIV-algorithms, some of which actually use a multi-scale iterative pro-
cedure in which as a first step large interrogation windows are used to obtain
a rough estimate of the local velocity. Subsequently the cross-correlation is re-
calculated with shifted windows. In subsequent steps the interrogation window
size is decreased (Scarano & Riethmuller, 1999). In our algorithm we use win-
dow shifting in order to compensate for the mean velocity present in the water
channel in our experiments, but the interrogation window size is fixed.

In the algorithm, before proceeding with the removal of spurious vectors, the
positions and lengths of the velocity vectors found from the images are converted
into world coordinates, so from pixels to for instance m/s. In the experiments
great care is taken to align the optical axis of the camera perpendicularly to
the light sheet and a camera lens is used that does not lead to any dramatic
distortions of the image. Transformation from displacements in pixels to world
coordinates can then be done very easily, without any need for interpolation,
by simply multiplying the coordinates in pixels with a constant. In order to
calculate velocities, displacements can simply be divided by the time ∆t between
two images in a pair, provided that ∆t is sufficiently small.

The next step in our algorithm is removing spurious vectors by means of a
filter. This filter can use a number of different criteria to determine whether a
vector is valid or not. If the difference between the length of an individual vec-
tor and the mean velocity exceeds a certain threshold, the vector is discarded.
In a second, more stringent test the length of the vector can be compared to
the median of the length of the surrounding vectors. If the difference between
the individual vector and the median exceeds a second threshold the vector is
discarded. These filters are an efficient way to identify spurious vectors (West-
erweel, 1994), but may also remove turbulent structure. The removed vectors
are replaced by using linear interpolation, this to facilitate the subsequent cal-
culation of velocity gradients.
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Velocity gradients and vorticity are calculated using a simple mid-point
rule. We will take a closer look at measuring velocity gradients later. Finally,
averages, spectra and correlation functions are calculated for the image series.

4.3 Inherent filtering by PIV

The smallest scale in the velocity field that can be resolved by PIV is determined
by the interrogation window size. Then, according to the Nyquist sampling
criterion the grid spacing should not be larger than half the window size.

It is fairly common to use a grid spacing of half the width of the interro-
gation windows, which means that neighbouring interrogation windows have a
50% overlap. Generally, in order to resolve small scales, one should use small
interrogation windows, but in practice their minimum size is limited, as we have
seen in the previous section. For a typical PIV camera of 1024×1024 pixels,
interrogation windows of 32×32 pixels and 50 % overlap between neighbouring
windows, the resulting velocity field only has 63×63 data points. Because of
this, typically, the range of scales in PIV is very limited compared to the range
of scales for turbulence. In our case, with Reλ ≈ 200, the ratio of the largest to
smallest scales is more than an order of magnitude larger than the number of
interrogation windows per window size. Hence, the spatial resolution of PIV is
insufficient for resolving the smallest scales in the flow. The measured velocity
field is a spatially filtered version of the actual field. The question now is what
the characteristics of this filter are and how the inherent filtering influences
spectral quantities.

4.3.1 A description of the filter

A description of the filtering has been given by Keane & Adrian (1992). It
is based on calculating the location of the peak in the cross-correlation func-
tion of the intensity distributions associated with the particle movement, for an
arbitrary velocity field. This requires a number of assumptions: other contri-
butions to the cross-correlation function should be negligibly small, the point
spread function which describes how a particle is imaged, should be relatively
small compared to the size of the interrogation window, all particle images are
taken as identical, and the time between the images is short enough to allow
displacements and velocities to be considered equivalent.

They conclude that the velocity measured for a given interrogation window
in the image actually corresponds to the projection on a plane of the spatial
average of the velocity. Because particles only contribute to the velocity if
they are present in both images, the spatial average is the average over the
overlap between the interrogation volume itself and the region to where the
particles have been advected by the time that the second image of the pair
is taken. This was already illustrated in figure 4.2. Mathematically it can
be expressed as follows: the volumes can be represented by so-called window
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functions, which equal 1 within a certain region and 0 outside that region. The
volume corresponding to an interrogation window with size Lp × Lp around
coordinate (x0) = (x0, y0) and thickness d can be represented by a function:

W (x,x0) =

{
1, |x − x0| < Lp/2, |y − y0| < Lp/2, and |z| < d
0, otherwise.

(4.3)

The volume to where they are advected to can be represented by the window
function W (x+u(x, t)∆t,x0). The overlapping volume can then be represented
by the product P of both window functions:

P (x,x0,u) = W (x,x0)W (x + u(x, t)∆t,x0). (4.4)

The velocity up(x0, t) measured for an interrogation window in the image cen-
tred around coordinate x0, can now be expressed as spatial average of the
velocity over the volume represented by window function P :

u(x0, t) =

∫
V P (x,x0,u)up(x, t) dx∫

V P (x,x0,u) dx
, (4.5)

in which up is the projection of the velocity in planes (z = constant) and in
which

∫
V ..dx represents a volume integration.

4.3.2 The effect of spatial averaging on turbulence statistics.

The velocity, averaged over the volume corresponding to an interrogation win-
dow, can be written as:

u(x) =

∫ d
2

− d
2

∫ Lp

2

−
Lp

2

∫ Lp

2

−
Lp

2

u(x)dxdydz, (4.6)

where Lp × Lp are the dimensions of the area of the light sheet represented
by the interrogation window and d is the thickness of the light sheet. The
projection of this in the plane z = 0 corresponds to the velocity measured with
PIV given in equation (4.5), provided that the effect of particle loss is neglected.

The longitudinal velocity spectrum Exx(kx) for turbulence follows from in-
tegration of the full three-dimensional spatial spectrum over ky and kz:

Exx(kx) =

∫∫
Exx(k)dkydkz, (4.7)

where the three-dimensional spectrum in turn follows from:

Exx(k) = 〈|ũ(k)|2〉, (4.8)
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in which ũ(k) is the full three-dimensional Fourier transform of the veloc-
ity. Fourier transforming the measured spatially averaged velocity, given in
equation (4.6), in three-dimensions would lead to the spatially averaged three-
dimensional spectrum. Integrating that over ky and kz would lead to the one-
dimensional longitudinal velocity spectrum as measured by PIV. Similarly, the
measured longitudinal correlation function follows from:

Cxx(rx) =

∫∫∫
T (r′ − r)Cxx(r′)dr′

∣∣∣∣
ry=0,rz=0

, (4.9)

where T (r) is a three-dimensional tent-map function with a width 2Lp in the
rx and ry-directions and a width 2d in the rz-direction.

In order to clarify the consequences of the spatial averaging, instead of
using these rather complicated three-dimensional equations, we will use one-
dimensional representations. In one dimension, still without particle loss, the
averaging inherent to PIV expressed in equations (4.5) can be expressed in
terms of a straightforward convolution product:

u(x) =

∫
P (x − x′)u(x′)dx′, (4.10)

in which P (x) is a top-hat function representing the interrogation window and
of the same width Lp as the interrogation window:

P (x) =

{
0, |x| >

Lp

2
1

Lp
, |x| <

Lp

2 .
(4.11)

Equation (4.10) shows that measurement of a uniform mean-stream velocity in
the flow will not be affected by the spatial averaging. Thus, it is unsurprising
that PIV has few problems with measuring a mean-stream velocity. Since
the measured velocity is a convolution of the actual velocity and the window
function, the spatial Fourier transform of the measured velocity is simply the
product of the Fourier transform of the actual velocity field, multiplied with
the Fourier transform of the window function:

ũ(k) = 2πũ(k)P̃ (k)§ (4.12)

in which P̃ (k) is the Fourier transform of P (x):

P̃ (k) =
1

πkLp
sin

kLp

2
. (4.13)

Consequently, the measured (longitudinal) energy spectrum E(k) is related to

§The factor (2π) in this expression is a result of the convolution theorem for our
definition of the Fourier transform. We define a Fourier transform of an arbitrary
function f(x) in space as f̃(k) = 1

2π

∫ ∞

−∞ f(x)e−ikxdx. If h(x) is the convolution

product of f(x) and g(x), then the Fourier transform h̃(k) = 2πf̃(k)g̃(k).
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Figure 4.3 — Function |P̃ (k)|2, the spectral representation of the
spatial averaging inherent to PIV. If the overlap between neighbouring
windows is at most 50%, the maximum frequency in the measured PIV
spectrum is equal to kmax. Hence, the higher orders shown in this
figure will typically not be visible in a measured spectrum.

the actual (longitudinal) spectrum E(k) by:

E(k) = (2π)2|P̃ (k)|2E(k). (4.14)

A graphical representation of (2π)2|P̃ (k)|2 is shown in figure 4.3. It is clear
that the spectrum is low-pass filtered. The first minimum in the filter lies at
kmax = 2π/Lp and the filter has higher-order harmonics although at increas-
ingly closely separated higher frequencies. As long as the cut-off frequency falls
within the inertial range the area under the spectrum that is removed by the fil-
ter is relatively small compared to the overall area. This explains why PIV can
provide a reasonably accurate measurement of the root-mean-square velocity.

This result, albeit without any explanation of its origin or a reference to the
work by Keane & Adrian (1992), was first published by Lourenco & Krotha-
palli (2000). More recently Foucaut & Stanislas (2002) and Foucaut, Carlier
& Stanislas (2004) showed that this low-pass filtering indeed describes the in-
herent filtering in PIV by comparing spectra obtained with PIV to spectra
obtained with hot-wire anemometry (HWA). Kumar & Banerjee (1998), who
measured turbulence spectra close to a free surface by means of PIV, conclude
that their spectra have a scaling exponent of −3 for high wavenumbers, similar
to their spectra obtained from DNS for such a flow. However, it is likely that
this scaling exponent in the PIV-spectra is actually the result of the inherent
filtering by PIV. Finally, although they apparently did not realise it at the time,
the spectra obtained by Lecordier et al. (2001) by evaluating synthetic images
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of velocity fields generated from direct numerical simulations (DNS), also show
behaviour associated with this low-pass filtering, albeit obscured slightly by
relatively high noise in their spectra. There are many ways in which the PIV
procedure can influence a measured spectrum, but the filtering action of the
overlapping interrogation windows is the most important one and also the eas-
iest to understand. It is, therefore, surprising that it was so ill-understood in
the cited earlier work.

Of course, all second-order statistical quantities can equally well be ex-
pressed in wavenumber as in real space; the relation between them is a mere
Fourier transform. However, in practical situations it is sometimes advanta-
geous to directly work in real space. This is especially true in our case, where
the dynamical range of spatial scales does not suffice to capture all of the spec-
tral energy, which introduces errors in the Fourier transform needed to compute
the correlation function C(r) from the spectrum E(k). We will therefore, in
parallel, discuss the influence of filtering on statistical quantities in real space.
Still in one dimension, we can use equation (4.14) to find a relation between the
measured correlation function C(r) and the actual correlation function C(r).
The covariance function R(r) is the Fourier transform of the measured energy
spectrum:

R(r) =

∫ ∞

−∞
E(k)eikrdk

=

∫ ∞

−∞
|P (k)|2E(k)eikrdk

=

∫ ∞

−∞
T (r − r′)R(r′)dr′, (4.15)

where function T(r) is the Fourier transform of the product P̃ (k)P̃ ∗(k). As
such, it is itself a convolution of the window function P (r):

T (r) =

∫ ∞

−∞
P (r − x)P (x)d(x). (4.16)

For the top-hat shaped P (r) given in equation (4.11), T (r) is a tent-function:

T (r) =

{
0, |r| > Lp
Lp−|r|

L2 , |r| < Lp,
(4.17)

illustrated in figure 4.4. Since the correlation function C(r) = R(r)/(urms)
2

and the root-mean-square velocity are largely unaffected by PIV, in our one-
dimensional description, the measured longitudinal correlation function is the
convolution of the actual longitudinal correlation function with a tent-function,
the width of which is determined by the interrogation window-size. For sepa-
rations up to the window size, correlation is introduced artificially, due to the
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Figure 4.4 — Function T (r), the convolution of the rectangular win-
dow function P (r) with itself.

velocity in adjacent grid points being at least partially determined by averaging
over the same area. The consequence of this averaging is that the measured
correlation function is broadened relative to the actual correlation function and
will be broadened more as the interrogation window size increases.

The correlation function can be used to predict the influence of the filter-
ing on velocity gradients as measured with PIV. Predicting the influence of
averaging on velocity gradients can be also done by means of the spectrum, by
realising that the spectrum of the velocity derivative k2E(k) and comparing

this with the measured k2E(k), as was done by Foucaut & Stanislas (2002).
However, since we will use correlation functions to study isotropy, correlation
functions will be used here. The gradient of the x-component of the velocity in
x-direction can be defined as:

∂u

∂x
= lim

l↓0

u(x + l) − u(x − l)

2l
(4.18)

which means that:
〈(

∂u

∂x

)2
〉

= lim
l↓0

〈(
u(x + l) − u(x − l)

2l

)2
〉

= lim
l↓0

1

l2
{〈u2(x + l)〉 + 〈u2(x − l)〉 − 2〈u(x + l)u(x − l)〉}

= 2u2
rms lim

l↓0

1 − C(2l)

4l2
, (4.19)

in which C is the longitudinal velocity correlation function. Equation (4.19)
expresses that the variation of the velocity derivative is related to the curvature
of the correlation function near r = 0. As we have seen in chapter 3, for small
separations r the correlation function can be written as:

C(r) = 1 −
( r

λ

)2
. (4.20)
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in which λ is the longitudinal Taylor length-scale. Substituting this in equation
(4.19) leads to:

〈(
∂u

∂x

)2
〉

= 2u2
rms lim

l↓0

1 −
(
1 −

(
2l
λ

)2)

4l2
=

2u2
rms

λ2
(4.21)

and thus: 〈(
∂u

∂x

)2
〉 1

2

=
√

2
urms

λ
, (4.22)

which can also be found in, for instance, Pope (2000).
Using second-order centred differences, as suggested by Luff et al. (1999)

and Foucaut & Stanislas (2002) and similar to equation (4.18), we define the

filtered version ∂u/∂x of the gradient of the velocity as:

∂u

∂x
=

u(x + Lg) − u(x0 − Lg)

2Lg
, (4.23)

with Lg being the separation between points in the grid. Similar to equation
(4.19) we can write the variance of the gradient as:

〈(
∂u

∂x

)2
〉

=

〈(
u(x + Lg) − u(x − Lg)

2Lg

)2
〉

=
〈u2〉
2L2

g

(1 − C(2Lg)). (4.24)

in which C is the measured correlation function. Equation (4.24) shows that
the measured root-mean-square velocity gradient is directly connected to the
value of the measured correlation function at a separation that is twice the grid
distance Lg, which, for the usual 50% overlap, equals the window size Lp. The

dependence of C on Lp introduces a correlation length λ through:

C(r) = 1 −
(

r

λ

)2

, (4.25)

Due to the averaging, λ > λ and, consequently, the fluctuation magnitude of
the velocity is underestimated.

Knowing how PIV influences correlation functions allows us to take a closer
look at isotropy, as we have seen in chapter 3. For isotropic turbulence, equa-
tion (3.26) gives a relation between the longitudinal and transverse correlation
functions. For LDV measurements these were derived from point measurements
of the transverse and longitudinal velocity as a function of time together with
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the use of Taylor’s frozen turbulence hypothesis¶. PIV provides this spatial
information directly, albeit spatially averaged. Furthermore, because in its ba-
sic form, PIV can be used to measure two components of the velocity in two
dimensions, it can be used to measure two longitudinal spectra, Exx(kx) and
Eyy(ky), and two transverse spectra, Exx(ky) and Eyy(kx), as well as the four
corresponding correlation functions. In isotropic turbulence all spectra and cor-
relation functions are independent of the direction in which they are measured.
Hence, in order to check isotropy with PIV, we can directly compare, for in-
stance, Exx(kx) and Eyy(ky) and/or their corresponding correlation functions.

Comparing longitudinal and transverse correlation functions by means of
equation (3.26) is potentially problematic. If the filter action is taken longitu-
dinally, and Lp becomes very small, it is possible to rephrase equation (3.26):

CTT (r) = T (r) ∗
(

CLL(r) +
1

2
r

d

dr
CLL(r)

)

= CLL(r) +
1

2
T (r) ∗

(
r

d

dr
CLL(r)

)

= CLL(r) +
1

2
r

d

dr
CLL, (4.26)

with ∗ denotes a convolution product. However, this is much simplified, and
a complete three-dimensional treatment is necessary to fully understand the
consequences of the averaging.

Of course, in our description of the filtering we have not included how the
spectrum is influenced by the occurrence of spurious data and by noise. Sub-
pixel resolution leads to an accuracy of at best 0.1 pixel. Hence, as the dynamic
range decreases, the relative noise level in the spectrum becomes higher. These
effects are primarily visible in the high frequencies in the spectrum, and at
small separations in the correlation functions, and, accordingly, in the gradient
fluctuation, as will be shown in the next sections. Besides leading to the oc-
currence of spurious data, (4.5) shows that particle loss also leads to a velocity
dependent filtering. The effective width of the filter is decreased in regions of
high velocity.

¶Since a comparison of correlation functions can potentially obscure large scale
isotropy, with an associated dependence of the root-mean-square velocity on the di-
rection, in our LDV measurements second-order structure functions were used instead
of correlation functions. However, equation (3.29), which gives the relation between
the transverse and longitudinal 2nd order structure function, follows directly from the
relation between the transverse and longitudinal correlation functions.
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4.4 Applying PIV to simulated velocity fields

In the previous section, a one-dimensional mathematical description was given
of how the spatial averaging inherent to PIV influences measured turbulence
statistics, based the description of PIV by Keane & Adrian (1992). We now
want to compare the spectrum found from applying PIV to simulated images to
the spectrum of the actual velocity field. This comparison allows us to assess
whether the spectra obtained from PIV indeed correspond to simple spatial
averaging. Furthermore, the comparison serves to illustrate some of the effects
of having a limited dynamic range and of the occurrence of spurious vectors,
associated with particle loss, on the measured turbulence statistics.

The simulated velocity fields are generated by means of a kinematic sim-
ulation. We have chosen to use kinematic simulations because they allow us
to prescribe the properties of the spectrum and because they are relatively
cheap computationally, certainly compared to direct numerical simulation of
turbulence.

4.4.1 Kinematic simulations

A kinematic simulation is essentially based on generating random Fourier modes
with a prescribed spectrum (Kraichnan, 1970; Fung et al., 1992; Elenbaas,
2006). Each realisation of the simulated velocity field consists of a sum of
Fourier components:

u(x, t) =
N∑

n=1

vn cos(kn · x + ωnt) + wn sin(kn · x + ωnt), (4.27)

in which vn and wn are spatial Fourier amplitudes and ωn is a frequency.
These amplitudes and this frequency depend on kn, the (discrete wavenumber
vector). Exactly how they depend on kn determines the spectrum and all
other properties of the resulting flow field. The velocity field can be made
incompressible, i.e. ∇ · u = 0, by making sure that the vectors vn and wn

are perpendicular to the wavenumber vector. The easiest way to do this is by
defining two new vectors an and bn and taking vn and wn as the cross-products
of these vectors with the normalised vector k̃n = kn/kn, so: vn = an × k̃n and

wn = bn× k̃n. The directions of vectors kn are chosen to be uniformly random.
The velocity spectrum is determined by how the lengths of an and bn depend on
kn. For the purpose of these kinematic simulations we only model the inertial
range behaviour of the turbulence energy spectrum function, already briefly
mentioned in chapter 1:

E(k) =

{
Cǫ2/3k−5/3 , kc < k < kη

0 , otherwise
. (4.28)
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in which ǫ is the dissipation rate of the turbulence and C is an empirical con-
stant. In accordance with Kraichnan (1970), its value is taken as 1.5. The lower
cut-off wavenumber kc sets the largest scale of the turbulence spectrum. The
large wavenumber cut-off, kη, is associated with the Kolmogorov scale ηk of the
turbulence.:

kη =
2π

ηk
. (4.29)

The lengths of the discrete wavenumber vectors kn are chosen according to a
geometrical distribution:

kn = kc

(
kη

kc

) n−1

Nk−1

. (4.30)

and, subsequently, the lengths of the vectors an and bn are taken from shells
of the discrete spectrum such that:

3

2
a2

n =
3

2
b2
n = E(kn)∆kn (4.31)

where

∆kn =
kn−1 − kn+1

2
.

These choices set the spatial spectrum of the turbulence.
The model includes time evolution of the velocity field‖. However, as is

already indicated by their name, kinematic simulations do not model actual
dynamics. This is, of course, the primary reason why kinematic simulations
are computationally cheap compared to direct numerical simulations. Time
evolution is included by means of the unsteadiness frequencies ωn in equation
(4.27). A straightforward relation between ωn and kn is preferred. In our
simulations we use the model by Fung et al. (1992), in which the frequency of
mode n is proportional to the eddy turnover time associated with wave-vector
kn:

ωn = ξ
√

k3
nE(kn) (4.32)

where ξ is an adjustable (dimensionless) weighting factor.
The time-scale of the simulated velocity field is set both by the smallest

eddy turnover time (the Kolmogorov time) τk = (ν/ǫ)1/2 and the large-eddy
turnover velocity urms. However, by selecting L, η, ǫ and urms, the simulation
is overdetermined. Consequently, several choices are possible. We use the value
of ǫ found from normalising the energy spectrum function. With

∫ ∞

0
E(k)dk =

3

2
u2

rms (4.33)

‖In order to generate pairs of images of particles that are advected by the flow this
is not strictly necessary. Calculating particle displacements through integration in a
stationary velocity field would probably suffice for our purpose.
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we find:

ǫ =

(
3u2

2C

)3/2(∫ kη

kc

k−5/3dk

)−3/2

, (4.34)

and consequently, the Kolmogorov time:

τk = (2π)2/3ǫ−1/3k−2/3
η . (4.35)

We could equally well have chosen ǫ from the Kolmogorov relation

ǫ = Cǫ
u3

rms

L
, (4.36)

where L is the integral scale of the turbulence and Cǫ is the effective dissipation
constant.

Of course, this clear ambiguity is due to the absence of dynamics in the
simulation. The ambiguity affects our choice of the time delay ∆t between two
snapshots of the velocity field. With our choice for ǫ, once ηk has been selected,
other properties of the turbulence follow: the integral length-scale, which can
not only be found from the velocity auto-correlation function as in chapter 3,
but also from the spectrum (see, for instance, Teixeira & Belcher, 2000).

L =
3π

4

∫∞
0 k−1E(k)dk∫∞

0 E(k)dk
, (4.37)

the effective dissipation constant

Cǫ =
Lǫ

u3
rms

, (4.38)

and, finally, the Taylor-based Reynolds number:

Reλ =
√

15C−3/2
ǫ

(
L

ηk

)2/3

. (4.39)

The filtering model given in the previous section deals specifically with the lon-
gitudinal spectrum. However, the spectrum as defined in equation (4.28) is the
three-dimensional spectrum. The relation between the longitudinal spectrum
and this spectrum is given by Pope (2000):

ELL(k) =

∫ ∞

k

E(k′)

k′

(
1 −

(
k

k′

)2
)

dk′. (4.40)

In order to compare kinematic simulation results to those obtained from PIV,
the computer programme we use for the kinematic simulation provides the
longitudinal spectrum of the generated velocity fields.
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Figure 4.5 — Input energy spectrum function for the kinematic sim-
ulation (input. spec) as well as the theoretical longitudinal spectrum
(long. spec) and the actual spectrum calculated from the kinematic
simulation (kin. sim.). Note that the spectrum that follows from the
kinematic simulation has a non-physical corner due to a low resolution
in the spectrum at small wavenumbers.

The small wavenumber behaviour of the spectrum is due to the finite size
of the window onto the velocity field. In fact, the spectra are so steep, that the
Hanning filter used in calculating the spectrum is not effective, and the first
two (discrete) wavenumbers should be disregarded. The scales of the turbu-
lence used in our simulations were chosen such that the simulated turbulence
is broadly comparable to the active-grid generated turbulence in our experi-
ments. For the simulations Reλ = 216 and a ratio between the integral scale
and the Kolmogorov scale L/ηk = 480, while depending on the forcing protocol
in the experiments the maximum value of Reλ = 256 and the ratio L/ηk = 210.
For these choices, the energy spectrum function, the corresponding longitudi-
nal spectrum that follows from equation (4.40), and the longitudinal spectrum
produced by the kinematic simulation are shown in figure 4.5.

4.4.2 Generating realistic particle images

From the simulated velocity fields we generate 12 bit digital images of 1024×1024
pixels, corresponding to images that can be recorded with currently fairly com-
mon PIV cameras. The largest physical scale in the turbulence is the integral
length scale L. Ideally, to simulate PIV images, we would sprinkle many par-
ticles in the volume L3 and obtain images from a thin two-dimensional slab
with the same thickness as the laser light sheet. However, it is computationally
economical to sprinkle particles in a three-dimensional volume of size L2 × h,
with h << L, instead. Because these particles may be swept out of this volume



70 Measuring turbulence properties with PIV | Chapter 4
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Figure 4.6 — The computational domain for the kinematic simula-
tions.

by the velocity associated with large eddies (urms), h must be chosen much
larger than the thickness of the light sheet, while the area of the image must
be chosen smaller than L2. The geometry is illustrated in figure 4.6. As was
explained in section 4.2, in actual PIV images the intensity distribution due
to scattering from a particle is approximately Gaussian. Hence, the image of
a particle is calculated by means of a two-dimensional Gaussian point spread
function centred on the particle position, with the peak intensity dependent on
the particle’s position within the light sheet. The light sheet is homogeneous
in the plane of the image and has a Gaussian intensity profile in the z-direction
(normal to the plane), so I(z) = I0 exp(−(2z/d)2), where d is the 1/e-width of
the profile and I0 is the intensity in the centre. This is shown schematically
in figure 4.2. The intensity in each pixel of the eventual image is obtained by
taking the sum of the point-spread functions of all particles integrated over
each pixel. The second image of the image pair is formed by integration of
the velocity field in time and tracking the particles by means of a fourth-order
Runge-Kutta scheme. According to Fung et al. (1992), in order to resolve the
smallest flow features the integration time-step should be no more than 1/10
of the Kolmogorov time. In order to assess the effect of the various variables,
the results of all simulations will be compared to the results from a baseline
simulation. The values for the PIV parameters will be changed, while the tur-
bulence will be kept the same. An overview of the various length scales and
settings in this baseline simulation is given in table 4.1.

The settings for the thickness of the light sheet and time between images
follow from the criteria derived by Keane & Adrian (1990, 1991), already given
in equations (4.1) and (4.2). Since in our simulations we do not have a mean-
stream velocity perpendicular to the light sheet we have chosen to use the
root-mean-square velocity as a measure of the velocity component normal to
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Figure 4.7 — Synthetic PIV particle image.
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Figure 4.8 — (a) Snapshot of a number of particle displacements in
a simulated velocity field. (b) Corresponding velocity field from PIV.
The first image of the corresponding pair of particle images is shown
in figure 4.7.
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the light sheet, instead. For d we use the 1/e-width of the light sheet. Since
the velocity perpendicular to the sheet can be expected to regularly exceed
the root-mean square velocity, we have chosen our parameters such that for
the baseline simulation urms∆t/d = 0.15. The interrogation window size was
chosen to be 32 pixels, which corresponds to 10 η. For most simulations we
chose to use a 50% overlap between neighbouring windows. Our choice of ∆t
results in a maximum in-plane displacement of roughly 4 pixels, which limits
in-plane particle loss. The total number of particles (106) and the thickness
of the computational box in which they were distributed (h = 0.1L = 48ηk)
were chosen such that on average more than 50 particles are present in each
interrogation window, based on the 1/e width of the light sheet, which is far
more than the minimum of 15 found by Keane & Adrian (1991, 1992).

An example of a particle image obtained is shown in figure 4.7. The cor-
responding velocity fields, both from the kinematic simulation and from PIV
are shown in figure 4.8. All statistics are based on series of 500 velocity fields
and the corresponding image pairs. The image pairs are evaluated with the
algorithm described in section 4.2.

4.4.3 Comparison of turbulence statistics

Figure 4.9 (a) shows the velocity spectrum obtained directly from the kinematic
simulation, that spectrum multiplied with the filter described in equation (4.13),
and the corresponding spectrum found from PIV for the baseline simulation.
The grid spacing determines the maximum frequency in the calculated PIV
spectra. For a grid spacing Lg, the maximum observable wavenumber in the
spectrum is kmax = π/Lg and with Lg = Lp/2, kmax = 2π/Lp. For this simu-
lation, as well as for all of the others, the measured root-mean-square velocity

Table 4.1 — Length-scales in the baseline kinematic simulation,
scaled with the Kolmogorov length- scale ηk and the Kolmogorov
time-scale τk.

Lc domain size 3.2·103 ηk

L integral scale 480 ηk

λl longitudinal Taylor-scale 22 ηk

Ls image size 337ηk

Lg grid spacing 5 ηk (16 pixels)
Lp interrogation window size 10 ηk (32 pixels)
d sheet thickness (1/e width) 8 ηk

∆t time interval between images 0.2 τk
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was within 5 % of the actual value. It should be noted that the filtered version
of the spectrum refers to the one-dimensional filter only, which is not strictly
correct. However, the overall behaviour of the PIV spectrum in this figure cor-
responds to the filtered kinematic simulation spectrum. Figure 4.9 (b) shows
results of evaluating the same particle images with three different interrogation
window sizes: the baseline simulation evaluated with Lp = 32 pixels as well as
with Lp equal to 64 and 128 pixels, but with the same grid spacing Lg = 16
pixels. Due to the higher overlap for both Lp=64 and Lp=128 pixels, which
corresponds to 20 ηk and 40 ηk respectively, the PIV spectra also show energy
at frequencies that are higher than the first cut-off frequency of the filter, cor-
responding to the higher-order harmonics of the filter. These PIV spectra are
very similar to spectra measured by Foucaut & Stanislas (2002) and Foucaut,
Carlier & Stanislas (2004) and those based on synthesised images of DNS by
Lecordier et al. (2001). We conclude that the main effect of the finite size of
the interrogation window is a filtering action on the spectrum, which is ap-
propriately described by our one-dimensional version of the filter function. In
any case, the simulations show that the inertial range in measured spectra is
severely depressed by the choice of the interrogation windows in the experi-
ments. Similar to the spectra, we can study the influence of the size of the
interrogation window on measured correlation functions. The result is shown
in figure 4.10. Keeping in mind our simple model, in which the influence of
the finite size of the interrogation window is seen as a convolution with a tent
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Figure 4.9 — Spectra obtained from kinematic simulations. (a) The
velocity spectrum as obtained directly from a kinematic simulation,
the filtered spectrum, and the spectrum found from evaluating the
associated particle images with PIV. (b) Spectra that follow from
evaluating this kinematic simulation with different PIV interrogation
window sizes, but the same grid spacing (16 pixels). Onemore, due
to low resolution for the small wavenumbers, there the spectra show
an unphysical corner.
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Figure 4.10 — Correlation functions obtained from kinematic simu-
lations, corresponding to the spectra shown in figure 4.9 (b), so from
evaluating the baseline simulation with different PIV interrogation
window sizes.

map, we understand that by increasing the window size, we lift the correlation
function near zero separation, and thus increase the apparent Taylor scale.

Since the Taylor-scale as well as the root-mean square velocity of the tur-
bulence in the kinematic simulations are known, equation (4.22) can be used
to calculate the root-mean-square velocity gradient. Since the turbulence prop-
erties are left unchanged, its value, 116, is the same for all simulations. This
value can be compared to the values found from evaluating our synthetic im-

ages with PIV. For the baseline simulation we find 〈( ∂u
∂x )2〉 1

2 = 38τ−1
k

∗∗. The
dramatic difference is likely to be the result of the interrogation image size
Lp not being small enough compared to the Taylor length λl. In the baseline
simulation λl/Lp = 2.1, whereas in section 4.3 we explained that in order for
PIV to provide an accurate root-mean-square velocity, the window size should
be much smaller than the Taylor-length. By decreasing the size of the image
relative to the integral length, i.e. by zooming in further on the turbulence,
the ratio of λl over Lp can be increased. This has been done for three simula-
tions (in which the number of particles within the interrogation windows was
kept constant), the results of which are shown in table 4.2. As expected, as we
zoom in further, the root-mean-square gradient approaches the expected value,
even though for the maximum magnification in the simulations it still is signif-
icantly smaller. It should be noted that, for these simulations the time-interval
∆t = 0.1τk was kept constant. Hence, by zooming in further on the velcoity
field, we increase the dynamic range. Increasing the dynamic range actually
leads to a decrease in noise (associated with the measurement uncertainty of at

∗∗The root-mean-square velocity gradient is expressed in terms of τk because time
in the simulation is scaled with τk.
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Table 4.2 — The measured root-mean-square velocity gradient as a
function of the ratio of λl, as obtained directly from the kinematic
simulation, over Lp.

λl

Lp
〈(∂u

∂x
)2〉

1

2 τk

2.1 43
3.0 49
4.9 68

best ≈ 0.1 pixel) and, consequently to a (small) decrease in measured velocity
gradient fluctuation. The velocity fields generated with kinematic simulations
are incompressible and isotropic. Because of this, and as explained in section
4.3, the longitudinal spectrum of velocity component u should be the same as
the longitudinal velocity spectrum of v, no matter how PIV influences the spec-
trum. Similarly, the longitudinal as well as the transverse correlation functions
should be independent of the direction. Figure 4.11 (a) shows both longitudinal
spectra, Exx(kx) and Eyy(ky), for the baseline simulation. As expected these
spectra indeed are the same. The same rotation invariance was checked for the
correlation functions in figure 4.11 (b), where we note that a small difference
is seen for the longitudinal correlations at large separations. We ascribe this
difference to the finite sample size of the simulation.

As it involves derivatives, we do not expect the relation between the longi-
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Figure 4.11 — (a) Longitudinal spectra in the x and y-direction ob-
tained from PIV for the baseline simulation. (b) All four correlation-
functions (two longitudinal and two transverse) for the same simula-
tion.
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Figure 4.12 — Comparison between the longitudinal correlation
function and the corresponding longitudinal correlation function that
follows from applying the relation for isotropic turbulence, equation
(3.26), to the measured transverse correlation function: (a) in x-
direction, ELL = Exx(kx) and ETT = Eyy(kx), (b) in y-direction,
ELL = Eyy(ky) and ETT = Exx(ky).

tudinal and transverse correlation functions, equation (3.26), to hold. This is
illustrated in figure 4.12 for the baseline simulation. In this case, derivatives
were simply done through the midpoint rule.

4.4.4 The influence of particle loss

In the kinematic simulations particle loss does occur. As was explained before,
the most dramatic consequence of particle loss is the occurrence of spurious
vectors. This is illustrated in figures 4.13 and 4.14. These show results of a
simulation in which the time between the images and the thickness of the light
sheet have been doubled relative to the baseline simulation. Hence in-plane
particle loss is doubled, but out-of-plane particle loss should remain unchanged.
The maximum in-plane displacement for this simulation is roughly 8 pixels,
which is one fourth of the interrogation window size. Figure 4.13 (a) shows
histograms of both velocity components found with PIV, as well as a Gaussian
fit to the u-component. At a first glance the histograms for u and v are
very similar, and as can be expected from a kinematic simulation, they are
Gaussian. However, not shown in this histogram is a single data point with
a v-component of 45, which obviously is associated with a spurious vector. A
global mean filter, as suggested by Westerweel (1994), with a filter threshold
of 2 can obviously easily identify this. Figure 4.13 (b) shows the percentage
of vectors that is removed by this filter as a function of the realisation. In
most realisations no vectors are identified as spurious. However, in a single
realisation as much as 0.45 % of vectors are spurious, which corresponds to
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Figure 4.13 — (a) Histograms for both velocity components u and v
as well as a Gaussian fit to the former. Note the logarithmic vertical
scale. (b) Percentage of vectors identified as spurious based on a
global filter that limits the normalised difference between any given
vector and the global mean of 2.
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Figure 4.14 — (a) Longitudinal velocity spectra for both the u and
v component of the velocity for velocity fields with a small number of
spurious vectors. (b) Corresponding spectra for the same fields with
the spurious vectors removed by a straightforward global mean filter.

12 vectors. In that particular realisation, within a small part of the image,
the displacement exceeds 10 pixels. However, this small number of spurious
vectors has a dramatic influence on the spectrum. The reason is, of course,

that the used input spectrum, E(k) ∼ k− 5

3 , decreases rapidly with increasing
k, which makes rare large wavenumber events, such as spurious vectors, stand
out clearly. This again emphasises the benefits of the spectral approach in this
chapter. Figure 4.14 (a) shows both longitudinal spectra, Exx(kx) and Eyy(ky)
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Figure 4.15 — Percentage of bad vectors as a function of the reali-
sation for a sheet thickness (a) d = 6ηk and (b) d = 4ηk .
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Figure 4.16 — Longitudinal velocity spectra for the u component of
the velocity for simulations with different values for the thickness d of
the light sheet. (a) For unfiltered velocity fields. (b) Corresponding
spectra for the same fields with the spurious vectors removed by a
global mean filter.

for unfiltered velocity fields. As we have seen before, the turbulence is isotropic.
Hence the spectra should be the same. However, the spectra are very different
for spatial frequencies k/kη above 2·10−2. This is due to the small percentage of
spurious vectors. The corresponding spectra for the filtered velocity fields shown
in figure 4.14 (b) are practically identical, showing the success of the filter.
Out-of plane particle loss has the same effect. This is demonstrated in figures
4.15 and 4.16. These figures show the results of three different simulations:
the baseline simulation, labeled d = 8ηk as well as two simulations with thinner
light sheets with d = 6ηk and d = 4ηk. The particle density in these simulations
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is set such that the number of particles within the sheet remains the same as
in the baseline simulation. The time between the images is kept the same as
well. The main difference between these simulations is out-of-plane particle
loss, which is increased as the sheet is made thinner. Figure 4.15 shows the
percentage of spurious vectors identified with a global mean filter with radius
2urms for d = 6ηk and d = 4ηk. For the baseline simulation the percentage
is 0. As expected, the percentage of bad vectors increases as the sheet gets
thinner. Figure 4.16 (a) shows the longitudinal spectra for u for these three
simulations. The spectrum for the baseline simulation as well as the spectrum
for d = 6ηk are very similar, but the spectrum for the simulation with d = 4ηk

starts to deviate for frequencies k/kη above 2 · 10−2. Figure 4.16 (b) shows the
corresponding spectra for the velocity fields filtered with a global mean filter.
Although as a result of this filter, the difference between the spectra becomes
smaller, the spectrum with d = 4ηk still is clearly different.

A small number of spurious vectors can have a considerable effect on the
measured spectra. In a properly performed actual PIV experiment on average 1
to 2 % of vectors per frame are spurious (Raffel et al., 1998; Westerweel, 1994).
One would hope that the effect of such bad vectors were small. However, we
have seen that an even smaller number of bad vectors that occurs as a result of
particle loss has a considerable effect on the measured spectra. For the spectra
it is essential that they are effectively removed. Other statistics, such as mean
and fluctuation velocities as well as correlation function fortunately are less
affected. For the examples shown here a straightforward global mean filter
seems to be fairly effective, as was already concluded by Westerweel (1994).
However, our examples show that the criteria for particle loss by Keane &
Adrian (1990, 1991) as well as the global mean filter have a clearly identifiable
influence on the spectra.

4.5 Experiments

Our simultaneous PIV and surface slope measurements will be described in
detail in chapter 8, following a description of the surface slope measurement
technique and measurement results. Here we will compare PIV measurements
of grid-generated turbulence in our water channel with LDV measurements in
order to show how the averaging inherent to PIV is visible in the results of our
experiments and to make sure that our PIV settings and set-up are reasonably
suited for measuring the turbulence. We will also take a look at isotropy in hor-
izontal planes. Three different forcing conditions have been studied: active grid
turbulence with protocols (25opt) and (25ran), and the static grid (25stat).
The corresponding turbulence properties measured with LDV are listed in table
3.2.

For the PIV experiments we use a dual pulsed Nd:YAG laser (Spectron
Lasers SL454, 200 mJ per pulse, 15 pulse pairs per second) to produce a light-
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sheet in a horizontal plane below the surface. The flow is seeded with 100
µm glass seeding particles (Dantec). A digital camera (Kodak ES 1.0, 8 Bit,
1018 × 1008 pixels) is mounted below the water channel pointing upwards. It
images an area of approximately 5.5 × 5.5 cm2 of the light sheet. The position
calibration of PIV was done by recording an image of a plate with a pattern
of white dots against a black background, placed in the water channel instead
of the light sheet. Since the camera was placed relatively far from the plate
and was carefully aligned such that its optical axis was perpendicular to the
plate, a simple multiplication with a factor, based on the distance between
the points on the plate and in the camera image, is sufficient to perform the
conversion from pixels to world coordinates. The integral scale of active-grid-
generated turbulence found from our LDV measurements was approximately 8.5
cm. The ratio between the image size and integral scale is approximately the
same in our experiments and in the kinematic simulations. We know from the
LDV experiments that the root-mean-square velocity for active-grid-generated
turbulence is less than 3 cm/s. The 1/e width of the light sheet is approximately
1 mm. In order to limit the influence of out-of plane particle loss, we have
chosen very conservative values for the time interval between the paired images
of ∆t = 1 ms for the active-grid-generated turbulence and ∆t = 3 ms for
the static grid, despite the criterion for out-of-plane particle loss by Keane &
Adrian (1990, 1991), given in equation (4.2) allowing times between the images
more than twice as high. Indeed, the number of spurious vectors is very small
(less than 0.5%). For these experiments we have used window shifting, with
the mean stream velocity corresponding to to 4 pixels in case of the active-
grid-generated turbulence, whereas for the static grid generated turbulence it
corresponds to 12 pixels. A drawback of our conservative choice for ∆t is that
the dynamic range is very limited, leading to a relatively high noise level in
the spectra, as we will see. Since spurious data have a very large effect on the
spectra as well as on locally measured gradients, we decided that preventing
spurious vectors was more important than the dynamic range. Similar to the
kinematic simulations, for these PIV experiments we take 500 image pairs and
the images are evaluated with 32 × 32 pixel interrogation windows and 50 %
overlap between neighbouring windows.

4.5.1 A comparison of PIV and LDV measurements

Unlike for the kinematic simulations, in our experiments we cannot prescribe
the spectrum of the turbulence. However, as described in chapter 3, we do have
access to spectra and correlation functions measured by means of Laser-Doppler
Velocimetry. Thus we can compare them to PIV measurements at the same
locations in the water-channel. The PIV light sheet is placed horizontally in the
water-channel. Thus, PIV provides the spanwise and streamwise components of
the velocity, whereas the LDV system provides both the streamwise component
and the vertical component. Hence, we can only compare measurements of
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the streamwise component of the velocity, v in our coordinate system. As was
explained in chapter 3, with LDV we cannot measure spatial spectra directly,
and have to resort to using Taylor’s frozen turbulence hypothesis to convert
frequency spectra into wavenumber spectra and, similarly, correlation functions
in time to correlations in space.

It should be noted that the Laser-Doppler and PIV measurements cannot
be performed simultaneously. Hence the LDV and PIV experiments were done
on different days. Furthermore, the experiments for the static-grid-generated
turbulence were done at a different time than those for the active grid, due to
the work involved in removing the active grid from the channel. However, the
set-up and the settings used for PIV were kept the same. Table 4.3 shows mean

Table 4.3 — Comparison between mean and root-mean-square ve-
locities measured with Laser-Doppler Velocimetry and Particle Image
Velocimetry for three forcing conditions.

v0 PIV v0 LDV vrms PIV vrms LDV
(m/s) (m/s) (m/s) (m/s)

25opt 0.285 0.271 1.76·10−2 1.62·10−2

25ran 0.283 0.266 2.54·10−2 2.29·10−2

25stat 0.284 0.289 6.93·10−3 7.50·10−3

and root-mean-square velocities for three different types of forcing: the active
grid with protocols (25opt) and (25ran), and the static grid (25stat), at 2
m behind the grid and at 10 cm below the surface. The table shows that the
maximum difference in mean-stream velocities measured with PIV and LDV in
this set of experiments is less than 6%. The difference between the root-mean-
square velocities is slightly larger, but still is less than 11%. In the kinematic
simulations we saw that PIV provides an accurate measurement of the root-
mean-square velocities. Apparently the same applies to the experiments.

Figure 4.17 shows longitudinal spectra and correlation functions measured
with LDV and the corresponding PIV measurements for the three conditions
listed in table 4.3. The spectra in figures (a), (b), and (c) illustrate the dra-
matic difference in the range of scales that can be captured by PIV and LDV.
By focusing on a relatively small area the large scales in the PIV spectra are
under-sampled. However, as we have seen before, in order to accurately mea-
sure correlation functions at small separations we need a high spatial resolution.
For a small range of wavenumbers, before the noise threshold is reached in both
spectra, the spectra are very similar. The noise level is reached at approxi-
mately the same wavenumber, which can only be coincidental, since the causes
for noise are completely different in both techniques. The wavenumber where



82 Measuring turbulence properties with PIV | Chapter 4

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
-1

10
0

10
1

10
2

10
3

10
4

E
L

L
/(

v r
m

s)
2
 (

m
)

ky/2 π (m
-1

)

LDV
PIV

(a)

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0  0.01  0.02  0.03  0.04  0.05  0.06

C
L

L

ry (m
)

LDV
PIV

(b)

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
-1

10
0

10
1

10
2

10
3

10
4

E
L

L
/(

v r
m

s)
2
 (

m
)

ky/2 π (m
-1

)

LDV
PIV

(c)

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0  0.01  0.02  0.03  0.04  0.05  0.06

C
L

L

ry (m
)

LDV
PIV

(d)

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
-1

10
0

10
1

10
2

10
3

10
4

E
L

L
/(

v r
m

s)
2
 (

m
)

ky/2 π (m
-1

)

LDV
PIV

(e)

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0  0.01  0.02  0.03  0.04  0.05  0.06

C
L

L

ry (m
)

LDV
PIV

(f)

Figure 4.17 — Comparison of longitudinal spectra and correlation
functions measured with LDV and PIV. (a) and (b): Active-grid-
generated turbulence with protocol (25opt), (c) and (d) with protocol
(25ran), and (e) and (f) static-grid-generated turbulence (25stat).

the noise level is reached, in both spectra, is still quite far below the range
where the inherent filtering in PIV starts to lead to a significant influence,
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which obscures the influence of the spatial averaging. The similar comparison
done by Foucaut & Stanislas (2002) and Foucaut et al. (2004) with spectra
measured with hot-wire anememotry (HWA) showed a clear correspondence
between the PIV measured spectrum and the HWA-spectrum multiplied with
the appropriate filter.

The correlation functions in figure 4.17 (b), (d) and (e) show a small peak
at zero displacement that was not present in the results of the kinematic sim-
ulations. This peak is the result of the high-frequency noise, which, of course,
is perfectly correlated with itself. This peak was also observed in the corre-
lation functions measured by Lecordier et al. (2001). This noise has only a
small influence on the root-mean-square velocity, but it has a far larger influ-
ence on the measured fluctuation of the velocity gradients. In our experiments,
velocity gradients are calculated using a simple mid-point rule. This derivative
calculation is very susceptible to noise in the velocity data. If we consider that
the spectrum of the velocity gradient ∼ k2E(k), it is clear that the noise tail
in the velocity spectrum is amplified in the derivative spectrum. In terms of
the correlation function it can be understood as follows: if we consider equation
(4.24), we see that as a consequence of the peak at zero displacement, the corre-
lation at r = 2Lg = Lp is underestimated. This can be seen in table 4.4, where
the root-mean-square velocity gradient is listed for the three different forcing
conditions listed in table 4.3 alongside the corresponding values derived from
LDV measurements by means of equation (4.22). Because of this, the resulting
velocity gradient is overestimated, despite Lp being smaller than the correlation
length (λl/Lp = 8.4 for both (25opt) and (25ran), while due to a smaller λ
for (25stat) the ratio is 5.3). According to Luff et al. (1999), who studied the
vorticity field obtained from applying PIV to synthetic images of an Oseen-
vortex, a dramatic improvement of the accuracy of the derivative calculation
can be achieved by using a Gaussian weighted averaging of the velocity field,
before calculating the derivatives. Hence, in addition to the inherent filtering,
in that case the measured velocity is further convolved with a Gaussian window

Table 4.4 — Fluctuation strength of the velocity gradient, 〈( ∂u
∂x

)2〉 1

2 ,
measured with PIV and derived from LDV, for turbulence with dif-
ferent forcing.

LDV PIV PIV σ
Lg

= 1.3 PIV σ
Lg

= 3

25opt 1.4 s−1 3.2 s−1 2.4 s−1 1.3 s−1

25ran 2.0 s−1 3.8 s−1 2.6 s−1 1.6 s−1

25stat 1.1 s−1 1.4 s−1 1.0 s−1 0.67 s−1
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function:

G(x) =
1

σ

√
2

π
e−2( x

σ )
2

, (4.41)

where σ is the width of the filter. According to Luff et al. (1999) the optimal
value for σ = 3Lg, but for turbulence, where spatial resolution is a bigger issue,
σ = 1.3Lg would be more appropriate. Of course, this Gaussian averaging is
another filter operation. It removes the noise tail from the velocity spectrum
and the corresponding peak in the correlation function. This can be seen in
the spectra and corresponding correlation functions shown in figure 4.18. Table
4.4 also lists the velocity fluctuations for the filtered PIV results. Clearly, the
numerical values for the filtered fields are closer to the values derived from PIV,
and the correlation function also is closer to that measured with PIV, but not
without a price, as can be seen in the spectra in 4.18 (a).

4.5.2 Isotropy in horizontal planes

In chapter 3 we have seen that, depending on the type of forcing, the isotropy
of the turbulence in vertical planes (x =constant) changes. Since in our set-up
PIV provides velocity fields in planes parallel to the surface, in similar fashion
as for the kinematic simulations in the previous section, PIV allows us to study
isotropy in those planes. Figure 4.19 shows both longitudinal spectra as well as
the two longitudinal and transverse correlation functions for all three forcing
conditions.

The two longitudinal spectra for active-grid-generated turbulence with pro-
tocol (25opt) in figure 4.19 (a), as well as the two spectra for the static grid
in figure 4.19 (e), are practically identical. Similarly, shown in figures (b) and
(f), the longitudinal correlation functions for these two conditions overlap, as
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Figure 4.18 — Comparison of spectra and correlation functions for
grid-generated turbulence with protocol (25opt) without Gaussian
filtering and with Gaussian filtering with two different widths.
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Figure 4.19 — Longitudinal spectra in the x and y-direction, as well
as all four correlation-functions (two longitudinal and two transverse)
obtained from PIV. (a) and (b): Active-grid-generated turbulence
with protocol (25opt), (c) and (d) active-grid-generated turbulence
with protocol (25ran), and (e) and (f) static-grid-generated turbu-
lence (25stat).
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Figure 4.20 — Comparison of the transverse velocity correlation
function measured with PIV with the transverse correlation function
derived from the relation for isotropic turbulence, equation (3.26), for
active-grid-generated turbulence with protocol (25ran).
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Figure 4.21 — The isotropic relation, equation (3.26), applied to
(a) active-grid-generated turbulence with protocol (25opt) and (b)
static-grid-generated turbulence.

well as the transverse correlation functions. In chapter 3 we have already seen
that the turbulence for these conditions was nearly isotropic in vertical planes.
Figure 4.19 now clearly shows that the same applies to isotropy in horizontal
planes. In chapter 3 it was also shown that the turbulence generated with pro-
tocol (25ran) was less isotropic in vertical planes. The velocity spectra for this
protocol in figure 4.19 (c) and the correlation functions in 4.19 (d) show that it
is more anisotropic in horizontal planes as well. [b] Finally, we can take a look
at the validity of the relation between the longitudinal and transverse correla-
tion functions for isotropic turbulence as obtained from PIV. In the previous
section we have seen that for our kinematic simulations, where λl/Lp = 2.1 it
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was not applicable.
Figure 4.20 shows both the measured longitudinal correlation function as

well as the longitudinal correlation function derived from the isotropic relation
for active-grid-generated turbulence with protocol (25ran). However, some-
what surprising in light of the failure of this approach for the kinematic simula-
tions, corresponding images for the isotropic turbulence generated with protocol
(25opt) and with the static grid in figure 4.21 show that the relation does hold.
The most likely explanation for this is that in our measurements, the ratio of
λl/Lp was larger than in our kinematic simulations. In case of the active-grid-
generated turbulence it was ≈ 9, and for the static grid it was somewhat smaller,
but still ≈ 6 due to λl being smaller in that case.

4.6 Conclusions

In order to understand how PIV affects measured turbulence statistics, we
have introduced a simple model, which can be characterised as ‘spectrum in,
spectrum out’. The great advantage of this approach is that experimental cir-
cumstances can be easily tuned, including the spectral energy. A disadvantage
is that higher order statistics cannot be modelled: a kinematic simulation pro-
duces a Gaussian velocity field and only the second-order statistics are correct.
The results of our model agree with the description of PIV in terms of a spa-
tial average over the interrogation window by Keane & Adrian (1992). We
have shown that this spatial averaging is the principal influence of PIV on the
spectrum. It completely dominates over other artifacts of PIV such as particle
loss, leading to spurious vectors. As predicted by Westerweel (1994), these can
be easily cured by simply removing them. This effect is clearly visible in out
spectra.

Finally, we have compared experimental PIV results for grid-generated tur-
bulence with those obtained from LDV. Despite the occurrence of considerable
noise, mostly due to a limited dynamic range, within the equally limited range
of spatial scales, the PIV spectra were roughly comparable to those measured
with LDV. By measuring correlation functions with PIV we were able to take
a closer look at isotropy of the grid-generated turbulence in our set-up. Tur-
bulence that was shown to be isotropic in vertical planes, by means of LDV,
was shown to be isotropic in horizontal planes as well. We have demonstrated
that for these measurements it is vital that the interrogation window size is
much smaller than the correlation length, i.e. the Taylor length-scale λ of the
turbulence.

Due to the dramatic effect of the spatial averaging, PIV is not particularly
suited for measuring velocity spectra, unless digital cameras with far higher
resolution become available. Even with a high resolution camera, the filtering
inherent to PIV starts to influence the measurements even at larger scales than
the size of the interrogation windows. Nonetheless, we have shown that un-
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derstanding what PIV does to the spectrum is key to understanding how PIV
affects other measured properties. For instance, our description of the spatial
averaging explains why PIV can provide reasonable measurements of mean and
root-mean-square velocities.

One way to overcome the inherent limitations of PIV is by means of so-called
high-resolution particle velocimetry (see Scarano & Riethmuller, 1999). This is
a combination of PIV and Particle Tracking Velocimetry, in which the location
of the cross-correlation in a given interrogation window — corresponding to
a spatial average of the displacement — is used as a first estimate for the
displacement of individual particles. If this displacement is known, individual
particle images in the first frame in a pair can be matched to the corresponding
particle images in the next frame. In principle this allows a higher spatial
resolution. However, the resolution in this case is no longer uniform across the
image, since it depends on the number of particle pairs that can be matched.



5

A statistical description of the surface

shape

Similar to turbulence, a description of the surface shape above sub-surface
turbulence lends itself well to Fourier analysis. Unlike most descriptions of
turbulence, however, analysis of the free surface should involve both informa-
tion in space and in time. This is essential, since waves can only be properly
identified by looking at their behaviour in space and time, i.e. their dispersion
relation. In this chapter an overview of the various spectra and correlation
functions of the surface shape is given. The spatial measurements also allow us
to study isotropy. In this chapter we will derive relations between the spectra
and correlation functions for isotropic surface deformations.

5.1 Basic definitions

In general, the height of the surface is a function of spatial coordinates x and
y and of time t, so h(x, y, t). Similarly, the slopes hx = ∂h/∂x and hy = ∂h/∂y
are functions of x, y, and t. For a scalar function η(x, y, t) we can define the
auto-covariance function as:

Rη(rx, ry, τ) = 〈η(x + rx, y + ry, t + τ)η(x, y, t)〉, (5.1)

where 〈...〉 denotes an ensemble average∗ . The auto-covariance function is the
ensemble average over all possible values of t and x of the product of η in a point
(x, y) at a time t with η in a different point (x + rx, y + ry) at a different time
t + τ . Following Phillips (1980) the Fourier transform of an arbitrary function
g(t) in time is defined as:

g̃(ω) =
1

2π

∫ ∞

−∞
g(t)eiωtdt (5.2)

∗In many practical cases, instead of the covariance function R, we shall use its
normalised equivalent: the correlation function Cη(rx, ry, τ) = Rη(rx, ry, τ)/(ηrms)

2.
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with inverse:

g(t) =

∫ ∞

−∞
g̃(ω)e−iωtdω. (5.3)

More appropriately, since physically only ω ≥ 0 makes sense:

g̃(ω) =

{
0, ω < 0
1
π

∫∞
−∞ g(t)eiωtdt, ω ≥ 0.

(5.4)

Using similar definitions for Fourier transforms in space as in time† the Fourier
transform of an arbitrary function f(x) in one-dimensional space can be defined
as:

f̃(k) =
1

2π

∫ ∞

−∞
f(x)e−ikxdx (5.5)

with inverse:

f(x) =

∫ ∞

−∞
f̃(k)eikxdk (5.6)

in which k is the wavenumber. Using these definitions, the Fourier transform
of η(x, y, z) in both space and time is:

η̃(k, ω) =
1

(2π)3

∫∫∫
η(x, t)e−i(k·x)+iωtdxdt (5.7)

in which (k · x) is the inner product of vector x = (x, y) and the wavenumber
vector k = (kx, ky). The inverse of this is:

η(x, t) =

∫∫∫
η̃(k, ω)ei(k·x)−iωtdkdω. (5.8)

Based on this, we can define the so-called wave spectrum of η(x, y, t): the
Fourier transform in space and time of the auto-covariance function Rη(rx, ry, τ):

Eη(k, ω) =
1

(2π)3

∫∫∫
Rη(rx, ry, τ)e−i(k·r)+iωτdrdτ, (5.9)

in which r = (rx, ry). This is directly related to the Fourier transform in space
and time of η(x, y, t) itself through:

E(k, ω) = 〈|η̃(k, ω)|2〉. (5.10)

The auto-covariance in time is the cross-section of Rη(rx, ry, τ) for rx, ry = 0,
so

Rη(0, 0, τ) = 〈η(t)η(t + τ)〉, (5.11)

†The difference in the sign of the exponent between the Fourier transform in space
and that in time is to ensure that for a Fourier transform in both time and space, which
follows, a wave with a positive value of kx travels in the positive x-direction
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which is symmetric relative to τ = 0. Its Fourier transform is the frequency
spectrum:

Eη(ω) =
1

2π

∫
Rη(0, 0, τ)eiωτ dτ. (5.12)

It can also be obtained more directly from a point measurement of η in time:

Eη(ω) = 〈|η̃(ω)|2〉 (5.13)

where η̃(ω) is the Fourier transform of η(t) measured in a point. The frequency
spectrum follows from the wave-spectrum through integration over wavenumber
space:

Eη(ω) =

∫ ∞

−∞

∫ ∞

−∞
E(k, ω)dk (5.14)

=

∫ ∞

−∞
Rη(0, 0, τ)eiωτ dτ

= 2

∫ ∞

0
Rη(0, 0, τ) cos(ωτ)dτ.

To summarise: the frequency spectrum follows from the wave spectrum through
integration over time and it is the Fourier transform in time of the auto-
covariance function in time.

Similar to the frequency spectrum a spatial spectrum can be defined. This
follows from integration of the wave-spectrum over all possible ω:

Eη(k) =

∫ ∞

−∞
E(k, ω)dω (5.15)

=

∫ ∞

−∞
Rη(r, 0) exp(−i(k · r))dr

= 2

∫ ∞

0
Rη(r, 0) cos(k · r)dr

in which Rη(r, 0) is the cross-section of the auto-covariance function in space:

Rη(rx, ry, 0) = 〈η(x + rx, y + ry, t)η(x, y, t)〉, (5.16)

which is symmetric relative to r = 0. So, the spatial spectrum is the integral
over all frequencies of the wave-spectrum, and the Fourier transform in space
of the auto-covariance function in space.

5.2 Statistics of the slope at a point

As was explained in chapter 3, measurements of turbulent flow are often point
measurements, in wind-tunnels usually with hot-wire anemometry and in this
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thesis with Laser Doppler Velocimetry. In a point measurement of the slope we
measure hx(t) and hy(t) as a function of time. This enables calculation of the
correlation functions for hx in time:

Rxx(t) = 〈hx(t0 + t)hx(t0)〉 (5.17)

and hy:
Ryy(t) = 〈hy(t0 + t)hy(t0)〉 (5.18)

as well as the frequency spectrum in time for hx:

Exx(ω) =
1

2π

∫
Rxx(t)e

iωtdt = 〈|h̃x(ω)|2〉 (5.19)

and similarly for hy:

Eyy(ω) =
1

2π

∫
Ryy(t)e

iωtdt = 〈|h̃y(ω)|2〉. (5.20)

Unlike measurements of the turbulent velocity at a point as a function of time,
however, these frequency spectra of the surface slope cannot easily be trans-
formed into spatial spectra, since in the presence of free surface waves Taylor’s
hypothesis is not applicable. As a result of the Doppler effect, for waves that
are moving on top of a mean flow with a certain velocity v0, frequencies mea-
sured in the non-moving frame are shifted relative to the frequencies in the
frame that moves with the flow. This is illustrated in the following comparison
between a hypothetical measurement of the surface elevation in a coordinate
frame that moves with the mean-stream velocity and a similar measurement in
a fixed laboratory frame. The coordinate system used is shown in figure 5.1.
If the actual shape of the surface in the coordinate system that moves with
the mean stream velocity is h(x, y, t), in the fixed laboratory frame we would
measure hm(x, y, t), related to h(x, y, t) through a straightforward coordinate
transform:

hm(x, y, t) = h(x, y − v0t, t). (5.21)

x

y
v 0

Figure 5.1 — Top view of the coordinate system in the water-
channel.
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Its Fourier transform in time and space is given by:

h̃m(kx, ky, ω) =
1

(2π)3

∫
eiωt−ikxx−ikyy h(x, y − v0t, t) dx dy dt

=
1

(2π)3

∫
eiωt−ikxx−ikyy′−ikyv0t h(x, y′, t) dx dy′ dt

=
1

(2π)3

∫
ei(ω−v0ky)t−ikxx−ikyy′

h(x, y′, t) dx dy′ dt

= h̃(kx, ky , ω + v0ky). (5.22)

This means that for the wave spectrum the relation between the actual wave
spectrum E and the measured spectrum Em is given by:

E(kx, ky, ω) = Em(kx, ky, ω − v0ky), (5.23)

which shows that wavenumber and frequency information are intertwined. The
measured frequency is Doppler-shifted due to the convection. This situation
is complicated further for waves, where the frequency itself is dependent on
the wavelength. A further complication can arise due to fluctuations in the
advection velocity due to sub-surface turbulence. As was shown before, the
frequency spectrum is the integral of the wave spectrum over k. As such, in
the measured frequency spectrum it is impossible to unravel the behaviour of
the surface either in space or time. The frequency spectrum at any given fre-
quency can contain contributions from waves with different wavenumbers. For
instance, slowly traveling short waves can contribute to the same frequency
as fast traveling longer waves. Furthermore, the direction in which the waves
travel plays a role. Contributions to a single frequency can consist of a wave of
a certain wavelength traveling upstream with a certain phase-velocity, as well
as waves with a different wavelength traveling downstream with a different ve-
locity. The solution to this problem is through a measurement of frequency and
wavenumber in the direction y of the convection velocity. The actual frequency
spectrum of the surface scanned in the streamwise direction then follows from:

Eyy(ω) =

∫
Em(0, ky , ω − kyv0)dky. (5.24)

5.3 Slope statistics in time and space

In the previous section we have seen that, especially in the case of surface
waves, measurements of the slope both in time and space are essential for
understanding the nature of the surface deformations. Our approach is to
measure the slope along lines on the surface. From these measurements we can
calculate spectra of the surface slope in time and space. These can show whether
part of the surface in fact consists of gravity-capillary waves. Furthermore, by
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measuring spatial correlation functions of the surface slope we can determine
whether or not the shape of the surface is isotropic.

5.3.1 Dispersive surface waves

For gravity-capillary waves the frequency of a wave is directly related to the
wavenumber through the following well-known dispersion relation, the deriva-
tion of which was shown in chapter 2:

ωd(k) =

√(
gk +

k3σ

ρ

)
tanh(kh0), (5.25)

in which h0 is the depth of the fluid (water), ρ is its density, σ is the surface
tension, g is the gravitational acceleration, and k is the length of wavenumber
vector k. In most text-book examples, see for instance Kundu (1990), this re-
lation is derived for one-dimensional waves, and even though in Kundu (1990)
examples are given of two-dimensional wave-fields it is easy to overlook that
in real-world cases for a two-dimensional wavefield k has two components. In
wavenumber-frequency space, the dispersion relation represents a so-called dis-
persion surface, also known as a dispersion shell (Senet et al., 2001), shown in
figure 5.2 (a). For each wave-number vector k = (kx, ky) there is one matching
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Figure 5.2 — (a) The dispersion relation in wavenumber-frequency
space. (b) Contours of ωd(k).

frequency ωd. Obviously the dispersion surface is cylindrically symmetric rela-
tive to (kx, ky) = (0, 0) which is also evident from the contours of ωd(k) shown
in figure 5.2 (b).

In our set-up, we have a mean stream velocity in the y-direction. For waves
moving on top of a mean-stream velocity the dispersion-surface is deformed
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Figure 5.3 — The effect of a Doppler-shift due to a mean-stream
velocity of 0.25 m/s in y-direction. (a) The dispersion relation in
wavenumber-frequency space. (b) Contours of ωd(k).
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Figure 5.4 — Cross-sections of the dispersion-surface with a mean-
stream velocity of 0.25 m/s in the y direction: (a) cross-section for
ky = 0, (b) cross-section for kx = 0. The former remains symmetric
because it is unaffected by the Doppler-shift. The latter is influenced
by the Doppler-shift. Waves for which ky < 0 (upstream) appear to
have lower frequencies whereas waves for which ky > 0 (downstream)
appear to have higher frequencies.

through the Doppler effect. For a mean-stream velocity v0 in the y-direction
the measured in non-moving frame of reference becomes:

ωd(k) =

√(
gk +

k3σ

ρ

)
tanh(kh0) + v0ky (5.26)

where v0ky is the contribution due to the Doppler-shift. Figure 5.3 (a) shows
a graphical representation of the resulting dispersion surface with contours of
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ωd(k) shown in figure 5.3 (b). Obviously it is no longer cylindrically symmetric.
The influence of the Doppler-shift is also clear from the cross-sections shown in
figure 5.4. The cross-section in the kx-direction is unaffected by the Doppler-
shift and remains symmetric relative to kx = 0, whereas the cross-section in ky

direction is Doppler-shifted, leading to waves with ky < 0 appearing to have
lower frequencies than expected from the dispersion relation and waves with
ky > 0 appearing to have higher frequencies.

5.3.2 Spectra in time and space

For a field consisting only of linear gravity capillary waves the wave-spectrum is
directly related to the wave-number spectrum through the dispersion relation:

E(ω,k) = E(k)δ(ω − ωd(k)), (5.27)

where the δ indicates the Dirac δ-function. In practice much of the energy in the
wave spectrum of plane gravity-capillary waves is contained in wavenumbers and
frequencies around ω = ωd(k). This is actually applied in a maritime setting in
order to measure the near-surface current in the ocean. The current is derived
from a fit of the Doppler-shifted dispersion shell to the wave-spectrum of the
surface elevation in time and space, which is measured with a ship-mounted
radar (Senet et al., 2001).

In our measurements we cannot access all of this information directly, since
we do not have access to both spatial coordinates simultaneously. From a
measurement in the spanwise direction we can determine covariance functions
in time and space along the spanwise line:

Rxx(rx, 0, τ) = 〈hx(x + rx, y, t + τ)hx(x, y, t)〉 (5.28)

and
Ryy(rx, 0, τ) = 〈hy(x + rx, y, t + τ)hy(x, y, t)〉 (5.29)

and their two corresponding spectra:

Exx(kx, ω) =

∫ ∞

−∞
Exx(kx, ky, ω)dky =

1

(2π)2

∫∫
Rxx(rx, 0, ω)e−ikxrx+iωτdrxdτ

(5.30)
and

Eyy(kx, ω) =

∫ ∞

−∞
Eyy(kx, ky, ω)dky =

1

(2π)2

∫∫
Ryy(rx, 0, ω)e−ikxrx+iωτdrxdτ.

(5.31)
Similarly from streamwise measurements we can determine:

Rxx(0, ry, τ) = 〈hx(x, y + ry, t + τ)hx(x, y, t)〉 (5.32)
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and:
Ryy(0, ry , τ) = 〈hy(x, y + ry, t + τ)hy(x, y, t)〉. (5.33)

The corresponding spectra follow from the Fourier transforms or from inte-
gration of the respective wave-spectra over kx and ky in similar fashion as in
equations (5.30) and (5.31). Some of the properties of these spectra can already
be understood, without any prior knowledge of the exact nature of the surface
deformations. The water channel is symmetric relative to x = 0, as well as the
statistical properties of the grid and the turbulent flow it generates. Hence,
the covariance functions of the slope measured in x-direction are symmetric
relative to x = 0 and consequently the spanwise spectra are symmetric relative
to kx = 0. In streamwise direction the symmetry is broken by the mean-stream
velocity. Hence the time-space spectra in streamwise direction are not symmet-
ric relative to ky = 0 and the time-space correlation functions are not symmetic
relative to y = 0. For gravity-capillary waves travelling on top of a mean-stream
velocity this is reflected in the dispersion shell and its cross-sections, previously
shown in figure 5.3.

In addition to the one-dimensional time-space spectra we still have access
to the frequency spectra of the slopes, that can also be determined from point
measurements already given in equation (5.19) and equation (5.20). They are
related to the four line spectra in time and space through integration over the
respective component of k, so:

Exx(ω) =

∫ ∞

−∞
Exx(kx, ω)dkx =

∫ ∞

−∞
Exx(ky, ω)dky (5.34)

and

Eyy(ω) =

∫ ∞

−∞
Eyy(kx, ω)dkx =

∫ ∞

−∞
Eyy(ky, ω)dky. (5.35)

Finally, we can also calculate four one-dimensional spatial spectra. These are
related to the spectra in time and space through integration over ω, so:

Exx(kx) =

∫ ∞

−∞
Exx(kx, ω)dω (5.36)

and similarly Exx(ky), Eyy(kx), and Eyy(ky). They can also be calculated more
directly from the measurements by Fourier transforming the slopes in space:

Exx(kx) = 〈|h̃x(kx)|2〉 (5.37)

and likewise Exx(ky), Eyy(kx), and Eyy(ky).
As a consequence of measuring the slope as a function of space and time

along a line, the length of the wavenumber vector is unknown. This means that
some of the drawbacks of point-measurements still remain. In the measured
spectra in time and space a range of wavenumbers k > kx can contribute to
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the spectrum in kx as and similarly wavenumbers k > ky can contribute to the
spectrum at ky. Hence it is not immediately clear if and how the dispersion
relation will even be visible. Later we will see that the experimental results are
also complicated by the presence of other structures than waves on the surface
and the fact that the sources of the waves are actually passing through the
measurement location.

5.3.3 Isotropy in the surface slopes

As we have seen in chapters 3 and 4, one of the standard ways to study isotropy
in a turbulent flow is by comparing longitudinal and transverse correlation func-
tions of the velocity. For incompressible three-dimensional isotropic turbulence
a relation between the two can be derived (Pope, 2000):

CTT (r) = CLL(r) +
1

2
r

d

dr
CLL(r), (5.38)

which was previously used to study isotropy in our LDV turbulence measure-
ments in section 3.3.3. Its equivalent expression for isotropic two-dimensional
incompressible turbulence is:

CTT (r) = CLL(r) + r
d

dr
CLL(r). (5.39)

Unlike the velocity measurements in chapter 3, isotropy of the surface shape
can only be measured by means of spatial measurements. This is because of the
influence of the Doppler-effect explained in section 5.2. We can find a relation
between the transverse and longitudinal correlation functions for the surface
slopes, similar to equation (5.39). The surface elevation can be described by
a function h(x, y) ‡. The surface slope is obviously the gradient of the surface
elevation:

hxex + hyey = ∇h. (5.40)

In our measurements the longitudinal covariance function RLL(r) corresponds
to both 〈hy(x, y + r, t)hy(x, y, t)〉, which can be obtained from a measurement
along a streamwise line, and to 〈hx(x + r, y, t)hx(x, y, t)〉 from a spanwise mea-
surement. The transverse covariance function RTT (r) corresponds to 〈hx(x, y+
r, t)hx(x, y, t)〉 from a streamwise measurement and to 〈hx(x, y+r, t)hx(x, y, t)〉
from a spanwise measurement. The correlation functions CLL and CTT (r) are
the covariance functions RLL(r) and RTT (r) divided by the root-mean-square
of the slope in any given direction, since for an isotropic surface this is inde-
pendent of the direction in which it is measured. A way to check for isotropy

‡Of course h(x, y, t) is also a function of time. However, the dependence on time
for now is assumed implicitly since ensemble averages and temporal averages will be
taken equivalent.
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is to see whether the measured longitudinal correlation function is indeed in-
dependent of the direction of the line along which we measure (spanwise or
streamwise).

A consequence of the fact that hx and hy are the gradient of scalar field
h(x, y) is that they form a potential field:

∇ × (∇h) =
∂

∂x
hy −

∂

∂y
hx = 0. (5.41)

We can use this to derive the relation between the transverse and longitudinal
correlation functions for the surface slopes, via the surface slope covariance
tensor, defined by:

R(r) =

(
Rxx(r) Rxy(r)
Ryx(r) Ryy(r)

)
=

(
〈hx(x)hx(x + r)〉 〈hx(x)hy(x + r)〉
〈hy(x)hx(x + r)〉 〈hy(x)hy(x + r)〉

)

(5.42)
Using equation (5.41) we find that:

∂

∂rx
Rxy(r) − ∂

∂ry
Rxx(r) =

∂

∂rx
〈hx(x)hy(x + r)〉 − ∂

∂ry
〈hx(x)hx(x + r)〉 =

〈hx(x)
∂

∂rx
hy(x + r)〉 − 〈hx(x)

∂

∂ry
hx(x + r)〉 = 0 (5.43)

and similarly:
∂

∂ry
Ryx(r) − ∂

∂rx
Ryy(r) = 0. (5.44)

In any isotropic field, we can write the covariance tensor as a combination of
rirj and δij , which defines the (scalar) longitudinal covariance function RLL(r)
and the transverse covariance function RTT (r) (Pope, 2000):

Rij(r) = (RLL(r) − RTT (r))
rirj

r2
+ RTT (r)δij . (5.45)

The individual components of the tensor can now be written in terms of these
functions:

Rxx(r) = (RLL(r) − RTT (r))
r2
x

r2
+ RTT (r)

Rxy(r) = (RLL(r) − RTT (r))
rxry

r2

Ryx(r) = (RLL(r) − RTT (r))
rxry

r2

Ryy(r) = (RLL(r) − RTT (r))
r2
y

r2
+ RTT (r), (5.46)
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which serves to show that RLL indeed is the longitudinal covariance function.
Substituting, for instance, r = (rx, 0) in Rxx leads to Rxx(rx, 0) = RLL(rx).
Similarly, substituting r = (rx, 0) in Ryy leads to Ryy(rx, 0) = RTT (rx), the
transverse covariance function. Either equation (5.43) or (5.44) can now be
used to find the relation between RLL(r) and RTT (r). We start by calculating
explicitly the derivatives:

∂Rxy

∂rx
=

rxry

r2

(
dRLL

dr
− dRTT

dr

)
∂r

∂rx
+ (RLL − RTT )

(
∂

∂rx

rxry

r2

)
=

=

(
dRLL

dr
− dRTT

dr

)
r2
xry

r3
+ (RLL − RTT )

ry

r2

(
1 − 2r2

x

r2

)
(5.47)

and

∂Rxx

∂ry
=

r2
x

r2

(
dRLL

dr
− dRTT

dr

)
∂r

∂ry
+ (RLL − RTT )

(
∂

∂rx

r2
x

r2

)
+

dRTT

dr

∂r

∂ry
=

=

(
dRLL

dr
− dRTT

dr

)
r2
xry

r3
− (RLL − RTT )

2ryr
2
x

r4
+

dRTT

dr

ry

r
. (5.48)

Substituting these expressions in equation (5.43) leads to:

(
dRLL

dr
− dRTT

dr

)
r2
xry

r3
+ (RLL − RTT )

ry

r2

(
1 − 2r2

x

r2

)

−
(

dRLL

dr
− dRTT

dr

)
r2
xry

r3
+ (RLL − RTT )

2ryr
2
x

r4
− dRTT

dr

ry

r
= 0 (5.49)

which leads to the following relation between the transversal and longitudinal
covariance functions:

RLL = RTT + r
d

dr
RTT . (5.50)

and since the root-mean-square of the slope is independent of the direction the
desired relation between the longitudinal and transverse correlation function
becomes:

CLL = CTT + r
d

dr
CTT . (5.51)

Performing similar substitutions in equation (5.44) obviously leads to the same
result.

It is very interesting to compare this equation to the equivalent equation for
two-dimensional isotropic turbulence given in equation (5.39). For the velocity
field, for which ∇ · u = 0, the occurrence of a difference in velocity compo-
nents along a line, so in longitudinal direction, is hindered by incompressibility,
whereas the transverse velocity component is unaffected. Hence, in an isotropic
velocity field the longitudinal correlation length is larger than that in transverse
direction.



5.3 | Slope statistics in time and space 101

The effect of the free surface gradient field being irrotational is that the
roles of the longitudinal and transverse correlation functions are reversed. Here
the occurrence of a difference in the transverse slope in two points on a line
is hindered by it being associated with twisting of the surface. A difference
in longitudinal slope is associated with bending, as is illustrated in figure 5.5.
Because of the different nature of these surface deformations, for an isotropic
irrotational field the transverse correlation length is larger than the longitudinal
correlation length.

h /  x ( x 0 , y 0 )

h /  x ( x 0 + x , y 0 )

x

y

(a)

h /  y ( x 0 + x , y 0 )

h /  y ( x 0 , y 0 )

x

y

(b)

Figure 5.5 — Illustration of the different type of deformation associ-
ated with a difference in (a) the slope along a line (longitudinal) and
(b) the slope perpendicular to a line (transverse).

Similar to the correlation functions, which were reduced from four functions
to only two, for isotropic surface waves the four one-dimensional wave spectra
obtained from the measurements are reduced to two: the longitudinal and
transverse spectra. The longitudinal spectrum is the Fourier cosine transform
of the longitudinal covariance function:

ELL(k) =
2

π

∫ ∞

0
RLL cos(kr)dr. (5.52)

For isotropic surface waves it corresponds to Exx(kx) and Eyy(ky) as defined in
equations (5.36) and (5.37). Similarly the transverse spectrum corresponds to
Exx(ky) and Eyy(kx) and is the transform of the transverse covariance function:

ETT (k) =
2

π

∫ ∞

0
RTT cos(kr)dr (5.53)

By taking the Fourier cosine-transform of equation (5.51) we find the following
relation between the longitudinal and transverse spectra:

ELL(k) = −k
d

dk
ETT (k). (5.54)
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Similar to the relation between the correlation functions given in equation
(5.51), this equation can, in principle, be used to check whether the surface
shape is isotropic.



6

Measuring the slope of the free surface

From an experimental point of view, measuring the surface slope at a point as
a function of time is relatively straightforward. Similar to, for instance, one-
point hot-wire velocity measurements in a wind-tunnel, point measurements of
the slope enable calculation of the frequency spectrum and the auto-correlation
function of the slope in time. However, as shown in the previous chapter, these
spectra offer only a limited view of the nature of the surface deformations.
Measurements of the surface in space and time are an absolute necessity. In
this chapter, an existing technique for measuring the surface slope at a point is
explained. It forms the basis for a novel technique that allows measurement of
the surface slope in space and time along a line. A comparison of experimental
results obtained with both techniques allows us to test this new set-up.

6.1 Introduction

One of the first quantitative measurements of the surface gradient field involved
pictures of the sun glittering on the ocean surface (Cox & Munk, 1954). In our
work we use the refraction of a focused laser beam by the surface to measure
the two components of the surface gradient at a point. By rapidly scanning the
incident laser beam along a line, while at the same time sampling the location of
the refracted laser beam, we measure the time-dependent gradient field along a
line. For strongly curved surfaces, scanning techniques are unavoidable because
whole-field measurements are thwarted by caustics and ambiguities. A similar
scanning slope gauge has been described by Bock & Hara (1995) and Hara,
Bock & Donelan (1997). Their device, which was successfully used for the
measurement of wind-driven waves, is suited for relatively low frequencies and
large wavelengths (largest frequency ≈ 35 Hz, smallest wavelength ≈ 4 mm)
and scans a circle on the surface. For our experiment a linear scan and a much
better space-time resolution was needed.
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Jähne et al. (1994) review quantitative imaging techniques of ocean wind
waves and conclude that scanning techniques for measuring the gradient field
are most promising. It is good however, to put these techniques in the per-
spective of whole field measurements. In this context, an often-used technique
to look at spatial surface deformations is shadowgraphy (Settles, 2001). In
shadowgraphy images are formed as a result of the refraction of light passing
through a transparent material of varying density. In the case of a free sur-
face, this refraction occurs at the interface and the resulting image provides
a view of the shape of the surface. For free-surface flows, shadowgraphy has
mainly been used to study the interaction of structures with the surface. For
instance, Walker et al. (1995) has used shadowgraphy to study the interaction
between a turbulent jet and a free surface. Sarpkaya & Suthon (1991), and
Gharib and Weigand (Weigand, 1996; Gharib, 1994; Gharib & Weigand, 1996)
have used shadowgraphy to study vortex (dis)connection and the interaction
between vortex rings and a free surface. However, obtaining quantitative infor-
mation from shadowgraphy is often impossible and shadowgraphy is primarily
a tool to qualitatively visualise the surface shape.

Zhang & Cox (1994) and Kurata et al. (1990) show that quantitative in-
formation about the surface gradient field can be obtained from images of a
(coloured) pattern that is either refracted in or reflected by the surface. By
reducing the scale of these patterns, Dalziel et al. (2000) developed a synthetic
schlieren technique in which a randomly dotted pattern is refracted by the free
surface. Quantitative information about the surface shape is obtained by ap-
plying a cross-correlation algorithm, similar to that used for Particle Image
Velocimetry, to a picture of the undisturbed pattern and a picture of the re-
fracted pattern. All of these techniques are image-based. The actual image itself
provides the (two-dimensional) spatial information. The spatial resolution of
these techniques is limited by the density of the pattern used, or in case of the
synthetic schlieren technique by the minimum size of the interrogation windows
used for cross-correlating the images. The resolution in time in these techniques
is limited by the frame-rate of the camera. Increasing the frame-rate, through
the use of a high-speed camera, has consequences for the measurement of low
frequencies, since the duration of the measurement is limited by the maximum
number of frames that can be stored.

In a geophysical setting, on an entirely different scale both in space (from
several meters up to kilometers) and in time (frequencies lower than 1 Hz ),
several different techniques are used to measure wave-fields, including radar
(altimeter) measurements from ships (Senet et al., 2001) or even from satellites
(Forbes et al., 1993; Stammer, 1997) and photographs of sea surface glint taken
from aircraft (Dugan & Piotrowski, 2003), as well as measurements from in situ

arrays of buoys and pressure transducers (Holland, 2001).
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6.2 Point measurements of the surface slope

The principle of the technique used to do point measurements of the slope is
based on refraction of a laser beam. Previously, this method was successfully
used to measure waves on the surface of a vertically oscillated fluid (Faraday
waves) (see Westra, Binks & van de Water, 2003).

The technique is illustrated in figure 6.1. A laser beam, originating from a
small 1 mW diode laser is sent perpendicularly through the transparent bot-
tom of the water-channel and onwards to the surface, where it is refracted. The
refracted beam then proceeds onto a so-called Position Sensitive Device (PSD).
This sensor is a dual lateral photo-diode, the layout of which is shown in fig-

d e f o r m e d
f r e e  s u r f a c e

P o s i t i o n  S e n s i n g
D e v i c e  ( P . S . D )

l a s e r  b e a m

b e a m
d i s p l a c e m e n t

x - a x i s
y - a x i s

Figure 6.1 — The principle of slope measurements in a point. A
beam is refracted by the surface. The beam’s displacement is mea-
sured with a Position Sensitive Device.

ure 6.2. The sensor used in the point measurements measures 1 × 1 cm2 and
was manufactured by UDT sensors. It consists of a three-layer semi-conducting
silicon structure, biased with a bias voltage Vbias. Incident light on the photo-
diode’s surface generates free electrons that change the local resistivity of the
semi-conducting material. As a result of this, the ratios of the cathode and
anode currents Ic1,Ic2,Ia1, and Ia2, as indicated in figure 6.2, change and as
such their ratios can be used as a measure of the position of the illuminated
spot on the surface of the detector. For a square PSD of size L×L the positions
follow from:

xPSD =
Ia1 − Ia2

2Iph
L (6.1)

and

yPSD =
Ic1 − Ic2

2Iph
L, (6.2)
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Figure 6.2 — Layout of a Position Sensitive Detector.

in which Iph is the total photo-current. Because of these ratios, the sensor is
insensitive to the intensity of the laser spot, with the position signal reflecting
the centre of mass of the laser spot. We emphasize that this only works if the
four photocurrents can be measured exactly simultaneously and the transport
of the photo charges across the sensor is instantaneous. The currents are mea-
sured and the various subtractions and divisions are performed in an analogue
Phillips PSD processor board (type CTR 531.91.0017). This provides two out-
put voltages Vx and Vy, which correspond to the positions xPSD and yPSD. The
response speed of the measurement technique in this configuration is limited
by the electronic circuitry in the processor board, but generally a PSD offers
a far better resolution in time than a pixel-based detector such as a CCD or
CMOS. The spatial resolution of the PSD is limited by both shot noise and
thermal noise of the resistive layer. The linearity of the response is primarily
dependent on the quality of the substrate layers of the PSD. In practice we use
a linear transformation from voltages to positions, based on a separate calibra-
tion of the PSD. The PSD-Voltages are digitised for processing and storage on
a computer by means of a PhyDAS PARSAM (PARallel SAMpling) unit, with
a sample frequency of 30kHz.

The free surface gradient in x and y-directions can be calculated from the
displacements δx, δy of the spot on the PSD surface from:

∂h

∂x
=

−δx

H − nw

√
H2 + (δx)2 + (δy)2

and
∂h

∂y
=

−δy

H − nw

√
H2 + (δx)2 + (δy)2

.

(6.3)
The displacements δx, δy are calculated by subtracting the average position
of the spot taken over the entire measurement time from the instantaneous
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position,
δx = xPSD − 〈xPSD〉, δy = yPSD − 〈yPSD〉, (6.4)

where xPSD and yPSD are the instantaneous positions and 〈xPSD〉 and 〈yPSD〉
are the corresponding averages.

This method is based on the notion that on average a turbulent surface is
horizontal. Since the right-hand-side of equations (6.3) depends non-linearly
on δx and δy, a zero average of ∂h/∂x and ∂h/∂y is not the same as a zero
average of δx and δy, but we found the error to be negligible. Calibration
requires a measurement of the height H of the PSD above the (undisturbed)
surface and the conversion of measured PSD voltages to position, which was
calibrated in a separate experiment. All other information needed to convert
measured voltages to surface slopes follow from the measured time series. This
method is straightforward, sensitive, and linear. However, it only provides the
time-dependence of the surface slope in a point. For a surface that is advected
by the mean flow, this information is ambiguous as temporal fluctuations may
also be caused by spatial fluctuation which are swept past the measurement
location. We next describe the extension of this technique to measurement of
the time-dependent gradient field along a line.

6.3 Measuring the slope in space and time

6.3.1 Set-up for slope measurements along a line

As already mentioned, in order to measure the surface slope in space and time
we have chosen to measure the slope along a line. The technique used for this
is an extension of the existing technique used for point measurements. The
new set-up is illustrated in figure 6.3. Instead of being aimed at a single point
of the surface, now the laser beam is swiveled back and forth by a rapidly
oscillating mirror (an Electro Optical Products Corp. SC-30 resonant scanning
mirror). Changes in the signal that occur more rapidly than those due to the
oscillating motion are interpreted as spatial variations of the surface slope along
the line. A drawback of this technique compared to image-based surface slope
measurements is that it only provides one spatial coordinate. However, it does
offer a much higher resolution in time as well as a higher spatial resolution along
the line. Obviously, it is impossible to measure structures on the surface that
are actually smaller than the size of the light spot on the surface, which is why
the laser beam is passed through a lens that focuses it on the surface. As will
be explained in more detail shortly, the length of the line on the surface is too
large to allow the refracted beam to be projected directly onto the PSD. Hence,
after passing through the free surface the refracted beam falls onto a plate of
high quality frosted glass. This leads to an illuminated dot being visible on the
top side of the frosted glass, at the location where the beam hits it. This spot
is projected onto the PSD. By sampling the PSD signals at a higher rate fs
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Figure 6.3 — Set-up for measuring the surface slope along a line.

than the oscillation frequency fm of the mirror, the position of the spot on the
PSD is measured multiple times during each mirror period, thereby providing
the slope in multiple points on the line. In our case we can measure the slope
in 152 points along a 5 cm line.

6.3.2 Synchronisation

The electronics that control the oscillating mirror also provide a periodic square
wave voltage, at the frequency at which the mirror oscillates. This signal serves
as a triggering signal for a purpose-built electronic timing unit, which in turn
delivers a predetermined number n of trigger signals at a fixed frequency to the
ADC. This means that the positions on the line at which the PSD voltages are
sampled are fixed in time relative to the phase of the mirror. This is illustrated
in figure 6.4. Let us call p, with p = 1, ..., n, the index of a sample in each
block of n samples and q, q = 1, 2, ... the index of a block. Then the index p
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Figure 6.4 — Synchronisation of the surface gradient scanner. The
mirror control unit provides a block signal with the same frequency
as the mirror movement (fm =1.96 kHz). This triggers a timing unit
which sends blocks of 152 trigger signals at sample frequency fs =300
kHz to the ADC. Each line sample is one cycle of the mirror, in which
each point on the line is visited twice. The unit has further provisions
to synchronize the line scan to a particle image velocimetry system.

corresponds to a point on the scanned line, while q is an index, fq = q/fm,
corresponding to the time at which the line was measured. We will now show
how the samples define the surface gradient hx(x, y, t) and hy(x, y, t).

Let us assume that the laser beam is scanned in the x-direction. After
refraction through the surface the signal of the PSD contains two components:
V x and V y corresponding to the deflections of the laser beam in the x- and
y- directions, respectively. The samples V x

p,q include two contributions: a large
contribution due to the beam being swiveled back and forth by the oscillating
mirror and a smaller contribution resulting from the actual changes in slope
in the points of the line. The other sampled voltage, V y

p,q, only contains a
contribution from the changes in slope∗. Provided that the imaging by this
system is linear, the position xg

p,q of the spot on the glass and the voltage V x
p,q

from the PSD are related through:

V x
p,q = Axg

q,p + Bx, (6.5)

in which A is a proportionality constant that is the same for deflections in x- and
y directions and Bx is an offset that depends on the component of the measured
deflection. These constants can be easily found from the measurement. Since
on average the surface is flat, the time (q) average of the measured voltage V x

∗In practice one can expect there to be some misalignment, leading to a small
contribution due to the scanning also being present in V y. However, this has no effect
on the measurement of the slope itself, since the average trace of the spot in the surface
is subtracted, as will be explained later.
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is
V x

p = 〈V x
p,q〉q = Axg

p + Bx, (6.6)

where xg
p are the positions corresponding to the trace of the line on the glass if

the surface were flat. Thus the peak-to-peak amplitude V x
a of V x

p corresponds
to the length of the line on the glass. The proportionality constant A now
follows from dividing the peak-to-peak amplitude V x

a by the actual physical
length of the line on the glass, Lg,:

A =
V x

a

Lg
. (6.7)

Of course, since the relation between the surface slope and the laser beam
deflection is non-linear, this procedure is not strictly correct. However, we have
ascertained that, similar to the point measurements, the error is negligible. The
constants that determine the coordinates (xw

p , yw
p ) on the actual water surface

are determined analogously to those on the glass; for example the corresponding
proportionality constant would be V x

a /Ls, in which Ls is the length of the line
on the water surface.

Finally, the equations for the measured surface gradient field are similar to
those of the point measurement, equation (6.3):

∂h(x, y, t)

∂x

∣∣∣∣
x=xw

p ,y=yw
p ,t=q/fm

=
−δxp,q

H − nw

√
H2 + (δxp,q)2 + (δyp,q)2

(6.8)

and

∂h(x, y, t)

∂y

∣∣∣∣
x=xw

p ,y=yw
p ,t=q/fm

=
−δyp,q

H − nw

√
H2 + (δxp,q)2 + (δyp,q)2

(6.9)

in which H is the height of the glass above the undisturbed surface and δxp,q

and δyp,q are displacements of the spot on the glass with respect to the traced
averaged curve:

δxp,q = xp,q − xp =
V x

p,q − V x
p

A
(6.10)

and:

δyp,q = yp,q − yp =
V y

p,q − V y
p

A
. (6.11)

Obviously, for a correct assignment of the gradient field it is crucial to carefully
keep track of the various signs of displacements and digitised voltages.

Calibration of this slope measurement technique requires only straightfor-
ward measurements of three lengths, also indicated in figure 6.3 :

1. The height of the glass above the surface H is needed in order to calculate
the slopes from the displacement on the frosted glass from equations (6.8)
and (6.9).
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2. The length of the scan-line Lg on the glass is needed to find the propor-
tionality constant A in equation (6.7). If it is known, the actual positions
on the glass can be calculated.

3. The length of the line on the surface Ls is required in order to calculate
the actual position of each point on the line on the water surface.

It should be noted that due to the use of a swiveling beam the beam crosses
both the bottom of the channel as well the surface at a small angle. The effect
of this is almost completely removed by subtracting the averages. Its residual
effect may be a small bias, which may become somewhat more pronounced for
the extreme points on the line. In theory it is possible to correct for this. The
exact position where the light beam falls onto the frosted glass depends on the
slope at the surface as well as on the elevation of the surface. However, in our
set-up changes of the position on the glass relative to the average position are
interpreted as resulting from a change of the slope at the surface. As with the
point measurements, the influence of changes in the elevation of the surface is
neglected, since their effect is very small compared to the effect of a change in
the slope, especially since the anticipated changes in the elevation (at most a
few mm) are tiny compared to H (30 cm).

The use of a plate of frosted glass is an unfortunate necessity. Directly
projecting the line onto the PSD is not possible, despite the use of a larger 2
× 2 cm2 PSD for these measurements. The reason is that the optics needed
to directly project the refracted laser beam onto the PSD is subject to incom-
patible requirements. In order to accommodate the largest possible surface
gradient (Sm = O(0.3)) in our experiments, the lens must be placed as near to
the surface as possible, with its focal length F as the minimal distance. Then,
if the length of the scanned line is Ls, the diameter of the lens should at least
be 2 F Sm + L. Although lenses with Sm = 0.3 do exist, they are difficult to
manufacture and their imaging is far from ideal. The problem is that in direct
imaging of the refracted laser beam, angle and position are coupled. Further,
with the surface in the focal plane of the lens, the position on the PSD would
depend on both the angle and the position at which the laser beam enters the
lens. However, the surface gradient itself is only reflected in the angle of the
laser beam. Unravelling these contributions by calibrating would be exceed-
ingly difficult. The major benefit of using the frosted glass is that now angle
and the position become decoupled. A drawback of this method is, however, a
large loss of light intensity and the introduction of speckles in the light spot.
To optimise the light intensity the laser spot on the frosted glass is imaged
onto the PSD detector surface by using two very strong large-diameter lenses.
To further increase the intensity of the light on the PSD a relatively powerful
(approx. 30 mW) He-Ne laser was used.

In order to increase the response speed of the measurement technique, the
processor board we used for the point measurements, has been replaced by a
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purpose-built new electronic circuit, which amplifies the four PSD currents and
separately converts them to voltages. These four voltages are then individually
sampled by means of a four-channel parallel Analogue to Digital converter (Na-
tional Instruments Ni-DAQ 6115) at the sample frequency of 300 kHz. Instead
of measuring voltages V x and V y, the (relative) positions on the PSD are now
actually calculated in post-processing by means of equations (6.1) and (6.2).
The time response of the PSD itself now determines the smallest changes the
surface slope along the line that we can find with our scan technique. Since
the position signal of the light spot depends on intensity ratios, the position
signal is insensitive to intensity fluctuations of the refracted laser beam. In
our experiment intensity fluctuations are caused by scattering off particles in
the flow (used in PIV experiments) and by speckles of the frosted glass screen.
However, the intensity normalisation can only work if all currents are measured
simultaneously. The problem is that photo-charges in the PSD have a finite ve-
locity, set by the capacity of the light-sensitive layer. The propagation delay is a
few µs, which in our case corresponds to the used sampling frequency (fs =300
kHz). At those frequencies intensity variations are seen as position variations.
Without a faster PSD, no further improvement of the signal-to-noise ratio is
possible.

The positions xp on the scan line are sampled sinusoidally: the points crowd
near the extremes of the sweep, and they are sampled fastest near the zero-
crossings of the sweep. We expect that a further effect of the propagation
delays of the photo-charges is that samples of the surface slope near the zero-
crossings will have different properties from those at the extremes of xp. We
will assess this possible source of inhomogeneity below.

The overall set-up is more complicated than the set-up used for point mea-
surements. Moving the optical system along the water channel is far more
difficult. Because of this we have chosen to place the set-up at a fixed position
two meters downstream from the turbulence generating grid, not coincidently
the same position as where we performed the Laser-Doppler measurements of
the turbulence properties described in chapter 3.

6.3.3 Data processing

The data processing is done with a series of computer programmes. In order
to obtain surface gradient information from the stored data, the file (typically
several GBytes in size) is first unravelled in samples V x

p,q and V y
p,q. If, for

example, the laser beam is scanned in the x-direction sample V x
p,q contains the

relevant information about the scan. Since perfect synchronisation is crucial
for this method, the relative phase of the samples V x

p,q is monitored constantly
through computing the auto-correlation function of V x

p,q. Phase drifts may
occur due to temperature changes of the resonant mirror. A measurement of
the phase reveals that the relative phase-shift of the mirror is O(10−3) over the
duration of the longest measurement, which is negligible. Next, the coordinates
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(xp, yp), p = 1, .., n are computed from phase-sensitive averages of V x and V y.
Finally the surface gradients hx(xp, yp, tq) and hy(xp, yp, tq) are computed.

The key questions are about the homogeneity of the measurement technique
along the scan line and its spectral response. Several useful statistical quantities
can be computed from the measured gradient field and may be used to answer
these questions. In the case of homogeneous turbulence, the normalized space-
time correlation function

Rxx(xi, xj , τ) =
〈hx(xi, t + τ) hx(xj , t)〉

〈h2
x(xi, t)〉1/2 〈h2

x(xj , t)〉1/2
(6.12)

and similarly Ryy, Rxy, depends only on the separation r = xi − xj , and not
on the individual coordinates xi, xj . As different points xi on the scan line are
traversed with different velocities of the swiveling laser beam, the question is
whether this property holds for the measured correlation function. We approach
the correlation function through the cross-spectral density

C̃xx(xi, xj , ω) =
〈
h̃x(xi, ω) h̃∗

x(xj , ω)
〉

. (6.13)

where h̃x is the temporal Fourier transform of hx. The advantage of the cross-
spectral density is that it involves Fourier transforms in the homogeneous time
direction, but it retains the dependence on the spatial coordinates. In order to

improve the statistical accuracy of C̃xx we perform a frequency average
∫

K(ω, ω′) C̃xx(xi, xj , ω
′) dω′, (6.14)

where the kernel K(ω, ω′) is a tent-function centred on ω, and whose width in
ω′ increases exponentially with increasing ω. Such an average is most appro-
priate for energy spectra that have an algebraic dependence on the frequency.
From the cross-spectral density we can compute the frequency spectrum at each

spatial point, Exx(xi, ω) = C̃xx(xi, xi, ω). Finally, the covariance function Eq.
6.12 is only a Fourier transform away

Rxx(xi, xj , τ) =
ℜ
∫∞
0 eiωτ C̃xx(xi, xi, ω) dω

(∫∞
0 cos(ωτ )C̃xx(xi, xi, ω) dω

∫∞
0 cos(ωτ )C̃xx(xj, xj , ω) dω

)1/2
,

(6.15)
where ℜ denotes the real part. We will demonstrate that to good approximation
the covariance function R only depends on the separation of the points, and
not on their individual coordinates:

rk = xi − xj , k = 1, . . . , n(n − 1)/2. (6.16)

However, significant errors exist. Clearly, computing the space-time correlation
function of the surface gradient by means of the cross-spectral density is the
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only practical option, as direct computation in the time domain would take
prohibitively long.

Direct computation of the spectrum of the surface gradient, h̃(kx, ω), is
possible by resampling the coordinates along the line, xp in our example, and
then performing a fast-Fourier transform both in space and time. The surface
fields hx(x, y, t) and hy(x, y, t) themselves are stored for further processing, for
example in order to assess the validity of Taylor’s frozen turbulence hypothe-
sis for the surface. Although we only have information about a single spatial
dimension (and time), the gradient field signals allow us to measure statisti-
cal quantities of a turbulent surface which, to our knowledge, have not been
measured before.

6.4 Assessment of the surface scanning method

Before proceeding with the experimental results for the surface above grid-
generated turbulence as well as a first physical interpretation, we will first take
a look at a number of tests of the surface scan technique. We need to test
whether the imaging of the scan line through the frosted glass, the lenses and
the PSD is linear, since this is one of the assumptions made in the previous
section. Further tests revolve around the frequency response of the PSD. The
PSD needs to be able to follow changes in the position of the spot on its surface
faster than the mirror frequency (approximately 2 kHz), since these are to be
interpreted as spatial variations. Our first interest will be the average positions
xw

p and yw
p .
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Figure 6.5 — Linearity of the imaging by the surface scan set-up.
(a) A harmonic scan in streamwise direction. Full line the average
coordinate yw

p computed for a turbulent surface. Because of the har-
monic scan, yw

p should ideally be ∝ sin(2πpfm/fs + ϕ). Dashed line:
A sin(2πpfm/fs + ϕ), with amplitude A set to the amplitude of yw

p

and measured phase ϕ = 1.088 π.

The oscillating mirror swivels the laser beam approximately harmonically
in time. Hence for a scan line in x-direction the average position of the spot on
the PSD surface should depend on p as sin(2π p/fs + ϕ). This is very nearly
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so, as is illustrated in Figure 6.5 (a). We conclude that non-linearity effects in
the imaging are small†. Figure 6.5 (b) shows xp versus yp, i.e. the trace of the
surface scan for both a spanwise and streamwise scan. This figure shows that
the adjacent points in a scan form an approximately straight line, as intended.
Furthermore, Figure 6.5 (b) shows that the PSD and its associated electronics
can follow the illuminated spot on the surface, even though it moves back and
forth at almost 2 kHz. Any phase difference between the measured x- and y-
deflections would have resulted in a Lissajous-loop.

The alignment of the set-up is relatively straightforward. The hardest part
is aligning the direction of the scan line. Changing the direction of the scan line,
which is very useful when studying the isotropy of the surface gradient field,
involves moving the oscillating mirror, the focusing lens, and several mirrors.
Yet, it is possible to properly align the scan-line in spanwise direction as well
as aligning it in a practically perpendicular, i.e. in streamwise direction, at
essentially the same location in the channel, as can also be seen from Figure
6.5 (b). A first impression of the detector homogeneity can be obtained from
the probability distribution function (PDF) of surface gradients on a turbulent
channel flow. The variation of the PDF along the scanned line is shown in
Fig. 6.6. In this experiment, the scanned line points in the x-direction. As the
length Ls of the scanned line is 5 cm, which is much smaller than the width
of the channel (30 cm), we can assume that the turbulence is homogeneous.
The measured PDF is very nearly independent of the position on the scanning
line, but a small systematic effect for the rare large |dh/dx| events can be seen.
Figure 6.6 also demonstrates that the gradient fluctuations are very nearly
Gaussian. A quite similar result was obtained for scans in the streamwise
(y) direction. In this direction the grid-generated turbulence decays, but the
variation of its statistical properties over the length of the scan line is negligible
as Ls = 5 cm is small compared to the distance (2 m) of the scanner behind
the turbulence generating grid.

In order to see how scanning affects the signal-to-noise ratio, we now com-
pare frequency spectra of the surface slope at a point measured with the surface
scanning technique to spectra measured under the same experimental conditions
with an actual point-measurement. In the last case, the surface slope follows
directly from the registered signal, while in the former case is wrapped in the
spatial scan in the first case. The frequency spectrum obtained from the line
scan in this case is actually the frequency spectrum in one of the 152 points on
the 5 cm long line. Results obtained with both techniques for static grid gen-
erated turbulence, are shown in Figure 6.7 (a). Up to a frequency of 50 Hz the
spectra are very similar, despite the different PSD signal processing electronics,
different PSDs, the very different optical systems as well as the difference in

†The quality of the harmonic fit is not only due to the linearity of the imaging.
Deviations of the harmonic dependence and curved scan lines can also occur due to
the axis of rotation of the mirror not being parallel to the mirror surface.
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Figure 6.6 — (a) Probability density function (PDF) of surface gra-
dients dh/dx as a function of the position x on the scan line. The
scan line is oriented perpendicularly to the mean flow velocity in the
channel. (b) Full line: PDF averaged over x, dashed line: Gaussian
fit. The turbulence with mean velocity U = 0.25 m/s is generated
with the active grid.

calibration methods. Above 50 Hz the spectra from the scan are drowned in
noise, while the point spectra continue up to roughly 1 kHz. This is not due to
a limitation in frequency response, however, since we have already seen that the
PSD and its electronics can follow the spot moving back and forth at almost
2 kHz. The difference between the spectra is due to the lower signal-to-noise
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with point-measurements and derived from line measurements. The
turbulence with mean-stream velocity of U = 0.28 m/s was generated
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Figure 6.8 — (a) Point spectrum of the spanwise slope, Exx, from
both a spanwise and streamwise scan. (b) Point spectrum of the
streamwise slope, Eyy, from both a spanwise and streamwise scan.
The turbulence with mean velocity U = 0.25 m/s was generated using
the active grid.

ratio as a result of the spot’s relatively low light intensity, and the presence of
the ground glass screen. Still, the spectrum from the scan covers several orders
of magnitude.

A comparison of spectra measured in a spanwise scan with those measured
with the scan line in the streamwise direction can potentially reveal limitations
in the detector’s frequency response. The position signal in the scan direction
changes much more rapidly than that in the perpendicular direction. Hence,
limitations in the frequency response of the PSD are most likely to affect the
measurement of the slope in the scan direction. However, the frequency spec-
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Figure 6.9 — Point frequency spectra as a function of the position
of the point x on the scan line. The depression in the centre of the
scan line signifies a reduction of the gradient-detector sensitivity.

trum of the slope at a point on a surface scan line should be completely inde-
pendent from the direction of that line. However, if the frequency response is a
problem, they will differ. In Fig. 6.8 we show frequency spectra Exx and Eyy of
the slopes obtained from measurements along both a streamwise and spanwise
line, averaged over the line, for active grid generated-turbulence. Indeed the
frequency spectrum of either slope is practically independent of the direction
of the scan line, demonstrating that the registered signals can be unravelled
adequately in position and slope information.

The next concern is the frequency-dependent homogeneity of our surface
scan detector. Figure 6.9 shows the dependence of measured frequency spectra
on the position on the scan line. The fluctuations appear slightly depressed
in the centre of the scan line, in a way that does not depend on frequency.
Most probably, this reduction of the sensitivity is related to the variation of
the scan speed, which is largest in the centre, in combination with the speckle
patterns of the ground glass screen. This effect can be eliminated adequately by
normalizing measured wave slopes by their root mean square values 〈h2

x〉1/2 and

〈h2
y〉1/2. Let us finally turn to the spatial correlation function C(xi, xj, τ) at

τ = 0. In Fig. 6.10 we plot Cxx(rk, τ) and Ryy(rk, τ), where rk is the separation
rk = xi − xj, k = 1, 2, ..., 11476 and τ = 0. Clearly, the correlation function
is not just a function of the separation, but also of the individual coordinates
xi, xj. The resulting deterministic noise is determined by the different scan
speeds with which the laser beam passes different points on the scan line. The
noise affects measured spatial spectra at high wavenumbers. In the correlation
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functions shown later, this effect was cured by fitting a 6th order polynomial
to their r−dependence.

Scanning techniques are unavoidable for measuring the surface gradient
field. The challenge is to unravel gradient- from position information. Its
success is determined by the optics and by the response time of the position
detector, both of which compromise the signal-to-noise ratio. Clearly, the scan
frequency should be adapted to the problem at hand. Currently, fm = 1.96 kHz,
but judging from Figure. 6.7, a reduction to 1 kHz would be possible, resulting
in an improvement of the signal-to-noise ratio.

6.5 Conclusions

Characterising a turbulent surface through refraction of a focused laser beam is
precise, linear and, since the signal depends on the surface gradient, can resolve
large surface wavenumbers. However, using this technique to obtain space-time
information presents a challenge. In this chapter, we have described a scanning
method in which a laser beam is rapidly scanned over a surface and its position
after refraction is measured synchronously. The synchronisation problem can be
solved readily, but this method challenges the speed of current position sensing
detectors. Further, imaging requirements necessitated the use of a translucent
screen, resulting in a deterioration of the signal-to-noise ratio. The result is a
device that can measure the space-time gradient field of a turbulent free surface
with good precision.

The resolution in space is set by the size of the focus of the laser beam
(≈ 0.3 mm), whereas in principle the resolution in time is half the swiveling
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frequency fm of the mirror (fm/2 ≈ 1 kHz). However, for our very steep
spectra of the surface slope above turbulence the noise threshold is reached at
100 Hz. The alignment of the scanning set-up is straightforward and it requires
no calibration other than a measurement of a few lengths. In principle the
technique can easily be adapted for measuring reflection instead of refraction.
By using lasers with different wavelengths and separating the images using laser
line filters, this technique can be easily combined with other optical diagnostics,
such as particle image velocimetry. This will be explained in more detail in
chapter 8.

We have discussed a number of statistical quantities that can be measured
from space-time signals. Although a complete discussion of the meaning of
these quantities falls outside the scope of chapter, we demonstrate that spectra
and correlation functions can be measured precisely.



7

The nature of the surface ripples

In this chapter measurements of the statistical properties of the free surface
above the turbulent flow in our water channel will be discussed. We will argue
how a physical model about the origin of surface ripples can be found from our
experimental results. First we will show how the surface activity in a point
evolves when we move away from the grid, where the sub-surface turbulence
decays. Clearly, as explained in chapter 5, a measurement in a point is ambigu-
ous, as fluctuations may be either due to a true time dependence of the surface
shape, or due to a spatial dependence that is swept by the measurement point
by the mean-stream velocity. Hence we will turn to space-time measurements
with the surface scanning method described in chapter 6. A key problem in the
interpretation of the wavenumber-frequency spectra that can be measured with
this technique is the Doppler-effect due to the mean-stream velocity in the wa-
ter channel. Nevertheless, strong evidence is found that a major role is played
by gravity-capillary waves. Further evidence is found in measured space-time
correlation functions.

A unique property of the active grid is that the properties of the turbulence
it generates can be tuned by changing the stirring protocol of the grid. Thus,
it is possible to change both the strength and the anisotropy of the turbulence.
First we will study how the surface statistics depend on the strength of the
turbulence. Then the anisotropy of the sub-surface turbulence will be altered,
in order to see how this affects the anisotropy of the surface ripples.

The emerging view will be that isotropic surface waves originate from sources
that are uniformly distributed over the surface. Therefore, the Doppler-effect
influences the measurements in a complicated manner. Finally, we will try to
understand this by considering a simple model.

7.1 Spectra and correlations in time and space

Figure 7.1 shows frequency spectra of the spanwise surface slope, measured
with the point measurement technique described in section 6.2, and frequency
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spectra of the streamwise component of the velocity measured with LDV, just
below the surface, both for static-grid-generated turbulence. It is immediately
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Figure 7.1 — (a) Frequency spectra of the streamwise slope (∂h/∂y
in our coordinate system) of the surface at the channel centre line,
for a number distances from the grid. (b) Frequency spectra of the
streamwise component of the velocity (v) measured at a few mm below
the surface at the channel centre line for and at roughly the same
distances from the grid. In both cases the turbulence was generated
by means of the static grid.

clear from these figures that the surface slope spectrum is dramatically different
from the velocity spectrum of the sub-surface turbulence. Of course, some
of the differences are due to the limitations of the respective measurement
techniques. For instance, at roughly 50 Hz the LDV spectrum reaches the
noise threshold, whereas for the point measurements of the surface slope the
noise threshold is reached at a far higher frequency of 1 kHz. Apart from
this difference, however, it is also clear that while the turbulence spectrum
shows a negative slope over the entire range of measured frequencies, with a
characteristic -5/3 scaling exponent in part of this range, the slope spectrum
starts to decrease only at higher frequencies, and with a far steeper slope.
There is no simple explanation for this difference. In part this is because,
certainly in the presence of waves, there is no straightforward way to transform
the frequency spectra of the slope into spatial spectra, as we have explained
in chapter 5. Without this spatial information, it is virtually impossible to
interpret these frequency spectra. This is different for the the frequency spectra
of the velocity, where we can use Taylor’s frozen turbulence hypothesis. Similar
to the point measurements of the velocity with LDV, the point measurements
of the surface slopes are, however, very useful for studying the decay of the
surface deformations. Since the experiments were done in a water channel, in
which turbulence was generated by means of a grid, the turbulence intensity
decays when the flow moves away from the grid. In chapter 3 we found the
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Figure 7.2 — Root-mean-square surface slopes as a function of the
distance to the grid, measured by means of point measurements,
for both the active grid, with protocol (25ran) and the static grid
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tuations can be found in figure 3.14.

characteristic decay for the turbulent velocity fluctuations given by equation
(3.15): (

vrms(y)

v0

)2

∼
( y

M

)n
,

with n = 1.3. Point measurements allow us to see how the surface fluctuations
decay with y. The results are shown in figure 7.2. The surface fluctuations are
near-isotropic, 〈h2

x〉1/2 ≈ 〈h2
y〉1/2, and decay at roughly the same rate as the

sub-surface velocity fluctuations. For the static grid the generated turbulence
is relatively weak (Reλ ≈ 70, compared to Reλ ≈ 250 for the active grid with
the current protocol, both measured at 2 m from the grid). The fluctuations of
the surface slope are an order of magnitude smaller than those for the active
grid. Only measurements in time and space, as measured with the surface
scanning set-up also described in chapter 6 can provide a clear view of the
surface. Wavenumber-frequency spectra are shown next, now for the active grid.
For the case with the strongest turbulence (25 opt, see table 3.2), the spectra
are shown in figure 7.3. We show all four spectra Eαα(kβ), with α = x, y and
β = x, y. Clearly, for these spectra, the isotropy is broken by the Doppler-effect,
so that Exx(kx) 6= Eyy(ky). However, it will later be shown that the surface
ripples are nevertheless isotropic. Also shown in 7.3 are lines corresponding
to the Doppler-shifted dispersion-relation for gravity-capillary waves, together
with the line ω = v0k, which corresponds to advection with the mean-stream
velocity v0. It should be realised that this dispersion relation corresponds to
plane waves.

A surprisingly large part of the spectrum matches the dispersion relation.
This can be seen most clearly in the streamwise spectra shown in figures 5.4 (c)
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Figure 7.3 — Space-time spectra for the active grid with protocol
(25opt). Span-wise measurements: (a) Exx(kx, ω), (b) Eyy(kx, ω).
The solid lines shown in both spanwise spectra represent the disper-
sion relation for gravity capillary waves, previously shown in figure
5.4 (a). Span-wise measurements: (c) Exx(ky , ω), (d) Eyy(ky, ω). In
both (c) and (d) the solid lines represent the Doppler-shifted disper-
sion relation as shown previously in figure 5.4 (b). The dotted line
corresponds to the mean-stream velocity, which in this case is ap-
proximately 26 cm/s. The white band in the centre of the streamwise
spectra and at the right of the spanwise spectra corresponds to spatial
frequencies that lie outside of the range of our measurement.

and (d), and confirms that part of the surface shape indeed consists of gravity-
capillary waves that travel on top of the mean-stream velocity. Waves that
travel downstream, with ky > 0, are clearly visible. The presence of waves in the
spanwise spectrum, coupled to its symmetry, implies that the spanwise waves
travel both towards the left and the right of the channel. Upstream-traveling
waves are not clearly visible in the streamwise spectra. The waves in spanwise
direction are not very clearly visible either, because they too predominantly are
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Figure 7.4 — Frequency-wavenumber spectra Eyy(ky, ω) for active-
grid-generated turbulence with (a) protocol (20opt) and (b) protocol
(15opt). Once more the dotted lines represent the mean-stream ve-
locities of 22 and 17 cm/s, respectively, and the solid lines correspond
to the Doppler-shifted dispersion relation.

associated with low frequencies.
Figure 7.4 shows the spectrum Eyy(ky, ω) from streamwise measurements

for turbulence generated with the active grid, with lower mean-stream velocities
of 0.22 m/s and 0.17 m/s, respectively, and the accordingly modified forcing
protocols (20opt) and (15opt), listed in table 3.2. Now, a branch of upstream-
traveling waves has become visible. It is clear that gravity-capillary waves
are traveling on top of the free surface, and that they travel in all directions
across the surface. It is not unreasonable to suspect that waves measured at
a downstream location are generated at the grid and then advected to the
measurement location. However, the fact that we also see waves that travel
upstream and in the spanwise direction is an indication that this is not the
case. The waves we see are not generated directly by the grid, but are generated
locally. This will become more clear in section 7.2, where a closer look is taken at
isotropy. The reason why upstream-traveling waves are practically invisible for
higher mean-stream velocities is quite obvious. The minimum phase-velocity
of gravity-capillary waves is approximately 23 cm/s. Except for very short
waves (shorter than λ ≈ 1 cm) both the phase- and group velocity vary only
slowly with the wavelength. For the turbulence with a mean stream velocity
of 27 cm/s, as well as for turbulence with a mean-stream velocity of 22 cm/s,
shown in 7.4 (a), most of the upstream-traveling waves are practically stationary
in the frame of reference of our measurement technique. Hence, they primarily
lead to contributions in the streamwise spectra at very low values of ω, close to
the lower limit of the frequency range in the measurements.

The branches in the streamwise spectra that correspond to the mean-stream
velocity show that, in addition to waves, some of the surface deformations are
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Figure 7.5 — Frequency spectra for turbulence generated with the
active grid, for three different mean-stream velocities and accordingly
modified forcing protocols. (a) Exx(f) and (b) Eyy(f).

advected with the mean-stream velocity. These deformations are a direct sur-
face signature of the sub-surface turbulence. These are the most likely sources
of the waves.

Having seen that part of the surface consists of waves, it is quite tempting
to interpret the frequency spectra shown in figure 7.5 in terms of waves. The
frequency spectra Exx all have a relatively broad peak around roughly the same
frequency, 4.5 Hz for 0.27 m/s and 5.5 Hz for 0.17 m/s, for the cases (25opt)
and (15opt), listed in table 3.2 on page 43.

Let us further assume that the Exx spectra are mainly sensitive to waves
traveling in the x-direction, which are unaffected by Doppler-shifts. Then these
frequencies may be associated with gravity-capillary waves with wavelengths be-
tween 6 (15opt) and 8 cm (25opt) and phase-velocities between 32 (15opt)
and 36 (25opt) cm/s. These waves should also be visible in the Eyy spec-
tra. If we also assume that the Eyy spectra are dominated by waves in the
y-direction, the waves identified in Exx should come with a Doppler-shift. Con-
sequently, in the stream-wise frequency spectrum downstream-traveling waves
with a wavelength λ of 6 cm and a matching phase-velocity vf = 31 cm/s will
appear around (v0 + vf )/λ ∼ 8 Hz, while upstream-traveling waves will appear
around (vf − v0)/λ ∼ 2 Hz. Similarly, waves of 8 cm in length traveling on top
of turbulence generated with protocol (25opt) will show up at around 8 Hz
and 1 Hz, respectively. The corresponding spectra of the streamwise slope, in
figure 7.5 (b) indeed show maxima approximately around these frequencies.

Of course, this argument can only be semi-quantitative. If indeed the
sources are distributed uniformly over the surface, the Doppler effect will be
more complicated. This issue will be addressed in section 7.3.



7.1 | Spectra and correlations in time and space 127

0 0.1
0

0.01

0.02

0.03

0.04

-0.5

0

0.5

t (s)                                   

x 
(m

) 
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

(a)

0 0.1
0

0.01

0.02

0.03

0.04

0

0.5

t (s)                                   

y 
(m

) 
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

(b)

0 0.1
0

0.01

0.02

0.03

0.04

0

0.5

t (s)                                   

x 
(m

) 
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

(c)

0 0.1
0

0.01

0.02

0.03

0.04

0

0.5

t (s)                                   

y 
(m

) 
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

(d)

0 0.1
0

0.01

0.02

0.03

0.04

-0.2

0

0.2

0.4

t (s)                                   

x 
(m

) 
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

(e)

0 0.1
0

0.01

0.02

0.03

0.04

-0.2

0

0.2

0.4

t (s)                                   

y 
(m

) 
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

(f)

Figure 7.6 — Space-time correlation functions of the surface slope
for turbulence generated with the active grid, for three different mean-
stream velocities, v0 = 0.27 m/s, 0.22 m/s and 0.17 m/s, respectively,
and accordingly modified forcing protocols (25opt), (20opt), and
(15opt). (a) Cxx(rx, 0, τ) and (b) Cyy(0, ry, τ) for protocol v0 =
0.27 m/s, similarly (c) and (d) for 0.22 m/s, and (e) and (f) for 0.17
m/s. The (hand drawn) lines in the streamwise correlation functions
correspond to structures traveling across the surface with velocities
v0 ± vf , where vf is approximately 0.37 m/s. In the spanwise corre-
lations, which are symmetric, similar lines are shown with velocities
±vf , where vf is close to 0.4 m/s.
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7.1.1 Correlation functions

The space-time correlation functions show a complementary view. In general,
correlation functions emphasize the large energetic structures. In figure 7.6
we show Cyy(0, ry , t) and Cxx(rx, 0, τ) for the surface slopes above active-grid-
generated turbulence at three different mean flow velocities (and turbulence
intensities). In the measured graphs, clear structures can be seen which appear
to move with a constant velocity. These velocities were traced (by hand) in
all three cases. The streamwise correlation functions Cyy(0, ry, t) show a ridge
corresponding to velocities v0 ± vf , where vf ≈ 0.37 m/s in all three cases. The
correlation functions Cxx(rx, 0, τ) (the spanwise slope measured in the spanwise
direction), shown in figure 7.6 (a), (c), and (e), are symmetric relative to rx = 0.
It is tempting to associate the structures in these correlation functions with
waves traveling in the spanwise direction with a velocity close to 0.4 m/s.

If it is true that the surface shape is marred by waves with a wavelength
λ ≈ 8 cm, this wavelength is perhaps associated with the integral scale of the
turbulence. We can test this by comparing turbulence, with approximately the
same flow velocity, but different types of forcing. We are going to compare
static-grid-generated turbulence (25stat) with the active grid with two dif-
ferent protocols, (25ran) and (25opt). The turbulence properties are listed
in table 3.2. The corresponding frequency spectra are shown in figure 7.7.
For the active-grid generated turbulence with protocols (25opt) and (25ran),
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Figure 7.7 — Frequency spectra for turbulence generated with three
different types of forcing: the active grid with protocols (25opt) and
(25ran) and the static grid. (a) Exx(f) and (b) Eyy(f).

the maxima in the spectrum of the spanwise slope, corresponding to the most
energetic waves on the surface, lie at approximately 4.5 Hz, corresponding to
waves with a wavelength of 8 cm. The integral scales of the turbulence for these
cases are, respectively, 8.5 cm and 6.5 cm (see table 3.3). For the static grid,
the maximum in Exx(f) lies at a frequency of 8.4 Hz. This corresponds to a
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smaller wavelength of approximately 3 cm, which agrees well with decreased
integral length-scale of the turbulence in this case: L = 2.6 cm.

7.1.2 The surface spectrum

Using the scanning device the surface wavenumber spectrum can now also be
measured directly. The longitudinal spectra Exx(kx) and Eyy(ky) for differ-
ent mean velocities – v0=0.27 m/s, 0.22 m/s, and 0.17 m/s with accordingly
modified protocols (25opt), (25ran), and (25stat) – are shown in figure 7.8.
Regrettably, however, the length of the scan line is smaller than the integral
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Figure 7.8 — wavenumber spectra for turbulence generated with the
active grid, for three different mean-stream velocities and accordingly
modified forcing protocols. (a) Exx(kx) and (b) Eyy(ky).

length-scales (it is approximately the same as the integral scale of the turbu-
lence generated with the static grid), so that the dominance of waves with
wavelengths equal to the integral scales cannot be tested directly.

Remarkably, for relatively large wavenumbers the spectra are very similar,
despite the different forcing. They show a scaling region with a scaling exponent
of approximately -6.5, albeit over a relatively limited wavenumber range. This
scaling region is only present for wavelengths that are smaller than 17 mm.
This corresponds to the scale below which capillary forces start to dominate
the balance of forces at the surface.

In both frequency and wavenumber spectra, the noise levels are different
for different experiments. This is most likely caused by PIV tracer particles in
the water. As was explained in chapter 6, tracer particles that move through
the scanning beam are a major contributor to noise. The experiments with the
active grid with protocols (25opt), (20opt), and (15opt) were performed on
the same day. Figure 7.5 shows that as the mean-stream velocity increases and,
consequently, more particles move through the scanning beam, the noise level
increases. The noise levels in the spectra in figure 7.7 are difficult to compare,
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since several months passed between these measurements. During this time,
the water in the channel was replaced several times.

7.2 Isotropy

As already stated before, stirring a flow with an active grid provides control
over the isotropy of the produced turbulence. We are therefore in the unique
position to see how (an)isotropy of the sub-surface turbulence is expressed in
the (an)isotropy of the surface wrinkles above it.

Three flows have been generated with a varying degree of anisotropy. Case
(i) is static-grid-generated turbulence with a mean-stream velocity of 29 cm/s.
In chapter 3 and chapter 4 it was shown that this was isotropic in horizontal and
vertical (x=0) planes (see, for instance, figure 4.21 (b)). Case (ii) is turbulence
generated with protocol (25opt). This turbulence was shown to have slight
anisotropy (figure 4.21 (a)). Finally, case (iii) is turbulence generated with the
active grid and protocol (25ran). This is very anisotropic (figure 4.20).

In chapter 5 it was explained how anisotropy of the surface slope field can
be quantified by using the spatial correlation functions. Briefly, all correlation
functions Cxx(rα), Cyy(rα), and Cxx(rα) should be independent of the direction
of rα. Furthermore, isotropy relations were derived that link the longitudinal
to the transverse correlations. The surface scans allow measurements of four
correlation functions: Cxx(rx) and Cyy(rx) from a spanwise scan, and Cxx(ry),
Cyy(ry) from a streamwise scan. These four functions, for both cases (i) and
(ii) are shown in figure 7.9. The corresponding correlation functions for (iii),
are shown in figure 7.10. For both case (i) and (ii), the transverse correlation
function indeed is practically independent of the direction. For case (i), the
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Figure 7.9 — Spatial correlation functions (a) for case (i), isotropic
turbulence generated with the static grid, and (b) for case (ii), the
active grid with protocol (25opt).
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Figure 7.10 — Spatial correlation functions for case (iii), anisotropic
turbulence generated with the active grid with protocol (25ran).

isotropic turbulence, the longitudinal correlation functions are very similar as
well, but for the slightly more anisotropic turbulence in case (ii ) they begin to
differ for separations larger than 2 cm. Figure 7.10 shows corresponding cor-
relation functions for the anisotropic turbulence in case (iii). In this case the
longitudinal correlation functions measured in spanwise and streamwise direc-
tions start to deviate for even smaller separations and the transverse correlation
functions differ as well.

In chapter 5 the relation between the transverse and longitudinal surface
slope correlation functions was derived for an isotropic surface slope field. Fig-
ure 7.11 shows the result of applying this relation, equation (5.51), to the sur-
face, for all three forcing conditions considered here. We compare the longi-
tudinal correlation function, found from applying the isotropic relation to the
measured transverse correlation function, to the actually measured longitudinal
correlation function. This is done for both the spanwise and streamwise mea-
surements. For case (i), shown in figures 7.11 (a) and 7.11 (b), respectively, the
correlation functions overlap. This confirms that the surface in this case indeed
is isotropic. For the nearly isotropic turbulence in case (ii), the surface is also
reasonably isotropic, although the correlation functions for the spanwise mea-
surement, shown in figure 7.11 (c), deviate for separations larger than roughly
3 cm. For case (iii), the anisotropic turbulence, the surface too is anisotropic,
as evidenced from figure 7.11 (e). For the spanwise measurement, the measured
longitudinal correlation function and the correlation function calculated from
the isotropic relation are very different.

We come to the remarkable conclusion that the waves do not only travel in
all directions, but that — provided that the turbulence far below the surface is
isotropic — the surface is in fact isotropic as well. Furthermore, the isotropy of
the surface wrinkles follows that of the turbulent velocity fluctuations beneath
the surface, since the surface shape become anisotropic if we change the forcing
protocol such that the sub-surface turbulence becomes anisotropic. This is
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Figure 7.11 — Comparison of the measured longitudinal correla-
tion function with the longitudinal correlation function derived from
equation (5.51), for spanwise (left column) and stream-wise (right col-
umn) measurements. (a) and (b): case (i), isotropic turbulence. (c)
and (d): case (ii), slightly anisotropic turbulence, and (e) and (f):
case (iii) anisotropic turbulence).
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remarkable, because we have also shown that the link between the surface and
the sub-surface turbulence is not very strong. Finally, the isotropy of the surface
in our experiment proves conclusively that the observed surface wrinkles are not
just caused by the active grid and merely advected downstream, but are a true
consequence of the turbulence.

7.3 Synthetic surfaces

The overall image that emerges from our experiments is that waves are emitted
by sources that emanate from events in the sub-surface turbulence, and that are
distributed randomly over the surface. All sources move with the mean velocity.
For each of these sources, the Doppler-effect will be different, which complicates
the interpretation of our results. We will therefore analyse a simple model
in which random sources are sprinkled on a moving surface. The geometric
arrangement of this simulation is shown in figure 7.12. The synthetic surfaces

kx
U

U

U

y

x
ky

Figure 7.12 — The geometric arrangement of the simulation. Scans
perpendicular to the convection velocity provide access to Ex,y(kx, ω),
scans in the direction of U provide Ex,y(ky, ω).

consist of N sources at random locations xi(t), i = 1, . . . ,N which are advected
past the line-scan detector by the mean velocity field, yi(t) = U t. At the
measurement location x, the time-dependent surface height is:

h(x, t) =
N∑

i=1

A(ki) ei ki ri(t)+iωi t, (7.1)

with ri(t) = |x − xi(t)| and wave amplitudes A(ki), that follow from an as-

sumed energy spectrum A(ki) = E(ki)
1/2 exp(iφi) with phase angles φi that

are distributed uniformly randomly on the interval [0, 2π]. The frequencies ωi
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Figure 7.13 — Simulated spectrum Eyy(ky , ω) of gravity-capillary
waves traveling on a surface which is moving in the y−direction with
U = 0.17 m/s. (a) Eyy(ky , ω), (b) Exx(ky , ω). The sources emit
waves which satisfy the capillary-gravity dispersion relation. Dashed
lines: blue and red-shifted capillary-gravity dispersion relations kx =
ωd(kx) + Ukx, and kx = ωd(kx) − Ukx, respectively.

and wavenumbers ki are linked through the dispersion relation ωi = ωd(ki),
with ωd(k) given by:

ω2
d = g k +

σ

ρ
k3, (7.2)

with σ the surface tension and ρ the density of water. Therefore, each source i
emits a wave with a single wavenumber k and a frequency ωi. Each wave also
has a phenomenological damping factor exp(−ri(t)/ξi), with ξi = vf/ν k2

i with
the phase velocity vf = ω/ki, and ν the kinematic viscosity. From the surface
height we determine the surface slope field with components hx, hy

hx(x, t) =

N∑

i=1

A(ki) ζi,x ei ki ri(t)+iω(ki) t, (7.3)

with ζi,x = ki (x − xi(t))/ri(t), and analogously for hy. Figure 7.13 shows
the typical spectra of a moving surface with embedded sources. These sources
have wave amplitudes A(k) drawn from the distribution exp(−((k − k0)

2/σ2
k),

with σk = 260 and k0 = 78, corresponding to length-scales of 2.4 cm and 8
cm, respectively. Waves arrive at the point of observation from all directions
and the resulting spectra Exx(ky, ω) and Eyy(ky, ω) are very similar. Although
the transformation of the amplitude distribution of the measured waves to the
measured spectra is highly nontrivial, similar to the measured slope spectra,
the dispersion relation can easily be recognised in figure 7.13. It comes in two
branches, one with the blue-shifted frequency ω + Uky, and one with the red-
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shifted frequency ω−Uky. Figure 7.13 (b) shows the spectrum Eyy(kx, ω) with
the wavenumber perpendicular to the advection velocity.

The simulated spectra involve the dispersion relation in a complicated fash-
ion. Remarkably, all features of these spectra are a trivial consequence of the
geometrical arrangement of the measurement, the spectral distribution of the
sources and the Doppler shift. However, we have no simple way to unfold the
true spectrum of the sources from the measured spectra.

7.4 Conclusions

We have found that the free surface above turbulence consists largely of gravity
capillary-waves. The waves are clearly identifiable from spectra of the surface
slope in time and space, most notably in streamwise spectra. The majority of
the energy present in these ω − k spectra lies in a ridge close to the Doppler-
shifted dispersion relation for linear gravity-capillary waves. A consequence of
this is that much of the surface shape consists of structures that travel across
the surface at velocities different from the the mean stream velocity. Waves that
travel in all directions are also visible in corresponding space-time correlation
functions of the surface slope. Although isotropic turbulence is rare in nature,
the emphasis on isotropic turbulence has a clear benefit in our experiments.
Isotropy allows us to conclusively state that the waves are generated locally by
to the sub-surface turbulence, since spatial correlation functions of the surface
slopes clearly show that, provided that the sub-surface turbulence is isotropic
in horizontal planes below the surface, the surface shape itself is isotropic as
well. This is not only clear from a comparison of longitudinal and transverse
correlation functions measured along lines in different directions. In addition,
the theoretical relation between the longitudinal and transverse correlations
derived in chapter 5 for an isotropic surface holds. Furthermore, if we change
the forcing protocol of the active grid such that the sub-surface turbulence
becomes anisotropic, the surface shape becomes anisotropic as well.

The emergence of these waves is remarkable. In chapter 2 we saw that
resonant wave-growth, akin to resonant growth of surface waves due to turbulent
wind, can really only be expected for fluctuation velocities in the turbulence
that are larger than the minimum phase-velocity of for gravity-capillary waves
(≈ 23 cm/s). However, even for the most intense turbulence generated in
our water channel, the root-mean-square velocity fluctuations are ten times as
small as this (2.3 cm/s), and yet we clearly see waves. Obviously, resonant
wave-growth is not the mechanism by which these waves are formed. We have
also seen that, out of the wide range of length-scales present in our sub-surface
turbulence, only the largest scales have a direct influence on the surface shape.
This is shown most clearly in the wavenumber spectra shown in figure 7.8.
The most energetic waves have wavelengths that correspond to the integral
length-scales of the sub-surface turbulence. A clear indication for this follows
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from comparing the surface above turbulence generated with the active grid
to the surface above turbulence generated with the static grid. The integral
scale of the turbulence in the former case is significantly larger than in the
latter case, as is the dominant wavelength of the waves above the turbulence.
The streamwise space-time spectra show that, in addition to the waves, part
of the surface energy is contained in a ridge at ω/k = v0, with v0 the mean
stream velocity. These deformations are clearly directly connected to the sub-
surface turbulence, and as such are the most likely sources of the waves, instead
of resonant wave-growth. The exact mechanism through which the sub-surface
structures generates waves remains unclear, however. It is possible, as suggested
by Brocchini & Peregrine (2001) that waves are generated around upwellings
in the sub-surface turbulence. Deformations that are directly connected to the
turbulence will be studied in more detail in the next chapter.

On scales that are smaller than 17 mm, below which capillary forces start to
dominate the reaction of the surface to vertical accelerations, the wavenumber
spectra of the surface slope are very similar, irrespective of the intensity of
the sub-surface turbulence. For these wavenumbers, the spectra show a very
steep scaling range, with a scaling exponent of -6.5. This exponent corresponds
to a -8.5 scaling exponent for the associated surface elevation spectra. Dabiri
(2003), for the surface elevation above a turbulent shear layer, measured a
scaling exponent in a frequency spectrum of -10/3. Borue et al. (1995) found a
-4.5 scaling exponent from their numerical simulations above turbulent channel
flow with a no-slip bottom boundary. Clearly, the wave-number spectra above
our more intense homogenous turbulence are far steeper.
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Correlating the sub-surface turbulence

and the surface shape

Although, perhaps naively, one might expect the surface shape above fully
developed three-dimensional turbulence to primarily be determined by attached
vortices, we have already seen a part of the surface shape above turbulence
consists of gravity-capillary waves. These waves travel in all directions across
the surface, radiated by sources moving with the turbulence. We have also
seen that part of the free surface structures move at the same velocity as the
mean-stream velocity. We have postulated that these are structures originating
in the turbulence, and they act as sources for the waves. Such structures could
be attached vortices, but also upwellings and downdraughts, as explained in
chapters 1 and 2.

In order to study what part of the sub-surface turbulence is directly visible
in the free surface shape, we are going to look at cross-correlations between
properties of the sub-surface velocity field and properties of the surface slope
field, by measuring both fields simultaneously and at the same location. Ex-
periments in which methods to measure the surface slope are combined with
simultaneous measurements of the velocity field are rare. The introduction to
chapter 6 gave a number of methods used to measure the surface slope over
a certain area of the surface. Not surprisingly, these methods have also been
combined with PIV. Weigand (1996) combines information on the surface shape
obtained from shadow-graphy with information from PIV and uses this to study
the interaction between a vortex ring and a free surface in order to better under-
stand vortex (dis)connection. As explained in chapter 2, vortex (dis)connection
is the process in which a surface parallel vortex tube, such as part of a vortex
ring under the surface, breaks apart (disconnection), after which the open ends
attach to the free surface (connection). Weigand notes that the locations of
the maxima of the vertical component of vorticity, associated with vortex tubes
that are attached to the free surface, coincide with the positions where the sur-
face elevation is lowest. However, in Weigand’s experiments, the shadowgraphy
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only provides a qualitative image of the surface. Dabiri & Gharib (2001) and
Dabiri (2003) combine the free-surface gradient detector developed by Zhang
& Cox (1994) with simultaneous Digital PIV in horizontal planes just below
the surface. In the situation they study the turbulence is associated with a
vertical shear layer that forms between two adjacent inflows into a channel,
with different velocities. In this shear layer, the majority of the vorticity that
is generated is in the surface-normal direction. Unlike shadowgraphy the free
surface gradient detector does allow a quantitative measurement of the surface
slope and by integration the surface elevation. Because of this Dabiri (2003)
can quantify the correlation between the vertical component of vorticity and
the surface elevation. Inside the shear layer, the width of which is determined
from velocity profiles, they find that the cross-correlation coefficient between
the surface elevation and the surface-normal component of vorticity has a value
≈ 0.2. Dabiri (2003) notes that, due to the nature of the shear layer, in the
frame of reference in these experiments, most of the surface-normal vorticity is
negative. By conditionally correlating only values of negative vorticity below
a threshold (ωz < −1 s−1) and negative values of the elevation, i.e. depres-
sions in the surface, the correlation coefficient is increased to 0.8. Naturally,
the large value of the correlation coefficient is severy biased by the conditional
average. By setting a threshold for the vorticity, Dabiri excludes smaller and
less intense sub-surface vortices. As was already mentioned in chapter 2, Zhang
et al. (1999) have studied the interaction between a vortex-ring and a free sur-
face by means of numerical simulations. They conclude that the correlation
between the surface-normal component of vorticity and the surface elevation is
relatively poor, unless the vortex associated with the depression in the surface
has a cylindrically symmetric distribution of surface-normal vorticity.

To our knowledge, we are the first to perform simultaneous measurements
of the surface shape and the sub-surface velocity field for fully developed three-
dimensional turbulence. The only other quantitative values for the correlation
between properties of the surface shape and sub-surface follow from numerical
simulations by Tsai (1998). He simulated the free surface above turbulence
generated by a horizontal shear, and found that the correlation coefficient be-
tween the absolute value of the wall-normal vorticity and the surface elevation
is (≈ 0.5), which he calls relatively poor. The reason why Tsai takes the abso-
lute value of the wall-normal vorticity is fairly obvious: the average wall-normal
vorticity in the situation he studies is 0, or, in other words, on average, there is
as much positive vorticity as negative vorticity on the surface. However, both
positive and negative vorticity lead to depressions in the surface. Tsai also
shows that the correlation between surface-parallel vorticity, below the surface,
and the surface roughness is larger (≈ 0.7). He concludes that upwellings and
downdraughts, which primarily are associated with surface-parallel vorticity
increase surface roughness.

Measurements of the sub-surface velocity field, by means of PIV, combined
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with our surface scanning technique allow us, for the first time, to measure
the correlation between the vertical component of the vorticity and the surface
elevation for homogeneous and isotropic turbulence. In addition we look at the
correlation between the surface slopes and the velocity field. Before this com-
bined technique was applied to fully developed three-dimensional turbulence,
it was tested by applying it to vortex shedding behind a surface-piercing verti-
cal cylinder. Since in that case, certainly relatively close to the cylinder, most
of the generated vorticity is in the surface-normal direction, we should mea-
sure similar values for the correlation between the surface-normal vorticity and
the elevation as Dabiri (2003) measured for their vertical shear layer. These
measurements can then be compared to measurements above fully-developed
turbulence. By using both the static grid and the active grid — with different
protocols — to generate the turbulence, we can assess the influence of changing
the properties of the sub-surface turbulence.

8.1 Correlation between turbulence and the surface shape

A way to look for a direct link between the sub-surface turbulence and the sur-
face shape is by calculating two-dimensional cross-correlations in space between
properties of the surface and properties of the sub-surface velocity field.

The spatial cross-correlation between the absolute value of the vertical com-
ponent of the vorticity is given by

Ce(x, y) =
〈|ωz(x0 + x, y0 + y)|h(x0, y0)〉

〈ω2
z〉

1

2 〈h2〉 1

2

, (8.1)

where 〈...〉 denotes an average over the surface (x0, y0) and over all registered
surfaces in the experiment. The value of the Ce in the origin, so Ce(0, 0),
would be -1 if the surface elevation and the vertical component of vorticity
were perfectly correlated, since |ωz| is positive and vorticity leads to a negative
surface elevation, i.e. an area that is lower than its surroundings. The value of
−Ce(0, 0) corresponds to the cross-correlation coefficient measured by Dabiri &
Gharib (2001); Dabiri (2003) for vortices in a vertical shear layer and calculated
by Tsai (1998) for numerical simulations of turbulence generated by a horizontal
shear. The values of the cross-correlation coefficient found by these researchers,
≈ 0.2 and ≈ 0.5, respectively, were less than 1, showing probably not a simple
one-to-one link between the surface elevation and vorticity.

The Euler equations, as given by equation (2.32), in a frame co-moving with
the mean stream velocity v0, provide another link between the surface slope
and the sub-surface velocity-field. Starting with the velocity field measured
with PIV, by using the Euler equations we can derive what the corresponding
slope field would be, if the Euler equations were an accurate description of the
link between the surface shape and the velocity field. The surface slope field
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corresponding to the measured velocity field is given by:

∂h

∂x
= −1

g

(
u

∂u

∂x
+ v

∂u

∂y

)

∂h

∂y
= −1

g

(
u

∂v

∂x
+ v

∂v

∂y

)
, (8.2)

where the right-hand-sides are measured with PIV. Hence, as an alternative
to cross-correlating the surface elevation and |ωz| through equation (8.1), we
can also cross-correlate the actually measured surface slope field with the slope
field derived from the velocity field through equation (8.2). Since the Euler
equations have both an x and y- component, we correlate the inner product of
the measured surface slope gradient vector ∇h = hxex+hyey and the advective

acceleration A = Axex + Ayey = (u∂u
∂x + v ∂u

∂y )ex + (u ∂v
∂x + v ∂v

∂y )ey:

Cs(x, y) =
〈Ax(x0 + x, y0 + y)hx(x0, y0) + Ay(x0 + x, y0 + y)hy(x0, y0)〉

〈A2
x + A2

y〉
1

2 〈h2
x + h2

y〉
1

2

∗,

(8.3)
Of course, we already know that, since it is derived for a quasi-stationary flow
with very small vertical velocities and gradients, the Euler equations cannot
account for all of the intricacies of the relation between surface shape and ve-
locity field either. For instance, upwellings and downdraughts have an influence
on the surface shape as well. They are associated with relatively large verti-
cal velocities, and relatively large vertical and tangential vorticity below the
surface.

8.1.1 Taylor’s hypothesis for free-surface turbulence

In equations (8.1) and (8.3) we relate the spatial snapshots of the velocity field
to a spatial snapshot of the surface. However, the surface shape is measured by
means of a scan along a line. The only way to create two-dimensional images
of the surface from these scans, is by means of Taylor’s hypothesis.

In turbulent flows with a relatively large mean flow, Taylor’s hypothesis
can be invoked to turn time-dependent measurements in a stationary point
to space-dependent measurements. The idea is that turbulent fluctuations re-
main frozen while they are advected by the mean flow. In measurements of
the turbulent velocity field with moderate turbulence intensity, vrms/v0 . 0.1,
Taylor’s hypothesis works well (see Gledzer, 1997), and we have successfully
used it in chapter 3. PIV measurements allow us to verify the applicability of
Taylor’s hypothesis to the grid-generated turbulence in our experiments. If it is

∗We have chosen the name Cs for this correlation since it involves the surface Slopes.
The correlation between |ωz| and h is called Ce, because this correlation involves the
surface Elevation.
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Figure 8.1 — (a) The cross-correlation of the velocity fields in two
subsequent PIV snapshots that are taken 67 ms apart (b) Cross-
section of this function in streamwise direction. The turbulence
was generated with the active grid and had a mean flow velocity
of 0.25 m/s. The presence of perceptible ridges along the lines x = 0
and y = 0 is due to peak-locking, associated with the PIV sub-pixel
interpolation algorithm.

applicable, a spatial measurement along a line in the streamwise direction, that
can be obtained from snapshots of the velocity field, can be interpreted as a
time-dependent measurement in point. This can be checked by cross-correlating
subsequent snapshots of the velocity field, of course provided that the displace-
ment of two subsequent images is less than the size of the image. Such a cross-
correlation function (obtained for active-grid-generated turbulence) is shown in
figure 8.1 (a). In our PIV set-up, which is explained in more detail in section
4.5, we capture image pairs at a frequency of 15 Hz. For the experiment shown
in figure 8.1, the mean flow velocity in the water channel was 25 cm/s. Hence,
the displacement of the velocity fields for subsequent frames is 1.67 cm, with
our PIV camera imaging a 5.5 × 5.5 cm2 area of the flow field. The stream-
wise cross-section through the cross-correlation function in figure 8.1 (b) indeed
shows a clear peak for a displacement of 1.67 cm. Evidently, Taylor’s hypothesis
indeed is applicable to the PIV measurements.

The question now is whether we can safely apply Taylor’s hypothesis to the
scans of the free surface above the turbulence. Clearly, Taylor’s hypothesis does
not hold if the turbulent surface changes rapidly while it is advected through
the scanning line by the mean velocity.

In order to arrive at an estimate of the error made, we realize that the true
surface is potential, so that the circulation of the gradient field taken around a
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Figure 8.2 — Error made when assuming Taylor’s frozen turbulence
hypothesis for surfaces above trubulence. (1) Full line: root mean
square circulation δh0(r), dashed line: δh0(r) ∼ r1.7. (2): Root
mean square elevation δhx(r) measured along the scan line. The
inset shows the vector field ∇h(x, y) which was constructed using the
frozen turbulence hypothesis. The error is quantified by the value of
the circulation of ∇h(x, y) taken around squares with sides r. The
turbulence with mean velocity U = 0.25 m/s was generated using the
active grid.

loop of size r,

Γr =

∮

S
∇h(x, y) · s ds

vanishes for any loop S. If the surface is not frozen, Γr will be non-zero with
its absolute value increasing for increasing r. We have computed Γr for our
measured turbulent surfaces; for the loops we chose squares with size r. Because
Γr is a fluctuating quantity with mean zero, we take

δh0(r) =
〈
Γ2

r

〉1/2

as a measure for the error, which can be viewed as an error in the elevation of the
surface measured over a distance r. Registered time series of line measurements
were tiled in non-overlapping two-dimensional surfaces, and the average was
done both over all surfaces and over the area of each surface. We can compare
δh0(r) to the root-mean-square surface elevation

δhx(r) =

〈(∫

r
hx(x) dx

)2
〉1/2

,
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which is measured in the scan direction and is not affected by the frozen tur-
bulence hypothesis. In figure 8.2 we show both δh0(r) and δhx(r) as a function
of r. Both quantities increase algebraically; as expected δh0(r) increases more
quickly than δhx(r) as it embodies the temporal fluctuations of the surface.

Figure 8.2 clearly demonstrates that Taylor’s frozen turbulence hypothesis
works poorly for a free surface above a turbulent flow. On one hand, this is
quite remarkable as it works well for the turbulent velocity field beneath it.
On the other hand, the turbulent velocity field excites capillary-gravity waves
on the surface. As is well known, for water the minimum phase velocity of
capillary-gravity waves is approximately 0.23 m/s, which is comparable to the
mean flow velocity in our experiments.

In hindsight, the breakdown of the frozen turbulence hypothesis is already
illustrated in figure 7.6, where we showed the space-time correlation func-
tions Cyy(y, τ) measured in streamwise scans of the surface. If indeed Tay-
lor’s hypothesis would hold, the correlation function would reduce to the ridge
Cyy = δ(y − τv0), with v0 the mean velocity. This is clearly not the case.
Instead, two ridges can be discriminated, not at the mean velocity, but at ve-
locities v0 ± vf , with vf = 0.37 m/s.

Nonetheless, we will reconstruct two-dimensional surface gradient fields by
invoking Taylor’s hypothesis in the manner illustrated in figure 8.3. Subsequent
spanwise lines in the surface scans are interpreted as neighbouring lines in space.
Obviously, unlike the velocity field PIV obtained from PIV, the two-dimensional
surface gradient field is not an actual snapshot. The presence of waves, that
leads to Taylor’s hypothesis working poorly for the surface, leads to errors in
the constructed field.

P I V  f r a m e s u r f a c e  s c a n

D x = L s

D t  =  L s / v 0

L s

t  =  t is n a p s h o t  a t

s c a n  l i n e  a t

t  =  t i
D y = L s

Figure 8.3 — The location and length Ls of the surface scan-line de-
termines the (square) region of the velocity field obtained with PIV
used for the cross-correlation. The surface scan is extended in stream-
wise (y-) direction by use of Taylor’s hypothesis.

However, that part of the surface shape that is directly connected to the sub-
surface velocity field, actually does move with the mean-stream velocity, while
the changes in the surface slope associated with the waves do not travel with the
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mean-stream velocity and, consequently, are not correlated with the sub-surface
turbulence. Hence, by using Taylor’s hypothesis in this manner, we can find
the link between structures on the surface that do move with the mean-stream
velocity and the turbulence. As such, Taylor’s hypothesis in essence functions
as a filter for correlating structures that travel with the mean velocity.

8.1.2 Calculating the elevation

Calculating the correlation between the vertical component of vorticity and the
surface elevation in equation (8.1) is complicated by the fact that we measure
the surface gradient and not the actual elevation, since it requires the compu-
tation of the elevation h(x, y), now not just along a single line, but over the
entire area over which the cross-correlation is to be calculated†. The gradient
field, as obtained from Taylor’s hypothesis, has components (hx(x), hy(x)). We
calculate the matching elevation h(x, y) by starting with h = 0 for x = (0, 0),
the centre of the field, and then integrating along the paths indicated by the
arrows in figure 8.4 (a). This approach is based on the work by Imaichi Imaichi
& Ohmi (1983). For grid points on the line y = 0 we integrate the slopes in

( 0 , 0 )

( x + D x , y + D y )

( x + D x , y )( x , y )

( x , y + D y )

( a )

( b )

( c )

D y

D x

Figure 8.4 — Calculating the surface elevation from the surface slope
field. (a) integration paths. (b) the surface elevation in point outside
the lines x = 0 and y = 0 follow from integration over two paths. (c)
In the iterative steps, the surface elevation follows from an average
over the slope-integrals from four neighbouring points.

†Calculation of the vorticity is fairly straightforward: ωz = ∂v
∂x

− ∂u
∂y

, where the
velocity gradients are calculated with the mid-point rule, see for instance equation
(4.23).
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x-direction over x, so:

h(x + ∆x, 0) = h(x, 0) + ∆x
hx(x + ∆x, 0) + hx(x, 0)

2
, (8.4)

where ∆x is the grid spacing in the x-direction, and similarly,

h(0, y + ∆y) = h(0, y) + ∆y
hy(0, y + ∆y) + hy(0, y)

2
. (8.5)

where ∆y is the grid spacing in the y-direction. For points not on these lines,
the elevation is based on the average of the integration over two different paths,
as illustrated in figure 8.4 (b):

h(x + ∆x, y + ∆y) =
1

2
{h(x + ∆x, y) + h(x, y + ∆y)}

+ ∆x
hx(x + ∆x, y + ∆y) + hx(x, y + ∆y)

4

+ ∆y
hy(x + ∆x, y + ∆y) + hy(x + ∆x, y)

4
. (8.6)

This reduces the effect of measurement errors in both hx and hy. This inte-
gration is also affected by Taylor’s hypothesis, since it determines the length
∆y of steps taken in the streamwise direction. If Taylor’s hypothesis were to
apply, and without measurement noise, the integral over different paths would
be the same. Averaging over multiple paths is an attempt to cope with the
reconstruction problem. The elevation field that results from this procedure
strongly depends on the position of the starting point. A way to overcome
this is by starting not in (0, 0), but by starting in a point (x0, y0) instead, and
then averaging the result for all possible values of (x0, y0) in the field. This is
computationally expensive, however. Alternatively, to refine this field, we use a
variation of Gauss-Seidel iteration. The elevation field calculated by integrating
along the paths indicated in figure 8.4 (a) and (b) serve as a starting point for
this. We subsequently recalculate the elevations in all grid points in an iterative
procedure. If h0(x, y) is the elevation in a point (x, y) of the field at the start of
each iteration, the elevation at the end is h(x, y) = (1 − a)h0(x, y) + ah′(x, y),
where a is a constant and h′(x, y) follows from integrating the slopes along
paths starting in neighbouring points, as shown in figure 8.4 (c), by means of
equations (8.4) and (8.5). The procedure stops once the relative change in ele-
vation per iteration is below 1/1000 for each point. The constant a determines
the convergence of this procedure. In our case, with a = 0.7, the procedure ends
within 5 iterations. Finally, the average elevation in the field is calculated. This
average is then subtracted from the elevation in each point, thereby setting the
average elevation for each frame to 0.
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8.2 Combining PIV and surface slope measurements

The set-up used for these experiments is an extension of the set-up used for
our surface scans, previously shown in figure 6.3, now combined with the PIV
set-up that was briefly described in section 4.5. The combined set-up is shown
in figure 8.5. The oscillating mirror of the surface scanner is positioned such

P S D

i m a g i n g  l e n s e s

f r o s t e d  g l a s

a c t i v e  g r i d

o s c i l l a t i n g  m i r r o r

H e - N e  l a s e r

P I V  c a m e r a

f i l t e r

P I V
l i g h t s h e e t

f i l t e r
x - a x i s

z - a x i s

y - a x i s

f o c u s i n g  l e n s

Figure 8.5 — Set-up for combined PIV and surface measurements.

that the line along which the slope is measured lies in spanwise direction. In
most of the experiments, the PIV light sheet is positioned as close as possible
(approx. 1 mm) below the surface.

To ensure that the surface scan measurements are not affected by the light
emitted by the PIV laser, an optical laser-line filter is placed in front of the
PSD. Similarly, a line-filter is placed in front of the camera to ensure that light
from the surface scan laser does not influence the PIV data.

The entire optical system is aligned such that the surface scan line lies
close to the centre of the PIV image. The part of the flow-field imaged by
the PIV camera is slightly larger than the area covered by the image of the
surface slope that was derived from Taylor’s hypothesis. Obviously, in order to
calculate the spatial cross-correlation between PIV and the surface scan, the
data from both measurements should be located on the same spatial coordinate
grid. PIV provides the velocity in approximately 60 × 60 points on a 5 × 5
cm2 area, while the surface slope is measured in 152 points on a 5 cm line,
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albeit non-equidistantly due to the harmonic nature of the scan. The grid on
which the PIV data is located is coarser than that of the surface data and,
consequently, it forms the basis for a new joint grid for both measurements. In
order to calculate the desired cross-correlation functions, the surface slope data
is interpolated onto this new grid by means of bi-linear interpolation. The joint

d o t s  f o r  c o o r d i n a t e  

d e f i n i t i o n

r e g i o n  c o v e r e d  b y  

c o r r e l a t i o n  f u n c t i o n

Figure 8.6 — In order to perform the position calibration for PIV
a plate with a dotted pattern is imaged with the PIV camera. To
enable the PIV camera to also see the 5 cm long surface-scan line
the line-filter in front of the camera has been removed. The length of
the scanning line determines the extent of the region where the cross-
correlation function can be calculated. The dots that lie outside of
this line are very faint in the images. This is the result of the camera
diaphragm being set to its smallest setting, which was done to protect
the camera from the scanning laser. For the actual PIV calibration,
the scanning laser was shut down, and the diaphragm was opened.

grid is defined by means of a picture taken with the PIV camera without its
line-filter, such as the picture shown in figure 8.6. In order to take this picture,
a plate with a pattern of white dots against a black background is placed in the
water channel at the height of the PIV light sheet. Since the actual distance
between the dots on the calibration plate is known, the corresponding distance
in the image provides the calibration factor needed to convert pixels in the PIV
images to meters in the actual flow. This same calibration technique was used
in the PIV experiments described in chapter 4.

In order to match the spatial coordinates of the surface scan to those of the
new grid, it is vitally important to define the location of the origin and to align
the orientation of the coordinate axes. The orientation of the axes in the PIV
data is defined by an L-shaped pattern of three larger dots on the calibration
plate. As was explained in section 6.3, the orientation of the coordinate system
in the surface scan data is dependent on the orientation of the axes of the
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PSD. In practice, matching both to our coordinate systems involves rotating
and mirroring the axes. One of the three larger dots on the calibration plate,
indicated in figure 8.6, is used as the origin for the new grid. The plate with the
pattern is placed in the water-channel such that this particular dot lies on the
channel centre-line and at 2 m from the grid. The PIV camera is aligned such
that this dot lies close to the centre of the camera image. After this, the surface
scanning set-up is aligned such that, with the oscillating mirror stationary in
its centre position, the scanning beam is also aimed at this dot. This ensures
that the position of the centre of the scan line corresponds to the origin in
the joint grid. Figure 8.6 was taken with the oscillating mirror switched on.
The projection of the scan line on the calibration plate is clearly visible in the
image. Finally, its length defines the size of the square region in the PIV data
that corresponds to the surface scan.

r e f e r e n c e  s i g n a l
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f s a m p l e  =  3 0 0  k H z

s u r f a c e  t r i g g e r  s i g n a l

f p i v  =  1 . 9 6 / 1 3 1  =  1 4 . 9  H z

t i m i n g  u n i t

m i r r o r

P I V  c a m e r a
+  l a s e r

A D C

P I V  t r i g g e r  s i g n a l

L E D t  =  0

Figure 8.7 — Synchronising the surface scan and PIV measurements.



8.3 | A test case: vortex shedding 149

Not only should the data be located on the same spatial coordinates, but
it should also be obtained at the same time. A given PIV snapshot needs to be
matched to the correct part of the surface scan data and viceversa. Synchroni-
sation is achieved by means of a purpose-built electronic timing unit, already
briefly mentioned before in section 6.3 as part of the surface scanning set-up.
Now, in addition to providing trigger pulses at 300 kHz for the ADC used for
the surface slope scanner, once per 131 scan lines this timing unit triggers the
PIV system. With approximately 2000 scan lines per second this means that
the PIV system is triggered at close to its optimum frequency of 15 frame pairs
per second. When the sampling of the surface scan data is started, a green Light
Emitting Diode (LED)‡ located within the field of view of the PIV camera is
briefly illuminated, thereby setting time t = 0 for both measurements.

The cross-correlation between both measurements will show whether all of
this is done correctly, since its maximum or minimum, depending on whether
we are looking at the correlation Cs (between the slopes and the Euler terms)
or Ce (between |ωz| and h), respectively, should lie in the origin.

8.3 A test case: vortex shedding

Because of the complicated timing and the difficulties in aligning both measure-
ments, we have taken a look at a situation for which we know that sub-surface
vortices are closely linked to surface deformations, namely vortex shedding in
the wake of a surface-piercing vertical cylinder, as shown in the cartoon in
figure 8.8. In chapter 2 we explained that a clear correlation between the sur-

Figure 8.8 — Cartoon of vortices being shed in the wake of a surface-
piercing vertical cylinder.

face elevation and the vertical component of vorticity can be only expected if
the vertical vorticity distributions in the sub-surface structures are cylindrical.
In addition, the two-dimensional relation between the surface slopes and the
Euler-terms of the sub-surface velocity field, equation (2.32), that is at the basis
of Cs is only appropriate for quasi-stationary and columnar vortices.

The wake behind a cylinder has been investigated for more than a cen-
tury. In a wide range of Reynolds numbers the wake is characterised by a

‡The diode is green in order for it to be visible to the PIV camera through its green
line-filter.
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periodic shedding of columnar vortices, with their axes aligned with the cylin-
der axis, and alternating positive and negative vorticity. For this type of flow,
the Reynolds number is usually defined in terms of the cylinder diameter D and
the mean-stream velocity v0, so ReD = v0D/ν. The frequency f at which the
vortices are shed is often non-dimensionalised in terms of the Strouhal number:
St = fD/v0. The shedding frequency and, consequently, the Strouhal number
change as the Reynolds number of the flow changes. An early detailed study of
the effect of the Reynolds number on the wake and the Strouhal number, for a
large range of Reynolds numbers, was done by Roshko (1952), by means of ex-
periments with hot-wire anemometry in a wind tunnel. For 40 < ReD < 150 the
shed vortices form a stable so-called Von Kármán vortex-street. In this range
of Reynolds numbers the Strouhal number increases rapidly with increasing
Reynolds numbers. For 150 < ReD < 300 a number of different instabilities
can occur in the wake, leading to the wake becoming more three-dimensional
and leading to large fluctuations in the Strouhal number. In Roshko’s experi-
ments for ReD up to 104 periodic coherent vortices are still clearly visible in the
wake, but beyond a distance of approximately 50 times the cylinder diameter
the wake becomes fully three-dimensional. In this range of Reynolds numbers,
the Strouhal number is 0.21, practically independent of the Reynolds number.

For our experiments on vortex shedding the grid was removed from the
water channel and a cylinder with a diameter of 1.2 cm was placed in the
measurement section of channel instead. Measurements were done with four
different mean stream velocities, corresponding to ReD = 225, 446, 902, and
1860. The distance between our measurement location and the cylinder was
40 cm, which is 33 times the cylinder diameter, and thus periodic vortices are
clearly visible. Figure 8.9 shows four coinciding images of different properties
of the flow, measured in the wake, for ReD = 1860. The surface slope field in
figure 8.9 (a), derived from the surface scan by means of Taylor’s hypothesis,
shows the presence of a circular area of low slope surrounded by a ring of
high slope: a depression in the surface. The corresponding surface slope field
derived from PIV by means of the Euler equations, equation (8.2), in (b) shows
a similar structure and the vorticity distribution shown in (d) has a clear peak
at the same location. The integrated surface slope field in (c) shows that the
maximum depth of the surface depression is only a few tenths of a millimeter.
Evidently, the structure in question is a vortex, with an associated depression
in the surface above it. For this structure, the surface slope field derived from
the sub-surface velocity field with equation (8.2), is very similar to the actually
measured surface slope field, both qualitatively and quantitatively. This can
be seen in more detail in figures 8.10 (a) through (d), which show a number
of cross-sections through the vortex core, for the vortex shown in figure 8.9.
For these figures, the centre of the core has been defined as the point where
the surface elevation has its minimum. The velocity profiles in spanwise and
streamwise direction, in figure (a), show that the location where the angular
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Figure 8.9 — Images of a vortex in the cylinder wake. (a) Sur-
face slope field obtained from a measured PIV velocity field through
the Euler equations, equation (8.2), with only one in four measured
vectors shown. The grey value represents the slope magnitude. (b)
Corresponding image of the surface slope field obtained from a surface
scan, extended in streamwise direction by means of Taylor’s hypoth-
esis and interpolated on the grid formed by the PIV data. (c) The
absolute value of the vertical component of vorticity, obtained from
PIV. (d) The surface elevation (in meters) obtained from a surface
scan.
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Figure 8.10 — Cross-sections through the snapshots of the vortex
shown in figure 8.9. The point (x, y) = (0, 0) is the point where the
surface elevation has its minimum. (a): Velocity profiles through the
core of the vortex. (b): Profiles of the vorticity. (c): The slope hy(x)
as derived from PIV by means of the Euler equations, equation (8.2),
and as actually measured. (d): Profiles of the elevation through the
core of the vortex

velocity equals zero coincides with the point of lowest elevation, but that the
vortex is slightly asymmetric. Profiles of the vorticity in (b) show that the
vorticity distribution in the vortex is not completely cylindrically symmetric,
and that, consequently, the point of maximum vorticity does not coincide with
the minimum in elevation, as predicted by Zhang et al. (1999). Figure (c) shows
profiles (in spanwise direction) of the slope hy = ∂h/∂y derived from PIV by
means of the Euler equations, equation (2.32), as well as the directly measured
slope, showing that both are broadly the same. Finally, figure (d) shows that
the profiles of the surface elevation in the spanwise and the streamwise direction
are practically identical. Not surprisingly, the vortex is roughly of the same size
as the cylinder.
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Figure 8.11 — Cross-correlation functions in the cylinder wake for
ReD = 1860. (a) and (b): Cross-correlation Cs between the measured
slopes and the slope field derived from simultaneous PIV measure-
ments of the sub-surface velocity field by means of the Euler equa-
tions, equation (8.2). (c) and (d): Cross-correlation Ce between the
surface elevation and |ωz|. Note that in (c) the vertical scale has been
inverted in order to better show the minimum.

The cross-correlations Cs and Ce, averaged over 800 subsequent frames, for
this same experiment are shown in figure 8.11. The correlation Cs between the
slopes and the Euler terms, shown in figure 8.11 (a), has a distinctive peak with
a height of close to 0.5, at (x, y) = (0, 0). This can also clearly be seen in the
corresponding contour plot in figure (b). Similarly, the correlation between the
elevation and vorticity, correlation function Ce in figure (c) has a distinctive
negative peak with a depth of close to 0.5, with the corresponding contour
image shown in (d). That the peaks are located around (0, 0) demonstrates
that alignment of the grids of both measurements was successful and that the
synchronisation works as well. Let us emphasise that the correlations involve
two-dimensional surfaces that were constructed from line measurements. In
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figure 8.11 the correlation peaks have a circular cross-section only if we choose
the convection velocity needed for this construction equal to the mean flow
velocity.

The size of both peaks clearly suggests a fairly strong correlation between
the measured properties. However, the peak value also depends on the pa-
rameters used for PIV. In chapter 4 we have seen that velocity gradients and
vorticity that can be derived from PIV measurements depend on the PIV in-
terrogation window size, the density of the grid, and the radius of optional
Gaussian filtering.

Briefly, the effect of both the finite size of the interrogation window and
the extent of the Gaussian velocity filter is a spatial filtering of the velocity
field. Decreasing the size of the interrogation windows increases the spatial
resolution. Decreasing the size also leads to an increase in the percentage of
bad vectors, and in practice this determines the minimum window size. In our
experiments, as well as those in chapter 4, we use interrogation windows of
32×32 pixels, which corresponds to an area of 2×2 mm2 in the actual flow, and
we use 50 % overlap between neighbouring windows. With these settings, we
found that the number of spurious vectors still lies below 1%. A final parameter
that can be chosen is the radius of the Gaussian filter, as defined in equation
(4.41). It is clear that the cross-correlations we are concerned with here are also
be influenced by the filtering. We expect that if the correlation between the
velocity field and the surface were to be perfect, the actually measured correla-
tion would increase with increasing spatial filter size, would reach a maximum,
and would then start to decrease again, as the filter size becomes larger than
the size of the vortices. Figure 8.12 shows how the peak values Cs(0, 0) and
Ce(0, 0) of the cross-correlation functions, depend on the chosen value of σ
for the Gaussian weighted averaging, for two different Reynolds numbers. For
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Figure 8.12 — Peak value of the cross-correlation functions for the
slopes (Cs) and the elevation (Ce) as a function of the radius of the
Gaussian filter used to filter the PIV results.



8.4 | Grid-generated turbulence 155

both Reynolds numbers, Cs(0, 0) has its maximum value for σ=7 mm, which
is close to the radius of the cylinder. Hence, the results shown in figure (8.11)
have been obtained from Gaussian averaging the velocity field with σ=7 mm.
Table 8.1 lists the peak values found for σ=7mm for three highest Reynolds
numbers in our experiments. The table shows that, as the Reynolds number
increases, the correlation we measure becomes stronger. For the fourth and
lowest Reynold number in our experiments, ReD = 225, the correlation func-
tions no longer showed any clear peaks, primarily as a result of noise. The
surface deformations in that case are too small to still be picked up in outr
surface scan. Clearly, despite the difficulties in quantitatively interpreting the

Table 8.1 — Peak values of Cs and Ce as a function of the Reynolds
number for vortex shedding. The values of ReD follow from the mean-
stream velocity measured in the experiment by means of PIV.

ReD Cs(0, 0) Ce(0, 0)

446 0.14 -9.3·10−2

902 0.24 -0.13
1860 0.54 -0.51

cross-correlation functions, as the Reynolds number increases and the vortices
in the wake become stronger, their surface signature becomes more and more
visible and the correlation between the surface shape and sub-surface velocity
field becomes stronger.

However, the most important conclusion that can be drawn from these
results is that the difficult alignment of both measurement techniques as well as
the synchronisation is successful. We are capable of simultaneously measuring
both the surface shape and the sub-surface velocity field at the same location,
and can calculate cross-correlations between properties of the surface and the
sub-surface velocity field.

8.4 Grid-generated turbulence

Having seen that the synchronisation and alignment can be done successfully,
we can now do similar experiments for grid-generated turbulence. In order to
be able to compare the turbulence results to those of the vortex-shedding, here
too we chose σ=0.7mm.

Figure 8.13 shows measured cross-correlation functions Cs and Ce for active
grid-generated turbulence with a mean-stream velocity of 25.7 cm/s and pro-
tocol (25opt). Even though the correlation functions are not as well-behaved
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Figure 8.13 — Cross-correlation functions for active-grid-generated
turbulence with protocol (25opt). (a) and (b): Cross-correlation Cs

between the measured slopes and the slope field derived from simulta-
neous PIV measurements of the sub-surface velocity field by means of
the hydrostatic balance, equation (8.2). (c) and (d): Cross-correlation
Ce between the surface elevation and |ωz|. Note that in (c) the ver-
tical scale has been inverted in order to better show the minimum.
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Figure 8.14 — Peak value of the cross-correlations function, (a)
Cs and (b) Ce, as a function of the width of the Gaussian filter.
The active-grid-generated turbulence, with a mean-stream velocity
of 0.257 m/s, was generated with protocol (25opt). The turbulence
generated with the static grid had a mean-stream velocity of 0.174
m/s.

as the corresponding correlation functions for vortex shedding, shown in figure
8.11, especially towards the edges, they still show a clear peak at the origin.

In the previous section, we have seen that the peak-value of the cross-
correlation function can be influenced by changing the value of σ in the Gaussian
averaging of the velocity field. Figure 8.14 shows the influence of σ on the peak
values for active-grid-generated turbulence, as well as for turbulence generated
with the static grid. Apart from the fact that the peak values are much smaller,
the general trend is the same as that for vortex shedding shown in figure 8.12.

Figure 8.15 shows cross-correlation functions for active grid-generated tur-
bulence with two lower mean stream velocities, and with accordingly modified
forcing protocols. These correlation functions are broadly the same as those
shown in figure 8.13, showing that, as the turbulence becomes weaker and,
accordingly, the surface deformations become smaller peaks are still clearly vis-
ible near the origin. As emphasised before, the use of reconstructed surfaces
(through Taylor’s hypothesis) filters structures that move with the mean flow
velocity. From the rotation symmetry of our measured correlation peaks we
learn that the measured correlations indeed gauge these structures. Surface
structures which do not move with the mean flow, such as gravity-capillary
waves, would spoil this correlation.

The values found for the active grid, corresponding to the correlation func-
tions shown in figures 8.13 and 8.15, as well as for static-grid-generated turbu-
lence, are listed in table 8.2. Generally, with the exception of the static grid
generated turbulence, similar to vortex shedding, an increase in mean-stream
velocity, and correspondingly an increase in the grid’s mesh Reynolds number
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Figure 8.15 — Cross-correlation functions between the surface and
the sub-surface velocity field for active-grid-generated turbulence: (a)
Cs and (b) Ce for a mean-stream velocity of 16.6 cm/s and forcing
protocol (15opt), (c) Cs and (d) Ce for a higher mean stream ve-
locity of 22.1 cm/s and forcing protocol (20opt).
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Table 8.2 — Peak values of Cs and Ce for different forcing condi-
tions. The turbulence statistics for the active-grid generated turbu-
lence, measured at 10 cm below the surface by means of LDV are
listed in table 3.2. The velocities listed here were measured by means
of PIV, just below the surface.

v0 (m/s) vrms (m/s) Cs(0, 0) Ce(0, 0)

static 0.174 5.4·10−3 3.0·10−2 -2.5·10−2

15opt 0.257 1.6·10−2 8.4·10−2 -4.3·10−2

20opt 0.212 1.4·10−2 6.0·10−2 -3.0·10−2

25opt 0.163 1.1·10−2 4.0·10−2 -1.6·10−2

leads to a decreasingly strong link between the surface shape and the sub-surface
velocity field. The peak values are much smaller than the corresponding values
for vortex-shedding, listed in table 8.1.

It is likely that only structures up to a certain depth below the surface
influence the surface shape. In order to study this in more detail, a series of
experiments was done, in which the distance between the light sheet and the
surface was increased from its minimum value of approximately 1 mm up to
more than 2 cm. The peak values of the cross-correlation functions Cs and
Ce, evaluated with similar PIV settings, are shown in figures 8.16 (a) and (b),
respectively. The figure shows that the peak value Cs(0, 0) of the correlation
between the Euler terms and the surface slopes steadily decreases for increasing
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Figure 8.16 — Peak value of the cross-correlation functions Cs

(slopes) and Ce (elevation), for active grid-generated turbulence with
protocol (25opt), as a function of the depth below the surface.
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depth. Although the statistical fluctuations of Ce(0, 0) are large, the overall
trend in figure 8.16 (b) is similar. The correlation between the elevation and the
vertical component of vorticity also decreases for increasing depth. For depths
below 19 mm, the cross-correlation functions no longer show a clear maximum
or minimum. This indicates that the depth of the layer in the turbulence
responsible for deforming the surface, at least for turbulence generated with
this protocol, is approximately 2 cm. In chapter 3 we have measured velocity
profiles as a function of depth by means of Laser-Doppler-Velocimetry at the
same location. These profiles show that within a layer with a depth of a few
cm below the surface, the horizontal velocity fluctuations increase, whereas
the vertical fluctuations decrease. This is most notable in figure 3.13, which
shows that in a layer with a depth of 2 cm the ratio of vrms over wrms, i.e.
of the horizontal fluctuation velocity over the vertical fluctuation velocity is
dramatically increased. This is in agreement with the presence of a source-layer,
first suggested by Hunt and Graham Hunt & Graham (1978) and discussed
before in chapter 2. Apparently, that part of the surface deformation that is
directly associated with the sub-surface turbulence, is primarily connected to
large, pancake-like structures present within this source layer.

8.5 Conclusions

We have combined our existing surface scanning method with PIV, in order to
measure the spatial correlation between the surface shape and the sub-surface
velocity field. The main difficulties in combining these techniques lie in making
sure that the data in both measurement techniques is located on the same grid
and is measured simultaneously. A further difficulty in our measurements is
caused by the fact that the surface scanning technique only provides the slope
along a line. In order to cross-correlate the surface slope measurements with
the two-dimensional images of the velocity field, measured with PIV, the lines
have been extended to two-dimensional images by means of Taylor’s frozen
turbulence hypothesis.

We have tested our procedures in a vortex-shedding experiment and ob-
tained a fairly strong correlation (C ≈ 0.5) between surface elevation and the
absolute value of the vorticity. For similar vortices in a vertical shear layer,
Dabiri & Gharib (2001) and Dabiri (2003) measured a cross-correlation co-
efficient between the vertical component of vorticity, which in their case was
primarily negative, and the surface elevation of ≈ 0.8. For the Reynolds num-
bers we considered in our cylinder wake experiments, the wake is turbulent, but
still shows clear periodic shedding of large vortices. As can be expected from
columnar vortices, we find a clear correlation between the surface slope and the
Euler terms of the sub-surface velocity field. The cross-correlation coefficients
found from this comparison are similar to those between vorticity and the ele-
vation. Directly comparing our results to those of Dabiri et al. is complicated,
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since, unlike Dabiri et al., we did not use any conditions for the minimum mag-
nitude of the vorticity or the elevation. We have also seen that the numerical
value of the cross-correlation coefficient is influenced by the spatial filtering in
PIV, which is not reported by Dabiri et al..

Similar measurements have been performed on grid-generated-turbulence.
The only quantitative information on the cross-correlation coefficients for fully
developed three-dimensional turbulence were found by Tsai (1998), who sim-
ulated turbulence generated by a horizontal shear layer. He found a cross-
correlation coefficient between the magnitude of the vertical vorticity and the
surface elevation ≈ 0.5. The maximum value we found for grid-generated-
turbulence was ≈ 0.04. The cross-correlation coefficient based on the hydro-
static balance was higher, ≈ 0.08.

There is a clear discrepancy between Tsai’s correlation coefficients and the
measured values. Obviously, something is missing in the simulation, and we
conclude that the surface shape is more than a reflection of some property of
the velocity field beneath it. In chapter 7 we have shown that the surface
is wrinkled by gravity-capillary waves that may originate from structures in
the sub-surface velocity field, but that travel with a relatively large velocity
over the surface. These waves would spoil the correlations, and they may be
absent in Tsai’s numerical simulations. A subtle issue in our experimental pro-
cedure is the invocation of Taylor’s frozen turbulence hypothesis to reconstruct
a two-dimensional image from line scans. This procedure favours structures
that travel with the mean flow velocity. However, we believe that our mea-
sured correlations are not affected strongly by this procedure. This was learned
from correlating individual line scans of the surface with lines in the mea-
sured two-dimensional velocity field. Although the statistical fluctuations in
the measured correlations are larger, the maximum correlation coefficient did
not change much.

Tsai (1998) measured an even higher cross-correlation between surface-
parallel vorticity (below the surface) and the surface elevation. He associated
this with up-wellings and downdraughts. Sadly, with our current set-up, we can-
not identify these structures, since we do not have access to the vertical compo-
nent of the velocity, nor the surface parallel components of the vorticity. These
could in principle be accessed by placing the laser sheet vertically in the channel,
instead of parallel to the surface. Such experiments are highly recommended if
this subject is to be further investigated. Another more complicated option is
simultaneously measuring all three components of the velocity in a plane. This
is possible by means of stereoscopic PIV, with a practically unchanged exper-
imental set-up. Measuring all components of the vorticity requires even more
complicated measurements, for instance with simultaneous PIV measurements
in two closely-spaced parallel light-sheets, or with holographic PIV.

Finally, by changing the distance between the surface and the plane in which
we measure the velocity field, we have seen that the correlation disappears below
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a certain depth. This depth corresponds to that of the source-layer, a layer in
which kinetic energy is redistributed from vertical velocity fluctuations into
horizontal fluctuations. The space-time spectra of the surface slope in chapter
7 showed that part of the surface moved with the mean-stream velocity. The
presence of peaks in the cross-correlations clearly shows that these deformations
indeed are directly connected to structures in the turbulence below the free
surface, specifically in the source layer.



9

General conclusions

The main goal of this thesis was to find out what the shape of the free surface
above turbulence reveals about the properties of the sub-surface turbulence.
This was studied by means of detailed experiments in a water channel in which
we measured properties of both the surface shape and the sub-surface turbu-
lence.

In most of the experiments the turbulence was generated by means of an
active grid. Far below the surface and depending on the forcing protocol used to
control the grid, the generated turbulence was a reasonably close approximation
of homogeneous and isotropic turbulence. Straightforward point measurements
of the surface offer insufficient information to understand the nature of the
surface, since due to the Doppler-effect it is impossible to untangle spatial and
temporal information. Hence, we have developed a novel technique to measure
the surface slope with a high resolution in space and time along a line on
the surface. These space-time measurements of the surface shape show the
presence of gravity-capillary waves above the turbulence, that can be identified
through their dispersion relation. Spatial measurements of the surface have
allowed us to measure the isotropy of the surface. While isotropic turbulence is
rare in nature, the choice for isotropic turbulence in our experiments provides
crucial information. We have seen that for turbulence that is isotropic far below
the surface, the surface shape is isotropic as well. Furthermore, if we change
the forcing protocol such that the turbulence becomes anisotropic, the surface
shape becomes anisotropic as well. This shows conclusively that the waves on
the surface are generated not directly by the grid, but locally by the turbulence,
instead.

In previous studies on sub-surface turbulence, other researchers have shown
that deformations of the surface are coupled to low pressure in the cores of
sub-surface vortices, and in experiments on a vertical shear layer (Dabiri &
Gharib, 2001; Dabiri, 2003) as well as in numerical simulations of turbulence
generated by a horizontal shear (Tsai, 1998) have found correlation coefficients
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between the vertical component of vorticity and the elevation of ≈ 0.8 and
≈ 0.5, respectively. In similar experiments, in which we combined our surface
scanning technique with Particle Image Velocimetry, we also find a correlation
coefficient of ≈ 0.5 for the turbulent wake behind a surface-piercing cylinder.
However, although for our grid-generated turbulence a distinct correlation peak
still is visible, the correlation coefficient in that case is significantly smaller:
< 0.1. The most obvious explanation for this discrepancy is the presence of
gravity-capillary waves.

That the turbulence excites waves is somewhat unexpected. Existing theory
on the generation of surface waves by turbulence predicts that they can only
be generated if the fluctuation velocities in the turbulence exceed the minimum
phase-velocity for gravity-capillary waves. In our experiments the fluctuation
velocities are an order of magnitude smaller. The mechanism for the generation
of these waves remains unknown. However, our measurements do show that the
majority of the waves on the surface have wavelengths that are approximately
the same as the integral scale of the sub-surface turbulence and out of the wide
range of scales present in the turbulence, only the largest scales are visible in
the surface shape.
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Summary

Surprisingly little is known about the statistical nature of the shape of a free
surface above turbulence and about how this shape depends on the properties
of the turbulence.
The main focus of this thesis is on experiments in which the statistical prop-
erties of both the surface and the turbulence are measured with a number of
different techniques. The experiments are done in a free-surface water-channel,
in which turbulence is generated with an active grid. This active grid consists of
an array of horizontal and vertical rods through the channel, with small wings
attached to them. The rods are individually driven by electric motors, accord-
ing to a certain forcing protocol, thereby adding energy to the turbulence. A
major advantage of an active grid is that, by changing this protocol, the prop-
erties, such as the intensity and the isotropy, of the generated turbulence can
be changed. These properties were measured by means of Laser-Doppler Ve-
locimetry. The turbulence behind the active grid is much more intense than
turbulence generated by a more common static grid. The maximum Taylor-
based Reynolds number reached with the active grid (at 40 times the mesh size
behind the grid) was Reλ = 256, compared to Reλ = 70 with a similarly dimen-
sioned static grid. Consequently, the active-grid-generated turbulence shows
clear Kolmogorov scaling behaviour over a relatively wide range of scales. The
stronger turbulence also leads to stronger surface deformations.
In order to characterise the shape of the surface, it is essential to measure
the surface shape with a high resolution both in space and time. In order to
achieve this, a novel technique has been developed, based on refraction of a
laser beam that shines through the surface. The deflection of the beam due
to the local surface slope is measured by means of an optical position sensing
device. The beam is swept along a line by means of a rapidly oscillating mirror
(with a frequency of close to 2 kHz). This allows measurements of the surface
slope at multiple points along the line as a function of time. This surface
scanning technique can be combined with Particle Image Velocimetry (PIV),
which provides snapshots of the velocity field and the vertical component of
vorticity in horizontal planes just below the surface. This combination allows us
to simultaneously measure the velocity field and the surface deformations above
it. PIV is based on the cross-correlation of the intensity distributions in images
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of particles suspended in the flow, that are illuminated by a thin laser light sheet.
When applying PIV to turbulence, it is important to realise that the velocity
field that can be obtained with PIV is a spatially averaged representation of
the actual velocity field. The effect this averaging has on measured turbulence
properties is investigated by means of kinematic simulations, in which realistic
turbulent velocity fields, with a prescribed energy spectrum, are generated.
Synthetic particle images derived from these fields are evaluated by means of a
PIV algorithm and the velocity spectrum is calculated. Comparing this to the
prescribed spectrum clearly shows the averaging, and allows us to predict its
influence on other measured turbulence properties.
The turbulence generated by our grid is not strong enough to lead to very
large deformations of the surface. The measured changes in elevation are less
than 1 mm. In that case, somewhat naively, one would expect the surface
deformations to be primarily associated with sub-surface vortices. In the core
of a vortex the magnitude of the vorticity is high, while the pressure is low.
This low pressure causes a dimple in the surface above the vortex. This effect
can, for instance, be seen when stirring a cup of tea or in the wake behind
bridge pillars in a river. Consequently, in simultaneous measurements of the
surface shape and the sub-surface velocity field one would expect to find a
relatively large correlation between the vertical component of vorticity and the
surface elevation. Indeed, our measurements show that relatively strong vortices
in the turbulence do deform the surface. However, the measured correlation
coefficients are low (< 0.1). Spectra of the surface slope in space and time
show that, instead of being connected directly to sub-surface structures, much
of the surface actually consists of gravity-capillary waves, i.e. regular surface
waves. For surface waves, there is a clear relation between their wavelength and
their frequency. This relation can be identified in our spectra. The presence
of these waves is somewhat surprising, since resonant wave growth can only be
expected to occur if the fluctuation velocities in the turbulence are larger than
the minimum phase velocity of the waves (≈ 0.23 m/s), while the measured
fluctuation velocities in our turbulence are an order of magnitude smaller. A
remarkable feature of the waves above the turbulence is that they travel in all
directions across the surface. In fact, provided that the turbulence far below the
surface is isotropic, the surface shape itself is isotropic as well. In other words,
statistically, the waves on the surface are the same in every direction. We
can change this by changing the forcing protocol of the active grid such that
the turbulence becomes anisotropic. In that case the surface shape becomes
anisotropic as well. This is a clear indication that the surface waves are excited
locally by the turbulence. We have found evidence to suggest that the waves are
excited by the largest structures in the turbulence. As a consequence of this,
the surface shape does not reflect the wide range of scales in the sub-surface
turbulence, but instead exhibits waves primarily with wavelenghts close to the
integral scale of the turbulence.



Samenvatting

Er is verbazingwekkend weinig bekend over hoe de statistische eigenschappen
van de vorm van een vrij oppervlak boven turbulentie afhangen van de turbu-
lentie zelf. Het zwaartepunt van dit proefschrift ligt bij experimenten, waarin
de eigenschappen van het oppervlak en van de turbulentie worden gemeten met
een aantal verschillende technieken. De experimenten zijn gedaan in een wa-
terkanaal, waarin turbulentie wordt opgewekt met behulp van een actief rooster.
Dit rooster bestaat uit horizontale en verticale assen die door het kanaal steken.
Aan deze assen zijn vaantjes bevestigd. De individuele assen kunnen onafhanke-
lijk van elkaar worden bewogen met behulp van electro-motoren die volgens een
bepaald forcerings-protocol worden aangestuurd. Door dit roeren wordt de tur-
bulentie sterker en door het aanpassen van het protocol kunnen de eigenschap-
pen van de turbulentie, zoals de intensiteit en isotropie, worden bëınvloed. De
eigenschappen van de turbulentie zijn gemeten met behulp van Laser-Doppler
snelheidsmetingen. Dat de turbulentie achter het actieve rooster intenser is
dan die achter een regulier statisch rooster blijkt onder andere uit het geme-
ten Reynolds-getal gebaseerd op de Taylor lengte-schaal van de turbulentie. De
maximum waarde voor het actieve rooster (op 40 keer de maasgrootte achter het
rooster) is Reλ = 256, terwijl voor een statisch rooster van dezelfde afmetingen
Reλ = 70 werd gemeten. De sterkere turbulentie vertoont duidelijk schalings-
gedrag over een relatief groot schaal-bereik en leidt tot sterkere vervormingen
van het oppervlak.
Om te begrijpen wat er aan het oppervlak gebeurt is het belangrijk om de vorm
van het oppervlak te meten, met een hoge resolutie in zowel de tijd als in de
plaats. Hiervoor is een nieuwe techniek ontwikkeld. De lokale helling van het
oppervlak wordt bepaald aan de hand van de uitwijking van een laserbundel die
wordt gebroken aan het oppervlak. De uitwijking wordt gemeten met behulp
van een zogenaamd optisch position sensing device (een plaats-gevoelige detec-
tor). Een oscillerend spiegeltje laat de bundel snel heen-en-weer zwiepen (met
een frequentie van bijna 2 kHz), zodat de helling als functie van de tijd wordt
gemeten in meerdere punten op een lijn. De oppervlakte metingen kunnen wor-
den gecombineerd met Particle-Image Velocimetry (PIV). Met deze techniek
kunnen moment-opnamen van het snelheidsveld onder het oppervlak worden
gemaakt. Zo kunnen we gelijktijdig de snelheid en de vorm van het opper-
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vlak meten. PIV werkt aan de hand van het correleren van digitale foto’s van
de deeltjes-verdeling in de stroming, waarbij de deeltjes worden verlicht met
een dun laser-lichtvlak. Wanneer PIV wordt toegepast op turbulentie is het
van belang dat een met PIV gemeten snelheidsveld een ruimtelijk gemiddelde
weergave is van het echte snelheidsveld. Deze middelling heeft gevolgen voor
de gemeten eigenschappen van de turbulentie. Dit is nader onderzocht aan de
hand van kinematische simulaties. Hierin worden realistische snelheidsvelden
met een voorgeschreven energiespectrum berekend. Deze vormen de basis voor
synthetische afbeeldingen van de deeltjes-verdeling in de stroming. Deze kun-
nen worden verwerkt met een PIV-algoritme en vervolgens kan het energie
spectrum worden berekend. Een vergelijking hiervan met het oorspronkelijke
spectrum laat de middelling duidelijk zien en maakt het mogelijk de invloed
van de middelling op andere eigenschappen van de turbulentie te voorspellen.
De turbulentie in ons kanaal is niet sterk genoeg om het oppervlak sterk te ver-
vormen. De gemeten variaties in de hoogte zijn minder dan 1 mm. Enigszins
näıef valt in dat geval te verwachten dat vervormingen van het oppervlak vooral
ontstaan als gevolg van wervels onder het oppervlak. In een wervel is de vor-
ticiteit groot en de druk laag. Die lage druk kan ervoor zorgen dat er in het
oppervlak boven een wervel een deukje ontstaat. Op grond hiervan verwacht
je een vrij sterke correlatie tussen de verticale component van de vorticiteit en
de hoogte van het oppervlak. Onze metingen laten inderdaad zien dat sterke
wervels het oppervlak vervormen, maar de gemeten correlatie-coëfficienten zijn
klein (< 0.1). Er is dus meer aan de hand. Spectra van de helling van het
oppervlak in plaats en tijd laten zien dat de vorm van het oppervlak niet direct
gekoppeld is aan de turbulentie, maar voor een groot deel bestaat uit capillaire
zwaartekrachts-golven. Voor dit soort normale oppervlakte-golven is er een
duidelijk verband tussen de golflengte en de frequentie. Deze relatie is terug
te zien in de gemeten spectra van het oppervlak. Dat er golven ontstaan is
enigszins onverwacht. Een voorwaarde voor het resonant groeien van golven is
dat de snelheidsfluctuaties in de turbulentie groter zijn dan de minimum fase-
snelheid van de golven (≈ 0.23 m/s). De door ons gemeten fluctuaties zijn
echter een orde van grootte kleiner. Heel bijzonder is dat de golven in alle
richtingen over het oppervlak reizen. Sterker nog, wanneer de turbulentie ver
onder het oppervlak isotroop is, dan is het oppervlak zelf ook isotroop. Dat
wil zeggen, de statistische eigenschappen van de golven zijn in alle richtingen
hetzelfde. Door het forcerings-protocol van het actieve rooster zodanig te veran-
deren dat de turbulentie anisotroop wordt, wordt het oppervlak ook anisotroop.
Dit toont aan dat de golven lokaal worden aangeslagen door de turbulentie. We
hebben aanwijzingen gevonden dat hierbij vooral de grotere structuren in de
stroming een rol spelen. In de vorm van het oppervlak is niets terug te zien
van de kleinere schalen in de turbulentie. De vorm wordt gedomineerd door
golven met een golflengte die vergelijkbaar is met de integrale lengte-schaal van
de stroming.
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