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Abstract. A promising approach to graph clustering is based on the
intuitive notion of intra-cluster density vs. inter-cluster sparsity. While
both formalizations and algorithms focusing on particular aspects of this
rather vague concept have been proposed no conclusive argument on
their appropriateness has been given.
As a first step towards understanding the consequences of particular con-
ceptions, we conducted an experimental evaluation of graph clustering
approaches. By combining proven techniques from graph partitioning and
geometric clustering, we also introduce a new approach that compares
favorably.

1 Introduction

Clustering is an important issue in the analysis and exploration of data. There
is a wide area of applications as e.g. data mining, VLSI design, computer graph-
ics and gene analysis. See also [1] and [2] for an overview. Roughly speaking,
clustering consists in discovering natural groups of similar elements in data sets.
An interesting and important variant of data clustering is graph clustering. On
one hand, similarity is often expressed by a graph. On the other hand, there is
a growing interest in network analysis in general.

A natural notion of graph clustering is the separation of sparsely connected
dense subgraphs from each other. Several formalizations have been proposed.
However, the understanding of current algorithms and indices is still rather in-
tuitive. As a first step towards understanding the consequences of particular
conceptions, we concentrate on indices and algorithms that focus on the relation
between the number of intra-cluster and inter-cluster edges.

In [3] some indices measuring the quality of a graph clustering are discussed.
Conductance, an index concentrating on the intra-cluster edges is introduced
and a clustering algorithm that repeatedly separates the graph is presented. A
graph clustering algorithm incorporating the idea of performing a random walk
on the graph to identify the more densely connected subgraphs is presented
in [4] and the index performance is considered to measure the quality of a graph
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clustering. The idea of random walks is also used in [5] but only for clustering
geometric data. Obviously, there is a close connection between graph cluster-
ing and the classical graph problem minimum cut. A purely graph-theoretic
approach using this connection more or less directly is the recursive minimum
cut approach presented in [6]. Other more advanced partition techniques involve
spectral information as in [3,7,8,9].

It is not precisely known how well indices formalizing the relation between the
number of intra-cluster and inter-cluster edges measure the quality of a graph
clustering. Moreover, there exists no conclusive evaluation of algorithms that
focus on such indices. In this paper, we give a summary of those indices and
conduct an experimental evaluation of graph clustering approaches. The already
known algorithms under comparison are the iterative conductance cut algorithm
presented in [3] and the Markov clustering approach from [4]. By combining
proven techniques from graph partitioning and geometric clustering, we also
introduce a new approach that compares favorably with respect to flexibility
and running time.

In Section 2 the notation used throughout the paper is introduced and clus-
tering indices considered in the experimental study are presented. Section 3 gives
a detailed description of the three algorithms considered. The graph generators
used for the experimental evaluation are described in Section 4.1 and the results
of the evaluation are summarized in Section 4.3.

2 Indices for Graph Clustering

Throughout this paper we assume that G = (V, E) is a connected, undirected
graph. Let |V | =: n, |E| =: m and C = (C1, . . . , Ck) a partition of V . We call C
a clustering of G and the Ci clusters; C is called trivial if either k = 1, or
all clusters Ci contain only one element. In the following, we often identify a
cluster Ci with the induced subgraph of G, i.e. the graph G[Ci] := (Ci, E(Ci)),
where E(Ci) := {{v, w} ∈ E : v, w ∈ Ci}. Then E(C) :=

⋃k
i=1 E(Ci) is the set

of intra-cluster edges and E \ E(C) the set of inter-cluster edges. The number of
intra-cluster edges is denoted by m(C) and the number of inter-cluster edges by
m(C). A clustering C = (C, V \ C) is also called a cut of G and m(C) the size of
the cut. A cut with minimum size is called a mincut.

2.1 Coverage

The coverage(C) of a graph clustering C is the fraction of intra-cluster edges
within the complete set of edges, i.e.

coverage(C) :=
m(C)

m
=

m(C)
m(C) + m(C)

.

Intuitively, the larger the value of coverage(C) the better the quality of a
clustering C. Notice that a mincut has maximum coverage and in this sense
would be an “optimal” clustering. However, in general a mincut is not considered
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to be a good clustering of a graph. Therefore, additional constraints on the
number of clusters or the size of the clusters seem to be reasonable. While a
mincut can be computed in polynomial time, constructing a clustering with a
fixed number k, k ≥ 3 of clusters is NP-hard [10], as well as finding a mincut
satisfying certain size constraints on the clusters [11].

2.2 Performance

The performance(C) of a clustering C counts the number of “correctly interpreted
pairs of nodes” in a graph. More precisely, it is the fraction of intra-cluster edges
together with non-adjacent pairs of nodes in different clusters within the set of
all pairs of nodes, i.e.

performance(C) :=
m(C) +

∑
{v,w}�∈E,v∈Ci,w∈Cj ,i �=j 1

1
2n(n − 1)

.

Calculating the performance of a clustering according to this formula would
be quadratic in the number of nodes. Especially, if the performance has to be
computed for a sequence of clusterings of the same graph, it might be more
efficient to count the number of “errors” instead (Equation (1)). Maximizing the
performance is reducible to graph partitioning which is NP-hard [12].

1 − performance(C) =
2m (1 − 2coverage(C)) +

∑k
i=1 |Ci| (|Ci| − 1)

n(n − 1)
(1)

2.3 Intra- and Inter-cluster Conductance

The conductance of a cut compares the size of the cut and the number of
edges in either of the two induced subgraphs. Then the conductance φ (G)
of a graph G is the minimum conductance value over all cuts of G. For a clus-
tering C = (C1, . . . , Ck) of a graph G, the intra-cluster conductance α(C) is the
minimum conductance value over all induced subgraphs G[Ci], while the inter-
cluster conductance δ(C) is the maximum conductance value over all induced
cuts (Ci, V \ Ci). For a formal definition of the different notions of conductance,
let us first consider a cut C = (C, V \ C) of G and define conductance φ (C) and
φ (G) as follows.

φ (C) :=






1, C ∈ {∅, V }
0, C /∈ {∅, V } and m(C) = 0

m(C)
min(∑

v∈C deg v,
∑

v∈V \C deg v) , otherwise

φ (G) := min
C⊆V

φ (C)

Then a cut has small conductance if its size is small relative to the density of
either side of the cut. Such a cut can be considered as a bottleneck. Minimiz-
ing the conductance over all cuts of a graph and finding the according cut is
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NP-hard [10], but can be approximated with poly-logarithmic approximation
guarantee in general, and constant approximation guarantee for special cases,
[9] and [8]. Based on the notion of conductance, we can now define intra-cluster
conductance α(C) and inter-cluster conductance δ(C).

α(C) := min
i∈{1,...,k}

φ (G[Ci]) and δ(C) := 1 − max
i∈{1,...,k}

φ (Ci)

In a clustering with small intra-cluster conductance there is supposed to be at
least one cluster containing a bottleneck, i.e. the clustering is possibly too coarse
in this case. On the other hand, a clustering with small inter-cluster conductance
is supposed to contain at least one cluster that has relatively strong connections
outside, i.e. the clustering is possibly too fine. To see that a clustering with
maximum intra-cluster conductance can be found in polynomial time, consider
first m = 0. Then α(C) = 0 for every non-trivial clustering C, since it contains
at least one cluster Cj with φ (G[Cj ]) = 0. If m �= 0, consider an edge {u, v} ∈ E
and the clustering C with C1 = {u, v}, and |Ci| = 1 for i ≥ 2. Then α(C) = 1,
which is maximum.

So, intra-cluster conductance has some artifical behavior for clusterings with
many small clusters. This justifies the restriction to clusterings satisfying certain
additional constraints on the size or number of clusters. However, under these
constraints maximizing intra-cluster conductance becomes an NP-hard problem.
Finding a clustering with maximum inter-cluster conductance is NP-hard as well,
because it is at least as hard as finding a cut with minimum conductance.

3 Graph Clustering Algorithms

Two graph clustering algorithms that are assumed to perform well with respect
to the indices described in the previous section are outlined. The first one itera-
tively emphazises intra-cluster over inter-cluster connectivity and the second one
repeatedly refines an initial partition based on intra-cluster conductance. While
both essentially operate locally, we also propose another, more global method.
In all three cases, the asymptotic worst-case running time of the algorithms de-
pend on certain parameters given as input. However, notice that for meaningful
choices of these parameters, the time complexity of the new algorithm GMC is
better than for the other two.

All three algorithms employ the normalized adjacency matrix of G, i.e.,
M(G) = D(G)−1A(G) where A(G) is the adjacency matrix and D(G) the diag-
onal matrix of vertex degrees.

3.1 Markov Clustering (MCL)

The key intuition behind Markov Clustering (MCL) [4, p. 6] is that a “random
walk that visits a dense cluster will likely not leave the cluster until many of
its vertices have been visited.” Rather than actually simulating random walks,
MCL iteratively modifies a matrix of transition probabilities. Starting from M =
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M(G) (which corresponds to random walks of length at most one), the following
two operations are iteratively applied:

– expansion, in which M is taken to the power e ∈ N>1 thus simulating e steps
of a random walk with the current transition matrix (Algorithm 1, Step 1)

– inflation, in which M is re-normalized after taking every entry to its rth
power, r ∈ R

+. (Algoritm 1, Steps 2–4)

Note that for r > 1, inflation emphasizes the heterogeneity of probabilities within
a row, while for r < 1, homogeneity is emphasized. The iteration is halted upon
reaching a recurrent state or a fixpoint. A recurrent state of period k ∈ N is a
matrix that is invariant under k expansions and inflations, and a fixpoint is a
recurrent state of period 1. It is argued that MCL is most likely to end up in a
fixpoint [4]. The clustering is induced by connected components of the graph un-
derlying the final matrix. Pseudo-code for MCL is given in Algorithm 1. Except
for the stop criterion, MCL is deterministic, and its complexity is dominated by
the expansion operation which essentially consists of matrix multiplication.

Algorithm 1: Markov Clustering (MCL)
Input: G = (V, E), expansion parameter e, inflation parameter r

M ←M(G)
while M is not fixpoint do

1 M ←Me

2 forall u ∈ V do

3 forall v ∈ V do Muv ←Mr
uv

4 forall v ∈ V do Muv ← Muv∑

w∈V
Muw

H ← graph induced by non-zero entries of M
C ← clustering induced by connected components of H

3.2 Iterative Conductance Cutting (ICC)

The basis of Iterative Conductance Cutting (ICC) [3] is to iteratively split clus-
ters using minimum conductance cuts. Finding a cut with minimum conductance
is NP–hard, therefore the following poly-logarithmic approximation algorithm
is used. Consider the vertex ordering implied by an eigenvector to the second
largest eigenvalue of M(G). Among all cuts that split this ordering into two
parts, one of minimum conductance is chosen. Splitting of a cluster ends when
the approximation value of the conductance exceeds an input threshold α∗ first.
Pseudo-code for ICC is given in Algorithm 2. Except for the eigenvector com-
putations, ICC is deterministic. While the overall running time depends on the
number of iterations, the running time of the conductance cut approximation is
dominated by the eigenvector computation which needs to be performed in each
iteration.
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Algorithm 2: Iterative Conductance Cutting (ICC)
Input: G = (V, E), conductance threshold 0 < α∗ < 1
C ← {V }
while there is a C ∈ C with φ (G[C]) < α∗ do

x← eigenvector of M(G[C]) associated with second largest eigenvalue

S ←
{

S ⊂ C : max
v∈S
{xv} < min

w∈C\S
{xw}

}

C′ ← arg min
S∈S
{φ (S)}

C ← (C \ {C}) ∪ {C′, C \ C′}

3.3 Geometric MST Clustering (GMC)

Geometric MST Clustering (GMC), is a new graph clustering algorithm com-
bining spectral partitioning with a geometric clustering technique. A geometric
embedding of G is constructed from d distinct eigenvectors x1, . . . , xd of M(G)
associated with the largest eigenvalues less than 1. The edges of G are then
weighted by a distance function induced by the embedding, and a minimum
spanning tree (MST) of the weighted graph is determined. A MST T implies
a sequence of clusterings as follows: For a threshold value τ let F (T, τ) be the
forest induced by all edges of T with weight at most τ . For each threshold τ ,
the connected components of F (T, τ) induce a clustering. Note that there are
at most n − 1 thresholds resulting in different forests. Because of the following
nice property of the resulting clustering, we denote it with C(τ). The proof of
Lemma 1 is omitted. See [13].

Lemma 1. The clustering induced by the connected components of F (T, τ) is
independent of the particular MST T .

Among the C(τ) we choose one optimizing some measure of quality. Poten-
tial measures of quality are, e.g., the indices defined in Section 2, or combina-
tions thereof. This genericity allows to target different properties of a cluster-
ing. Pseudo-code for GMC is given in Algorithm 3. Except for the eigenvector
computations, GMC is deterministic. Note that, different from ICC, they form
a preprocessing step, with their number bounded by a (typically small) input
parameter. Assuming that the quality measure can be computed fast, the asymp-
totic time and space complexity of the main algorithm is dominated by the MST
computation. GMC combines two proven concepts from geometric clustering and
graph partitioning. The idea of using a MST that way has been considered be-
fore [14]. However, to our knowledge the MST decomposition was only used
for geometric data before, not for graphs. In our case, general graphs without
additional geometric information are considered. Instead, spectral graph theory
is used [15] to obtain a geometric embedding that already incorporates insight
about dense subgraphs. This induces a canonical distance on the edges which is
taken for the MST computation.
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Algorithm 3: Geometric MST Clustering (GMC)
Input: G = (V, E), embedding dimension d, clustering valuation quality

(1, λ1, . . . , λd)← d + 1 largest eigenvalues of M(G)
d′ ← max {i : 1 ≤ i ≤ d, λi > 0}
x(1), . . . , x(d′) ← eigenvectors of M(G) associated with λ1, . . . , λd′

forall e = (u, v) ∈ E do w(e)←
d′∑

i=1

∣∣∣x(i)
u − x(i)

v

∣∣∣
T ← MST of G with respect to w
C ← C(τ) for which quality(C(τ)) is maximum over all τ ∈ {w(e) : e ∈ T}

4 Experimental Evaluation

First we describe the general model used to generate appropriate instances for
the experimental evaluation. Then we present the experiments and discuss the
results of the evaluation.

4.1 Random Uniform Clustered Graphs

We use a random partition generator P(n, s, v) that determines a partition
(P1, . . . , Pk) of {1, . . . , n} with |Pi| being a normal random variable with ex-
pected value s and standard deviation s

v . Note that k depends on the choice
of n, s and v, and that the last element |Pk| of P(n, s, v) is possibly signifi-
cantly smaller than the others. Given a partition P(n, s, v) and probabilities pin
and pout, a uniformly random clustered graph (G, C) is generated by inserting
intra-cluster edges with probability pin and inter-cluster edges with probabil-
ity pout

1. For a clustered graph (G, C) generated that way, the expected values
of m, m(C) and m(C) can be determined. We obtain

E [m(C)] =
pout

2
(n(n − s)) and E [m(C)] =

pin

2
(n(s − 1)) ,

and accordingly for coverage and performance

E [coverage(C)] =
(s − 1)pin

(s − 1)pin + (n − s)pout

1 − E [performance(C)] =
(n − s)pout + (1 − pin)(s − 1)

n − 1
.

In the following, we can assume that for our randomly generated instances
the initial clustering has the expected behavior with respect to the indices con-
sidered.
1 In case a graph generated that way is not connected, additional edges combining the

components are added.
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4.2 Technical Details of the Experiments and Implementation

For our experiments, randomly generated instances with the following values of
(n, s, v) respectively pin, pout are considered. We set v = 4 and choose s uniformly
at random from

{
n
� : 2 ≤ � ≤ √

n
}
. Experiments are performed for n = 100 and

n = 1000. On one hand, all combinations of probabilities pin and pout at a
distance of 0.05 are considered. On the other hand, for two different values pin =
0.4 and pin = 0.75, pout is chosen such that the ratio of m(C) and m(C) for the
initial clustering C is at most 0.5, 0.75 respectively 0.95.

The free parameters of the algorithms are set to e = 2 and r = 2 in MCL,
α∗ = 0.475 and α∗ = 0.25 in ICC, and dimension d = 2 in GMC. As objective
function quality in GMC, coverage, performance, intra-cluster conductance α,
inter-cluster conductance δ, as well as the geometric mean of coverage, perfor-
mance and δ is considered 2.

All experiments are repeated at least 30 times and until the maximal length
of the confidence intervals is not larger than 0.1 with high probability. The
implementation is written in C++ using the GNU compiler g++(2.95.3). We
used LEDA 4.33 and LAPACK++4. The experiments were performed on an Intel
Xeon with 1.2 (n = 100) and 2.4 (n = 1000) GHz on the Linux 2.4 platform.

4.3 Computational Results

We concentrate on the behavior of the algorithms with respect to running time,
the values for the initial clustering in contrast to the values obtained by the
algorithms for the indices under consideration, and the general behavior of the
algorithms with respect to the variants of random instances. In addition, we also
performed some experiments with grid-like graphs.

Running Time. The experimental study confirms the theoretical statements
in Section 3 about the asymptotic worst-case complexity of the algorithms. MCL
is significantly slower than ICC and GMC. Not surprisingly as the running time
of ICC depends on the number of splittings, ICC is faster for α∗ = 0.25 than for
α∗ = 0.475. Note that the coarseness of the clustering computed by ICC results
from the value of α∗.

For all choices of quality except intra-cluster conductance, GMC is the most
efficient algorithm. Note that the higher running time of GMC with quality set
to intra-cluster conductance is only due to the elaborate approximation algo-
rithm for the computation of the intra-cluster conductance value. In summary,
GMC with quality being the geometric mean of coverage, performance and inter-
cluster conductance, respectively quality being an appropriate combination of
those indices is the most efficient algorithm under comparison. See Figure 1.
2 Experiments considering the geometric mean of all four indices showed that incor-

poration of intra-cluster conductance did not yield significantly different results. We
therefore omit intra-cluster conductance because of efficiency reasons.

3 http://www.algorithmic-solutions.com
4 http://www.netlib.org/lapack/

http://www.algorithmic-solutions.com
http://www.netlib.org/lapack/
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a)

GMC ICC MCL

0.4
0.8
1.2
1.6

pin

pout

0.1

1.0 0.1

1.0

b)

(pin, pout) GMC ICC
(0.25, 0.25) 71 102
(0.50, 0.25) 72 103
(0.50, 0.50) 72 73
(0.75, 0.25) 74 101
(0.75, 0.50) 74 78
(0.75, 0.75) 74 73

Fig. 1. Running-time in seconds for n = 100 (a) and n = 1000 (b).

Indices for the Initial Clustering. Studying coverage, performance, intra-
and inter-cluster conductance of the initial clustering gives some useful insights
about these indices. Of course, for coverage and performance the highest values
are achieved for the combination of very high pin and very low pout. The perfor-
mance value is greater than the coverage value, and the slope of the performance
level curves remains constant while the slope of the coverage level curves de-
creases with increasing pin. This is because performance considers both, edges
inside and non-edges between clusters, while coverage measures only the fraction
of intra-cluster edges within all edges.

The fluctuations of the inter-cluster conductance values for higher values
of pout can be explained by the dependency of inter-cluster conductance δ(C)
from the cluster Ci ∈ C maximizing φ. This shows that inter-cluster conduc-
tance is very sensitive to the size of the cut induced by a single small cluster.
Due to the procedure how instances are generated for a fixed choice of n, the ini-
tial clustering often contains one significantly smaller cluster. For higher values
of pout, this cluster has a relatively dense connection to the rest of the graph. So,
in many cases it is just this cluster that induces the inter-cluster conductance
value.

In contrast to the other three indices, intra-cluster conductance shows a
completely different behavior with respect to the choices of pin and pout. Actually,
intra-cluster conductance does not depend on pout.

Comparing the Algorithms. A significant observation when comparing the
three algorithms with respect to the four indices regards their behavior for dense
graphs. All algorithms have a tendency to return a trivial clustering containing
only one cluster, even for combinations of pin and pout where pin is significantly
higher than pout. This suggests a modification of the algorithms to avoid trivial
clusterings. However, for ICC such a modification would be a significant devia-
tion from its intended procedure. The consequences of forcing ICC to split even if
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the condition for splitting is violated are not clear at all. On the other hand, the
approximation guarantee for intra-cluster conductance is no longer maintained
if ICC is prevented from splitting even if the condition for splitting is satisfied.
For MCL it is not even clear how to incorporate the restriction to non-trivial
clusterings. In contrast, it is easy to modify GMC such that only non-trivial clus-
terings are computed. Just the maximum and the minimum threshold values τ
are ignored.
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Fig. 2. The diagrams show the distribution of performance respectively intra-cluster
conductance and the number of clusters for pin = 0.4 respectively pin = 0.75, and pout

such that at most one third of the edges are inter-cluster edges. The boxes are deter-
mined by the first and the third quantile and the internal line represents the median.
The shakers extend to 1.5 of the boxes’ length (interquartile distance) respectively the
extrema. The first two diagrams in 2a) compare the performance values for MCL, GMC
and the initial clustering, whereas the last two compare the number of clusters. The
first two diagrams in 2b) compare the intra-cluster conductance for MCL, GMC and
the initial clustering, whereas the last two compare the number of clusters.

Regarding the cluster indices, MCL does not explicitely target on any of
those. However, MCL implicitly targets on identifying loosely connected dense
subgraphs. It is argued in [4] that this is formalized by performance and that
MCL actually yields good results for performance. In Figure 2a), the behavior of
MCL and GMC are compared with respect to performance. The results suggest
that MCL indeed performs somewhat better than GMC. The performance values
for MCL are higher than for GMC and almost identical to the values of the initial
clustering. However, MCL has a tendency to produce more clusters than GMC
and actually also more than contained in the initial clustering. For instances
with high pin, the results for MCL almost coincide with the initial clustering
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but the variance is greater. ICC targets explicitely at intra-cluster conductance
and its behavior depends on the given α∗. Actually, ICC computes clusterings
with intra-cluster conductance α close to α∗. For α∗ = 0.475, ICC continues
the splitting quite long and computes a clustering with many small clusters.
In [3] it is argued that coverage should be considered together with intra-cluster
conductance. However, ICC compares unfavorable with respect to coverage. For
both choices of α∗, the variation of the performance values obtained by ICC is
comparable while the resulting values are better for α∗ = 0.475. This suggests
that besides intra-cluster conductance, ICC implicitly targets at performance
rather than at coverage. Comparing the performance of ICC (with α∗ = 0.475)
and GMC with respect to intra-cluster conductance suggests that ICC is much
superior to GMC. Actually, the values obtained by ICC are very similar to the
intra-cluster conductance values of the initial clustering. However, studying the
number of clusters generated shows that this is achived at the cost of generating
many small clusters. The number of clusters is even significantly bigger than in
the initial clustering. This suggests the conclusion that targeting at intra-cluster
conductance might lead to unintentional effects. See Figure 2b). Finally, Figure 3
confirms that ICC tends to generate clusterings with many clusters. In contrast,
GMC performs very well. It actually generates the ideal clustering.

(a) (b)

Fig. 3. In 3(a) the clustering determined by GMC for a grid-like graph is shown.
The clusters are shown by the different shapes of vertices. In contrast, 3(b) shows
the clustering determined by ICC. Inter-cluster edges are not omitted to visualize the
clusters.

5 Conclusion

The experimental study confirms the promising expectations about MCL, i.e. in
many cases MCL seems to perform well. However, MCL often generates a trivial
clustering. Moreover, MCL is very slow. The theoretical result on ICC is reflected
by the experimental study, i.e., ICC computes clusterings that are good with
respect to intra-cluster conductance. On the other hand, there is the suspect that
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the index intra-cluster conductance does not measure the quality of a clustering
appropriately. Indeed, the experimental study shows that all four cluster indices
have weaknesses. Optimizing only with respect to one of the indices often leads
to unintended effects. Considering combinations of those indices is an obvious
attempt for further investigations. Moreover, refinement of the embedding used
by GMC offers additional potential. So far, only the embedding canonically
induced by the eigenvectors is incorporated. By choosing different weightings for
the distances in the different dimensions, the effect of the eigenvectors can be
controlled. Actually, because of its flexibility with respect to the usage of the
geometric clustering and the objective function considered, GMC is superior to
MCL and ICC. Finally, because of its small running time GMC is a promising
approach for clustering large graphs.
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