
Experiments on the Effectiveness of

Dataflow- and Controlflow-Based Test Adequacy Criteria

Research Paper

Monica Hutchins, Herb Foster, Tarak Goradia, Thomas Ostrand

Siemens Corporate Research, Inc.

755 College Road East, Princeton, NJ 08540 U.S.A.

Email: {mhutchins,hfoster, tgoradia,tostrand } @scr.siemens.com

Abstract

This paper reports an experimental study investigating

the effectiveness of two code-based test adequacy criteria

for identifying sets of test cases that detect faults. The all-

edges and all-D Us (modified all-uses) coverage criteria

were applied to 130 faulty program versions derived from

seven moderate size base programs by seeding realistic

faults. We generated several thousand test sets for each

faulty program and examined the relationship between

fault detection and coverage. Within the limited domain

of our experiments, test sets achieving coverage levels

over 90?Zo usually showed sigrdjlcantly better fault

detection than randomly chosen test sets of the same size.

In addition, sigrd$cant improvements in the effectiveness

of coverage-based tests usually occurred as coverage

increased from 90% to 100Yo. Howeve~ the results also

indicate that 100?Zo code coverage alone is not a reliable

indicator of the effectiveness of a test set. We also found

that tests based respectively on controljlow and dataflow

criteria are frequently complementary in their

effectiveness.

1 Introduction

Control flow-based code coverage criteria have been

available to monitor the thoroughness of software tests at

least since the 1960’s [11, 12, 24]. More recently,

dataflow-based methods have been defined and

implemented in several tools [7, 10, 15, 20]. Various

comparisons have been made of the theoretical relations

between coverage methods [4]. However, the questions of

real concern to researchers and potential users of these

adequacy criteria deal with their actual effectiveness in

detecting the presence of faults in programs. Test

managers and developers would like to know whether the

investment in systems to monitor code coverage is

worthwhile, and whether the effort to look for additional

tests that increase coverage is well-spent. They would

like to know the additional cost of achieving adequate

coverage, the payback for that cost, and in particular,

whether fault detection increases significantly if test sets

are adequate or close to adequate according to the criteria.

In an effort to answer these questions, we have

performed experiments comparing dataflow coverage and

controlflow coverage using the dataflow coverage system

Tactic developed at Siemens Corporate Research [20]. To

make our results as relevant as possible to professional

software developers and testers, we searched available

public archives for specifications and C programs that

would be suitable for the study. We ended up with seven

moderate-size C programs, into which we seeded 130

different faults.

Section 2 of the paper describes the test adequacy

criteria that are monitored by Tactic. Section 3 briefly

describes some previous work relating to evaluation of

adequacy criteria. Section 4 lpresents the goals of our

study, discusses assumptions and the design of the

experiments, and describes the programs used in the

study. Section 5 explains some of the data analysis. In

Section 6 we describe our observations. Section 7

contains conclusions.

2 The Test Adequacy Criteria

2.1 Dataflow Coverage

Dataflow-based adequacy criteria stipulate that a test

set must exercise certain clef-use associations that exist in

the code. A def of a memory location is an operation that

writes a value to the location. A use of a location is an

operation that reads the location’s current value. A def-

use association (DU) for a given location is a pair

consisting of a def and a use of the location, such that

there is a controlflow path in the code from the def to the

use on which there is no intermediate redefinition or

undefinition of the location. A test case exercises a

particular clef-use association if the test case causes

execution to arrive at the site of the def operation and

execute the clef, and subsequently arrive at the site of the

use operation and execute the use, without having

executed any other def or undefinition of the memory

location. A test set exercises a DU if at least one test case

in the set exercises the DU.

Note that a DU is defined in terms of static properties

of the code, i.e., in terms of the existence of a path in the

code’s controlflow graph, while exercising a DU is

defined in terms of dynamic execution. To satisfy the all-

0270-5257/94 $3.00 @ 1994 IEEE

191

DUS criterion, a test set must exercise every executable

DU in the program.

Test adequacy criteria based on dataflow were

proposed by Rapps and Weyuker [22, 23], Ntafos [18],

and Laski and Korel [16] as alternatives to the

control flow-based measures of test adequacy.

The first dataflow adequacy tool was implemented by

Frankl, Weiss, and Weyuker [7,8], who built the ASSET

system that operated on Pascal code in accordance with

the definitions of Rapps and Weyuker. The inputs to

ASSET are a Pascal program and a set of test data; its

output is a determination of whether or not the test data

are adequate with respect to one of the Rapps-Weyuker

dataflow criteria.

The Tactic system for C programs evaluates test sets

for all-DUs adequacy, as well as for all-edges adequacy.

Since our ultimate goal is to produce a test adequacy tool

that is usable in production environments, Tactic handles

almost all of standard C, including structures, arrays,

pointer references, and interprocedural dataflow. A key

feature of Tactic is its ability to perform accurate analysis

of code for clef-use associations where one or both of the

def and use are indirect references [20, 21]. Although this

capability greatly enhances the system’s ability to track

dataflow accurately, it also greatly increases the number

of clef-use associations detected for a program, as well as

creating the problem of determining whether or not there

exists a runtime clef-use association that corresponds to a

statically found clef-use association involving a pointer

reference or a structure element.

Our dataflow criterion all-DUs differs from the anu-

ses criterion originally defined by Rapps and Weyuker

and used as the basis of ASSET. Because of the following

three major differences, test sets satisfying all-DUs are in

general not comparable to sets satisfying all-uses. First,

we do not distinguish between c-uses and p-uses; a use is

any occurrence in the program where a value is accessed

from memory. In the Rapps-Weyuker theory, p-uses were

defined so that satisfaction of all-uses would imply

satisfaction of branch coverage, since a p-use of every

variable that appears in the predicate of a decision

statement is placed on every branch that leads away from

the predicate. In our system, all-DUs does not subsume

branch coverage, since our definition does not provide a

way to force execution of any particular branch leaving a

predicate node. We do not combine DU and branch

coverage in a single criterion since each measure has its

separate benefits. In addition, for these experiments, we

were interested in studying the effects of ~he individual

test requirements induced by each type of coverage.

Second, our definition of use is not restricted to named

variables, since in C it is possible to reference a memory

location through a pointer without having a variable

associated with the location. Thus, a def occurs when

dynamically allocated memory is assigned a value with a

statement such as *p = 15; a corresponding use occurs in

a statement such as x = *q + 5, if there have been no

intervening definitions of the location, and q points to the

location assigned to through p. We aiso capture

interprocedural clef-use associations, where the def occurs

in a calling procedure, and the use in the called procedure

is through a dereferenced pointer or a global variable

reference.

Third, our method of checking test execution for

satisfaction of the dataflow criteria differs from that used

in ASSET, where a DU is considered exercised if a def-

clear path from a def node to a use node is executed. In

the presence of pointer dereferences, it is not sufficient to

monitor the execution of paths from def sites to use sites,

since this does not guarantee that the def and use are of

the same memory location, or even that a def or use have

been executed. Hence Tactic considers a DU to be

exercised only when an actual write of a memory location

(the clef) is followed by an actual fetch from that location

(the use).

2.2 Controlflow Coverage

Edge coverage by Tactic extends traditional branch

coverage by considering not only edges based on explicit

controlflow statements in the code, but also edges based

on implicit controlflow in Boolean expressions. For

example, Tactic considers the C statement

if (a && b && c) x=5;

else x=1O;

to have 6 edges, not 2; four sets of values for a, b, and c

are required to exercise all the edges. Beizer [3] refers to

this level of coverage as predicate coverage.

3 Other Experimental Work

Frankl and Weiss conducted a study [6] which

compared the all-edges criterion to the all-uses criterion

for nine Pascal programs. For some of the subject

programs, they concluded that test sets satisfying the anu-

ses criterion were more effective at detecting faults than

sets satisfying all-edges. We discuss the FrankI-Weiss

study in greater detail in Section 4.2.3.

A study by Basili and Selby [2] attempted to compare

three techniques: code reading by stepwise abstraction,

functional testing using equivalence partitioning and

boundary value analysis, and structural testing using

statement coverage. Seventy-four programmers applied

the three techniques to four unit-sized programs

containing a total of 36 faults in a fractional factorial

experiment, giving observations from 222 testing sessions

on the effectiveness of the testing methods. They also did

a cost analysis and a characterization of the faults

detected.

A study by Thevenod-Fosse, Waeselynck, and Crouzet

[25] used mutation scores to compare the effectiveness of

deterministic structural testing techniques to their own

method of test generation (structural statistical testing).

The mutations were automatically created from four small

C programs, creating a total of2914 mutants; equivalent

mutants were eliminated by hand. The test sets for the

deterministic part of the testing were created by hand for

each criterion under consideration; for each criterion and

for each program, at most 10 test sets were designed, with

at most 19 members in each test set. The resulting

192

mutation scores of these test sets were used to determine

the relative effectiveness of the methods. The study

concluded that structural statistical testing was more

effective.

Foreman and Zweben’s [5] study examined the

effectiveness of several variants of controlflow and

dataflow criteria in detecting thirty of the real faults that

were documented by Knuth [14] during development of

the TeX program. A testing criterion was considered

effective at detecting a fault only when all test sets

satisfying the criterion revealed the fault. Application of

the all-uses criterion guaranteed detection of thirteen of

the thirty faults. Eleven of these thirteen were also

guaranteed to be detected by tests satisfying branch

coverage.

4 Goals and Design of the Experimental Study

4.1 Goals

Broadly stated, our goal for these experiments was to

obtain meaningful information about the effectiveness of

controlflow and dataflow coverage methods for fault

detection. We hoped to document the different

capabilities of the two coverage methods. We also tried to

answer questions concerning the use of code-based

coverage criteria, e.g., whether it is necessary to achieve

1009. coverage to benefit from using a criterion.

An important goal was to carry out the experiment on

realistic programs, using test generation techniques that

are similar to actual practice.

4.2 Experimental Design

While designing an experiment for comparing the fault

detection ability of two testing strategies, the choice of

subject faulty programs is clearly very important. Ideally,

they should represent both the program space and the

fault space. Our sampling of the program space was

severely restricted, partly due to the availability of

resources for carrying out the experiments and partly due

to the limitations of our prototype. Our sampling of the

fault space was also restricted. Ideally, the most desirable

types of faults to study would be real faults that have been

recorded in the course of development of production

software. However, since there is only scant information

available to us about production faults, we decided to

manually create and seed faults into the subject programs.

For the experiment, we created 130 faulty program

versions from seven moderate size base programs by

seeding realistic faults. Characteristics of the base

programs and the seeded faults are described in Section

4.3.

The results of this study should be interpreted keeping

in mind this limited representation of the program space

and the fault space.

Adequacy criteria such as all-DUs or all-edges define a

stopping rule, but do not specify how the test cases are to

be generated, analyzed, and validated. There are several

possible models for a testing strategy using a coverage-

based test adequacy criterion. In this section, we first

describe one such model and discuss the compromises

made in order to implement this model in our

experiments. Then we describe the experimental

procedure based on the compromised model.

4.2.1 Model of Coverage-based Testing

As shown in Figure 1, our experimental design is

based on the following model of a coverage-based testing

strategy. First, the tester generates an initial set of test

cases and runs the coverage analysis on it. If the coverage

is inadequate, the tester generates additional test cases

until adequate coverage is attained. The resulting

intermediate test set may be too big or may contain test

cases that are redundant with respect to the goal of

achieving adequate coverage. Hence the tester may

employ a strategy to prune the intermediate test set and

obtain a test set with a smaller number of test cases

having the same coverage. The purpose of this pruning

may be to reduce the effort for validating the test cases

and/or the effort for maintenance of the test set.

Ideally, satisfaction of an adequacy criterion by a test

set would assure a specific level of fault detection

regardless of the methods used in generating the test cases

and in pruning the test sets. However, our experience in

this study indicates that for (he all-DUs and all-edges

criteria, this is not true: two test sets satisfying the same

coverage criterion may differ widely in their fault

detection ability. The quality of the final test set produced

may be affected by the methods used for initial test

generation, additional test generation, and test set

pruning. Usually the initial lest generation method is

independent of the coverage criterion, while the

additional test generation and test set pruning methods

use the coverage information produced by the test cases

previously generated. Below, we discuss the practical

problems encountered in specifying these methods and

I I Coverage Info

Initial Intermediate

Test Cases Test Set

‘@*

Figure 1: ModeI of Coverage-based Testing

193

describe the compromises made to work around the

problems.

Test Generation

Testers use their own expertise and domain knowledge

in designing initial and additional test cases. We found

that adequate test sets produced by different testers varied

in their effectiveness at detecting faults. Interestingly,

adequate test sets produced by the same tester also vaned

in their effectiveness. Therefore, in order to compare two

testing strategies for a given program, it was necessary to

carry out a statistical comparison of the fault detection

abilities of a large number of independent test sets that

were produced by using each of the testing strategies.

Towards this goal, we introduce the notion of a test pool

and describe the test set generation method used for

choosing test sets from the test pool. Ideally, the test pool

for a specific (program, specification, tester) combination

should be the set of all test cases that are accessible to the

tester while testing the program against the specification.

By accessible test cases, we mean those from which the

tester is likely to choose, given his/her expertise and

knowledge of the program domain. In reality, the test

cases accessible while following one testing strategy may

be very different from those accessible while following

another strategy. For simplicity, we assume that the

accessible test cases do not vary significantly between the

testing strategies based on the all-DUs and all-edges

criteria. Also, the likelihood of choosing a test case may

differ across the test pool, hence we would also need a

probability distribution function to accompany the test

pool. For lack of a better option, we use a uniform

distribution. To minimize the bias introduced by a

specific tester, we used two to three testers for generating

the test pool. Given the test pool, the test set generation

method was straightforward: test cases are randomly

selected from the test pool until a desired size test set is

obtained. We hope that the test sets thus produced would

represent the variety of test cases that the testers are likely

to produce. The actual procedure used to generate the test

pools for the subject programs is described later.

Test Pruning

As mentioned earlier, the purpose of test set pruning

could be to reduce the effort for validating the test cases

and/or the effort for maintenance of the test set. Since our

goal was to examine the effectiveness of test adequacy

criteria, test cases that did not improve coverage were of

little value. If an intermediate test set consisted of n test

cases, t,through tn,generated in that order, the test set

pruning method eliminated a test case tiif it did not

improve the cumulative coverage obtained by test cases t,

through ti.l.

Summary

In our experiment, we consider a f@ed set of faulty

programs and a fixed group of testers. In order to simulate

the behavior of the testers for selecting test cases several

times using each of two coverage criteria, we introduce

the notion of a test pool that approximates the set of test

cases accessible to the testers while testing a specific

(program, specification) pair. Random selection from this

test pool is used as the test generation method. The test

pruning method is dependent on the coverage criteria:

following the order of test generation, test cases that do

not improve coverage are eliminated.

Below. we elaborate the actual twocedure used for

generating the test pool and test sets: and for collecting

the experimental data.

4.2.2 Actual Experimental Procedure

Test Pool Generation

We produced the test pool for each program in two

stages that correspond to the way a tester might use an

adequacy criterion in practice. The first stage consisted of

creating a set of test cases according to good testing

practices, based on the tester’s understanding of the

program’s functionality and knowledge of special values

and boundary points that are easily observable in the

code. To create this initial test pool (ITP), the tester

applied the category-partition method to write test

specification scripts for the Siemens TSL 1 tool [1, 19] to

produce test cases. The, tester examined the coverage

achieved by the TSL-produced tests, and modified the test

specification to improve coverage. At some point, the

tester decided that it was time to move on to the second

stage where helshe individually examined the unexercised

coverage units in the code and attempted to write test

cases to exercise them. In fact, the goal was to insure that

each exercisable coverage unit was covered by at least 30

diflerent test cases, where two test cases are considered

different if the simple control paths that they exercise

differ2. Since the test pools as described so far were

constructed from the base versions of the programs, we

also examined each faulty version, and added necessary

test cases to the pool to insure that each exercisable

coverage unit in the faulty versions was covered by at

least 30 cases. The cases in this additional test pool (ATP)

were mostly hand generated, although sometimes new

TSL scripts were written to specify the test cases. The

final set of test cases produced by augmenting the initial

pool is called the test pool (TP). Table 2 gives the sizes of

the test pools for each base program and indicates the

relative size of the corresponding initial and additional

test pools. For every test case in a test pool, we ran each

of the faulty versions of the program and recorded in a

table the outcome (correct = no fault detection, incorrect

= fault detection) and the list of edges and DUS exercised

by the test case.

1TSL is a compiler whose input includes a specification of the
functional characteristics of the software to be tested, together
with a description of the runtime testing environment. The

tool’s output is an executable test script of the test cases.
ZThe rea50n for requiring 30 different test casesfor each cOver-

age unit is to ensure that the results are not biased by the ability

of a small number of test casesto detect fauks. The sample size

of 30 ensures that any observed correlation between a coverage

unit and fault detection has reasonable statistical significance.

194

Generating Test Sets

To measure the fault detecting ability of test sets at

different levels of Edge and DU coverage, we generated

for each criterion approximately 5000 test sets for each

faulty program from the program’s test pool. We realized

that it is generally not possible to generate test sets that

exactly achieve a specified coverage level. Therefore, we

used the following strategy to indirectly obtain test sets

with a variety of coverage levels.

To generate a test set of desired size N for a given

program, we applied the test generation and test pruning

3 The test cases were randomlymethods in parallel.

selected out of the test pool. If a selected test case

increased the coverage achieved by the previously

selected tests on the program, it was added to the test set.

The set was considered complete as soon as either its size

reached N or its coverage reached 100% (since no test

case can increase coverage after that). In some cases,

therefore, the resulting test set size was smaller than the

desired test set size. In order to generate test sets with a

wide variety of coverage levels, the desired sizes were

chosen randomly from the integers 1,2,.. .,R, where R was

determined for each program %y trial and error as a

number slightly larger than the size of the largest test set

reaching 100% coverage.

4.2.3 Comparison with the Experimental Design of

Frankl and Weiss

The design of our experiment is somewhat similar to

that of the Frankl and Weiss experiment [6] comparing

dataflow- and control flow-based adequacy criteria.

Below, we briefly describe their experiment and compare

it with ours.

Frankl and Weiss used the ASSET system to study

nine Pascal programs, each with a single existing error.

For each program, they first generated a large set of test

cases called the universe. Each test case was executed, its

output was checked for correctness, and the program path

it exercised was recorded by ASSET. In the evaluation

phase of the study, the recorded information was used to

determine each test set’s edge coverage and clef-use

coverage.

Test sets of a chosen size S were built by randomly

selecting S test cases from the universe. Each test set’s

all-uses coverage percentage was calculated, and it was

recorded whether or not one or more test cases in the set

detected the fault. The size S was chosen such that

significant numbers of both all-uses adequate and all-

edges adequate test sets would be chosen. On average, the

all-uses adequate test sets were larger in size than the all-

edges adequate test sets. The largest of the programs

considered had 74 executable edges and 106 executable

uses.

3 The resulting test sets are the same regardless of whether the

test generation and test pruning methods are applied in se-

quence or in parallel.

Thus, the Frankl and Weiss study differed from our

study in the following aspects:
●

●

●

✎

small Pascal programs vs. moderate-size C programs

ASSET system vs. Tactic system

existing faults vs. seeded faults

very few faults vs. relatively large number of faults,

no test set pruning vs. removal of test cases tlhat do not

improve coverage,

all-uses vs. all-DUs, and

different methods used for generating the test pool (uni-

verse).

4.3 Subject Faulty Programs

Base Programs

The base programs were chosen to meet special

criteria. To allow creation of a reasonable test pool, they

must have an understandable specification. Because each

program must be understood by several people (to seed

faults, to create tests, and to examine the code for

infeasible clef-use associations and edges), they must not

be overly complex. But they also have to be large and

complex enough to be considered realistic, and to permit

the seeding of many hard-to-find errors. Each program

must be compilable and executable as a stand-alone unit.

The programs used for the experiment are C programs

obtained from various sources, ranging in length from

141 to 512 lines of code. Table 1 shows the number of

lines of code (excluding blanks and comments) in each of

the base programs, the number of executable edges and

DUS, and a brief description of each program.

Table 1: Base Programs

Executable
Program LOC Description

Edges Dus

replace

teas % :: 6=~~~tion

US1.123 472 97

E

1268 lexical analyzer

USI.128 399 159 240 lexical analyzer

schedule 1 292 62 ’294 priority scheduler

schedule2 301 80 217 priority scheduler

tot_info 440 83 292 information measure

Seeding Faults

We created faulty versions of each base program by

seeding individual faults info the code. The faults are

mostly changes to single lines of code, but a few involve

multiple changes. Many of the faults take the form of

simple mutations or missing code. Creating N faulty

versions from the same base program has significant

benefits: the understanding gained from studying the code

applies to all N versions, and the work involved in

generating the test pools applies to all the versions.

Perhaps most significant, the existence of the (presumed

195

Table 2: Faulty Versions and Test Pools

“S’‘“’~”f-’’~l:~Program
‘erslOns Tests (ITP) Tests (ATP) (ITP + ATP)

replace I 32 I 79% I 21% I 5548 I .0005-.056

teas I 39 I 65% I 35% I 1562 I .0006-.084

US1.123 7 99% 1% 4092 .0007-.056

US].128 10 99% 1% 4076 .0079-.086

schedulel I 9 I 90% \ 10% I 2637 I .0027-.100

schedule2 I 10 I 77% I 23% \ 2666 \ .0008-.024

tot_info 23 64% 36% 1067 .0019-.159

correct) base version supplies us with an oracle to check

the results of test cases executed on the faulty versions.

To produce meaningful results, we had to place certain

requirements on the seeded faults. The faults had to be

neither too easy nor too hard to detect. If they were too

hard, then all fault detection ratios would have been

essentially zero, and no visible differences among the

techniques would have been observable. If they were too

easy, then almost any test set would have detected them,

and there would have been no measurable effect of the

coverage to observe. We set a lower bound of 3 detecting

test cases, and an upper bound of 350 for each faulty

program. The program US1.128, for instance, with a test

pool size of 4076 cases, had 10 faulty versions; the

hardest fault was detected by 32 test cases (detection ratio

.0079), and the easiest by 350 (detection ratio .086). More

than 55 of the originally seeded faults were not included

in the study because of very low detection and more than

113 were not included because of very high detection.

The 130 faults included in the study were created by 10

different people, mostly without knowledge of each

other’s work; their goal was to be as realistic as possible,

by introducing faults that reflected their experience with

real programs. For each base program, Table 2 gives the

number of faulty versions, the composition and sizes of

the test pool, and the range of failure ratios of the test pool

over the faulty versions of the program.

5 Data Analysis

The basic data collected for the experiments was the

fault detecting ability of the test sets generated for each

faulty program. Since we wanted to see how fault

detection varied as coverage levels increased towards

100%, the test generation procedure was designed to

produce a wide range both of test set sizes and coverage

percentages, specifically to produce at least 30 test sets

for each 2% coverage interval for each program.

The resulting data allowed us to examine the

relationships among the coverage level, size, and fault

detection attributes of the test sets produced by applying

each of the testing strategies to each faulty program.

Figure 2 shows an example of the graphs we used to study

these relationships for each individual faulty program.

The coverage graph shows the relationship between fault

detection and the coverage levels of test sets, and the size

graph shows the relationship between fault detection and

the sizes of test sets.

The horizontal axis of the coverage graph is divided

into 290 wide intervals (e.g., 9 l-93~0) ending at 99’%0,and

the rightmost interval which is 1% wide (99-100%). Each

plotted point represents the fault detection ratio of all the

test sets whose coverage is within an interval. The fault

detection ratio for a given interval is tin, where n is the

total number of test sets whose coverage percent is in the

interval, and m is the number of these sets that contain a

fault-detecting test case. The fault detection ratio for each

interval is plotted against the midpoint of the interval. The

graph shows two plots, one for DU coverage and one for

Edge coverage. In the example, .75 of the test sets with a

97-99% DU coverage level and .43 of the test sets with a

97-99% Edge coverage level detected the fault.

The horizontal axis of the size graph is divided into

size intervals of width 2. For each interval and for each

coverage type, the fault detection ratio is defined as tin,

where n is the total number of test sets of that coverage

type in the size interval, and m is the number of these sets

that contain at least one test case that detects the fault in

the program. The fault detection ratios for each interval

are plotted against the midpoint of the interval. We also

analytically computed the fault detection ratio for test sets

of sizes that are randomly chosen from the program’s test

pOOl. This function is referred to as Frandc)m,and is shown

on the size graph together with the two plots for the

coverage-based strategies. This makes it possible to

investigate the role of test set size in determining fault

detection. In the example of Figure 2, test sets for the

interval 22-23 had the following fault detection ratios:

random sets (of size 23): .42

Edge-based sets: .48

DU-based sets: ,70

196

Coveraae Granh

1.o-

0

~ 0.8-

c
o

“$ 0.6-

s
=

a 0.4 -
L

0.2-

●

EEz!!l ‘“
● ++

● +++
● ++

●

+9+’

1.0-

.g

$ 0.8 -
c
o.-
G
S! 0.8 -

:
~

j, 0.4 -

.-l

~

●9*”””

●

●

●☛ ●

‘/
/

●

+“ .+
++ ●“$
●

d
I 1 1 I ““’L’=

60 70 80 90 100 10 20 30 40 50

Percent Coverage Test Set Size

Figure 2: Fault Detection Ratios for One Faulty Program

In the example of Figure 2, DU-based test sets at

coverage levels from 90- 100% clearly outperform Edge-

based test sets, and in addition DU-based test sets of size

10 or greater outperform random test sets. In general,

however, the performance of both types of coverage

varied widely. Therefore, we attempted to classify each

faulty program according to the method that seemed most

effective in detecting its fault. To do this, we first defined

six relations DU> Edge, Edge> DU, DU> Random,

Edge >Random, Random >DU and Random> Edge as

described below.

For each faulty program, we fitted second order, least

squares curves to the coverage and size plots for each

strategy. The curves fitted to the coverage plots are FCDU

and FCedpe, and the curves fitted to the size plots are

FSDU arido~Se@e.

For each fault, we say that DU>Edge if FCnll(lOO%)

is greater than FCedge(1MY%), and the differenc~~s larger

than the standard deviation of the difference between the

measured fault detection ratios and their least squares

approximations [9]. A similar definition applies for

Edge>DU, with “Edge” and “DU’ interchanged.

For a given test set sizes, the notation Frand,)m(s) is the

probability that a randomly chosen set ofs test cases from

the test pool contains at least one fault-detecting test case,

i.e., Frmdom (s) is the expected fault detection ratio of

random test sets of size s. To avoid bias in favor of the

coverage strategies, Frand{)mis always calculated from the

test pool with the higher failure ratio, either TP or ITP. Let

d be the size of the largest test set generated for DU

coverage, and let M~Du be the maximum value of

FSDU(S) for the sizes (1 ,...,d). Similarly, let e be the size

of the largest test set generated for Edge coverage, and let

Maxed ~ be the maximum vahle of FSedge(s) for the sizes

(1 ,...,f’f. We say that DU>Random if Max~u> F,and,)m(d),

and Edge >Random if Maxed8e >Frdn&~(e), and these

differences satisfy a standard cieviation property similar to

that for DU>Edge and Edge> DU. Similarly, we say that

DU < Random if MaxDU<FrurLdc)m(d) and Edge <Random

().‘f ‘aed e< ‘random e
iFor 2 faults, all detection ratios were so low that it did

not make sense to compute the above relations, hence we

refer to them as low detection faults. Specifically, a fault

is a low detection fault if its detection ratios were lower

Table 3: Classification of Faults

Number
Fault Detection Ratio

Class Characteristics at 10070 coverage
of faults

rein, avg, max

DU DU > Edge and DU > Random 31 .19, .67, 1.0

Edge Edge > DU and Edge> Random 25 .17, .57,.99

DU-&-Edge DU > Random and Edge> Random 32
.14, .59, 1.0

and not (DU > Edge or Edge> DU)

Coverage Total I DU > Random or Edge> Random \ 88 I

Non-Coverage DU c Random and Edge< Random 9

Other cannot classify 9

197

than .125 at the highest achieved coverage with both

coverage methods, as well as with random test sets as

large as the largest coverage-based sets. The other 106

faults are called high detection faults. Table 3 gives a

classification of all the high detection faults based on the

truth values of the above relations. The table also gives

the variation in fault detection at 100% coverage level in

cases for which either of the coverage criterion is better

than random. Nine faults could not be placed into any of

the first five categories because they did not satisfy any of

the needed combinations of relations. For example, DU

and Edge might have had approximately equal fault

detection ratios at 100%, while neither was significantly

better than Random. These nine faults are put in the

“Other” category.

6 Observations

Fault Classification

Since the faults in our study are not necessarily

representative of the kinds of faults found in practice, we

resist the temptation to make any general inferences based

on the relative frequencies of the different fault classes.

Clearly the majority of faults in our study lend themselves

better to detection by test cases based on one or the other

coverage-based method, although both coverage methods

performed noticeably worse than random test selection

for some faults. We were not able to discern any

characteristics of the faults, either syntactic or semantic,

that seem to correlate with higher detection by either

method.

Limitation of Coverage as an Adequacy Criterion
The fault detection ratio at 100% coverage varied

significantly across different faults in the same fault class.

For example, the fault detection ratio of test sets with

100% DU coverage varied from .19 to 1.0 with an

average of .67 for the 31 faults in the DU class. These and

similar numbers for Edge coverage show that high

coverage levels alone do not guarantee fault detection. We

conclude that by itself, 100?ZOcoverage, either edge or

clef-use based, is not an indication that testing has been

adequate. Rather, code coverage seems to be a good

indicator of test inadequacy. If apparently thorough tests

yield only a low coverage level, there is good reason to

continue testing and try to raise the coverage level. The

value of doing this can be seen by examining the

detection ratios of test sets as their coverage levels

approach 100%.

Detection Behavior in the 90-100~0 Coverage Range

For most faults, the detection ratio of test sets increases

markedly as their coverage increases. This is especially

noticeable as the coverage increases from 90% to 100%.

Figure 2 shows an example of the increase in

effectiveness when the last 10% of coverage is achieved.

At 9070 DU coverage, the detection ratio is 0.4, while at

100% coverage, the ratio has increased to 0.95. For Edge

coverage, the increase is less dramatic, but the ratio still

rises from 0.33 to 0.48. Tables 4 and 5 show the average

fault detection ratios over the high detection faults for the

five intervals in the91 - 100% range.

Table 4: DU Coverage vs. Random Selection

% DU Coverage / 91-93% [93-95% / 95-97% I 97-99% I 99-loo%

average size of DU coverage test sets I 7.9 I 9.1 I 11.3 I 14.2 I 17.4

average fault detection ratio of DU coverage test sets I .20 I .25 \ .33 I .42 I .51

average ?ZOsuperiority in fault detection of DU cov-

erage test sets over same size random test sets

average YOincrease in the size of random test sets

required to yield the same fault detection as the DU

coverage test sets

1%

*

14%

21%

*

46% 79%

68%

160%

* The observed difference is not statistically significant (less than 95% confidence).

Table 5: Edge Coverage vs. Random Selection

VO Edge Coverage 91-93% 93-95% 95-97% 97-99% 99-loo%

average size of Edge coverage test sets 7.6 8.5 9.7 11.2 12.6

average fault detection ratio of Edge coverage test sets .28 .31 .35 .41 .46

average 70 superiority in fault detection of Edge cover-
40% 48%

age test sets over same size random test sets
50% 68% 75%

1 1 i 1 I

average ?to increase in the size of random test sets

required to yield the same fault detection as the Edge 51% 64% 77% 11270 163%

coverage test sets

198

Table 6: DU Coverage vs. Edge Coverage

% Coverage I 95-97% I 97-99% I 99-loo%

average YOdifference in size of DU coverage test
170 9% 21%

sets over Edge coverage test sets

average ?6 difference in fault detection of DU * *
38%

coverage test sets over Edge coverage test sets

*The observed difference is not statistically significant (less than 95?10confidence).

The Size Factor

Higher coverage test sets typically are larger than

lower coverage sets. To investigate the influence of test

set size on fault detection, we asked the following

questions:

● For a specific coverage interval, what is the percentage

superiority in fault detection of coverage-based test sets

over that of same size random test sets?

● For a specific coverage interval, what percentage in-

crease in the size of a random test set is needed to pro-

duce the same fault detection as the coverage-based test

sets?

Table 4 addresses the above questions for test sets based

on DU coverage in the 91- 10@Zo range. The figures

clearly indicate the benefit of selecting test sets from the

test pool using DU coverage rather than random selection.

Table 5 presents similar results for test sets based on Edge

coverage in the 91-100% range. The averages in the

tables are computed over the 106 high detection faults.

DU vs. Edge Coverage

Achieving a given DU coverage level generally

requires larger test sets than the same Edge coverage

level. To examine whether the DU coverage test sets had

any significant benefit over Edge coverage sets, we

computed the average percentage difference in size and

fault detection between the DU coverage test sets and the

Edge coverage test sets for the high detection faults.

Table 6 shows these numbers for the three coverage

intervals in the 95-100% range. In this range, the sizes of

DU coverage sets were greater than the Edge coverage

sets with >9990 confidence. Correspondingly, the DU

coverage sets had better fault detection, although with

lower confidence. We would have liked to analyze the

data further to investigate whether or not the better fault

detection of the DU coverage sets was primarily due to

larger test sets. However, the results of such an analysis

would not be meaningful since the differences in fault

detection are not statistically significant. From these

results we conclude that there is no clear winner between

the two coverage criteria.

Fault Detection of the Test Pool Parts

Our two-phase test pool generation procedure allows

us to compare the fault detection ability of the initial test

pools against that of the coverage-enhanced test pools.

Recall that the additional test cases were added to the

initial test pools to increase coverage and ensure that each

executable coverage unit is exercised by al least 30

different test cases. For more than half the faulty

programs, these additional test cases were much more

successful at detecting faults than the test cases of the

initial test pool. Expressing the percentage of detecting

tests in the ATP as a multiple of the percentage of

detecting tests in the ITP, we found the factor to vary from

O to 480. For 73 of the 130 faults, the ATP was more than

twice as successful in fault detection as the ITP. Table 7

shows the number of faults with this factor in several

ranges.

Table 7: Relative Fault Detection by

Initial and Additional tests

det (ATP) / Get (ITP)

--l=

Number of faults

0- 1.0

1.01 -2.0 I 17

2.01 -10.0 I 36

10.1-480 I 37

det (ITP) = O
~$

The numbers demonstrate the vahte of using the

coverage criteria to motivate the creation of additional

test cases.

7 Conclusions

We have carried ottt an experimental study

investigating the effectiveness of dataflow- and

controlflow-based test adequacy criteria. The all-edges

and ,all-DUs coverage criteria were applied to 130 faulty

program versions derived from seven moderate size base

programs by seeding realistic faults. For each faulty

program, several thousand test sets were generated and

the relationship between fault detection and coverage was

examined.

Our results show that both controlflow and dataflow

testing are useful supplements to traditional specification-

based and informal code-based methods. The frequently

higher detection rates achieved by the coverage-based

tests that were added to the initial test pool show that the

criteria can be very useful at instigating the generation of

high-yield test cases that may be omitted otherwise.

199

On the other hand, achieving 100% coverage is not

necessarily a good indication that the testing is adequate,

as shown by the large number of low detection faults, as

well as by the wide variation in the fault detection ratios

at 10090 coverage.

The analysis of detection ratios as coverage increases

shows that 100% coverage, although not a guarantee of

fault detection, is much more valuable than 90 or 95Y0.

Finally, we saw an approximately equal split between

faults that were detected at higher ratios by Edge

coverage and by DU coverage, leading us to conclude that

the two methods, according to the way they are measured

by Tactic, are frequently complementary in their

effectiveness.

Acknowledgements

Surya Kasu, Yu Lu, and Evelyn Duesterwald

performed exhaustive (and sometimes exhausting)

analysis of the subject programs using Tactic. Maryam

Shahraray gave us advice with the statistical analysis of

our experimental data. Elaine Weyuker provided

insightful advice and comments on the experimental

design and interpretation of the results.

We are grateful to Arun Lakohtia of the University of

Southern Louisiana, for contributing two of our subject

programs.

1

2

3

4

5

6

7

8

9

10

References

M. J. Balcer, W. Hasling, and T.J. Ostrand, “Automatic

Generation of Test Scripts from Formal Test

Specifications”, Proc. of the Third Symposium on Testing,

Analysis, and Verification, ACM Press, New York, (1989),

210-218.

V. Basili and R. Selby, “Comparing the Effectiveness of

Software Testing Strategies”, IEEE Trans. Softw. Eng. SE-

13, (December 1987).

B. Beizer, Software Testing Techniques, 2nd cd., Van

Nostrand Reinhold, New York, 1990.

L. Clarke, A. Podgurski, D. Richardson, and S. Zeil, “A

Formal Evaluation of Data Flow Path Selection Criteria”,

IEEE Trans. Softw. Eng. SE-15, (November 1989).

L. Foreman and S. Zweben, “A Study of the Effectiveness

of Control and Data Flow Testing Strategies”, J. Systems

Software 21 (1993), 215-228.

P.G. Frankl and S.N. Weiss, “An Experimental Comparison

of the Effectiveness of the All-uses and All-edges

Adequacy Criteria”, Proc. of the Fourth Symposium on

Testing, Analysis, and Verification, ACM Press, New York,

(1991) 154-164.

P.G. Frank], S.N. Weiss, and E.J. Weyuker, “ASSET A

System to Select and Evaluate Tests”, Proc. IEEE Conf.

Software Tools, New York, (April 1985).

P.G. Frank] and E.J. Weyuker, “A Dataflow Testing Tool”,

Proc. IEEE Softfair II, San Francisco, (December 1985).

C. R. Hicks, Fundamental Concepts in the Design of

Experiments, Saunders College Publishing, Fort Worth,

1982.

J.R. Horgan and S. London, “Data Flow Coverage and the

C Language”, Proc. of the Fourth Symposium on Testing,

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Analysis, and Verification, ACM Press, New York, (1991)

87-97.

W.E. Howden, “Reliability of the Path Analysis Testing

Strategy”, IEEE Trans. Softw. Eng. SE-2, (July 1976).

J.C. Huang, “An Approach to Program Testing”, ACM

Comp. Surveys 7 (Sept. 1975), 113-128.

B. W. Kemighan and P. J. Plauger, Software Tools in

Pascal, Addison-Wesley, Reading, MA, 1981.

D. Knuth, “The Errors of TeX”, Software: Practice and

Experience 19, (1989), 607-685.

J. Laski, “Data Flow Testing in STAD’, J. Systems

Software 12(1 990), 3-14.

J.W. Laski and B. Korel, “A Data Flow Oriented Program

Testing Strategy”, IEEE Trans. Softw. Eng. SE-9, no 3,

(May 1983), 347-354.

N. B. Leveson, M. P. E. Heimdahl, H. Hildreth, and J. D.

Reese, “Requirements Specification for Process-Control

Systems”, University of California at Irvine, CA,

Information and Computer Science Technical Report,

1992.

S. Ntafos, “An Evaluation of Required Element Testing

Strategies”, Proc. Seventh Int. Conf. Software Engineering,

(March 1984), 250-256.

T. J. Ostrand and M. J. Balcer, “The Category-Partition

Method for Specifying and Generating Functional Tests”,

Communications of the ACM31, 6 (June 1988), 676-686.

T. J. Ostrand and E. J. Weyuker, “Data Flow-Based

Adequacy Analysis for Languages with Pointers”, Proc. of

the Fourth Symposium on Testing, Analysis, and

Verification, ACM Press, New York, (199 1) 74-86.

H. D. Pande, B. G. Ryder, and W. A. Landi,

“Interprocedural Def-Use Associations in C Programs”,

Proc. of the Fourth Symposium on Testing, Analysis, and

Verification, ACM Press, New York, (199 1), 139-153.

S. Rapps and E.J. Weyuker, “Data Flow Analysis

Techniques for Test Data Selection”, Proc. Sixth Int. Conf.

Software Engineering, Tokyo, (September 1982).

S. Rapps and E.J. Weyuker, “Selecting Software Test Data

Using Data Flow Information”, IEEE Trans. Softw. Eng.

SE- 11, (April 1985).

H. Schiller, “lJsing MEMIMAP to measure the extent of

program testing”, Report TR 1836, IBM Systems

Development Division, Poughkeepsie, NY, (Feb. 1969).

P. Thevenod-Fosse, H. Waeselynck, Y. Crouzet, “An

Experimental Study on Software Structural Testing:

Deterministic Versus Random Input Generation”, Proc.

Twenty-First International Symposium on Fault-Tolerant

Computing, Montreal, Canada, (June 199 1), 410-417.

200

