
Experiments on the Fermi to Tomonaga-Luttinger liquid transition in quasi-1D

systems

M. Hilke 1, D.C. Tsui 2, L.N. Pfeiffer 3 and K.W. West 3

1 Dpt. of Physics, McGill University, Montréal, Canada H3A 2T8 ∗
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We present experimental results on the tunneling into the edge of a two dimensional electron
gas (2DEG) obtained with GaAs/AlGaAs cleaved edge overgrown structures. The electronic
properties of the edge of these systems can be described by a one-dimensional chiral Tomonaga-
Luttinger liquid when the filling factor of the 2DEG is very small. Here we focus on the region
where the Tomonaga-Luttinger liquid breaks down to form a standard Fermi liquid close to
ν = 1 and show that we recover a universal curve, which describes all existing data.
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In one dimension and in the presence of interactions,
a metal can have a Fermi surface in agreement with Lut-
tinger’s theorem.1) However, fermionic quasi-particles
are no longer possible and the elementary excitations
are replaced by bosonic charge and spin fluctuations
dispersing with different velocities. Hence, this one-
dimensional metal is no longer a Fermi-liquid but a
Tomonaga-Luttinger liquid (TLL).2) Models describing
one-dimensional interacting Fermions were first consid-
ered by Tomonaga and Luttinger.3)

While there are a number of systems, which could ex-
hibit TLL behavior, Wen4) showed that the edge modes
of fractional quantum Hall (FQH) states can be de-
scribed as chiral TLLs. The chirality is due to the pres-
ence of a magnetic field, which forces the edge states to
propagate in one direction. A unique feature of the chiral
TLL is the absence of back-scattering, i.e., no localiza-
tion can occur, which is in stark contrast to the non-
chiral case. For experiments, a key theoretical result is
the existence of power-law correlation functions, which
lead to the vanishing of the momentum distribution func-
tion at kF following a power-law, i.e., n(k) ∼ |k − kF |α,
where α is related to the interaction strength. As a con-
sequence, the tunneling current-voltage (I-V) character-
istics follows I ∼ V α and the zero bias conductance fol-
lows σ ∼ Tα−1.4) For the particular case, where the
filling factor ν = 1/3, Wen predicted that α = 3, hence
the tunneling current and conductivity should vanish like
I ∼ V 3 and σ ∼ T 2 respectively. This is very different
from the Fermi liquid-to-Fermi liquid tunneling which
would be ohmic and independent of temperature.

Following the predictions of Wen4) and others,5) sev-
eral experimental attempts were made in order to ob-
serve this power-law dependence. The first experiments
considered a gate induced constriction to tunnel between
two FQH liquids.6,7) Unfortunately, in some cases the
results were consistent with a power-law6) but not in
others.7) This was largely attributed to the smoothness
of the potential barrier causing the possible reconstruc-
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tion of the edge and an energy dependent tunneling bar-
rier. Chang et al.8) avoided this problem by growing
a sharp tunneling barrier on the cleaved edge of a two
dimensional electron gas (2DEG). They obtained a good
power-law over more than a decade in voltage to obtain a
tunneling exponent (α ' 2.7 at ν = 1/3) close to Wen’s
prediction.

When moving away from the primary fraction ν = 1/3
to ν = p/(2np ± 1) (where p and n are positive inte-
gers), the edge cannot be described anymore by a sin-
gle LL edge mode but requires several additional modes,
the number and nature of which depends strongly on
the particular fraction and, moreover, the disorder be-
comes important because of possible inter-mode scatter-
ing. The overall structure of these states is reviewed
in ref.9) As a consequence, the recent experimental re-
sult from Grayson et al.10) came as a surprise, because
instead of observing a plateau-like structure between
ν−1 = 2 and 3, as expected from both the composite
fermion theory11,12) and a disordered edge in the hier-
archical model,13) they observed a linear dependence of
the exponent on the inverse filling factor, α ' ν−1. Re-
cent theories have attempted to account for this behavior
using different approaches14) and are currently under de-
bate.

In this article, we are interested in the transition be-
tween the Fermi liquid and the non-Fermi liquid (or
TLL) behavior. It is generally expected that at ν = 1
the edge should behave as a standard Fermi liquid and
all theories agree. Away from ν = 1 theories dis-
agree. We experimentally probe the edge around this
filling factor by using very high mobility 2DEGs (be-
tween 1 − 30 × 106cm−2/Vs), which all show well pro-
nounced fractional quantum Hall features. The 2DEG is
confined in GaAs/AlGaAs quantum wells. The 2DEG
sample is then placed in the molecular beam epitaxy
(MBE) chamber and cleaved for a subsequent growth
along the (110) direction. First an atomically sharp bar-
rier of (AlxGa1−xAs) is grown and then a n-doped GaAs
layer.15) We fixed the barrier height to about 200meV,
by using x = 0.2 as barrier material. The value of the
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Fig. 1. Sketch of the cleaved edge overgrown structure. The con-
tacts are made by first annealing the Indium 2DEG contacts and
then the shallow 3D contacts.

tunnelling resistance can be tuned by changing the bar-
rier width. We typically used a barrier between 60Å and
120Å wide. A sketch of the structure is shown in fig.1.

The n-doped GaAs layer plays a crucial role because
it defines the electrostatic potential at the interface be-
tween the 2D and 3D. Indeed, when using a high 3D
doping or density the resistance across the barrier is ex-
tremely high (> GΩ), even at room temperature and
independent on the barrier width. We believe that this
is due to important electrostatic depletion. In order to
analyze the 3D density, we alloyed two shallow ohmic
contacts directly on the edge and measured the Shub-
nikov de Haas oscillations. Typical curves of these are
shown in fig. 2. For these densities, the zero field tun-
nelling resistance depends mainly on the barrier width.
A representative list of the different samples is shown in
table I below, with their corresponding densities.

Fig. 2. Magnetoresistance measured directly on the edge as a func-
tion of the normalized inverse magnetic field at 40mK. The ex-
tracted densities are shown in the table.

In fig. 3 we show a typical four terminal magnetoresis-
tance trace across the barrier. In this particular sample
the tunnelling resistance is very low at B=0, which al-
lows us to identify all the quantum Hall features typical

Table I. Sample densities.

Name 2D Density 3D Density

PCS2c2 1.73× 1011cm−2

PC92a 3.35× 1011cm−2 3.25× 1017cm−3

PC92c 3.35× 1011cm−2 8.5× 1017cm−3

PCAN2 2.2× 1011cm−2 4.5× 1017cm−3

PCAN4 2× 1011cm−2 4.5× 1017cm−3

PCL3 1.15× 1011cm−2

of a high mobility 2DEG. Above 6T the tunnelling bar-
rier becomes very resistive and we observe an exponential
increase in tunnelling resistance with B. This is generic
to all samples. The main difference between samples is
the tunnelling resistance at B = 0. The overall magnetic
field dependence is dominated by an exponential increase
of the resistance as a function of B, which is due both
to the suppression of momentum conservation and to the
finite extent of the wave-function given by the magnetic
length.

Fig. 3. The magnetoresistance of sample PCL3, measured using a
four-terminal configuration, as a function of magnetic field. The
data was obtained by applying 1mV between the 3D and 2D and
measuring the current with a source-meter. The four-terminal
voltage drop is measured by using a voltage amplifier with a high
input impedance.

We measured the current-voltage (I-V) characteristics
at different magnetic fields. Overall, the I-V’s are essen-
tially linear at low fields and become increasingly non-
linear at higher fields. This non-linearity does not de-
pend on the tunnelling resistance since the behavior is
very similar in samples which have very different tun-
nelling resistances. We found that in all samples the
filling factor is the relevant parameter, which determines
whether we have a linear or a non-linear I-V. Follow-
ing the analysis of refs.8,10,16,17) we extract α from the
power-law of the I-V’s, using two different methods. We
can either use the temperature dependence of the I-V
traces or directly the non-linearity in the I-V. A typical
temperature dependent I-V curve is shown in fig. 4, in
which the filling factor is ν = 2.7.

From the slopes of the I − V traces we can extract
the zero bias conductance as a function of temperature,
which is plotted in fig. 5. Above 100mK the conduc-

93J. Phys. Soc. Jpn. Vol. 72 (2003) Supplement A M. Hilke et al.



0.1 1 10
1E-3

0.01

0.1

1

10

100

T=40mK

I~V2.5

B=12T     ν-1=2.7

 

 

I [
nA

]

V [mV]

0 1 2 3

1.0

1.5

2.0

2.5

3.0

I~Vα

 

 

α

ν-1

bulk

 PCS2c2
 PC92a
 PC92c
 PCAN2
 PCAN4
 PCL3

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3
-0.10

-0.05

0.00

0.05

0.10

 

 

B=12T    

ν-1=2.7

700mK

40mKI [
nA

]

V [mV]

100 1000

0.1

1

B=12T & ν-1=2.7

Theory: σ ~Tα-1

σ ~T1.6

 

 

σ 
[ µ

S
]

T [mK]

Fig. 4. Temperature dependence of the I-V curves at 12T, corre-
sponding to a filling factor of ν−1 = 2.7. This set of curves is
taken with sample PCL3.

tance clearly follows a power-law dependence over one
decade in temperature. When fitting the data with a
power law in that range we obtain a power of 1.64±0.03.
The saturation below 100mK is a consequence of the fi-
nite input resistance of our voltmeter and not related
to the sample. We can avoid this saturation by using
a two-terminal configuration for more resistive samples,
since in that case the two-terminal contribution from
the 2DEG is negligible compared to the tunnelling re-
sistance.

Fig. 5. Temperature dependence of the zero bias conductance at
12T obtained from the slopes in fig. 4.

In fig. 6 the I-V characteristic is drawn on a log-log
scale at base temperature (40mK). The data follows a
power-law over more than a decade in voltage before it
starts to deviate significantly from a power-law. We ob-
tain a power of 2.45±0.01, when fitting the data below
1mV. Following Wen’s4) argument, this would lead to
α = 2.45. This value is very close to the one obtained
from the temperature dependence, i.e., α = 1 + 1.64.

We have repeated this procedure for different magnetic
fields and different samples. In fig. 7 we have compiled
all the values of α as a function of the inverse 2DEG
filling factor.

Fig. 6. The I-V characteristics of sample PCL3 at 12T and 40mK
on a log − log scale.

Fig. 7. Exponent α extracted from the power-law part of the I-
V curves as a function of B and inverse filling factor ν−1 for
samples in table I. The errors are within the size of the dots.

It is striking that all samples behave qualitatively in
a very similar way. Indeed, α ' 1 for low magnetic
fields (low inverse filling factor) and all the way up to a
field corresponding to a filling factor between 1 and 1.5.
When Increasing the field further there is a transition
to a non-linear regime, in which the exponent increases
linearly with the inverse filling factor. The field at which
this transition occurs corresponds to the Fermi liquid
to TLL transition.16) Unexpectedly, this transition
occurs at a filling factor larger than one, which implies
that at ν = 1 the system is not a Fermi liquid. In
addition, this behavior questions the universal nature of
the TLL at the edge of a FQHE system, since α depends
on sample parameters.

But; when rescaling the filling factor of all our samples
with a value such that ν = α = 1 at the linear intercept,
we can collapse all our data onto a single curve shown
in fig. 8. This rescaling factor depends on the sample
growth structure but is identical when using two sam-
ples from the same growth. We can perform the same
operation on Chang and Grayson’s earlier data,8,10) by
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multiplying the filling factor by 1.4. (We haven’t in-
cluded the recent data from ref.17) since the data cannot
be extrapolated consistently all the way down to α = 1
because most of their data is clustered around α = 3.)
Here again all the data points fall on the same curve.
This is very remarkable, considering that the different
data points stem from very different sample growth pa-
rameters. Indeed, the barrier width varies between 60Å
and 225Å and the Al content of the barrier between 10%
and 20%. The different 2D and 3D densities cover a
factor 3 in range.

Fig. 8. The chiral TLL exponent α as a function of the scaled
inverse filling factor. The scaling factor is chosen in such a way
that the linear intercepts (dotted lines) meet at ν = α = 1. Our
data is presented in filled symbols and earlier data by Chang,
Grayson and co-workers8,10) is presented in open symbols.

After rescaling the filling factor, we can describe all the
data with the generic form (α−1) = 1.6(ν−1

edge−1)±0.2,
when νedge < 1. We named this rescaled filling factor
νedge, since the edge filling factor of our 2DEG might be
different from the bulk filling factor. The exact depen-
dence of this rescaling factor on sample properties, such
as the 2D and 3D densities is currently under investiga-
tion. It is interesting to note that the extrapolation of
our curve to α = 3 is ν−1 ' 2 + 1/4, which is slightly
off from most existing theories.4,5, 9, 11–14,19) Moreover,
recent theories12,19) suggest that the 2DEG density is
not monotonic and even oscillates as one approaches the
edge. This could be indicative of a complex dependence
of the effective edge filling factor νedge on various sample
parameters.

In summary, we have presented experimental results
on the Tomonaga-Luttinger to Fermi liquid transition at
the edge of a 2DEG system close to ν = 1. Although

the filling factor of the transition is different for different
sample structures, we are able to collapse all the data
onto a single curve if we rescale the filling factor using a
single parameter, hence recovering the notion of a uni-
versal behavior in the chiral TLL.

We acknowledge support from NSF, NSERC and
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