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Abstract

Exponentiated Gradient (EG) updates were originally introduced in (Kivinen and Warmuth,

1997) in the context of online learning algorithms. EG updates were shown by (Collins et al.,

2008) to provide fast batch and online algorithms for learning a max-margin classifier. They

show that EG can converge quickly due to multiplicative updates, and that EG updates can

be factored into tractable components for structured prediction tasks where the number of

output labels is exponential in the size of the input. In this project, we implement EG

for a Natural Language Processing structured prediction task of phrasal chunking (finding

noun phrases, and other phrases in text) and we compare the performance of EG with other

discriminative learning algorithms that have state of the art results on this task.

Keywords: Natural Language Processing, Computational Linguistics, Machine Learning,

Sequence Learning for NLP
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Chapter 1

Introduction

Our project explores the use of a max-margin discriminative learning algorithm called Ex-

ponentiated Gradient(EG) in an online weight update setting for the structured prediction

task of finding non-recursive phrasal chunks in text, where each word´s position within a

sentence is associated with 1 out of 23 discrete phrasal tags that represent open and close

brackets for each type of phrasal chunk. Thus, non-recursive chunking is treated as a tagging

task (Skut and Brants, 1998); like for example part of speech tagging of words. We present

the implementation details and experimental results associated with an online max-margin

EG implementation used with the Viterbi decoding scheme, and provide a comparison with

another state of the art discriminative learning algorithm for the phrasal chunking task,

namely the mistake-driven, additive update based perceptron algorithm (Rosenblatt, 1958).

The training and test data are taken from the CoNLL 2000 chunking shared task (Sang

and Buchholz, 2000), created from the Penn Treebank Wall Street Journal corpus (WSJ)

by keeping the non-recursive chunking structure of the Treebank. We evaluate our learning

performance on an independent test set, where Viterbi decoding is used to decode the best

hidden-state structure (sequence of labels), given a discriminatively learnt global weight

vector defined over local structural parts identified in the training sentences. We then use a

standard evaluation script to determine the overall accuracy (percentage of sentence tokens

that receive the correct chunk tag), precision, recall and F-score measures, and per-phrase

precision and recall accuracies on the independent test set.

1



CHAPTER 1. INTRODUCTION 2

1.1 Parts-of-Speech(POS) Phrasal Chunking

Phrasal chunking (Abney, 1991) consists of dividing a text into syntactically correlated

non-recursive parts of words. Chunking helps provide a contextual structure to a sen-

tence and is often used as an intermediate step towards full parsing. An example sentence

taken from (Collins, 2003) to illustrate non-recursive phrasal chunking as a tagging task is

“The burglar robbed the apartment.”, where by using leftmost derivations of context free

grammar(CFG) rules, we get “The burglar” as a bracketed noun phrase chunk (NP) in the

sentence, and “robbed the apartment” as a bracketed verb phrase chunk (VP). Applying a

per-word tagging structure to the above bracketed chunks, we get “The” as beginning noun

phrase (B-NP) and “burglar” as an intermediate noun phrase(I-NP), “robbed” as beginning

verb phrase (B-VP) and so on. Figure 1.1 shows an example sentence representation of how

phrasal chunking can be represented as a tagging task.

The burglar robbed the apartment .
[ NP ] [ VP ] [O]
B-NP I-NP B-VP B-NP I-NP O

Figure 1.1: Phrasal chunking as a tagging task (Example taken from (Collins, 2003)).

POS chunking was first introduced as a shared task for CoNLL-2000. Training and test

data for this task were taken from sections of the Wall Street Journal corpus (WSJ) with

sections 15-18 as training data (211727 tokens) and section 20 as test data (47377 tokens).

Figure 1.2 shows a gold standard chunking data representation for a particular training

sentence taken from CoNLL-2000. The first column contains the current word, the second

its part-of-speech tag and the third contains the truth chunk tag as derived from the WSJ

corpus. A chunk tag includes the part of speech for the phrasal chunk (NP or VP etc.) and the

type of chunk tag, for example B-NP for the first word of a NP and I-NP for a non-beginning

word in a NP.

Using the gold standard chunking information across all training sentences, supervised

learning techniques can be used to learn a weight vector, which after the training phase can

recognize POS-chunk segmentations of the test data as well as possible.
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Confidence NN B-NP

in IN B-PP

the DT B-NP

pound NN I-NP

is VBZ B-VP

. . .

. . .

Figure 1.2: Phrasal chunking gold standard data representation (Example taken from
CoNLL-2000 data).

1.2 Motivation

Large-margin classifiers like Support Vector Machines have consistently out performed tradi-

tional classifiers in many computing applications. By enumerating over all possible output

candidates and maximizing the decision boundary between the truth and non-truth out-

put candidates, large-margin classifiers have provided a successful alternative framework

to traditional probability based classifiers. Traditional max-margin classification involves

identifying a decision boundary between a finite set of classes. This is a tractable learning

inference as it involves iterating over discrete output labels associated with the training

data.

Most Natural Language classification tasks can be classified into variants of tagging or

parsing tasks on structured data, where the primary aim is to learn a hidden contextual

structure that best describes the observed sequence. Natural language classification is syn-

onymous with structured prediction (Collins, 2002), where a given input structure like a

sentence will not have a single output label, but rather a structured collection of finite la-

bels that jointly make up an output generation. The structured collection of labels may vary

in their generation order, thus leading to a large number of possible candidate outputs for a

given input sequence. Figure 1.3 shows how multiple structured outputs can get generated

from a single input sentence.

The number of possible output structures that can be formed depends on the size of

the input sequence. For larger input sequences, the number of structured outputs might be

exponential. Intractability of possible exponential number of candidate outputs for many

structured prediction Natural Language tasks makes working with margin-maximization
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Sentence Truth output Candidate output 1 Candidate output 2 . .
Confidence B-NP B-NP B-VP . .

in B-PP I-NP I-VP . .
the B-NP B-VP B-PP . .

pound I-NP B-ADJP B-NP . .
is B-VP I-VP B-VP . .
. . . . . .
. . . . . .

Figure 1.3: Multiple structured outputs for a sentence.

techniques for these tasks infeasible, as margin-maximization requires enumeration over all

output structures to determine the max-margin candidate. (Taskar et al., 2004a) showed

how to decompose the max-margin updates based on parts of the structured prediction.

The EG algorithm expands on this idea further using multiplicative updates to obtain a

max-margin classifier.

Our project expands on the previous work of (Bartlett et al., 2004), (Globerson et al.,

2007), (Collins et al., 2008), who demonstrated how max-margin classifiers like Exponenti-

ated Gradient can be practically used for structured prediction by working with tractable

local parts that can be identified in a sequence-candidate pair, rather than enumerating over

all structured outputs. For the Phrasal Chunking task, the local structural parts include

observed unigram parts and contextual bigram parts defined at each sentence index.

The online weight update process in EG is shown to have a guaranteed convergence (Bartlett

et al., 2004), and bounded convergence times were theoretically proven and experimentally

demonstrated for both the batch and randomized online weight update procedures for the

structured prediction task of dependency parsing (Globerson et al., 2007), (Collins et al.,

2008). Our project aims to provide an implementation of the above work for tagging based

Natural Language tasks, which include chunking and word segmentation. We hope that our

work with the EG algorithm for the phrasal chunking task, implemented with a tractable

part-based learning inference, would serve as a prototype for tagging based learning ap-

plications across the Natural Language spectrum. An example includes finding the best

word segmentation for unsegmented text in languages like Chinese and Vietnamese, where

meaningful segmentation of text is needed before it can be translated into another language

like English.



Chapter 2

Background

2.1 Supervised Learning

Supervised learning involves prediction of a meaningful label for unknown data. It includes

generative and discriminative learning techniques. In the next section, we introduce the con-

cept of generative models for supervised learning. Discriminative learning will be discussed

later in section 2.3.

2.1.1 Generative Models

For sequence data learning, probabilistic generative models like Hidden Markov Models can

be effectively used. A first order HMM defines a joint distribution P (x,y), given a sequence

input x = x1 . . . xn and the candidate sequence y = y1 . . . yn and makes a prediction at each

sequence index i by calculating P (yi|yi−1, xi), and then selecting the most likely generated

label yi at i. The sequence y is modeled using conditional independence assumption at each

step as P (y) = P (y1 . . . yn) = P (y1) ∗ P (y2|y1) . . . P (yn|yn−1).
Sequence decoding in generative models involves finding the most likely sequence of

tags y1 . . . yn where likelihood is computed using transition and emission probabilities. An

example of generative decoding is Viterbi decoding which will be discussed in section 2.4,

which uses the conditional independence assumption at each step to decode the most likely

sequence of labels. A disadvantage of using generative models is that the piecewise learning

of the feature weights cannot adequately model all complex dependencies that might exist

in data. It has been observed that discriminative models perform better than generative

5
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models in most machine learning tasks.

We illustrate the concept of learning using generative models with the following simple

example of a Hidden Markov Model as shown below.

Consider a word segmentation example (x,y) where x is the input sequence ABCDE and y

is the output labeling 01011:

A B C D E

0 1 0 1 1

In this example, the tagging 01011 means that the output is a sequence of three words:

AB, CD and E.

We will write down the equations and pseudo-code for an HMM representation, which

is a simplified form of the full global linear model which contains several features rather

than a single emission feature. In an HMM, each part is either a transition tuple 〈a0,1, 1〉
for character location 1 representing a transition from state 0 to 1, or an emission tuple

〈b1(B), 1〉 for character location 1 representing the emission symbol B from state 1. We

denote the transition weight for ai,j as wi,j for transition from index i to j and similarly

emission weight for bj(o) is wj,o for symbol o at state j.

Using HMM’s, the joint probability P(ABCDE, 01011) is modeled such that at each se-

quence index, a tag’s decoding is dependent on the previous index’s decoded tag and the

observed symbol sequence.

2.2 Feature Vector Representation

The simplified assumptions of a generative framework do not provide enough scope to model

detailed relationships amongst the features. For the phrasal chunking task, we adopt a

feature vector representation first proposed by (Ratnaparkhi, 1996), (Berger et al., 1996)

where a log-linear framework is used to model the features. Log-linear models compute a

conditional dependence of a tag tı at a sequence index ı, based on its previously observed

sequence history h. This sequence history might include the previously decoded tag sequence

[t1 . . . tı−1], the entire observed word sequence [o1 . . . on] for a sequence of length n, and the

current index ı. Using log-linear models, the conditional (tı|h) relation at all indices ı of a
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sequence can be formulated as:

P (t1 . . . tn|o[1:n]) =
n∏
ı=1

P (tı|t1 . . . tı−1, o[1:n], ı)

To model local structural features conditionally independent of each other, the tagged-

sequence needs to be modeled as a Markov network. For a Markov based structured pre-

diction framework, each bigram part dependency can be represented as a 2-clique graph

(a, b, u, v), where a and b represent the nodes of the graph (observed words) and u and v

represent the discrete tags or labels for a and b respectively. Hence, bigram (contextual)

and unigram (observed) feature-parts can be independently identified in windowed regions

defined at each training sequence index (Collins, 2002).

Another important consideration while modeling the feature parts for structured pre-

diction is that they are not locally normalized to form probabilities, but rather occurrence

counts of the parts in a given structured sequence are maintained. The part occurrences are

globally normalized only during the final weight update phase. The idea of global normal-

ization was first introduced through Conditional Random Fields (CRF) by (Lafferty et al.,

2001), where individual probabilities were normalized using a globally computed marginal

across all local part counts. This was done because locally normalized sequence models suf-

fered from the label bias problem during sequence decoding. (Collins, 2002), (Taskar et al.,

2004a) showed how structured prediction learning could effectively use globally normalized

Markov networks to adequately model complex dependencies amongst local feature parts r

that exist in the training sequences.

Thus, any structured sequence xi can be efficiently represented in terms of its tractable

local feature-part occurrences φ(xi, r). For an input sequence xi with its corresponding

structured output y, we can write the global feature-vector for the sequence-candidate pair

(xi, y) as a collection over its tractable local part counts.

Φ(xi, y) =
∑

r∈R(xi,y)

φr(xi, y)

where R can be thought of as a d-dimensional representation over all local feature parts r

and R(xi, y) can be thought of as a representation over all r that lie in (xi, y). The vector

Φ(xi, y) can be thought of as indexed by feature parts r ∈ R(xi, y) and whose value for

each index is the count of occurrences of r across all indices of the sequence-output pair,

represented as φr(xi, y).
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For example, for the HMM example previously introduced, considering a start sequence

marker S−1, we can write:

Φ(x, y) = φ(ABCDE, 〈aS−1,0, 1〉) + φ(ABCDE, 〈b0(A), 1〉)

+ φ(ABCDE, 〈a0,1, 2〉) + φ(ABCDE, 〈b1(B), 2〉)

+ φ(ABCDE, 〈a1,0, 3〉) + φ(ABCDE, 〈b0(C), 3〉)

+ φ(ABCDE, 〈a0,1, 4〉) + φ(ABCDE, 〈b1(D), 4〉)

+ φ(ABCDE, 〈a1,1, 5〉) + φ(ABCDE, 〈b1(E), 5〉)

2.2.1 Loss in structured prediction

The concept of a structured sequence consisting of many globally normalized local parts

can be extended to loss computations for structured sequences (Taskar et al., 2004a). For a

input sequence xi, the cost of proposing a part-rule r is called the loss:

li,r =

{
0 if r is not in truth

1 otherwise

For each example xi in the training data and for each candidate output y, the global

loss for a sequence-candidate pair can be defined as a sum over its localized losses.

L(xi, y) =
∑

r∈R(xi,y)

li,r

For the previously introduced HMM example, If we consider the labeling 01011 to be

the truth labeling for ABCDE, the tagged bigram feature-parts identified in the truth output

labeling are:

[〈B : S−1, 0〉, 〈B : 1, 0〉, 〈B : 0, 1〉, 〈B : 1, 1〉]

Their respective part counts are:

φ(ABCDE, 〈B : S−1, 0〉) = 1, φ(ABCDE, 〈B : 0, 1〉) = 2, φ(ABCDE, 〈B : 1, 0〉) = 1, φ(ABCDE, 〈B : 1, 1〉) = 1

For all such truth bigram parts, li,r = 0. The remaining bigram parts [〈B : S−1, 1〉, 〈B : 0, 0〉]

that may get proposed in the sequence, but do not lie in the truth, have li,r = 1.

2.3 Linear Discrimination

In discriminative supervised classification, the task is to learn a parametric function f : X →
Y from a set of N independent and identically distributed instances S ={(xi, yi)}Ni=1, drawn
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from a fixed distribution DX×Y and yi = truth(xi). The classification mapping function

f is typically selected from some parametric family which might be linear, polynomial or

exponential. In linear discriminative classification we attempt to find a linear discriminative

boundary between two classes as f(x) = Sign(Φ(x) ·w), where Φ : X → Rd, and parameter

vector w ∈ Rd.
The inference problem in flat or single-label discriminative classification involves assign-

ment of one of Y = {Y1, . . . , Yk} discrete labels to a given input instance xi. In joint-label

classification such as structured prediction tasks like sequence labeling and parsing, each

candidate label y for a input instance xi has a rich internal structure consisting of small

structural parts that are identified at local regions of the sequence.

2.3.1 Phrasal Chunking as a Discriminative Sequence Learning Task

Phrasal chunking can be modeled as a sequence learning problem where for an input sentence

xi, each generated candidate y has a rich internal structure consisting of a hidden sequence

of states (non-recursive phrasal chunks). The internal structure may be a text segmentation,

a state sequence labeling or parse tree structure.

We use a notational framework given in (Collins, 2002) to describe the structured pre-

diction learning inference. If X represents a set over all training input sentences and Y

represents a set over the structured output candidates, then a structured prediction dis-

criminative classification task can be modeled as a joint sequence-candidate learning task

that uses a feature vector Φ : (X × Y )→ Rd, and parameter vector w ∈ Rd.
In sequence learning tasks, for a given sequence-candidate pair (xi, y), calculating an

inference over all candidate output generations y = GEN(xi) might not be possible due to

the exponential number of outputs that a sequence might generate. Hence, the learning

inference problem is often modeled over the local feature-parts r that can be identified in a

given sequence. Though the number of parts are large, they are tractable and this avoids

learning over a possible exponential number of outputs.

Given an observed sequence instance xi and a candidate output y, a global feature vector

Φ(xi, y) is defined as a structure that maintains counts φr(xi, y) over local part r occurrences

in (xi, y) (Collins, 2002). The linear discriminative score assigned to a structured candidate
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y ∈ GEN(xi), based on enumeration of its local feature parts is defined as:

Score(xi, y) = w ·Φ(xi, y) (2.1)

= w ·
∑

r∈R(xi,y)

φr(xi, y) (2.2)

=
∑

r∈R(xi,y)

wr ∗ φr(xi, y) (2.3)

The best sequence y is the one with the highest score among all y ∈ GEN(xi).

2.4 Viterbi Decoding

Decoding refers to the process of finding the best candidate output given an input instance

xi. In structured prediction tasks, the number of possible candidate labeled outputs y for an

input sequence xi can be exponential because of the combinatorial explosion in the possible

joint-labels that can be formed. Thus identifying the best candidate arg max y from the

exponential number of generated outputs GEN(xi) becomes infeasible.

A solution to the above inference problem is found by using a first order generative

Hidden Markov Model inference (Rabiner, 1989) (Viterbi decoding) which conditions the

current state sequence on previously decoded state sequence and observed input sequence.

The Viterbi decoding scheme for structured data (Collins, 2002) uses the HMM conditional

independence assumption for hidden states at each sequence index to determine a max-

likelihood path labeling up to that symbol. At any stage, the Viterbi algorithm examines

all possible paths leading to a state and only the most likely path per state is kept and

used in exploring the most likely path toward the next state. The best decoded state

sequence is obtained when the entire input sequence is parsed. The feature weights in w

represent probabilistic values that guide the decoding process. At the end of the algorithm,

by traversing backward along the most likely path, the corresponding best state sequence

can be found.

The structured prediction hypothesis to determine the highest scoring candidate fw(xi)
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is defined as:

fw(xi) = arg max
y∈GEN(xi)

Score(xi, y) (2.4)

= arg max
y∈GEN(xi)

w·Φ(xi, y) (2.5)

= arg max
y∈GEN(xi)

∑
r∈R(xi,y)

wr ∗ φr (xi, y) (2.6)

Equation 2.6 shows that the best predicted candidate structure fw(xi) is determined

by selecting the best score across scores generated by all candidate sequences GEN(xi).

Each discriminative score is calculated as a inner product between the global feature vector

Φ(xi, y) and the global parametric weight vector w, which helps guide the decoding process

to determine the best candidate. Viterbi decoding ensures that the best predicted candidate

is determined in polynomial time without the need to iterate over all candidate outputs,

which might lead to a possible exponential inference.

2.5 Perceptron Learning Algorithm

The perceptron algorithm (Rosenblatt, 1958) is a linear discriminative, online, mistake-

driven additive update algorithm that generates an output for an input based on a weighted

set of features. The perceptron algorithm updates the feature weights after each parse

through a training sentence (online weight updates). The perceptron and its variants have

achieved state of the art accuracies in many Natural Language learning tasks. It is an

intuitive, easy to update learning algorithm that tends to reach convergence fairly quickly

due to its online weight update procedure.

Online learning is an important component of the perceptron algorithm. Online learning

implies that the weight vector gets updated after iterating over a single training sentence,

and that after each such update, the loss function is guaranteed to monotonically descend

towards the global optimal solution (if it exists). Online algorithms are very useful in

machine learning applications as they tend to reach convergence fast. This is because online

algorithms tend to take short update steps towards the global optimal solution, and hence

tend not to overshoot the global minimum.

In the batch update procedure, however, a guaranteed step towards convergence is pos-

sible only when all training examples have been iterated over, and then the weight vector
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update is performed. Hence, batch update algorithms are slower to reach convergence than

online algorithms. Unlike online algorithms, batch update algorithms tend to overshoot the

global minimum due to the large step descents that are enforced by values collected over

all training data. An example of a batch implementation of the EG algorithm with slow

convergence was outlined by (Song and Sarkar, 2009) for their Chinese Word segmentation

task.

Algorithm 1 shows a standard perceptron algorithm used in Natural Language appli-

cations. A discriminative score w·Φ(xi, y) is assigned to a possible output candidate y

of xi. The adaptation of the perceptron algorithm in a discriminative setting to Natural

Language structured learning (Collins, 2002) is based on whether parts that are identified

in the best predicted candidate arg max y ∈ GEN(xi) (obtained using Viterbi decoding) lie

in the truth or not. For each training iteration t and each training sentence xi, the above

check is performed and feature weight values are incremented in the weight vector if they

lie in the truth or decremented from the weight vector if they do not lie in the truth (line 8

of the algorithm). Accuracy of a prediction system depends on its capability to effectively

learn this weight vector through an iterative learning process.

Algorithm 1 Perceptron algorithm

1: Input: Training set (xi, yi) for i = 1, . . . N

2: Initialize: w = [0, 0, . . . , 0]

3: for t = 1, 2, . . . , (T + 1) do

4: for i = 1, 2, . . . , N do

5: Calculate: y′i = arg maxy∈GEN(xi) w·Φ(xi, y)

6: if yi 6= y′i then

7: Set: w = w + Φ(xi, yi)−Φ(xi, y
′
i)

8: end if

9: end for

10: end for

11: Output: w

A possible drawback of the perceptron algorithm is that since the feature-part weights

are additively updated, they are not normalized to give a probability distribution. Also, in

certain learning scenarios, the perceptron can take longer to converge due to the ordering

of the data.
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2.6 Max-Margin Classification

Large-margin discriminative classifiers do not adopt a probabilistic framework to learn a

weight vector from the data. Instead, they try to maximize a margin between the score of

the truth segmentation and the score of the best decoded segmentation. To determine the

best candidate, they enumerate all possible candidate generations and calculate a margin

score over each, which can lead to an exponentially large inference. Large margin classifiers

are well suited to handle data defined with a large number of features since they do not

operate in the traditional data-space, instead they transform the data to a dual feature-space

per example formulation.

The distance from the discriminative decision surface to the closest data point determines

the margin of the classifier. The classifer can be a linear classifer (as in a linear SVM) or the

classifier can use an exponential function as in EG. The separating decision surface can be

fully specified by a subset of instances which lie closest to the boundary. These boundary

supporting points are referred to as the support vectors, leading to the generic max-margin

discriminative classifer called Support Vector Machine (SVM).

For a given sequence-candidate pair (xi, y), the margin M(xi, y) is defined as the differ-

ence between the discriminative scores (as defined in equation 2.3) of the candidate (S(xi, y))

with that of the truth (S(xi, yi)). The size of the margin provides a confidence measure for

rejecting incorrect candidates, where a larger margin between the truth generation and other

candidate generations indicates a greater confidence in rejecting incorrect generations. The

margin formulation for sequence learning tasks is shown in equation 2.9.

M(xi, y) = S(xi, yi)− S(xi, y) (2.7)

= (w·Φ(xi, yi))− (w·Φ(xi, y)) (2.8)

= w· (Φ(xi, yi)−Φ(xi, y)) (2.9)

For max-margin models, learning can be framed as minimization of a convex regularized

loss function (Rosset et al., 2004). To account for outliers in max-margin classification,

the addition of non-negative slack variables ξi per example xi allows for an increase in the

global margin by paying a local penalty on some outlying examples. The large margin

regularization constant C > 0 dictates the capability of an update to affect a change to the

decision margin. A larger C will provide a tighter control on the margin’s variability. As

C →∞, it approaches a large-margin solution.
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The loss based optimization problem for margin maximization as formulated in (Bartlett

et al., 2004) is:

w∗ = arg min
w,ξ

1

2
‖w‖2 + C

∑
i

ξi

subject to the constraints

∀i,∀y ∈ GEN(xi), w·Φ(xi, y) ≥ L(xi, y)− ξi
and ∀i, ξi ≥ 0

where L(xi, y) is the total loss and L(xi, y) = 0 for y = yi.

If M(xi, y) is the dual margin and α∗ is the corresponding arg max of the dual problem,

then the relationship between the primal w∗ and the dual α∗ is (Bartlett et al., 2004):

w∗ = C
∑
i,y

α∗ (L(xi, y)−M(xi, y))

2.7 Chapter Summary

Chapter 2 introduced us to the idea of inference learning on Natural Language based struc-

tured prediction tasks such as the sequence learning task of finding non-recursive phrasal

chunks in text. Linear discrimination techniques and a globally normalized Markov network

based feature generation framework were also discussed.

We then introduced a discriminative additive update based learning algorithm called the

perceptron, used with the Viterbi decoding scheme. The concept of large-margin classifica-

tion and its advantages was also introduced. A more detailed look at max-margin structured

learning would be seen in the next chapter on the Exponentiated Gradient learning algo-

rithm.



Chapter 3

Exponentiated Gradient

The Exponentiated Gradient algorithm (Kivinen and Warmuth, 1997) is a linear discrimi-

native algorithm that uses margin-maximization along with multiplicative updates for loss

re-estimation. The updates are performed on a dual-space variable and that variable is

then used to update the weight values associated with the discriminative features. Both

batch and online versions of EG have a guaranteed theoretical convergence (Bartlett et al.,

2004). Also, the weight update process in EG is well suited for online learning and bounded

learning times have been demonstrated for both batch and randomized online weight up-

date procedures for the structured prediction task of dependency parsing (Globerson et al.,

2007), (Collins et al., 2008).

An important aspect of the EG algorithm is that the dual-space parameters are multi-

plicatively updated using exponential penalty values. For the candidate generation based EG

(section 3.2), the multiplicative update procedure ensures that the discriminative strength

of each generated candidate y for each xi is represented as a probabilistic distribution over

the dual variables. Hence, the discriminative-strength distribution for generated candidates

of each training sentence xi, is maintained by a dual parameter αi for that sentence. An

advantage of maintaining a probability distribution is that candidates with poor discrimi-

nating capabilities are driven to near-zero values and can be ignored in successive margin

boosting iterations for a given sequence xi. In the part enumeration based EG (section 3.3),

a globally normalized dual-space marginal is computed for all structural feature parts r

identified in xi. The normalized marginals help in identifying irrelevant features in the

training run so that they can be driven down towards a zero value. The EG algorithm uses

a probability distribution based multiplicative update procedure on the dual variables, and

15
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is in contrast to the perceptron based additive update mechanism, which is done directly

on the values of w. Due to additive update mechanism in perceptron, a distribution cannot

be maintained over the features and hence even highly irrelevant features continue to be

accounted for throughout the entire training phase, making convergence slower.

3.1 EG Loss

The EG formulation as proposed in (Collins et al., 2008) for structured prediction tasks,

uses an exponential hinge loss on a combination of 2 distinct loss generations to optimize the

global parameters: a margin based loss ∇i,y that uses margin-maximization for candidate

discrimination and a Hamming loss L(xi, yi, y) over all local parts of a sequence-candidate

pair (xi, y). The combined loss value for a candidate y helps to provide a rejection confidence

measure for incorrect candidate generations.

The margin based hinge loss is ∇i,y = (1−M(xi, y))+ such that

(1−M(xi, y))+ =

{
(1−M(xi, y)) if y 6= yi

0 if y=yi

where

M(xi, y) = w· (Φ(xi, yi)−Φ(xi, y)

The exponential loss formulation ensures that significantly larger penalties can be applied

to non-truth candidates, thus ensuring a faster rate of descent towards the global minimum

solution. However, one thing to be noted with exponential updates is that they might

force the algorithm to descend very quickly, and as a result it might not provide sufficient

learning for the global parameters. This happens due to the large multiplicative exponential

penalties they impose. Hence, choosing the right exponent for a particular problem is very

important.

Unlike the max-margin loss which iterates directly over the candidates, the Hamming

loss is defined over local parts that make up a particular candidate. As previously outlined

in section 2.2.1, a local loss li,r of value 1 is assigned to a part r that is proposed for a

particular candidate y, but which does not lie in the truth output yi. If the part lies in the

truth output yi, then it gets a loss of 0. We define L(xi, y) to be the total Hamming loss for

a candidate y and this loss can be computed as a sum over all local losses for each structural
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part r that gets proposed for that particular candidate.

L(xi, y) =
∑

r∈R(xi,y)

l(i, r)

.

Margin based maximization ensures that candidates with generation scores Φ·w greater

than or closest to the truth’s score get pushed away from the truth (decision margin max-

imization). These candidates represent the best decoded candidate for a sequence, and

can be found using Viterbi decoding by decoding with the trained weight vector w. The

remaining candidates represent weakly discriminative candidates which can be discarded

from further consideration during the learning phase.

Hence, a candidate y is considered to be a support vector if it gives the highest value

for the margin and least Hamming distance from the truth, or the least overall loss on

ηC (L(xi, y)−M(xi, y)), where η is the learning rate and C is the margin regularization

constant. Combining the Hamming and margin based losses, the total exponential loss for

each generated candidate is exp{ηC (L(xi, y)−M(xi, y))}. The candidate with the best

loss is defined as:

arg max
y∈GEN(xi)

exp{ηC (L(xi, y)−M(xi, y))}

If we write the above loss as ∇i,y = C(L(xi, y)−M(xi, y)), then the update for each

dual parameter αi,y for a training sentence xi and its candidate generation y, is as given in

equation 3.1.

α
′
i,y =

αi,y exp{η∇i,y}∑
y′ αi,y′ exp{η∇i,y′}

(3.1)

We can express the above loss ∇i,y purely in terms of the local parts r that exist in a

given candidate as shown in equation 3.3 (Taskar et al., 2004a):

L(xi, y)−M(xi, y) =

 ∑
r∈R(xi,y)

li,r

−
w ·Φ(xi, yi)−

∑
r∈R(xi,y)

wr ∗ φr(xi, y)

 (3.2)

=

 ∑
r∈R(xi,y)

(li,r + wr ∗ φr(xi, y))

− (w ·Φ(xi, yi)) (3.3)

The term in the first bracket of equation 3.3 represents the empirical score while the term in

the second bracket represents the truth score. The difference between the two represents the

prediction loss that needs to be minimized, which is how the weight vector w gets updated

so that the loss reaches a minimum.
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Extending the above local loss li,r formulation to a dual part-based loss score formulation

θi,r, the updates for αi,y can also be written as:

α
′
i,y =

exp
∑

r∈R(xi,y)
θi,r∑

y′ exp (
∑

r∈R(xi,y′)
θi,r)

where θi,r represents a dual loss-score assigned to each part r in proposed (xi, y).

The part based EG loss formulation will be seen later in section 3.3. The above relation

however, does provide us with an idea as to how the candidate EG and part based EG loss

formulations are related to each other. The dual in the candidate enumeration formulation

can be expressed in terms of the dual in the part based formulation and vice versa.

Hence, the overall max-margin regularized EG loss formulation LMM(w, xi, yi) as defined

in (Collins et al., 2008) is shown in equation 3.4.

LMM(w, xi, yi) = arg min
w

∑
i

max
y

[L(xi, yi, y)−M(xi, yi, y)] +
C

2
||w||2 (3.4)

3.2 Candidate Generation based EG

The max-margin candidate enumeration EG algorithm has its exponentiated loss descent

inversely proportional to the margin width of each discriminative candidate output y for a

given xi. An incorrect candidate with a small margin width to the truth output, needs to

have its global discriminative score explicitly reduced so that it can be pushed away from the

truth, so as to maximize its margin from the truth. As a result, it’s local features are given

a larger loss penalty (dual-loss) as compared to candidates that can be easily discriminated

from the truth (candidates with larger margin values).

For the candidate generation EG algorithm, α = [α1,α2, . . . ,αN ] is a dual-space loss

parameter that needs to be optimized. A probability distribution αi is defined over all

possible candidate generations for each input sequence xi. Each αi represents a dual para-

metric vector probability distribution containing probability scores αi,y assigned to each

generated candidate y ∈ GEN(xi), such that such that ∀i :
∑

y αi,y = 1. An update for a

single instance αi,y of the dual in the EG algorithm with a learning rate of η requires com-

putation of an exponential hinge loss (1−Mxi,y)+ along with a Hamming loss Li,y over all

local feature parts that can be identified in that candidate. The optimization function Q(α)

is written as:
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Q(α) = Q(α1,α2, . . . ,αN )

= −bTα + αTAα

where A is a matrix over all N.|Y | ×N.|Y | possible candidate generations and |Y | represents

the number of candidate generations for an input xi. The matrix A can be indexed by any

(xi, y) pair, such that:

A(xi,y),(xj ,z) =
1

C
Ψ(xi,y)Ψ(xj ,z)

and candidate potentials Ψ(xi,y) = [Φ(xi, yi)−Φ(xi, y)] and Ψ(xj ,z) = [Φ(xj , zj)−Φ(xj , z)].

The set of distributions over each |Y| can be denoted as a |Y| dimensional probability simplex

4, and for N training instances with distributions over |Y|, the simplex can be represented

as 4N . The optimization function for EG in terms of the margin-maximization based dual

formulation (Taskar et al., 2004b), (Bartlett et al., 2004) can be written as:

α∗ = arg min
α∈4N

Q(α)

Algorithm 2 (Bartlett et al., 2004), (Song, 2008) shows a candidate enumeration based

online EG algorithm, which requires enumeration of all possible candidate outputs for a

particular train sequence xi to compute their margin scores. The inputs to the algorithm

include a learning rate η and a margin regularization constant C. The multiplicative updates

for the dual-space variables are seen in line 13 of algorithm 2. Line 14 shows the weight

updates performed in an online manner after the dual-space variables have been updated.
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Algorithm 2 Online EG Training by enumeration of all generated candidates

1: Input: Training set (xi, yi) for i = 1, . . . N

2: Input: learning rate η, margin parameter C, number of training iterations T

3: Primal Parameters: Global weight vector w that stores the local feature-part weights,

∀r ∈ R
4: Dual Parameters: Dual global vector α ≡ [α1,α2 . . .αN ] over N training sequences.

Each sequence-candidate pair (xi, y) has a dual score αi,y, ∀y ∈ GEN(xi)

5: Define: Global feature-vector Φ(xi, y), defined ∀r ∈ R(xi, y)

6: Define: Candidate discriminative score: S(xi, y) = w·Φ(xi, y)

7: Initialize: αi as a vector with initial probabilities such that
∑

y αi,y = 1, ∀y ∈ GEN(xi)

8: Initialize: w = [0, 0, . . . , 0]

9: for t = 1, 2, . . . , (T + 1) do

10: for i = 1, 2, . . . , N do

11: if yi 6= arg max y ∈ GEN(xi) then

12: Calculate the margins: Mi,y, ∀y ∈ GEN(xi) : Mi,y = S(xi, yi)− S(xi, y)

13: Update the duals: αt+1
i,y =

αt
i,y exp{ηC(Li,y−Mi,y)}∑

y
′ αt

i,y
′ exp{ηC(Li,y−Mi,y)}

14: Set the weight vector: w = w +
∑

y α
′
i,y[Φ(xi, yi)−Φ(xi, y)]

15: end if

16: end for

17: end for

18: Output: 1
C ·w

We will explain the concept of candidate-enumeration based online EG algorithm using

an example. Consider 2 word segmentation examples of the form (xi, yi) where xi represents

the input unsegmented text and yi is the truth structured output representing points of

segmentation. Suppose input x1 is w0w1w1 with its corresponding truth segmentation t0t1t1,

and input sequence x2 is w1 with its corresponding truth segmentation t1, where tag t0

represents unsegmented text and tag t1 represents a text segmentation point.

The possible structured labels for x1 ≡ w0w1w1 are:

y1 ≡ t0t1t1, y2 ≡ t0t0t0, y3 ≡ t0t0t1, y4 ≡ t0t1t0, y5 ≡ t1t0t0, y6 ≡ t1t0t1, y7 ≡ t1t1t0, y8 ≡ t1t1t1

The possible structured labels for x2 ≡ w1 are:

y1 ≡ t1, y2 ≡ t0
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where (x1, y1) and (x2, y1) represent the gold segmented outputs for sequences 1 and 2

respectively.

3.2.1 Hamming Loss

Before we look at the actual EG algorithm, we shall look into the concept of Hamming Loss

over local feature parts, using the example sequence previously mentioned. For the input

x1 ≡ w0w1w1, let us consider a candidate segmentation y ≡ t1t0t1 and the corresponding

truth segmentation is y1 ≡ t0t1t1. The local structural parts at each index for the truth

segmentation are shown in table 3.1. Tag S−1 is the beginning of sentence marker indicating

a start state for the sequence, and tag S+1 is the end of sentence marker indicating a end state

for the sequence. The end state features are not required for the candidate EG technique,

however they are needed for the forward-backward computations of the part based EG

technique as seen in section 3.3.

Input: w0 w1 w1

Truth segmentation: S−1 t0 t1 t1 S+1

Truth segmentation 〈U : w0, t0〉 〈U : w1, t1〉 〈U : w1, t1〉 〈U : wS+1
, S+1〉

parts 〈B : S−1, t0〉 〈B : t0, t1〉 〈B : t1, t1〉 〈B : t1, S+1〉

Candidate segmentation: S−1 t1 t0 t1 S+1

Candidate 〈U : w0, t1〉 〈U : w1, t0〉 〈U : w1, t1〉 〈U : wS+1
, S+1〉

segmentation parts 〈B : S−1, t1〉 〈B : t1, t0〉 〈B : t0, t1〉 〈B : t1, S+1〉

Table 3.1: Local Part illustration for Hamming Loss.

If we consider the unigram feature 〈U : w0, t1〉 proposed by the candidate at its first

index for the observed word w0, then we see that the proposed feature does not lie in the

truth and hence we provide it with a loss value of 1. A similar local-loss of 1 is given to the

bigram feature 〈B : t1, t0〉 for being wrongly proposed in the candidate segmentation. If a

non-truth part appears multiple times in the candidate segmentation, then a loss count is

maintained. Thus for the above candidate segmentation, the hamming loss L is computed
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as shown below.

L(xi ≡ w0w1w1, yi ≡ t0t1t1, y ≡ t1t0t1) = l〈U:w0,t1〉 + l〈B:S−1,t1〉 + l〈U:w1,t0〉 + l〈U:t0,t1〉 + l〈B:t1,t0〉

= 5

We now show an example to illustrate a working of the candidate enumeration based EG

algorithm for a simple batch update on the HMM word segmentation example that was

previously introduced. For the batch EG algorithm, given the dual parametric values αi,y,

the primal global weight vector w is updated as shown in equation 3.5.

w =
∑
i,y

αi,y · [Φ(xi, yi)−Φ(xi, y)] (3.5)

where (xi, yi) represents the truth structured output and (xi, y) represents the candidate

segmented output. The global feature vector Φ defined over all local feature parts r is:

Φ ≡ [φ〈U:w0,t0〉φ〈U:w0,t1〉φ〈U:w1,t0〉φ〈U:w1,t1〉φ〈B:S−1,t0〉φ〈B:S−1,t1〉φ〈B:t0,t0〉φ〈B:t0,t1〉φ〈B:t1,t0〉φ〈B:t1,t1〉]

The global weight vector w defined over all local feature parts r is:

w ≡ [w〈U:w0,t0〉w〈U:w0,t1〉w〈U:w1,t0〉w〈U:w1,t1〉w〈B:S−1,t0〉w〈B:S−1,t1〉w〈B:t0,t0〉w〈B:t0,t1〉w〈B:t1,t0〉w〈B:t1,t1〉]

We initialize the candidate duals with equi-probable values. The initializations for the

EG algorithm’s batch update simulation are:

(α1,1 . . . α1,8) = 0.125 and (α2,1, α2,2) = 0.5.

w = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], η = 1 and C = 1.

Table 3.2 demonstrates a simulation of the initial weight vector update step for the EG

algorithm.

The updated weight vector w obtained from Table 3.2, using the default initial values

αi,y, is w = [0.5,−0.5,−1.5, 1.5, 0, 0,−0.5, 0.5,−0.5, 0.5]. Table 3.3 demonstrates a simula-

tion of the EG algorithm’s loss computations and per-candidate dual variable updates, for

all possible candidate generations of input sequences x1 and x2, after the initial weight vec-

tor update step. The Hamming loss Li,y is computed over all local losses li,r for parts that

are proposed in the candidate, but which do not lie in the truth output. Also, as previously

seen in section 2.6, the per-candidate margin is computed as Mi,y = w· (Φ(xi, yi)−Φ(xi, y)).

From table 3.3, it can be observed that the updated α
′
i for each training sentence, obey

the probabilistic distribution constraints as
∑

y=1...8 α
′
1,y = 1 and

∑
y=1...2 α

′
2,y = 1. Also,
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Candidate Generations Φ(xi, y) Φ(xi, yi)−Φ(xi, y) αi,y
(x1, y1) (1, 0, 0, 2, 1, 0, 0, 1, 0, 1) (0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 0.125
(x1, y2) (1, 0, 2, 0, 1, 0, 2, 0, 0, 0) (0, 0,−2, 2, 0, 0,−2, 1, 0, 1) 0.125
(x1, y3) (1, 0, 1, 1, 1, 0, 1, 1, 0, 0) (0, 0,−1, 1, 0, 0,−1, 0, 0, 1) 0.125
(x1, y4) (1, 0, 1, 1, 1, 0, 0, 1, 1, 0) (0, 0,−1, 1, 0, 0, 0, 0,−1, 1) 0.125
(x1, y5) (0, 1, 2, 0, 0, 1, 1, 0, 1, 0) (1,−1,−2, 2, 1,−1,−1, 1,−1, 1) 0.125
(x1, y6) (0, 1, 1, 1, 0, 1, 0, 1, 1, 0) (1,−1,−1, 1, 1,−1, 0, 0,−1, 1) 0.125
(x1, y7) (0, 1, 1, 1, 0, 1, 0, 0, 1, 1) (1,−1,−1, 1, 1,−1, 0, 1,−1, 0) 0.125
(x1, y8) (0, 1, 0, 2, 0, 1, 0, 0, 0, 2) (1,−1, 0, 0, 1,−1, 0, 1, 0,−1) 0.125

(x2, y1) (0, 0, 0, 1, 0, 1, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0, 0) 0.5
(x2, y2) (0, 0, 1, 0, 1, 0, 0, 0, 0, 0) (0, 0,−1, 1,−1, 1, 0, 0, 0, 0) 0.5

Table 3.2: Table simulating EG calculations for initialization step of candidate generation
method.

due to the [0, 1] probability constraints, some αi,y are driven down to near zero probabilistic

values. For example, α1,2 and α1,5 in table 3.3 are driven down to near zero probabilities.

In table 3.3, for the generated non-truth candidate (x1 ≡ w0w1w1, y8 ≡ t1t1t1), the dual

loss score α1,8 is the highest as compared to the dual loss scores for all other output can-

didates of x1. This is because this candidate has the least margin distance (discriminative-

width) from the truth, and hence it represents a best decoded candidate for the distribution

α1. The best decoded candidate needs to be heavily penalized so that its discriminative

score can be significantly reduced from the truth’s score (its margin can be maximized). The

high αi,y probabilistic dual-loss value assigned to the best decoded candidate will be used to

enforce that penalty, by imparting a greater loss to the weights of the feature-parts that lie

in this candidate, but not in the truth output. Equation 3.5 demonstrates the multiplicative

weight updates for the feature-parts using the dual scores. Hence, the EG weight update

step and its hinge loss property ensure that all non-truth candidates get penalized at each

parse through the sentence, thus maximizing the discriminative margin. The amount of

penalty is proportional to the dual loss values.

The updated weight vector w obtained from Table 3.3, after the αi,y values were updated,

is as shown below. The updated values in the global weight vector w show that, generally,

feature-parts that were identified in the truth output had a higher updated weight than

those which did not lie in the truth. An exception to that is the updated weight for the part
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Candidate Generations Li,y Mi,y ∇i,y e(η×∇i,y) αi,ye
η∇i,y α

′

i,y

(x1 ≡ w0w1w1, y1 ≡ t0t1t1) 0 0 0 1 0.125 0.091
(x1 ≡ w0w1w1, y2 ≡ t0t0t0) 4 8 −4 0.018 0.002 0.001
(x1 ≡ w0w1w1, y3 ≡ t0t0t1) 3 4 −1 0.368 0.046 0.033
(x1 ≡ w0w1w1, y4 ≡ t0t1t0) 2 4 −2 0.135 0.016 0.013
(x1 ≡ w0w1w1, y5 ≡ t1t0t0) 6 9 −3 0.049 0.006 0.004
(x1 ≡ w0w1w1, y6 ≡ t1t0t1) 5 5 0 1 0.125 0.091
(x1 ≡ w0w1w1, y7 ≡ t1t1t0) 5 5 0 1 0.125 0.091
(x1 ≡ w0w1w1, y8 ≡ t1t1t1) 3 1 2 7.39 0.923 0.674

(x2 ≡ w1, y1 ≡ t1) 0 0 0 1 0.5 0.732
(x2 ≡ w1, y2 ≡ t0) 2 3 −1 0.367 0.183 0.267

Table 3.3: Table simulating the dual αi,y update for the candidate generation based EG
algorithm.

〈B : t1, t1〉, which lies in the truth (x1, y1) but not in the Viterbi best candidate (x1, y8).

w ≡ [w〈U:w0,t0〉w〈U:w0,t1〉w〈U:w1,t0〉w〈U:w1,t1〉w〈B:S−1,t0〉w〈B:S−1,t1〉w〈B:t0,t0〉w〈B:t0,t1〉w〈B:t1,t0〉w〈B:t1,t1〉]

= [0.863,−0.863,−0.495, 0.495, 0.593,−0.593,−0.038, 0.770,−0.2,−0.532]

3.3 Part Enumeration based EG

We now consider a part-based EG technique, the motivation for which was provided earlier

in section 2.3.1 and in various other sections that outlined the infeasibility of enumerating

over a possible exponential number of generated candidates. The key to working with a

part-based formulation is to identify the Viterbi best decoded candidates for each xi at each

iterative training phase. Instead of trying to maximize a margin for all output candidates

y = GEN(xi), we identify candidates that lie closest to the truth (least margin width from

the truth). The best decoded candidates can be identified by taking an arg max y using

Viterbi decoding over the part based EG loss formulation as shown in equations 3.3 and 3.4.

Hence, non-truth candidates that were incorrectly decoded as being the best ones for a given

xi, have their discriminative scores explicitly reduced.

A generated candidate y ∈ GEN(xi) is considered to be made up of local parts r proposed

at each sequence index, and any computations performed on the generated candidate can

be modeled as a sum of computations on its local parts. The part based EG represents

a practical way of using the EG algorithm in structured prediction tasks, thus avoiding
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an inference over a possible exponential number of candidate possibilities. An important

aspect of the part based EG algorithm is that it is modeled as a globally normalized Markov

framework over all parts that can possibly get proposed for a training sentence xi.

The computation of αi,y as shown in equation 3.1 can be represented in terms of local

structural parts as shown in equation 3.7

α
′
i,y =

exp{η∇i,y}∑
y
′∈GEN(xi)

exp{η∇i,y′}
where ∇i,y = C (L(xi, y)−M(xi, y)) (3.6)

σi,y(θ) =
exp{η

∑
r∈R(xi,y)

θi,r}∑
y′∈GEN(xi)

exp{η
∑

r′∈R(xi,y′)
θi,r′}

(3.7)

=
exp{η

∑
r∈R(xi,y)

θi,r}
Zi

(3.8)

where θi,r represents a part based dual loss-score for a local part r that might be proposed

by a candidate output y ∈ GEN(xi). Global dual vector θ stores the part based loss θi,r,

∀i,∀r ∈ R(xi).

Zi =
∑

r∈R(xi)

∑
y:r∈R(xi,y)

exp{θi,r} (3.9)

Equation 3.9 represents the total sum across all exponentiated dual loss-scores (exp{θi,r}),
for all parts r that can possibly get proposed for the sequence xi (∀r ∈ R(xi)). For each

such part, the loss is marginalized across all sequence-candidate generations (xi, y) in which

part r lies (∀y : r ∈ R(xi, y)).

Algorithm 3 provides the pseudo code for the part based EG formulation, which was

outlined in (Collins et al., 2008) as a means to overcome the exponential inference prevalent

in the candidate generation based EG. We shall first introduce the algorithm and then

go over the various aspects of the part based formulation that were extended from the

candidate-enumeration based EG.
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Algorithm 3 Online EG Training using part enumerations

1: Input: Training set (xi, yi) for i = 1, 2 . . . N

2: Input: learning rate η, margin parameter C, number of training iterations T

3: Primal Parameters: Global weight vector w that maintains updates for the local

feature-part weights ∀r ∈ R
4: Parameters: Global dual vector θ that stores the part based loss θi,r ∀r ∈ R(xi)

5: Define: φ(xi, r) as the number of times part r occurs in xi

6: Define: Dual candidate score σi,y(θ) over all part-loss scores θi,r in R(xi, y)

7: Define: Part r marginals: µi,r(θ) =
∑

y:r∈R(xi,y)
exp{ηθi,r} as a sum over all candidates

y in xi that contain the part r

8: Initialize: w = [0, 0, 0 . . . 0]

9: Initialize: θ1 to a vector with random initial values for each θi,r

10: for t = 1, 2, . . . , (T + 1) do

11: for i = 1, 2, . . . , N do

12: if yi 6= arg max y ∈ GEN(xi) then

13: for each r ∈ R(xi) do

14: Set the dual loss scores: θt+1
r ← θtr + η(li,r + wt · φi,r/C)

15: end for

16: Update µi,r(θ
t+1) using Forward-Backward re-estimation ∀r in R(xi)

17: for r ∈ R(xi, yi) or r ∈ R(xi, arg max y) do

18: if t = 1 then

19: Set: w = w + Φ(xi, yi)−
∑

r µi,r(θ
1)× φ(xi, r)

20: else if t > 1 then

21:

Set: w =
∑
i

Φ(xi, yi)−
∑
i,y

σi,y(θ
t+1
i )×Φ(xi, y)

= w +
∑
y

σi,y(θ
t)×Φ(xi, y)−

∑
y

σi,y(θ
t+1)×Φ(xi, y)

= w +
∑

r∈R(xi)

µi,r(θ
t)× φ(xi, r)−

∑
r∈R(xi)

µi,r(θ
t+1)× φ(xi, r)

22: end if

23: end for

24: end if

25: end for

26: end for

27: Output: 1
C .w
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The dual loss updates θi,r for each part r proposed in xi is based on whether r lies in the

truth segmented candidate ((li,r = 0)) or not ((li,r = 1)). For a given training iteration t, the

part based EG algorithm requires that a θti,r update for a given sentence xi be propagated

to all θti′,r ∀xi′ 6= xi. This step requires iterating over all training sentences which might

possibly contain the part r. To avoid looping over all θti′,r the algorithm maintains a global

part-score vector θ of the same dimension R as the global weight vector w, where each

indexed value in the global vector θ represents a dual loss-score for each part across all

training sentences. This formulation for the dual distribution significantly helps reduce the

memory requirements, as maintaining an independent θi,r vector over all parts proposed in

a given xi would be very memory intensive. This update is seen in line 14 of algorithm 3.

Thus, any part-indexed update for the dual loss-score need not be explicitly propagated to

all training sentences that might possibly contain the part; only the global vector θ gets

updated.

For each iteration over a sentence xi, the θ updates are done for all r ∈ R(xi), where

R(xi) represents a set of all possible parts that can be proposed for a given xi (Collins et

al., 2008):

θt+1
r =

 θtr + η
w(θ)∗φi,r

C if r ∈ Rtruth
θtr + η

(
li,r +

w(θ)∗φi,r
C

)
if r /∈ Rtruth

(3.10)

li,r = 1 represents a local-loss value for wrongly proposing the part r for a sentence xi.

The weight vector w is represented as w(θ), indicating that its update is dependent on the

update of the global vector θ. In other words, only after the online updates for the dual

parameters are completed, are the primal weight parameters updated in an online fashion.

An important aspect of the EG algorithm can be seen from line 17 onwards of algorithm 3

where the online weight update procedure takes place. It is seen that the marginal µi,r values

for a given iteration t need to be memorized for the update step in t+1. Unlike the θi,r values

which can be maintained globally by θ, the µti,r values need to be explicitly memorized for

usage in the next iteration over the training example xi. This is because the marginal values

µti,r are locally maintained by each sentence and do not get propagated across all sentences.

The µi,r values represent the marginals of local parts r across all y = GEN(xi). That

is, they represent an accumulation of exponentiated dual loss scores across all candidate
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generations that contain r. The marginals µi,r as defined in (Bartlett et al., 2004) are:

µti,r =
∑
y

αi,y(θ
t)I(xi, y, r)

where, part indicator function I(xi, y, r) =

{
0 if r 6∈ R(xi, y)

1 otherwise

A part r might be proposed multiple times in a given sentence xi, resulting in multiple

loss-score θi,r updates for the part in that sentence. A marginalization µi,r over all such

exponentiated loss-updates at different sentence indices, captures the total exponentiated

loss-score update for that part in xi. This marginalization can also be expressed as:

µi,r =
∑

y:r∈R(xi,y)

σi,y(θ)

where σi,y(θ) is a dual-score assigned to candidate y, which can be represented as a sum over

scores of all local feature parts that can exist in the sequence-candidate (xi, y) pair. The

total summed exponentiated loss for r is finally normalized with Zi to give us a probabilistic

loss µi,r for a part r proposed across candidate generations of xi. The estimation of the

marginals µi,r requires a forward-backward re-estimation (Rabiner, 1989) of the per-part

exponentiated loss score across all y ∈ GEN(xi) (at each sentence index ı), for a given part

r ∈ R(xi). µi,r, along with φi,r, the number of times the part was proposed in xi, is then

used in an online weight update procedure to update the weight vector w. Line 17 onwards

of algorithm 3 demonstrates the online weight update step. An important point to be noted

for the weight update step is that weights for only those parts of xi which lie in the truth

yi or which are proposed in the Viterbi best decoded sequence arg max y get updated. This

helps avoid weight updates for irrelevant parts.

For a given training iteration t and for a given training sentence xi of length n, the

forward-backward re-estimation for µi,r is based on the following recursive derivation at

each sentence index:
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µi,r =
∑
y

exp
(∑

r∈R(xi,y)
θi,r

)
Zi

I(xi, y, r)

=
∑
y1...yn

exp
(∑

r∈R(xi,y1...yn)
θi,r

)
Zi

I(xi, y1 . . . yn, r)

=
∑

y1...yn−1

exp
(∑

r∈R(xi,y1...yn−1)
θi,r

)
Zi

I(xi, y1 . . . yn−1, r)

+
∑
yn

exp
(∑

r∈R(xi,yn,Unigram) θi,r

)
Zi

I(xi, yn, r)

+
∑
yn−1

∑
yn

exp
(∑

r∈R(xi,yn,Bigram) θi,r

)
Zi

I(xi, yn, r)

where each y1, y2, . . . yn represent one of 23 discrete phrasal tags (say t1, t2, . . . t23) that can

possibly be generated at each sentence index ı = [1..n], for the candidate y.

For the previously introduced sequence tagging HMM example, (x1, y1) ≡ (w0w1w1, t0t1t1),

the forward and backward table computations are shown in table 3.4. During training, all

forward-backward computations are performed independently for each sentence and hence

for simplifying notation, we shall maintain our forward-backward notation sentence indepen-

dent. Each entry in the forward table can be represented as F (index, tag). For the simple

HMM case, tag represents one of t0 or t1, indicating a segmentation or no segmentation

at the current sequence index. For the phrasal chunking task, index represents the current

word index within a sentence and tag represents one of t0 . . . t23 discrete phrasal chunks

that can possibly be generated at the current index.

The forward recurrence relation is given by:

F (ı, tag) =
∑

prev−tag
F (ı− 1, prev − tag) exp{θ〈U :feat,tag〉} ∗ exp{θ〈B:prev−tag,tag〉}

The backward recurrence relation is given by:

B(ı− 1, prev − tag) =
∑
tag

∗B(ı, tag) ∗ exp{θ〈U :feat,tag〉} ∗ exp{θ〈B:prev−tag,tag〉}

For a given sequence index ı, the forward table provides a probabilistic marginal across

all candidate paths from [0 . . . ı] that contain the part r. The backward table provides a

probabilistic marginal across all candidate paths from [ı + 1 . . . n] that contain the part r.

Thus, combining the forward-backward inference at each index, and then summing over all
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such per-index inferences, provides a marginal value µr for r across all candidate generations.

The normalization for the marginals is done globally with Zi. The forward-backward relation

for the part marginals µr at each sequence index ı is shown below.

µr(ı, 〈U : feat, tag〉) = F (ı, tag) ∗B(ı, tag)

Zi
for unigram feature parts

µr(ı− 1, 〈B : prev− tag, tag〉) =
F (ı− 1, prev − tag) ∗B(ı, tag) ∗ exp{θ〈B:prev−tag,tag〉} ∗ exp{θ〈U :feat,tag〉}

Zi

for bigram feature parts

We shall outline the part based EG methodology using a simple sequence-truth label ex-

ample (x1, y1) ≡ (w0w1w1, t0t1t1), which was previously introduced in section 3.2. The

initializations for the part based EG algorithm are:

η = 1, C = 1 and w = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

θ ≡
(
θ〈U:w0,t0〉, θ〈U:w0,t1〉, θ〈U:w1,t0〉, θ〈U:w1,t1〉, θ〈B:S−1,t0〉, θ〈B:S−1,t1〉, θ〈B:t0,t0〉, θ〈B:t1,t0〉, θ〈B:t0,t1〉, θ〈B:t1,t1〉

)
≡ (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

If we work in the probabilistic space for the marginal computations, then the forward table

is initialized to F (ı = 0, S−1) = 1, which represents the start state of the sequence. The

initialization for the backward table is B(ı = END, S+1) = 1, which represents the end state

of the sequence.

Practically, the forward-backward computations for EG are done in the logarithmic

space due to the large loss penalties imposed by exponentiated multiplicative updates. For

the HMM example, in the logarithmic space, the initialization for the forward table is

F (ı = 0, S−1) = 0, and the initialization for the backward table is B(ı = END, S+1) = 0.

We illustrate the forward table recurrence relation at each sequence index for the sequence-

truth output example pair (x1, y1) ≡ (w0w1w1, t0t1t1). In our implementation we use a

exponential of base 2. We use a notation F (ı, tı−1 → tı) to indicate the transition from a

state at the previous index (ı− 1) to the current index ı.

At Index = 1 :

F (1, t0) = F (1, S−1 → t0)

= F (0, t0) ∗ exp{θ〈U:w0,t0〉} ∗ exp{θ〈B:S−1,t0〉}

F (1, t1) = F (1, S−1 → t1)

= F (0, t1) ∗ exp{θ〈U:w0,t1〉} ∗ exp{θ〈B:S−1,t1〉}
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At Index = 2 :

F (2, t0) = F (2, t0 → t0) + F (2, t1 → t0)

= F (1, t0) ∗ exp{θ〈U:w1,t0〉} ∗ exp{θ〈B:t0,t0〉}+

F (1, t1) ∗ exp{θ〈U:w1,t0〉} ∗ exp{θ〈B:t1,t0〉}

F (2, t1) = F (2, t0 → t1) + F (2, t1 → t1)

= F (1, t0) ∗ exp{θ〈U:w1,t1〉} ∗ exp{θ〈B:t0,t1〉}+

F (1, t1) ∗ exp{θ〈U:w1,t1〉} ∗ exp{θ〈B:t1,t1〉}

At Index = 3 :

F (3, t0) = F (3, t0 → t0) + F (3, t0 → t0)

= F (2, t0) ∗ exp{θ〈U:w1,t0〉} ∗ exp{θ〈B:t0,t0〉}+

F (2, t1) ∗ exp{θ〈U:w1,t0〉} ∗ exp{θ〈B:t1,t0〉}

F (3, t1) = F (3, t0 → t1) + F (3, t0 → t1)

= F (2, t0) ∗ exp{θ〈U:w1,t1〉} ∗ exp{θ〈B:t0,t1〉}+

F (2, t1) ∗ exp{θ〈U:w1,t1〉} ∗ exp{θ〈B:t1,t1〉}

At Index = 4 :

F (4, S+1) = F (4, t0 → S+1) + F (4, t1 → S+1)

= F (3, t0) ∗ exp{θ〈U:wS+1
,S+1〉} ∗ exp{θ〈B:t0,S+1〉}+

F (3, t1) ∗ exp{θ〈U:wS+1
,S+1〉} ∗ exp{θ〈B:t1,S+1〉}

For the HMM based example sequence as shown in table 3.4, the forward and backward table

formations in probability space use an exponentiated value of 2 for the loss. For each (index, tag)

cell of the Forward table, we show how the forward table values are incrementally computed as

summation values up to that sequence index. A summation over all sequence paths identifiable at

a particular (index, tag) gives us the value of the forward table cell at that particular index. The

backward table is also formed incrementally, but in a reverse manner starting from the goal state’s

index and marginalizing the values in a backward manner. For practical implementations, especially

when dealing with long sequences, the forward-backward and marginal computations are done in

logarithmic space to avoid overflow errors arising due to propagation of large unnormalized marginal

inferences.
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ı = 0 w0(ı = 1) w1(ı = 2) w1(ı = 3) ı = END

S−1 F(0, S−1) = 1

B(0, S−1) = 2048

Proposed µ〈B:S−1,t0〉 = 1024

Part µ〈B:S−1,t1〉 = 1024

Marginals

t0 F(1, t0) = 4 F(2, t0) = 32 F(3, t0) = 256

B(1, t0) = 256 B(2, t0) = 32 B(3, t0) = 4

Proposed µ〈U:w0,t0〉 = 1024 µ〈U:w1,t0〉 = 1024 µ〈U:w1,t0〉 = 1024

Part µ〈B:t0,t0〉 = 512 µ〈B:t0,S+1〉 = 512

Marginals µ〈B:t1,t0〉 = 512

t1 F(1, t1) = 4 F(2, t1) = 32 F(3, t1) = 256

B(1, t1) = 256 B(2, t1) = 32 B(3, t1) = 4

Proposed µ〈U:w0,t1〉 = 1024 µ〈U:w1,t1〉 = 1024 µ〈U:w1,t1〉 = 1024

Part µ〈B:t0,t1〉 = 512 µ〈B:t0,t1〉 = 512 µ〈B:t1,S+1〉 = 512

Marginals µ〈B:t1,t1〉 = 512 µ〈B:t1,t1〉 = 512

S+1 F(END, S+1) = 2048

B(END, S+1) = 1

Proposed µ〈U:wS+1
,S+1〉 = 2048

Part

Marginals

Truth 〈U : w0, t0〉 〈U : w1, t1〉 〈U : w1, t1〉 〈U : wS+1 , S+1〉

Parts 〈B : S−1, t0〉 〈B : t0, t1〉 〈B : t1, t1〉 〈B : t1, S+1〉

Table 3.4: Forward, Backward, and Marginal table formations for part based EG.

The global normalization factor for the part marginals computed in table 3.4 is:

Z =
∑
r

∑
index=ı

µ〈ı,r〉

= 18432

After computing the forward-backward values recursively as shown in table 3.4, the marginal

computations µr for each part r, at each index ı, are done as shown in table 3.5. The computation

of values for the marginals are done in the backward direction, in a manner similar to the backward

table. However, unlike the backward table, the marginal values are not recursively propagated,

rather independently computed from forward and backward table values. The detailed per-index

computations for the unnormalized marginal values at each sequence index and for each distinct
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part, are shown in table 3.5.

Index=0

Part r µr

〈B : S−1, t0〉 µ〈ı=0,B:S−1,t1〉 = F (0, S−1) ∗B(1, t0) ∗ 2θ〈B:S−1,t0〉 ∗ 2θ〈U:w0,t0〉

〈B : S−1, t1〉 µ〈ı=0,B:S−1,t1〉 = F (0, S−1) ∗B(1, t1) ∗ 2θ〈B:S−1,t1〉 ∗ 2θ〈B:S−1,t1〉 ∗ 2θ〈U:w0,t1〉

Index=1

Part r µr

〈U : w0, t0〉 µ〈ı=1,U:w0,t0〉 = F (1, t0) ∗B(1, t0)

〈U : w0, t1〉 µ〈ı=1,U:w0,t1〉 = F (1, t1) ∗B(1, t1)

〈B : t0, t0〉 µ〈ı=1,B:t0,t0〉 = F (1, t0) ∗B(2, t0) ∗ 2θ〈B:t0,t0〉 ∗ 2θ〈U:w1,t0〉

〈B : B : t1, t0〉 µ〈ı=1,B:t1,t0〉 = F (1, t1) ∗B(2, t0) ∗ 2θ〈B:t1,t0〉 ∗ 2θ〈U:w1,t0〉

〈B : t0, t1〉 µ〈ı=1,B:t0,t1〉 = F (1, t0) ∗B(2, t1) ∗ 2θ〈B:t0,t1〉 ∗ 2θ〈U:w1,t1〉

〈B : B : t1, t1〉 µ〈ı=1,B:t1,t1〉 = F (1, t1) ∗B(2, t1) ∗ 2θ〈B:t1,t1〉 ∗ 2θ〈U:w1,t1〉

Index=2

Part r µr

〈U : w1, t0〉 µ〈ı=2,U:w1,t0〉 = F (2, t0) ∗B(2, t0)

〈U : w1, t1〉 µ〈ı=2,U:w1,t1〉 = F (2, t1) ∗B(2, t1)

〈B : t0, t0〉 µ〈ı=2,B:t0,t0〉 = F (2, t0) ∗B(3, t0) ∗ 2θ〈B:t0,t0〉 ∗ 2θ〈U:w1,t0〉

〈B : t1, t0〉 µ〈ı=2,B:t1,t0〉 = F (2, t1) ∗B(3, t0) ∗ 2θ〈B:t1,t0〉 ∗ 2θ〈U:w1,t0〉

〈B : t0, t1〉 µ〈ı=2,B:t0,t1〉 = F (2, t0) ∗B(3, t1) ∗ 2θ〈B:t0,t1〉 ∗ 2θ〈U:w1,t1〉

〈B : t1, t1〉 µ〈ı=2,B:t1,t1〉 = F (2, t1) ∗B(3, t1) ∗ 2θ〈B:t1,t1〉 ∗ 2θ〈U:w1,t1〉

Index=3

Part r µr

〈U : w1, t0〉 µ〈ı=3,U:w1,t0〉 = F (3, t0) ∗B(3, t0)

〈U : w1, t1〉 µ〈ı=3,U:w1,t1〉 = F (3, t1) ∗B(3, t1)

〈B : t0, S+1〉 µ〈ı=2,B:t0,S+1〉 = F (3, t0) ∗B(END, S+1) ∗ 2θ〈B:t0,t0〉 ∗ 2θ〈U:w1,t0〉

〈B : t1, S+1〉 µ〈ı=2,B:t1,S+1〉 = F (3, t1) ∗B(END, S+1) ∗ 2θ〈B:t1,t0〉 ∗ 2θ〈U:w1,t0〉

Index=END

Part r µr

〈U : wS+1
, S+1〉 µ〈ı=3,U:w1,t0〉 = F (END, S+1) ∗B(END, S+1)

Table 3.5: Computation of unnormalized marginals using forward-backward table values.

We show a simulation of the part based EG algorithm’s weight update procedure in table 3.6.

The unnormalized marginal values µr for each part are taken from table 3.4. The total marginal
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values for each part are obtained by summing across marginal values computed at each index for

that part. These unnormalized marginals are then divided by the global normalization factor Z for

a given input sequence, to ensure that a globally normalized framework is maintained.

Part r µ〈r〉 =
∑

ı µ〈ı,r〉 µ〈r〉 = µ〈r〉/Zi φ〈r〉(xi) φ〈r〉(xi, yi) w

〈U : w0, t0〉 1024 0.055 1 1 0.945

〈U : w0, t1〉 1024 0.055 1 0 −0.055

〈U : w1, t0〉 1024 0.055 2 0 −0.111

〈U : w1, t1〉 1024 0.055 2 2 1.889

〈B : S−1, t0〉 1024 0.055 1 1 0.945

〈B : S−1, t1〉 1024 0.055 1 0 −0.055

〈B : t0, t0〉 2048 0.111 2 0 −0.222

〈B : t1, t0〉 2048 0.111 2 0 −0.222

〈B : t0, t1〉 2048 0.111 2 1 0.778

〈B : t1, t1〉 2048 0.111 2 1 0.778

〈U : S+1, S+1〉 1024 0.055 1 1 0.945

〈B : t0, S+1〉 1024 0.055 1 0 −0.055

〈B : t1, S+1〉 2048 0.111 1 1 0.889

Table 3.6: Simulation of part based EG weight update procedure where w〈r〉 = w〈r〉+w〈r〉 ∗
φ〈r〉(xi, yi)− µ〈r〉φ〈r〉(xi).

The update for the weight vector w, using the part marginals is shown in table 3.6. In table 3.6,

it can be observed that weight values for parts that lie in the truth are greater than those which do

not lie in the truth. It can also be observed that parts which are proposed frequently, but which do

not lie in the truth (like 〈B : t1, t0〉), suffer a greater reduction in the weight values than others.

The online update mechanism for the global weight vector w and the global loss-score vector θ

is shown in equation 3.11. The parts r which are proposed for a training sentence xi, index into

the global loss-score vector as θr. The appropriate values of θ get updated. θnew is then used in

a forward-backward re-estimation step for the training sentence xi, to form the part marginals for

parts r proposed in xi. The global weight vector wnew makes use of the updated marginal values

µi,r(θ
new) in its weight update step. The weight values are updated for only those r ∈ R(xi, yi) or r ∈

R(xi, arg max y). The updated wnew values are then used to compute the new values of θ for the

next training sentence and the online process repeats itself, each time with parts r proposed through

a possibly different training sentence xi′ .



CHAPTER 3. EXPONENTIATED GRADIENT 35

θnewr = θoldr + η(li,r +
wold

C
) ∀r ∈ R(xi) (3.11)

µi,r(θ
new) =

∑
y:r∈R(xi,y)

σi,y(θnew) (3.12)

wnew = wold +
∑
r

µi,r(θ
new)× φ(xi, r)−

∑
r

µi,r(θ
new)× φ(xi, r) (3.13)

An important implementation detail noted in (Collins et al., 2008) is that for certain parts that

get frequently updated due to the online update mechanism, an upper or lower bound can be placed

on their dual-score value if they become too large or too small. This ensures that the frequent online

updates for one part, do not degrade the entire learning mechanism.

3.4 Chapter summary

Chapter 3 provided us with a detailed explanation for the derivations and interpretations of the dual-

space EG loss parameters, which form the core components of the online weight update procedure.

The chapter discussed the Exponentiated Gradient algorithms for both the candidate enumeration

based EG and the part enumeration based EG. It demonstrated how online updates in EG worked

and provided a comprehensive simulation of the online weight update procedure of EG, including

forward-backward inference learning to form globally normalized part based marginals.

In the next chapter, we shall see the experimental results by running a perceptron and part based

EG algorithm with Viterbi decoding on a phrasal chunking dataset.



Chapter 4

Experimental Results

We present the overall accuracy, precision, recall and F-score measure, and per-phrase precision and

recall accuracies for the perceptron and part based EG algorithms used with the Viterbi decoding

scheme for the sequence learning task of finding non-recursive phrasal chunks in text. Precision is

defined as the number of correctly segmented words divided by the total number of words in the

segmentation result, where the correctness of the segmented words is determined by matching the

segmentation with the gold standard test set. Recall is defined as the number of correctly segmented

words divided by the total number of words in the gold standard test set. The independent training

and test sentences for this task were taken from sections of the Wall Street Journal corpus (WSJ)

with sections 15-18 as training data (211727 tokens) and section 20 as test data (47377 tokens). All

accuracy evaluations were done on the independent test set.

As previously outlined in section 1.1, non-recursive chunking can be modeled as a tagging task.

We revisit the example “The burglar robbed the apartment.” previously introduced in section 1.1

to illustrate phrasal chunking as a tagging task. By using leftmost derivations of context free gram-

mar(CFG) rules, we get “The burglar” as a bracketed noun phrase chunk (NP) in the sentence, and

“robbed the apartment” as a bracketed verb phrase chunk (VP). Applying a per-word tagging struc-

ture to the above bracketed phrases, we get “The” as beginning noun phrase (B-NP) and “burglar” as

an intermediate noun phrase(I-NP), “robbed” as beginning verb phrase (B-VP) and so on. Figure 4.1

illustrates how phrasal chunking can be represented as a tagging task.

The burglar robbed the apartment .
[ NP ] [ VP ] [O]
B-NP I-NP B-VP B-NP I-NP O

Figure 4.1: Phrasal chunking as a tagging task (Example taken from (Collins, 2003)).

36
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The precision and recall accuracies of the test data are computed over all kinds bracketed phrasal

chunks. The overall F-score measure (van Rijsbergen, 1979) on the test data is measured as a

harmonic mean of the overall precision and recall accuracies as:

F-score =
2 ∗ Precision ∗ Recall

Precision + Recall

We use the CRF++ feature generation framework (Kudo, 2005), which is an open source imple-

mentation of Conditional Random Fields (CRFs) for generating local structural features at each index

of the sequence data. CRF++ consists of observed unigram features and bigram features, where

unigram features are formed by combinations of the word under consideration and its 2 preceding

and succeeding neighborhood words. Bigram features are used to extract the hidden contextual

information from tags.

Figure 4.2 shows a representation of the CRF++ feature generation framework used for the

chunking task. Features starting with ’U’ are the observed unigram features generated at each

index, and ’B’ represents the fact that the given learning framework will make use of bigram features

defined over phrasal tags that are defined at each sentence index and its preceding index. The distinct

numbering framework adopted by the unigram tags (for example, U:00 or U:01) ensures that the

generated features are not treated as a bag of words framework and that each feature’s generation

index has an associated significance. The unigram feature U00:%x[−2, 0] indicates that the feature

considers the word at the current index (indicated by the 0) and its preceding neighbor (indicated

by the -1). The unigram feature U11:%x[−1, 1] indicates that the single preceding and succeeding

words of the indexed word are considered for generating this feature.
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# Unigram

U00:%x[-2,0]

U01:%x[-1,0]

U02:%x[0,0]

U03:%x[1,0]

U04:%x[2,0]

U05:%x[-1,0]/%x[0,0]

U06:%x[0,0]/%x[1,0]

U10:%x[-2,1]

U11:%x[-1,1]

U12:%x[0,1]

U13:%x[1,1]

U14:%x[2,1]

U15:%x[-2,1]/%x[-1,1]

U16:%x[-1,1]/%x[0,1]

U17:%x[0,1]/%x[1,1]

U18:%x[1,1]/%x[2,1]

U20:%x[-2,1]/%x[-1,1]/%x[0,1]

U21:%x[-1,1]/%x[0,1]/%x[1,1]

U22:%x[0,1]/%x[1,1]/%x[2,1]

# Bigram

B

Figure 4.2: CRF++ feature generation framework (Kudo, 2005)

.

The chunking accuracy was evaluated with a Perl script conlleval, provided as part of the CoNLL-

2000 shared task. Conlleval can be used for measuring the performance of any system that has

processed the CoNLL-2000 shared task data. It computes the precision and recall numbers for 11

different phrases that were derived from the WSJ corpus, except the O chunk which is used for

tokens which are not part of any chunk. It must be noted that though the precision and recall values

for the O chunk are not explicitly computed, they do affect the overall accuracy of the system. The

UDCP phrasal chunk was not found in the data and hence do not get displayed in the final accuracy

table for this data, as per the output obtained from conlleval.
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4.0.1 Perceptron algorithm

The perceptron looks to minimize the number of mistakes made in each iteration and needs a fixed

number of iterations to be determined beforehand. The perceptron algorithm does not require

any input training parameters. Based on a few trial runs, we fix our perceptron training to 20

iterations. The best decoded sequence needed by the perceptron algorithm to perform the loss based

additive updates is obtained using the Viterbi decoding scheme. The overall prediction accuracy (as

a percentage), along with the overall precision, recall and F-score measures for the phrasal chunking

task on the test set, is as shown in table 4.1. The perceptron algorithm might take more iterations

to reach convergence than the EG algorithm, however in terms of absolute training times required,

the perceptron’s training period is significantly faster and unlike the EG algorithm, it does not have

a significant memory overhead.

The phrase based precision and recall accuracies are shown in table 4.2. As expected, the phrase

based precision and recall accuracies for commonly occurring parts of speech entities like NP,VP and

PP, are seen to be better than other less frequent tags like LST and CONJP.

Overall Accuracy Overall-Precision Overall-Recall Overall F-score

95.44 92.98 92.68 92.83

Table 4.1: Overall accuracy, precision, recall and F-score measures obtained using the per-
ceptron algorithm for Phrasal Chunking.

Phrasal Chunk Precision Recall

ADJP 72.83 74.66

ADVP 79.47 80.02

CONJP 45.45 55.56

INTJ 100.00 50.00

LST 0.00 0.00

NP 93.33 92.69

PP 96.57 97.84

PRT 77.91 63.21

SBAR 87.93 80.37

VP 93.70 93.62

Table 4.2: Phrase based precision and recall accuracies using the perceptron algorithm.
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4.0.2 Exponentiated Gradient algorithm

The part based Exponentiated Gradient learning algorithm is used with the Viterbi decoding scheme

train the global weight vector w. The EG algorithm requires an initial parameter setting for the

learning rate η and a margin regularization constant C. To avoid overflow errors, the forward,

backward and marginal computations for the EG algorithm are done in logarithmic space. An

exponential value of 2 was used to update the loss.

The EG algorithm has a large parametric space. It includes the learning rate η for tuning

the online loss-descent rate and the margin regularization constant C for controlling the strength

of an update to affect the decision margin. The set of optimal parameters for a task may vary

across different datasets and they may need to be empirically decided through a few trial runs. A

good evaluation on the EG parameter space was outlined in (Collins et al., 2008) for the structured

prediction task of dependency parsing.

To understand the effect of the parameters on the EG learning, we need to revisit equation 3.10.

From this equation we gather that a larger η will impose a larger penalty on the dual-loss variable

θ, thus resulting in a faster descent of the loss gradient. A very fast descent however would not give

the algorithm sufficient freedom to effectively learn the weight parameters.

Our strategy in choosing the input parameters, as outlined in (Collins et al., 2008), was to start

with parameters that are more stringent (like a larger value for the regularizer C) so as to ensure a

slower initial descent of the loss. This ensures that the algorithm starts its learning with measured

descent steps.

At each succeeding iteration, we allow for the regularizer C to be reduced, thus increasing the

overall descent rate for the loss. For the EG implementation for which we have quoted our results,

we select the margin elasticity constant C to have a initial value of 10, and we exponentially damp

the C values at the end of each epoch as Ct = 1 + C0 ∗ 0.7t (Collins et al., 2008), where C0 is the

0th epoch’s C value and t is current iteration. We found that this strategy for C works better than

fixing the value of C across all training iterations. For each epoch’s online update process, based on

the parametric space evaluation done in (Collins et al., 2008),and based on our evaluations for this

dataset, we fix η to be 0.01, with the η being damped towards zero at the rate of η
1+ k

n

. At the start

of each epoch η is restored to a value of 0.01. (Collins et al., 2008) also noted that a randomized

framework for the online EG algorithm gave better accuracies than a deterministic parse through

the dataset. We use this idea in our implementation, where we randomize the train data before the

start of each epoch.

Another aspect of the EG algorithm that needs to be considered is its slow run-times. The

forward, backward and marginal table computations over all local parts r ∈ R(xi) result in slow

run times for the EG algorithm. Hence, running the EG algorithm on the entire training dataset

was found to be unsuitable for training over a large number of epochs. To improve upon the EG

algorithm’s run-time efficiency, we use a distributed training mechanism for the algorithm, where we
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splice up the training data into non-overlapping contiguous chunks, and we run the iterative training

phase on each of those chunks. We form the final weight vector by combining learnt weight vectors

from all the distributed chunk data, and then averaging out the globally combined weight vector.

For our EG implementation, we divided the train data into 6 sub-files, each consisting of around

1500 sentences.

The overall accuracy, precision, recall and F-score for the part based EG implementation, is

shown in table 4.3. The per-phrase EG accuracy is shown in table 4.4.

Overall Accuracy Overall-Precision Overall-Recall Overall F-score

91.31 85.77 84.17 84.96

Table 4.3: Overall accuracy, precision, recall and F-score measures obtained using the part
based online EG algorithm for Phrasal Chunking.

Phrasal Chunk Precision Recall

ADJP 97.50 8.90

ADVP 88.02 46.65

CONJP 0.00 0.00

INTJ 0.00 0.00

LST 0.00 0.00

NP 83.63 87.05

PP 86.33 96.11

PRT 100.00 10.38

SBAR 95.70 20.93

VP 90.73 87.44

Table 4.4: Phrase based precision and recall accuracies using EG algorithm.

Figure 4.3 shows the loss gradient descent for the online EG algorithm. The loss function that

we plot is the averaged-loss per epoch across all sub-files. The first 13 epochs are needed by the EG

algorithm to stabilize itself after its rapid initial descent. After that the EG loss gradually descends

towards convergence. Due to to the significant per-epoch run times of EG, we could not run the

algorithm to convergence on the sub-files. 1

1The average loss plotted is not a smooth function that is strictly reducing the loss because of the parallel
training resulting in an averaged weight vector.
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Figure 4.3: EG Loss function.



Chapter 5

Conclusion

The part based EG algorithm provides a computationally feasible way to perform online margin-

maximization learning for Natural Language structured prediction tasks such as phrasal chunking.

However, the EG algorithm when used in a max-margin structured prediction setting does possess

a high degree of complexity with regards to complex tabular computations, arithmetic overflows,

feature-space value degradations etc.. Our implementation of the EG algorithm tries to minimize

the complexity inherently associated with this algorithm, and we have shown how this algorithm can

be used in a practical setting for a Natural Language based tagging task. Our EG algorithm has

achieved fair accuracy on the phrasal chunking task, which we hope to further improve by greater

exploration of the EG parameter space and by other optimization techniques where applicable.

5.1 Future Work

Our main aim would be to further improve upon the existing accuracy of the part based EG algorithm

for the phrasal chunking task, and to find ways to minimize the implementation complexity associated

with this algorithm, wherever possible. Also, we hope to find more applications for the EG algorithm

across different computing spectra, especially in areas where structured prediction based sequence

learning might be useful.
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