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Abs t r ac t .  The decomposition of binary structuring elements is a key 
problem in morphological image processing. So far only the decomposi- 
tion of convex structuring elements and of specific subsets of non-convex 
ones have been proposed in the literature. This work presents the re- 
sults of a new approach, based on a Genetic Algorithm, in which no 
constraints are imposed on the shape of the initial structuring element, 
nor assumptions are made on the elementary factors, which are chosen 
from a given set. 

1 I n t r o d u c t i o n  

Mathematical Morphology [8,12,6] concerns the study of shape using the tools of 
set theory. Mathematical  morphology has been extensively used in low-level im- 
age processing and analysis applications, since it allows to filter and /o r  enhance 
only some characteristics of objects, depending on their morphological shape. 

Within the mathemat ica l  morphology framework, a binary image A is defined 
as a subset of the two-dimensional Euclidean space E 2 (Z x Z):  

A = {a = (ai,aj) I ai,aj C Z} (1) 

In [6], monadic transforms acting on a generic image A (complement, reflection, 
and translation) and dyadic operators  between sets (dilation, erosion, opening, 
and closing) are defined. This work will focus only on dilations, 

A ® B  ~ {x E E 2 I x = a+b,  for some a C n,b E B} (2) 

where A represents the image to be processed, and B is called Structuring Ele- 
ment (SE), i.e. another  subset of E 2 whose shape parameterizes each operation.  

A SE B is said to be convex with respect to a given set of morphological 
operations (e.g. dilation) with a given set of SEs (factors) {Fi, i = 1, ..., n} if it 
can be expressed as a Chain of dilations of the F~ elements: 

B = F k l  ®Fk2@Fk~G.. .@Fkm, w i t h k j  •[1,n], f o r j = l , . . . , m  (3) 
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Otherwise B is said to be non-convex with respect to the same set o/ SEs, and 
thus it can only be expressed as a chain of boolean operations (e.g. unions and/or 
intersections) between convex elements (partitions): 

B = B1 ®B2 ®B3 ®. . .®Bz,  (4) 

where ® represents any boolean operation (such as unions U, intersections N,...) 
and Bi are convex elements that can be expressed as chains of dilations, as shown 
by equation (3). 

The decomposition of a binary SE into a chain of operations involving only 
elementary factors is a key problem [1]. So far, only deterministic solutions have 
been analyzed and proposed in the literature [3,10,11,13], each relying on dif- 
ferent assumptions (such as convex SEs, specific sets of elementary operators, 
etc.); on the other hand the optimal decomposition (with respect to a given set 
of optimality criteria) of non-convex generic SEs with a deterministic approach 
is still an open problem. 

This paper addresses this problem utilizing a stochastic approach, based on 
Evolution Programs: starting from a population of potential solutions (individ- 
uals), an iterative process modifies the existing individuals and/or creates new 
ones in accordance to some given functions applied randomly. The best solutions 
in the population tend to replace the others, and, after a sufficient number of 
iterations, the algorithm tends to converge toward the optimal solution. 

In particular, two are the purposes of this work: 

- to apply the results to a real-world case in which the decomposition of SEs is 
a basic programming technique: the determination of the optimal decomposi- 
tion with respect to the instruction set of the massively parallel architecture 
PAPRICA, in order to execute operations based on complex SEs; 

- to determine a performance index for the instruction set of a generic mas- 
sively parallel cellular system dedicated to morphological tasks. 

Next section introduces the problem of SE decomposition; section 3 briefly 
summarizes the approach, and section 4 discusses the results of the stochastic 
decomposition. Section 5 concludes the paper with some remarks and future 
research directions. 

2 S t r u c t u r i n g  E l e m e n t  D e c o m p o s i t i o n  o n  S I M D  S y s t e m s  

This section addresses the problem of the optimal decomposition of a complex 
SE on SIMD cellular systems, whose operations are based on a neighborhood 
smaller than the size of the SE. In the following examples, a dilation between 
a generic image A and a complex SE B is considered; due to the properties of 
unions and intersections discussed in [6], namely 

A @  (B1 U B2) = ( A @ B 1 )  U (A@ B2) 

A@ (B3 tqB4) c:_ (A@B3) N (A@B4),  

(5) 
(6) 
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in the following we prefer to express a non-convex SE as a chain of unions  of 
convex SEs, as in equation (5), instead of using in tersect ions  or other boolean 
operations. 

In cellular systems the set of all possible operations (known as Ins t ruc t ion  
Set, IS) is generally based on 3 x 3 SEs. Thus the main constraint tha t  must  
be considered in the decomposition of complex SEs is that  each e lementary 
operat ion must  belong to the Instruction Set. 

Assuming a system capable of performing horizontal and vertical dilations, 
and translations in the 8 main directions, the SE B of the following dilation 
R = A ® B, where 

• . .  
A =  and B =  • • • • • , (7) 

is non-convex with respect to the IS of the system. It  can be expressed as a 
union of convex sets, for example: 

R = A ® B  = A ®  (C1 UC2) = (A ® C1) U (A ® C2) = 

Eq. (8) contains 6 elementary dilations and 1 logical union. Using the chain rule 
property, R = A ® B can be expressed with a two-level solution as: 

This solution requires only 5 dilations and 1 logical union. 

2.1 Optimality  criteria 

The decomposition of a SE can be aimed to many different goals, such as: 

- the minimization of the number of decomposing sets (to reduce the number  
of dilations); 

- the minimization of the total  number of elements in the decomposing sets (to 
reduce the size of the da ta  structures and thus also the memory  requirements 
in serial systems); 

- the minimization of the total  number of computat ions (for speed-up reasons); 
- the possibility to implement complex morphological operations on cellular 

systems whose IS is based on simple, elementary operations (to overcome 
the problem caused by the simple interconnection topology tha t  limits the 
size of possible SEs); 

- or even the determination of factors with a given shape (to ease the recog- 
nition of 2D objects). 

The optimali ty criterion addressed in this work is the reduction of the com- 
putat ional  complexity of the processing, namely the minimization of the number  
of elementary operations required to perform morphological processings based 
on large and complex SEs. 
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2.2 A case s tudy:  P A P R I C A  system 

PAPRICA [4] is a special-purpose SIMD massively parallel coprocessor designed 
to be installed on a moving vehicle for vision-based obstacle detection and lane 
keeping tasks [2]. Special care has been devoted to the design of the IS of the 
machine since it affects directly the system performance and effectiveness: the 
minimization of the number of elementary instructions that must be combined 
together to synthesize an operation based on a complex SE is a task that extends 
far beyond the optimization of a specific algorithm, involving also the definition 
of a sufficiently general IS. 

Beside logical operations, PAPRICA IS is composed of the following mor- 
phological operations: 

(lo) 

3 I m p l e m e n t a t i o n  o f  t h e  G e n e t i c  A p p r o a c h  

Genetic Algorithms (GAs) are optimization algorithms based on a stochastic 
search [7], widely used in various fields [5]. They use ideas taken from the biology 
mechanism to drive the search toward an optimal, or nearly optimal solution: 
the terminology used in GAs has thus been imported from biology. GAs operate 
on a population of potential solutions for the considered problem (individuals) by 
means of genetic operators. Each individual contains a Genome or Chromosome, 
that is composed by a set of Genes, representing the function parameters and by 
a Fitness value, the result of the evaluation/unction, measuring the "goodness" 
of the solution encoded in this individual. The genetic search is driven by the 
fitness values of the individuals: each individual must be evaluated to give some 
quantitative measure of its fitness, that is the "goodness" of the solution it 
represents. At each iteration (generation) the fitness evaluation is performed on 
all individuals. Then, at the following iteration, a new population of potential 
solutions (Offspring) is generated, starting from the individuals with the highest 
fitness, and replacing, completely or partially, the previous generation. 

The genetic operators used to generate new individuals are subdivided into 
two main categories: unary operators, creating new individuals and replacing 
the existing ones with a modified version of them (e.g. mutation,introduction 
of random changes of genes), and binary operators, creating new individuals 
through the combination of data coming from two individuals (e.g. crossover, 
exchange of genetic material between two individuals). Each iteration step is 
called generation. 

The study of GAs led to the more general Generalized GAs or Evolution Pro- 
grams (EPs) [9]. In "standard" GAs an individual is represented by a fixed-length 
binary string, encoding the parameter set, which corresponds to the solution it 
represents; the genetic operators act on these binary codes. In EPs, individu- 
als are represented as generalized data structures without the fixed-length con- 
straint. The programmer can choose the most appropriate data structure with 
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respect to the specific problem, for example operating in the same parameters 
space of the application. In addition, ad-hoc operators are defined to act on these 
data structures. 

When the genetic approach is applied to the SE decomposition problem, 
its intrinsic nature, that is the varying number of elementary items forming a 
solution, does not allow to know a priori the size of a generic solution, that is the 
length of the coding of a generic individual. The data structure representing the 
individual must explicitly encode both the number and the shape of each single 
elementary operation composing the solution. Moreover, the coding must allow 
also a quick and easy evaluation phase. An ad-hoc EP has thus been developed, 
exploiting a method similar to the solution of the bin-packing problem. 

4 Analys is  of the Resul ts  

Let us now consider the decomposition of the following non-convex SE B, whose 
optimal decomposition is definitely non-trivial: 

• • • • • • • 

B:" : 
i o  • O ~ O  • 

• O i o  0 ~ 0  

• • e ~ e  

(11) 

L2 = HEXP(LI) L/O = WMOV(L9) LI8 = SMOg(LIT) L26 = (LI5) 

L3 = NMOV(LI) LII = EMOV(L4) LI9 = SMOg(L18) L27 = (LI9) 

L4 = NEEXP(L3) LI2 = VEXP(LII) L20 = WMOV(LT) L28 = (L20) 

L5 = HEXP(L2) it3 = SMOV(L6) L21 = NMOV(LIO) L29 = (L21) 

L6 = EMOV(L5) LI4 = NMOV(L6) L22 = SMOV(L13) L30 = (LIO) 

L7 = NEEXP(L2) LI5 = NMOV(LI4) L23 = EMOV(L22) L31 = (LI2) 

L8 = WMOV(L4) LI6 = SMOV(L7) L24 = (LI3) J L23 

L9 = WMOV(L8) LIT = SMOV(LI6) L25 = (L6) [ L24 

L25 
L26 
L27 
L28 
L29 
L30 

After 300 generations on a population of 2000 individuals, taking less than one 
hour of processing time on a Sun Spare station 20, considering PAPRICA IS 
shown in (10), the stochastic decomposition led to 50 elementary dilations and 
8 logical unions. The corresponding two-level solution comprises 22 elementary 
dilations and 8 logical unions, as shown in the following: 

where I is the identity image. This decomposition allows the direct translation 
of the solution into PAPRICA Assembly code (more details can be found in [4]): 
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4 . 1  I n s t r u c t i o n  s e t  e v a l u a t i o n  

Different ISs have been evaluated for the decomposition of the same set of SEs, 

starting from the simplest IS1 = { @ ~ ,  @ ~ ,  ~ }, extending it to a 

RISC-oriented non-symmetric set IS2 = { @ ~ ,  G ~ ,  @ ~ ,  @ ~  }, 

including single direction dilations (as implemented on PAPRICA system) IS3 = 

{ @ ~ ,  @ ~ ,  @ ~ ,  ® ~ ,  @ ~ ,  @ ~ ,  @ ~ ,  @ ~  } , replac- 

ing the first 4 elements with symmetrical ones, according to a CISC-oriented 

implementation IS4 = { @ ~ ,  @ ~ ,  @ ~ ,  @ ~ ,  @ ~ ,  ~ ,  

@ ~ ,  @ ~  } , up to a completely unusual set IS5 = { @ ~ ,  @ ~ ,  

o o oNo oNo®o®o } 
The average number of operations N required to synthesize a sufficiently 

large set of different SEs (normalized with respect to the number of operations 
N(IS1) required by IS1) is given in table 1, showing that the solution adopted 
for PAPRICA system represents a good trade-off between the complexity of the 
IS (in terms of number of factors) and its potentialities. 

In the following results are compared in two different cases: with different SE 
(a) size and (b) shape. 

a) The size of the 6 followin~ 
• • • .1*!* 
• • • • e j •  

• • • • g i g  • 
"l 

Fa=::::'::: F4= 
jjjjjjjjj~ • • • e l •  

• g i g  • • o l  

:!!!i!:" 
i!'l-" I p 

il " 
i e i  

F 6 - - -  :"  • t 

. . : l : i : :  i • I • 
i •  o l ,  
i .  -4 
i .  . !  
e i  • t 

• • • i 

SEs i, • • • 
• • • • • • O ! O  e l O  ~ • • 

• • • • • • • • , J e l e  • 

• • o J o  • • • o ! o l o  • 

• • • • • • • o l o  • 

....... F5= ° " " 0~ ° " ° 

o i o  • o l o  • • o l o  • • • • • • 

• i!!!:"" "i!!i" 
! • • o l o  

o • • • 

o • o J o  • • • 

• • o • • • 
o l o  • • • • 

FI=-io ~ .. F2= "'~'°" 
• • • o i 

o l d  • • • • • 
I o o • o o 

o ! o  • t o  
• • • • 

o l o  • • 
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varies from 7 x 7 up to 16 x 16; the single-level decomposition has been performed 
with respect to the 5 different instruction sets presented above; the results are 
shown in table 2. 

Instruction Set IS1 ISz IS3 IS4 IS5 
N / N ( I S 1 )  1 0.93 0.82 0.84 0.71 

Table 1. Average IS performance 

SE IS1 
F1 24(16/8) 
F2 35(24/11) 
F3 32(23/9) 
F4 52(38/14)' 
F5 42(31/11) 
F6 62(47/15) 

IS2 IS3 IS4 IS5 
24(16/8) 20(15/5) 21(16/5) 23(16/7) 
30(22/8) 26(20/6) 26(20/6) 19(15/4) 
32(24/8) 29(22/7) 30(23/7) 23(19/4) 

47(35/12) 39(31/8) 41(33/8)43(34/9) 
38(30/8) 36(29/7 ) 38(31/7) 29(24/5) 
55(42/13) - - - 

Table  2. Results of the decom )osition of SEs F1, F2,  ..., F6 .  Only two of the decom- 
positions of F6 could be performed due to the extremely large memory requirements. 
The first number represents the total number of instructions; between brackets the 
number of morphological and boolean operations, respectively. 

b) Table 3 shows the results of the decomposition of the following three 7 × 7 
SEs (used in the search for planes in aerial images): 

• • Qi • • • • 

: " i :  "'" : :  " "  

° •  ° ; : : °  l . . . .  (12) a l =  . . ~  . . . .  a 2 =  • .... G 3 =  . i . I ~ . .  

• • • • • • • • • • • • 

• • • j  • • • • • • • o j  

is shown in table 3. 
SE IS1 IS2 IS3 I84 IS5 
G1 16(11/5) 15(10/5)13(10/3) 14(11/3) 11(9/2) 
G2 17(10/7)16(9/7) 13(9/4) 13(9/4) 7(6/1) 
G3 21(14/7) 21(14/7) 20(14/6) 20(14/6) 15(11/4) 

Table 3. Results of the decomposition of SEs G1, G2, G3. 

The example shows that,  as a general rule, the larger the number of opera- 
tions in the IS, the shorter the decomposition; but  it also shows that  established a 
fixed number of factors in the IS, a rise-oriented solution provides bet ter  results. 

5 C o n c l u s i o n  

This paper presented the results of the use of a stochastic approach to the 
decomposition of arbitrarily shaped binary morphological structuring elements 
into chains of elementary factors. The application of this technique to c o n v e x  SEs 
leads to the optimal decomposition discussed in the li terature [1]; in addition, 
this paper addressed the decomposition of generic n o n - c o n v e x  SEs. 

In particular, two are the main results reported in this work: 
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- first, it is possible to derive automatical ly the PAPRICA assembly program 
from the result of the decomposition; when the optimali ty criterion used in 
the decomposition is the minimization of the number of elementary morpho- 
logical operations, this corresponds to the determination of the PAPRICA 
program requiring the minimum computat ional  time. 

- second, the decomposition of a large number  of SEs was used to derive a 
performance index for different ISs; in particular the one implemented on the 
PAPRICA system demonstrated to be a good trade-off between performance 
and complexity (intended as the number of elements in the IS). 

Due to the extremely high computat ional  load and to the large memory  
requirements needed by the iterative approach, the genetic engine is now being 
ported to the MPI  parallel environment in order to speed-up the processing and 
to allow the decomposition of very large SEs. 

A graphical interface is also under development to ease the definition of both 
the initial SE and the IS, as well as the introduction of parameters .  The interface, 
based on Java, will allow remote users to run their own decompositions using 
the new Web technology. The first release of the complete tool running on Unix 
systems under the MPI  environment will be shortly available as Public Domain 
software. 
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