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Experiments on Passive Hypervelocity Boundary-Layer
Control Using an Ultrasonically Absorptive Surface
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Recently performed linear stability analyses suggested that transition could be delayed in hypersonic boundary
layers by using an ultrasonically absorptive surface to damp the second mode (Mack mode). Boundary-layer
transition experiments were performed on a sharp 5.06-deg half-angle round cone at zero angle of attack in the
TS Hypervelocity Shock Tunnel to test this concept. The cone was constructed with a smooth surface around half
the cone circumference (to serve as a control) and an acoustically absorptive porous surface on the other half.
Test gases investigated included nitrogen and carbon dioxide at M, =~ 5 with specific reservoir enthalpy ranging
from 1.3 to 13.0 MJ/kg and reservoir pressure ranging from 9.0 to 50.0 MPa. Comparisons were performed to
ensure that previous results obtained in similar experiments (on a regular smooth surface) were reproduced, and
the results were extended to examine the effects of the porous surface. These experiments indicated that the porous
surface was highly effective in delaying transition provided that the pore size was significantly smaller than the

viscous length scale.

Nomenclature
h = enthalpy, MJ/kg
M = Mach number
P = pressure, MPa
G = heatflux, MW/m?
Re = Reynolds number
St = Stanton number
o = density, kg/m?
i = viscosity,N-s/m>
Subscripts
aw = adiabatic wall
D = holediameter
e = edgecondition
k = roughnessheight
s = slotwidth
tr = transition
x = location on cone measured along surface, mm
0 = stagnationcondition
oo = freestream
Superscript
* = reference condition
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Introduction

EAT loads and forces on hypervelocity vehicles depend crit-

ically on the location of transition from laminar to turbulent
flow. Although significant progress has been and is being made in
the theoretical understandingof transition, it is still one of the most
severe uncertainties in the aerodynamic design of such vehicles.

An extensiveseries of experiments studying boundary-layertran-
sition over a 5-deg smooth surfaced cone has previously been per-
formed in the TS Hypervelocity Shock Tunnel by Germain and
Hornung' and Adam and Hornung.? In addition to capturing a flow
visualization (shadowgraph) image of the boundary-layertransition
process, these experiments determined the dependence of transi-
tion Reynolds number on specific stagnation enthalpy. One of the
main results obtained by Germain and Hornung' was that the transi-
tion Reynolds number correlated with specific stagnation enthalpy
provided that the Reynolds number was calculated at a reference
temperature’ rather than the boundary-layer edge conditions. As
shown by Adam and Hornung,? the reference condition character-
izes the conditions in the boundary layer better than the edge con-
ditions, especially when comparisons are made between flows at
different Mach numbers. These experiments also observed a trend
of delayed transition as enthalpy increased. It is known that acoustic
waves are absorbed by chemical activity, and the delayed transition
was attributed to the increased chemical activity acting as a damp-
ing mechanism on the growth rate of the second mode acoustic
instability waves.

In the absence of large freestream disturbances or surface per-
turbations, transition is caused by the amplification of unstable
boundary-layermodes.* At hypersonicconditions(M > 4), the dom-
inantinstabilitymode in two-dimensionalor quasi-two-dimensional
boundary layers is the so-called second mode or Mack mode.’ In
this mode, freestream acoustic perturbations become trapped in
the boundary layer, grow in amplitude, and eventually cause the
boundary layer to become turbulent. The most strongly amplified
wavelength of these acoustic perturbations is approximately twice
the boundary-layerthickness and propagates with a phase velocity
approximately equal to the boundary-layeredge velocity® This is
entirely different from lower speed flows, where transition is dom-
inated by the Tollmien-Schlichting mode. Linear stability compu-
tations by Johnson et al.” indicated that, at T5 tunnel experimental
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conditions, the most unstable mode had frequencies of the order of
1-3 MHz. Such high frequencies are highly indicative of the sec-
ond mode and confirmed that the Mack mode was indeed the most
strongly amplified mode. These computations also confirmed the
experimental observation that increased chemical activity at higher
enthalpies damped the second mode growth rates and delayed tran-
sition at the T5 tunnel conditions.

Even more desirable than being able to predict the transition lo-
cation would be to control it, specifically to move it downstream.
Inviscid and viscous second mode stability analyses recently per-
formed by Fedorov and Malmuth® and Fedorov et al.>!? suggested
that transition could be delayed in hypersonic flow by using a suit-
ably porous surface that would absorb and dissipate the most unsta-
ble second mode acoustic waves. The porous surface consideredin
the analysis was a surface pitted by equally spaced cylindrical blind
microholes, thatis, holes with closed bottoms, whose size and spac-
ing were determined by the frequencies (or rather, the wavelengths)
of the most unstable mode. The scale of the required porosity at the
high frequenciesof the second mode is extremely fine and would not
prematurely trip the boundary layer by other mechanisms. Note that
the proposed control mechanism is purely passive and that there
is no net flow (suction or blowing) through the holes. This paper
will discuss the details of the experiments performed in the TS5 Hy-
pervelocity Shock Tunnel to test the computational prediction by
Fedorov et al.!® that suitable wall porosity delays transition in hy-
personic boundary layers.

Experimental Objective

The main objective was to test the boundary-layercontrol scheme
by testing a nominal 5-deg half-angle cone with a smooth surface
on one side and the ultrasonically absorbing porous surface on the
other side. In this manner, each experiment was self-contained in
that the smooth surface transition Reynolds number provided a di-
rect baseline for the porous surface results. In addition, these exper-
iments were used to verify agreement with previous data obtained
by Germain and Hornung' and Adam and Hornung,? to test repeata-
bility and to confirm that nonaxisymmetry or angle-of-attackissues
were not affecting the results.

The previous set of experiments and linear stability analyses pro-
vided the basis for the current experimental study. In particular, the
Mack mode was identified as being dominant at TS tunnel condi-
tions, and the proposed control scheme addresses this mode. Fur-
thermore, the transition data from previous experiments provided
important comparison data and served as a checkpoint for the new
results. Finally, Adam and Hornung’s comparison® with flight data
ensured that the experimental results obtained were relevant to ac-
tual future flight vehicles.

Experimental Setup

TS Hypervelocity Shock Tunnel

This series of experiments was performed in the Graduate Aero-
nautical Laboratories, California Institute of Technology, TS5 Hy-
pervelocity Free-Piston Shock Tunnel. In this reflected shock tun-
nel facility, a piston is initially launched by high-pressure air. The
resulting adiabatic compression of a helium-argon mixture bursts a
diaphragm (Ppy.: 2 90 MPa) causing a shock wave to travel into a
shock tube, whose end wall is closed except for the small throat of
the nozzle. The reflected shock from the end wall creates a quasi-
constant pressure reservoir for the subsequent steady expansion
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through the nozzle. Shock speeds of up to 5 km/s can be obtained to
produce nominal Mach 5 flows with a specific reservoir enthalpy of
up to 25 MJ/kg, reservoir pressure of 60 MPa, and reservoir temper-
ature of 8000 K. Typical flow velocities for the presentexperiments
were of the order of 3-4 km/s with typical useful test times ranging
from 1 to 2 ms. Existing shock tunnel diagnostic instrumentation
provided the shock speed and reservoir pressure from which the
freestream conditions were calculated. The stagnationenthalpy was
calculatedby solving the one-dimensionalequilibriumgasdynamics
reflected shock problem using the measured shock speed, the mea-
sured initial shock tube pressure, and room temperature as inputs.
The freestream conditions were calculatedusing a one-dimensional,
inviscid, vibrational equilibrium, chemical nonequilibrium nozzle
code, which used the computed stagnation temperature and mea-
sured stagnation pressure as inputs. Detailed descriptionsregarding
T5 operations and performance may be found in Hornung.!!

Model and Instrumentation
Model Configuration

The modelused for these experiments was a heavily modified ver-
sion of the same model used by Germain and Hornung' and Adam
and Hornung.? The final configuration was a sharp 5.06-deg half-
angle round cone consisting of five pieces with an overall length
of 999 mm. It had a smooth surface over half the cone and the ab-
sorptive porous surface over the other half beginning at 148 mm
from the cone tip (Fig. 1). The aluminum base cone used by Ger-
main and Hornung' and Adam and Hornung® was lengthened by
the cone insert for the purposes of this project. The base cone was
already hollow to allow room for instrumentation, and this aspect
was preserved. An intermediate piece made of stainless steel 304
referred to as the cone tip holder was screwed into this assembly.
The molybdenum cone tip was then screwed into this intermediate
piece and was easily replaceable in the event of excessive blunting
or other damage. Extreme care was taken during the manufacturing
process to minimize the steps at these junctions.

The cone sheet was manufactured by rolling two initially flat
sheets of metal (one perforated, one smooth) to form two longitu-
dinal halves of a cone and then laser fusion welding them along
the seams. Refer to Fig. 2a for a micrograph of the final weld. The
resulting stainless steel cone sheet was fitted over the aluminum
base cone using a thermal interferencefit that took advantage of the
mismatch in thermal coefficients of expansion of the two materials.
This was accomplished by cooling both parts down to 190 K in
special freezers used to store biologicalcell samples. This assembly
technique resulted in the cone sheet being stretched tightly over the
base cone providing the blind microholes for the porous surface and
eliminating any surface imperfections. In addition, it eliminated the
need for any mechanical fasteners that would disturb the boundary
layer. Finally, this attachment method allowed the cone sheet to be
nondestructively removable (and thus reusable) by simply revers-
ing the thermal interference fit process. Note that all surfaces that
were exposed to the flow were made of stainless steel 304, with the
exception of the removable tip, which was made of molybdenum.

The final fully assembled model was placedin a lathe, and indica-
tors were used to verify the geometry of the cone. In particular, the
half-angle of the cone was verified to be 5.06 deg, and the steps at
the two junctions (cone tip/cone tip holder and cone tip holder/cone
sheet junctions) were measured to be less than 0.038 £ 0.006 mm.
Table 1 summarizes the angular distribution of the measured step
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Fig.1 Schematic diagram of the assembled test model from the profile and rear view.
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heights. This was acceptable because previous experiments by
Germain and Hornung' at similar run conditions indicated that
roughnesselements,and stepsas largeas 0.1 mmplacedatthex =76
and 203 mm locations had no measurable effect on the transition
location.

As expected, there were highly localized imperfections along the
welded seams of the cone sheet, even after the thermal interference
fit assembly process. The size of the bumps was approximately con-
stant along the length of the cone such that the local increase in
diameter was about 0.3 mm. Note that this effect was very small.
The cross-sectional diameter at the front edge of the cone sheet
(where the effect was most pronounced) was 26.1 mm, resulting
in the bump height being less than 1% of the local diameter. The
cone tip was sharp with a measured radius of 0.076 ==0.005 mm.
A limited amount of blunting of the tip occurred over the course
of these experiments (blunted radius of 0.130 &= 0.005 mm) due to
the high heat loads at the stagnation point. Studies by Germain and
Hornung' (and confirmed in the present work) indicated that the
effect of this minimal blunting on transition Reynolds number fell
well within the overall error tolerance and, therefore, was not rele-
vant for this series of experiments. New and blunted nose tips were
examined under a microscope and were observed to be perfectly
straight. The most significant imperfection was a small gap that
existed between the cone sheet and the base cone. This gap was
localized near the beginning edge of the cone sheet and was the re-
sult of imperfectrolling/welding of the cone sheet halves. This was
of concern because the gap causes suction through the perforated
sheet during the time it takes the test gas to fill the cavity between
the cone sheet and the base cone. This would, of course, have a
strong stabilizing effect on the boundary layer. After the pressure
equalizes, however, the suction effect would no longer occur. The
maximum gap height was measured to be less than 0.05 mm and
extended no more than 50 mm downstream on the porous side of the
cone only, that is, the affected area extended from approximately
150 to 200 mm as measured from the cone tip along the surface.
The quoted numbers are considered to be conservative estimates
and result in a maximum cavity volume of 0.3 cm?®. The affected

Table 1 Measured step heights® at cone tip/cone tip
holder” and cone tip holder/cone sheet® interfaces

Junction A, Junction B,
Angle, deg mm mm
0 (weld) 0.000 0.025
90 (smooth surface) 0.013 —0.013
180 (weld) 0.013 0.025
270 (porous surface) 0.013 0.038

2All step height measurements are +0.006 mm. Positive quantities
indicate forward facing steps; negative quantities indicate backward
facing steps; angular locations are further defined in Fig. 3.
bJunction A, x =75 mm.

¢Junction B, x =148 mm.

surface area was about 48 cm? resulting in approximately 480,000
holes connecting the gap to the freestream. Conservative estimates
with an assumed cavity volume of 1 cm? indicatedthat it would take
approximately 25 us to fill the gap. This is well within the 0.5 ms
required for the nozzle to start and for steady flow to be established.
Furthermore, data were never taken earlierthan 1.0 ms after the start
of the experiment, which allowed more than sufficient time for the
gap to be filled and the pressure to be equalized. Note that no flow
could enter this gap in the streamwise direction because the front
edge of the cone sheet at the gap location butted solidly against the
back of the cone tip holder. For these reasons, it is felt that the small
gap had no appreciable effect on the results.

Porous Sheet

Asindicatedearlier, the very high frequencies, thatis, small wave-
lengths, of interest necessitated extremely fine porosity. The desired
parameters for the porous surface were determined based on the
estimated wavelength of the most unstable mode. Numerical simu-
lations by Adam'? indicated that the boundary-layerthickness was
approximately 0.5-1 mm (computed at the x =305 and 914 mm
locations); therefore, the most unstable mode had a wavelength of
approximately 1-2 mm. The final porous sheet had 60 &4 pum di-
ameter holes spaced 100 £ 7 um apart in a rectangular grid arrange-
ment. This resulted in approximately 10-20 holes per disturbance
wavelength and an open area (or porosity) of 28%. Because of the
nature of the laser drilling process, the holes were slightly conical
(taper angle of about 0.5-deg) with the small diameter exposed to
the flow. The thickness of the sheet (thus, the depth of the holes)
was 450 um (26 gauge sheet) and followed the Fedorov et al.'”
analysis that the depth of the holes be approximately 30% of the
boundary-layer displacement thickness. The porous surface began
atapproximately 148 mm from the tip of the cone as per the Fedorov
etal. analysis' using the lower branch of the neutral stability curve
for the Mack mode at a frequency of 1 MHz. Refer to Fig. 2b for a
micrograph of the porous surface.

Instrumentation

The model was instrumentedwith 56 Type E flush-mountedcoax-
ial thermocouples of which 52 (26 per side) were actually used to
collect data because this was the maximum number of channels
available on the data acquisition system. The thermocouples were
arranged in a staggered pattern 24.5 mm apart with the first one
located at 255 mm and the last one located at 8§14 mm from the tip.
Figure 3 is a schematic diagram showing the location of the ther-
mocoupleson a developed view of half the cone, that is, the smooth
surface side. The azimuthal lines are drawn at 12.7-mm (0.5-in.)
intervals with the third line located at 165 mm (6.5 in.). The second
line shows the location of the cone tip holder/cone sheet interface
at 148 mm (5.8 in.). The porous surface side had the mirror image
of the same layout. Note that the thermocouples were deliberately
placed as far from the weld as possible, with the closest one being

Fig.2 Magnified image of a) weld joining the porous and solid sheets and b) stainless-steel perforated sheet.
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Fig.3 Schematic diagram showing the locations of the thermocouples on a developed view of half the cone.

placed along the 40-deg ray. This is deemed more than adequate
because shock tunnel experiments by Mee'? in Mach 5 hyperveloc-
ity flow over a flat plate indicated that the spreading half-angle of
turbulent bursts is approximately 3-4 deg.

The small (0.8-mm-diam) and fast-response (1-us) thermocou-
ples were manufactured in-house based on a modified design origi-
nally developed by Sanderson'* and whose performance was tested
in detail by Davis.!® During the shot, the thermocouple signal was
amplified by a factor of 500 and then sampled at 200 kHz. The
sampled voltage levels were converted to temperature using corre-
lations for Type E thermocouples. The heat flux for each thermo-
couple was subsequently computed using a spectral deconvolution
technique'*~'® based on the heat equation for one-dimensional un-
steady heat transfer in a semi-infinite solid.

Results

A total of 29 shots were carried out in nitrogen, and 19 shots
were performed in carbon dioxide. The nitrogen shots were per-
formed with reservoir pressures ranging from 11 to 50 MPa and
specific reservoir enthalpies ranging from 3.0 to 13 MJ/kg. Above
13 MJ/kg, the Reynolds numbers achieved in TS were too low to
observe transition on the cone. The carbon dioxide shots were per-
formed with reservoir pressures ranging from 9.0 to 40 MPa with
specific reservoir enthalpies ranging from 1.3 to 9.0 MJ/kg. The
complete set of data and results is available.'®

Transition Reynolds Number

The transition Reynolds number was determined by examining
the heat transfer traces measured at each thermocouple station. For
each shot, a heat flux level for each thermocouple was obtained by
averaging over a short time period after the nozzle starting process
but before the onset of driver gas contamination and always within
the constant reservoir pressure window.

The heatflux levels were used to produce nondimensionalplots of
Stanton number vs Reynolds number (evaluated at edge conditions)
such as in Fig. 4. The Stanton number was computed as

oo 4%

= Uh 1)

where ¢ is the heat transfer rate, p, is the edge density, U, is the
edge velocity, and h,,, is the enthalpy assuming an adiabatic wall.
The Reynolds number was computed as

Re, = p,U.x/u, 2)

where p, and U, are as before, x is the distance along the surface
of the cone, and g, is the viscosity evaluated at the edge condi-
tions. The viscosity was calculated using a simple code based on

a viscosity model for reacting gases developed by Blottner et al.!”
to determine the viscosity of each species in the gas mixture at the
edge temperature. Coefficients for the model for the different gases
were obtained from Olynick et al.'® When the computed gas compo-
sition at the edge condition was used, the code then used Wilke’s'®
semi-empirical mixing rule to calculate the overall viscosity of the
gas mixture.

In Figs. 4a-4f, each point represents a heat flux value (or Stan-
ton number S?) for the thermocouple at that particular location (or
Reynoldsnumber Re, ). The dark black data points correspondto the
data collected in the current series of experiments, whereas the gray
datapoints correspondto previousresults. The state of the boundary
layer was determined by comparing the experimental results with
theoretical models assuming frozen chemistry. The solid line that
essentially runs through the data points represents the theoretical
value for a frozen, noncatalytic surface laminar boundary layer. The
dashed-dotted and dotted lines represent the expected values for
turbulentboundary layer as computed using semi-empirical models
developed by Van Driest and White/Christoph, respectively. These
models are described in detail by White,”* Adam,'? and Rasheed.'®
Although error bars are not shown in Figs. 4a-4f for clarity, the
uncertainty in the Stanton number was computed based on the un-
certainty in the dimensional heat flux (from £13 to +18%), the
stagnation enthalpy (£8%), the edge velocity (£4%), and the edge
density (£8%). The details of the estimation of these uncertainties
are presented by Rasheed.'® The final uncertainty in the Stanton
number for each thermocouple ranged from about £18 to £22%.

The transition location was determined by first fitting a line
through the data points in the laminar region (the dashed-triple dot-
ted line near the solid line) while enforcing the Reynolds number
Re~" law expected for a zero pressure gradient laminar boundary-
layer. Another line was then fitted through the data points in the
transition region (the other dashed-triple dotted line). The intersec-
tion of these two lines was determined to be the transition Reynolds
number, that is, the onset of transition. Note that, although includ-
ing fewer or more data points in the curve fit for the transition
region changes the slope of the dashed-triple dotted line, it does
not significantly change the intersection with the laminar line. The
uncertainty in the transition Reynolds number was computed by
first determining upper and lower uncertainty bounds for the lam-
inar experimental data fit from the linear regression assuming the
95% confidence level using the small sample T distribution. Al-
though not shown in Figs. 4a-4f for clarity, these upper and lower
uncertainty bounds would be represented as parallel lines above and
below the laminar experimental fit. Similarly, another pair of lines
was drawn above and below the transitional experimental fit. The
intersections of these two sets of upper and lower bounds formed
an error thombus around the transition location. The minimum and
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Fig. 4 Stanton number Sz vs Reynolds number Re, .

maximum vertices (in terms of absissca coordinates) of the error
rhombus were used as the upper and lower uncertainty bounds, and
the average percent error of these two values was used as the esti-
mate for the uncertainty in the transition location. This uncertainty
varied from shotto shot, but it ranged from £3 to =15%, depending
on the slope of the transitional fit. When the additional uncertainty
due to density (£8%), velocity (£4%) and viscosity (£5%) were
factored in, the overall uncertainty in transition Reynolds number
ranged from £11 to =19%, with a median of +13%.

Case 1: Both Sides Laminar

Figures 4a and 4b show plots of Stanton number St vs Reynolds
number Re, obtained from shot 1960, a high-enthalpy shot (p, =
51.5 MPa, hy=12.8 MJ/kg) in nitrogen. Figures 4a and 4b show
that the boundary layer was laminar over the entire length of the
cone for both the smooth and porous surfaces. Furthermore, the
results obtained on the smooth surface are shown to be in excellent
agreement with previousresults obtained by Germain and Hornung!
for essentially the same run condition. Note that the Ref. 1 data
indicate thatthe boundarylayeris justbeginningto transitiontoward
the back of the model, whereas this effectis notevidentin the present

experiment. This is attributed to the slightly higher unit Reynolds
number obtained in Germain and Hornung’s experiments.

Case 2: Both Sides Transitional

Figures 4c and 4d show plots of Stanton number St vs Reynolds
number Re, for shot 1963, which was a midenthalpy shot (py =
45.6 MPa, hy=17.2 MJ/kg) in nitrogen. Figures 4c and 4d show
typical transition behavior with the data following the theoretical
laminar curve at low Reynolds number and moving to the expected
turbulentcurve farther downstream. Figures 4c and 4d show that the
boundary layer on the smooth surface transitions well upstream as
comparedto the porous surfaceand appearsto validatethe prediction
by Fedorov et al.'"” Once again, the Germain and Hornung' data
for a similar run condition is shown for comparison with excellent
agreement as to the transition location.

Case 3: Porous Side Laminar, Smooth Side Transitional

Figures 4e and 4f show plots of Stanton number St vs Reynolds
number Re, obtained from shot 1976, a low-enthalpy shot (p, =
14.5 MPa, hy =5.0 MJ/kg) in nitrogen. In this particular case, the
smooth surface boundary layer transitions roughly at the halfway
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pointon the cone whereas the poroussheetboundarylayeris laminar
all of the way to the end of the cone. This shot clearly demonstrates
the dramatic effect of the porous surfacein delayingboundary-layer
transition. Once again, notice the good agreement with the previous
experiment performed by Germain and Hornung.!

Summary Data

The summary data are presented in the form of plots of Reynolds
number Re;. vs stagnation enthalpy %, (Figs. 5 and 6). The data are
presented in this manner because both Germain and Hornung' and
Adam and Hornung® found a correlation of Reynolds number Re],
with stagnation enthalpy h,, where the transition Reynolds number
(evaluated at reference conditions) is calculated as

Ret = p*U,x, [ 1* 3)

where p* is the density evaluated at the reference condition, U, is
the edge velocity, x,, is the transition location (as defined earlier)
measured along the surface of the cone, and p* is the viscosity
evaluated at the reference condition. In addition, there was reason
to believe that the effectiveness of the porous surface would depend
on hy because calculations by Johnson et al.” in air indicated that
the most unstable mode frequencies varied with .

Nitrogen Shots

Figure 5 gives a summary of the data for the nitrogen shots.
The first observation is that the present experimental results (dark
data points) agree fairly well with the previous results obtained by
Germain and Hornung' (gray data points). The diamonds represent
the Re;. on the porous surface, whereas the squaresrepresentthe Re;.
on the smooth surface for the same shot. The second observation
is that, in all cases, the porous surface delayed transition by a sig-
nificant amount. The open diamonds with an upward-facing arrow
1 indicate that the porous surface boundary layer was laminar to
the very end of the cone. The value plotted assumes that transition
occurred at the last thermocouple, that is, unit Reynolds number
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Fig. 6 Reynolds number Re;. vs iy summary of the carbon dioxide
data.

multiplied by the last thermocouple location. This is not a valid
data point but rather a manner in which to show that the boundary
layer was entirely laminar. The same discussionapplies for the open
square symbols with an 1 for the smooth surface side. The two data
points at 13 MJ/kg are actually open diamonds superimposed on
open squares, with an 1, indicating that both the smooth and porous
surface boundary layers were entirely laminar. The lines are linear
curve fits to help guide the eye (dashed-dotted for porous and solid
for smooth). Note that the porous sheet appears to be less effective
at midenthalpies as compared to low and high enthalpies.

Carbon Dioxide Shots

An analysis similar to that performed for the nitrogen shots was
alsoperformed for each carbondioxide shot. The resultingsummary
plot of Reynolds number Re;. vs h is shown in Fig. 6. Once again
there is fairly good agreement between the present smooth surface
results (dark data points) and those obtained in previous experi-
ments by Adam and Hornung? (gray data points), although there is
much more scatter. Figure 6 shows that the porous sheet (diamonds)
was, in fact, detrimental at higher enthalpies, but was effective at
lower enthalpies with a crossover point at roughly 3.0 MJ/kg. The
diamonds represent the Re;, on the porous surface, whereas the tri-
angles represent Reynolds number Re;. on the smooth surface for
the same shot. The lines are second-order curve fits to help guide
the eye (dash-dotted for porous and solid for smooth).

Resonantly Enhanced Shadowgraph

Further evidence of the effectiveness of the porous sheet is seen
in Fig. 7, which is a resonantly enhanced shadowgraph showing
the boundary-layertransitioning on the smooth surface (top) while
remaining perfectly laminar on the porous surface (bottom). Flow is
left to right and the schematic at the top right indicates the window
position relative to the model. The rectangular boxes in the main
image indicate the location of the magnified images whose left and
right edges are 495 and 615 mm from the cone tip, respectively
(as measured along the surface of the cone). The white line on
the magnified image of the smooth surface was digitally added to
indicate the approximate surface of the model. This shadowgraph
correspondsto shot 2008 (P, =48.2 MPa, hy = 9.8 MJ/kg) and was
obtained by seeding the flow with sodium and tuning the frequency
of the dye laser light source to one of the sodium D lines. The
transition location on the smooth surface identified by the analysis
of the heat transfer data is approximately at the left edge of the
magnified image of the smooth surface. The magnified images were
also used to measure the boundary-layer thickness, and this value
was found to be approximately 1 mm, which is in agreement with
Adam’s computations.'?

Discussion

As already indicated, to validate the effectiveness of the porous
surface, it was necessary to ensure that angle-of-attack or nonax-
isymmetry issues were not affecting the results and that the results
wererepeatable. Angle of attack was eliminatedas a cause for the de-
layed transitionby carefully aligning the model to within 0.05 deg
of the tunnel axis. Furthermore, it was noted that the observed ef-
fect was to delay transition as much as 100% (or more because the
cone was not long enough). This is significantly larger than the 5%
variation in Reynolds number Re,, that could be attributed to an an-
gle of attack of 0.1 deg as observed by Krogmann (and reported by
Stetson®') in his study of the effects of angle of attack on Reynolds
number Re,, in hypersonic flow (M., > 5) over a 5-deg half-angle
cone.

Flow asymmetry issues were addressed by rotating the model to
the 0-, 90-, and 180-deg orientations and repeating the experiments.
In particular, two run conditions were repeated and can be seen in
Fig. 5 as the data points clustered at 5 and 8 MJ/kg, respectively.
Clearly, there is excellent agreement, and there appears to be no
effects from rotating the model. The model asymmetries due to
imperfections were discussed earlier and were determined to be
irrelevant in the context of the present results.

Repeatability was tested by repeating selected experimental run
conditionsat various stages in the test program and noting that there
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was no observableeffect on transition location. This was of particu-
lar importance because it confirmed that the slight accumulation of
soot on the surface of the model over the course of the experiments
had no effecton the results. The soot was generated by the pyroliza-
tion of the polyurethanebuffers used to stop the pistonin this facility
and was carried by the driver gas at the end of each shot, that is,
the soot arrived at the model after the useful test time. Extensive
testing performed on two sample test pieces of the porous surface
mounted on Plexiglas® backings (flat plate normal to the flow and
cylinderinclined at 5 deg to the flow) before testing the actual cone
model had previously suggested that the soot would not be a prob-
lem. The Plexiglas mountings allowed the samples to be backlit so
thatit was possible to determine whether the holes were clogged (no
light passing through). Based on these tests it was decided to allow
the soot to accumulate over the course of the series of experiments.
The repeatability tests confirmed that the soot had no effect on the
results and also provided an indication of the robustness of this
boundary-layercontrol scheme to small amounts of contamination.

As already mentioned, for the nitrogen experiments, the porous
surface was effective over the whole enthalpy range tested, although
it was more effective at low- and high-enthalpy conditions than at
midenthalpy conditions. For the carbon dioxide shots, however, the
porous surface was only effective at very low-enthalpy conditions
and was counterproductive at mid- to high enthalpies. This behav-
ior suggested that another parameter was important in the carbon
dioxide flows.

A possible explanation for the observed behavior lies in the ex-
pectation that the porous surface must be hydraulically smooth,
that is, pore size must be sufficiently small in relation to the vis-
cous length scale, for the proposed mechanism to effectively delay
transition. If this were not the case, then the holes would act as
distributed surface roughness and prematurely trip the boundary
layer. A plot of Rey .. — Re} ioom VS Reynolds number based
on pore diameter Re}, clearly shows that the delay in transition be-
comes much smaller as Reynolds number Re7, increases (Fig. 8).
Note that no such trend was observed when the results were plot-
ted using the Reynolds number evaluated at the edge conditions
(Rep), and it is, therefore, concluded that the reference Reynolds
number is the proper Reynolds number to use in this analysis for
these flows. The grayscale indicates the qualitative effectiveness of
the porous surface. Black indicates laminar over the entire length
of the cone on the porous side, medium gray indicates delayed tran-
sition was observed on the cone, and light gray indicates premature
transition. Squares and triangles correspond to N, and CO,, respec-
tively. Figure 8 shows that the mechanism becomes qualitatively
less effective at an Reynolds number Re}, of about 130 and actu-
ally prematurely trips the boundary layer at an Reynolds number

Fig.7 Resonantly enhanced shadowgraph.
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Fig.8 Decreased effectiveness as Reynolds number Rel*) increases be-
yond 130 (vertical line).

Re, greater than 300. The most relevant experiment (to the present
case) regarding distributed surface roughnesseffects was performed
by Germain and Hornung,' who found that 0.1-mm salt crystals
(Rej =220, based on salt crystal height) randomly distributed over
the first 206 mm of the model tripped the boundary layer. No attempt
was made to identify the critical roughness Reynolds number below
which the surface roughness had no effect on transition. For such
a comparison, it is useful to recognize that the present results cor-
respond reasonably well with experiments in incompressible flow
by Feindt (as reported by Schlichting??), who examined the effect
of distributed surface roughness (in the form of sand grains) on
transition Reynolds number. Although the type of roughness dif-
fered from the presentexperiments (sand grains vs porous surface),
Feindtalso found that the surfaceroughnessbecameimportant when
Reynolds number Re, (based on the sand grain height) was greater
than 120. Similarly, Pfenninger®® reported that surface roughness
issues were important in laminar flow control experiments (suction
throughslots) when Reynolds number Re, (based on slot width) was
approximately greater than 100.

More recently, Reda® reviewed the effects of distributed surface
roughnessin hypervelocityflows onnose tips, attachmentlines, and
lifting entry vehicles. Reda concluded that there exists no universal
value for critical Reynolds number Re;, (based on roughnessheight)
for transitionto turbulence and that this critical roughness Reynolds
number was highly dependenton the particular flowfield and rough-
ness characteristics. Despite this observation, Reda indicated that a
number of different experiments suggested that the critical rough-
ness Reynolds number ranges between 100 and 200. Reda’s earlier
experiments on nose tip transitionin a ballistic range yielded values
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Fig.9 Reynolds number Re;. vs Unit Re* showing unit Reynolds num-
ber effect observed in the transition data on the smooth surface.

for the critical Reynoldsnumber Re; of 192.Bertinet al. (as reported
by Reda®*) found Re, = 110 to be the critical value at which rough-
ness effectsbegan to dominate in wind-tunnel tests of a 0.0175 scale
model of the Space Shuttle Orbiter at Mach 8-12. Finally, Goodrich
et al. (as reported by Reda?*) found that the transition data on the
windward centerline of the Space Shuttle Orbiter during reentry for
missions STS-1 to STS-5 suggested a critical Reynolds number Re;
of 120. Note that in these cases, the Reynolds number Re, value
was for surface bumps (as opposed to holes in the present work)
and were calculated using the conditions in the boundary layer at
the roughness height. This may or may not allow direct comparison
with the Reynolds number Rej, used to analyze the present results,
but it is clear that the critical Reynolds number Rej, is in the same
range as previous experiments.

Note, however, that closer examination of Fig. 8 also indicates
that some parameteris still notfully accountedforbecause the effec-
tiveness of the porous sheet does not decrease monotonically with
increasing Reynolds number Re7,. Specifically, the porous sheet ap-
peared to be more effectivein the carbondioxide shots at Re, >~ 200
than the nitrogen shots at Re}, 2~ 130. Although unexpected, it is not
entirely surprising that nitrogen and carbon dioxide behave slightly
differently because the different chemistry involved could aftect the
second mode amplification.

A final interesting observation is noted if one examines the so-
called unit Reynolds number effect. Figure 9 is a plot of Reynolds
number Re;. vs Unit Re* for the smooth surface (squares and trian-
gles correspondto N, and CO,, respectively). As expected, it shows
the typically strong dependence of transition Reynolds number on
unit Reynolds number. Of course, the dependence of a nondimen-
sional quantity on a dimensional quantity simply means that there
is another factor that has not been taken into account. In the case
of transition data, this other factor is typically associated with the
acoustic noise generated by the nozzle wall boundary layer, as was
shown by Pate and Schueler?® Note that, as before, this trend is not
observedin the present data if one plots the Reynolds number based
on edge conditions (as opposed to the reference conditions). This
seems to further support the conclusion by Germain and Hornung!
and Adam and Hornung? that the reference conditions are the ap-
propriate conditions to use when evaluating these flows. An even
more interesting observation is noted if one examines a similar plot
for the porous surface as shown in Fig. 10, where squares and tri-
angles correspond to N, and CO,, respectively. In this case, there
is no observed unit Reynolds number effect (when plotted using
either edge conditions or reference conditions). At this time, it is
unclear why this would be the case. A very reasonable explanation,
however, is that the effect of the porous surface is to damp out the
second mode acoustic perturbations. As such, it definitely also at-
tenuates the acoustic noise from the nozzle wall boundary layer,
and it is entirely possible that the porous surface is so effective
that it completely removes the unit Reynolds number eftect. Such
a conclusion would have very far-reaching implications and would
need to be considered very carefully in much more detail in the
future.
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Fig.10 Reynolds number Re;. vs Unit Re* showing that unit Reynolds
number effect was not observed in the transition data on the porous
surface.

Conclusions

Extensive experiments on hypervelocity boundary-layer transi-
tion control have been carried outin the TS on a 5.06-deghalf-angle
sharp cone with a smooth surface over half the cone and an ul-
trasonically absorptive porous surface over the other half. These
experiments, performed in nitrogen and carbon dioxide, used heat
transfer measurements to determine simultaneously the transition
locationon the smooth and porous surfaces foreach shot. These new
measurements for the smooth surface transition location compared
very well with experimentalresults obtained by previousresearchers
in the same facility. The theoreticalresult that transition may be de-
layed by suitable wall porosity has been confirmed convincingly
in nitrogen flows, and the reversal of the phenomenon in carbon
dioxide flows appears to be due to the chosen wall porosity scale
being too coarse in carbon dioxide. These results were tested for
repeatability and were checked to ensure that they were not induced
by angle-of-attack or other effects. The effectiveness of the porous
sheet was further evidenced by a resonantly enhanced shadowgraph
that clearly showed transition occurring over the smooth surface but
not the porous surface.
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