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Results from experiments performed on the motion of drops of tetraethylene glycol in a wettability gradient present
on a silicon surface are reported and compared with predictions from a recently developed theoretical model. The
gradient in wettability was formed by exposing strips cut from a silicon wafer to dodecyltrichlorosilane vapors. Video
images of the drops captured during the experiments were subsequently analyzed for drop size and velocity as functions
of position along the gradient. In separate experiments on the same strips, the static contact angle formed by small
drops was measured and used to obtain the local wettability gradient to which a drop is subjected. The velocity of
the drops was found to be a strong function of position along the gradient. A quasi-steady theoretical model that
balances the local hydrodynamic resistance with the local driving force generally describes the observations; possible
reasons for the remaining discrepancies are discussed. It is shown that a model in which the driving force is reduced
to accommodate the hysteresis effect inferred from the data is able to remove most of the discrepancy between the
observed and predicted velocities.

Introduction

In this study, a method for inducing the motion of a liquid
drop placed on a solid surface, identified first by Greenspan1 and
demonstrated experimentally by Chaudhury and Whitesides,2 is
investigated. The mechanism that causes motion is a gradient in
wettability on the solid surface. The resulting imbalance of forces
acting at the contact line around the drop periphery leads to a
driving force in the direction of increasing wettability, or
decreasing contact angle.

Relevant theoretical work on this problem is reviewed in detail
in Subramanian et al.,3 and only a brief discussion of that work
is given here. Theoretical descriptions of drop motion along a
solid surface caused by a wettability gradient are given in
Greenspan1 and Brochard,4 and a related problem of the
thermocapillary motion of a 2D ridge is analyzed by Ford and
Nadim.5 All of the models employ the lubrication approximation,
which requires that the thickness of the drop, also called the
height of the drop, be small compared with the characteristic
length scale of the drop’s footprint. Greenspan1related the velocity
of the contact line to the difference between the dynamic and
equilibrium contact angles using a proportionality constant that
is assumed to be given. Brochard considered 2D ridges as well
as 3D drops and analyzed isothermal situations and those in
which a temperature gradient was applied. In the isothermal case
involving 3D drops, the analysis involved a local force balance
normal to an element of the contact line and required that
trigonometric functions of the contact angle be approximated by
the leading terms in their Taylor series in order to produce a
consistent framework.

In the present experiments, the contact angle can be as large
as 80° at the beginning of the motion and decrease to 30° at the
end. To assist in the interpretation of these experiments,
Subramanian et al.3 developed an approximate quasi-steady

theoretical description of the motion of a spherical-cap drop on
a solid surface with a wettability gradient that does not make the
lubrication approximation. The hydrodynamic resistance was
calculated for Stokes flow in the drop, modeling it as a set of
differential wedges. The authors also provided an exact solution
of the lubrication equations for the same problem and found that
the lubrication solution was good for contact angles up to about
40°. In ref 3, the stress singularity that appears at the contact line
is relieved by permitting slip to occur in a region close to the
contact line, assumed to be on the order of molecular dimensions.
The ratio of the length of this region to the characteristic length
scale of the drop’s footprint is typically a small parameter, and
the authors provided an asymptotic result based on an expansion
in this small parameter as well.

Now, we briefly review prior experimental studies. The motion
of a drop possibly arising from a wettability gradient on a surface
appears to have been qualitatively observed by Bouasse,6 who
used a temperature gradient. Temperature variations along a
fluid-fluid interface also cause variations in the interfacial tension
along that interface, making a thermocapillary contribution to
the motion, in addition to that arising from a variation in
wettability. After the appearance of Bouasse’s work, no
experimental observations appear to have been reported on motion
caused by a wettability gradient until Chaudhury and Whitesides2

induced the upward motion of water drops on tilted surfaces
along which they had created a wettability gradient. This gradient
was formed by allowing decyltrichlorosilane vapor to react with
a silicon strip using a diffusion-controlled process, which was
adapted from a technique developed by Elwing et al.7 Chaudhury
and Whitesides2 stated that, for drop motion to occur, contact
angle hysteresis must be less than approximately 10°. The term
“contact angle hysteresis” has a long history, and the phenomenon
is discussed at length in a review by Dussan.8 In the experiments
of Chaudhury and Whitesides,2 drops of water, 1 to 2µL in
volume, were observed to move at a velocity of 1 to 2 mm/s
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uphill on a surface that was inclined at an angle of 15° with
respect to the horizontal. Subsequently, Daniel et al.9 observed
a more rapid motion of water drops of comparable size (at
velocities of 0.15 to 1.5 m/s) when condensation occurred on
surfaces on which a wettability gradient was present. The authors
suggested that the increase in velocity was likely caused by the
coalescence of the drops and that the phenomenon could be used
to enhance heat transfer. Daniel and Chaudhury10 investigated
the motion of small drops of ethylene glycol on surfaces with
a wettability gradient. These surfaces were prepared using
decyltrichlorosilane following the procedure described earlier
by Daniel et al.9 They reported drop velocities in the range of
1 to 2 mm/s for drops 1 to 2µL in volume. Daniel and Chaudhury10

attempted to quantify the extent of contact angle hysteresis using
the size of the largest drop that does not move in the gradient.
They also found that the measured velocities scaled approximately
linearly with the drop radius, defined as that of the drop’s circular
footprint. Daniel and Chaudhury10 proposed using a periodic
force (generated using a speaker to move the surface back and
forth in a periodic manner) to overcome contact angle hysteresis
and reported success with this approach in significantly increasing
the velocities of the drops. Subsequently, Daniel et al.11performed
experiments using a variety of liquids, reporting results for
velocities that scaled approximately linearly with the drop radius
and that were enhanced considerably when the substrate was
vibrated. The authors11 provided a theoretical scaling result
attributed to Brochard4 and Daniel and Chaudhury10 in which
the velocity of the drop is multiplied by the viscosity of the fluid
and divided by its surface tension (against air) to define a capillary
number, which then is proportional to the product of the drop
radius and the spatial gradient of the cosine of the contact angle,
with a constant of proportionalityR. The authors suggest thatR
is a constant whose value depends on the mechanism of the
relaxation of the stress singularity at the three-phase contact line.
From the results presented by Daniel et al.11 for a variety of
liquids, it is noted that the inferred contribution from hysteresis
varies from one fluid to the next.

Suda and Yamada12 directly measured the driving force
experienced by a drop on a wettability gradient surface using a
flexible glass microneedle. They determined that the driving
force was consistent with their expectation based on Young’s
equation, which represents a tangential balance of forces at the
contact line.13 Suda and Yamada12 suggested that the principal
resistance to the motion of the drop arises from the contact line
region and not from the hydrodynamic drag. To estimate the
contact line resistance, they used a model similar to that proposed
by Cherry and Holmes14 and Blake and Haynes15 even though
they do not explicitly mention either of these references. Ichimura
et al.16 caused drops to move on a solid surface using photo-
irradiation of a monolayer covering the surface to induce
wettability gradients, and Sato et al.17 report that drops were
made to move on solid surfaces in a low-gravity environment
by the simultaneous use of a chemically generated wettability
gradient and a temperature gradient. Bain et al.18 have demon-

strated that drops containing a chemical that can modify the
wettability of the surface can propel themselves on the sur-
face by creating a local wettability gradient on the surface, a
phenomenon they label “reactive flow.” A variety of follow-up
studies have appeared in the literature, and an example can be
found in Lee and Laibinis,19 who used noncovalent molecular
adsorption to achieve the movement of drops on patterned
surfaces. Recently, Mo et al.20 have demonstrated that drops
climbing a tilted surface because of reactive wetting can move
at a nearly constant velocity; these authors also included a lattice
Boltzmann simulation of the experiments in their work. Finally,
we mention a related situation in which a drop is placed on a
surface that consists of two individually homogeneous solid
surfaces. On one side of the line dividing these two surfaces, the
contact angle is larger than that on the other side. Raphae¨l21

provided a theoretical analysis of this problem; subsequently,
Ondarçuhu and Veyssie´22 performed careful experiments on 2D
drops, finding confirmation of the essential aspects of the
predictions of Raphae¨l.21

Even though the scaling of the drop velocity with radius is
examined in refs 10 and 11, a direct comparison of theoretically
predicted velocities with experimentally measured values has
not been made to date. Also, all previous authors report a single
velocity for a given experiment, whereas the drop velocity should,
in general, exhibit a dependence on position along the gradient
because both the driving force for drop motion and the
hydrodynamic resistance can vary with position. For these reasons,
we performed experiments on the motion of drops of tetraethylene
glycol in a wettability gradient on surfaces prepared using a
technique similar to that of Daniel and Chaudhury.10 We found
that the motion of the drops in any individual experiment was
complex, with a velocity that varied by an order of magnitude
depending on the position of the drop along the wettability
gradient, a fact that has not been reported by earlier investigators.
We captured digitized video frames at a rate of up to 50 per
second, which permitted us to obtain a reasonably accurate picture
of the instantaneous velocity as a function of position and establish
that the velocity indeed varies strongly with position. Independent
measurements of the static contact angle along the wettability
gradient surface were made so that the driving force experienced
by a moving drop could be estimated at any given position of
that drop. The hydrodynamic resistance was calculated from the
model presented in ref 3. It is demonstrated here that the variation
in drop velocity is a consequence of the change in driving force
as well as the change in hydrodynamic resistance that occurs
along a typical gradient surface. We also show that a quasi-
steady description appears to be sufficient to explain the observed
qualitative behavior of the drop velocities along the gradient
surface and discuss possible reasons for the remaining discrep-
ancies between the predicted and measured velocities. We
demonstrate that a procedure that accounts for hysteresis effects
by using the inferred threshold size of a drop that would fail to
move at a given location on the gradient surface is sufficient to
bring the experimental results into reasonable agreement with
the predictions from the wedge model presented in ref 3.

In the following sections, we present details of the experiments
and compare the experimental observations with predictions from
theory, concluding with a few remarks.
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Experimental Apparatus and Procedure
Equipment. The experimental apparatus designed for this study

consists of three main sectionssa sample holder, an injection system,
and a data acquisition system. This apparatus is assembled on a
vibration-isolated optical table (Melles Griot model OBH-018/07-
OTL-004). The sample holder consists of a smooth horizontal surface
(45 mm× 45 mm) that is mounted on a three-axis translation stage.
The assembled stage consists of two manual linear translation stages
with metric micrometers (Daedal solid top model A37-936, 25 mm
travel) and a motorized linear stage (National Aperture model
MM-3M-EX-2.0, A55-329, 50.8 mm travel) coupled with a computer
controller (National Aperture model MVP, A54-705) that allows
the motion of the stage to be programmed using LabView. The
injection system consists of an UltraMicroPump (UMP2) and a glass
microvolume syringe (SGE50TLL) equipped with a silanized glass
micropipette (Tip30TW1LS02), all obtained from World Precision
Instruments. This injection system is operated using a microprocessor-
based controller (UMC4) and is mounted on a manual microma-
nipulator (M3301). The image acquisition system in the drop motion
experiments consists of two digital CMOS progressive scan mono-
chrome cameras (Basler A601f, 1/2 in. sensor size with a firewire
video output) connected through a PCI firewire card to a personal
computer. The cameras are used to capture two orthogonal views
of a moving drop from the side and the top. In static experiments
used to measure the contact angle, a third identical digital camera
that captures a view from another orthogonal direction also was
employed. A light source (Dolan-Jenner PL-900) equipped with an
IR filter is used to eliminate any potential heating of both the surface
and the liquid drops during the performance of the experiments;
temperature gradients can induce an uncontrolled, and therefore
undesirable, thermocapillary contribution to the motion of the drop.
An area fiber optic backlight (Edmund part number A54-228) is
used to create uniform backlighting conditions to illuminate the side
view.

Surface Preparation.Silicon wafers (4\P\100\B, prime grade)
were obtained from Wafernet. AFM measurements showed that the
surfaces of these wafers were smooth with an rms roughness of less
than 0.2 nm. Strips of 35 mm× 30 mm with no visible scratches
were cut from a silicon wafer and were cleaned using the following
procedure: First, the strip was rinsed thoroughly with acetone,
methanol, and DI (deionized) water and then placed in a megasonic
bath containing DI water for 1 min to ensure the removal of any
debris and particles on the strip surface. Next, the strip was dipped
into a freshly prepared acid piranha solution (3:1 mixture of
concentrated sulfuric acid (H2SO4) with 30% concentrated hydrogen
peroxide (H2O2)) for 30 min and then rinsed thoroughly with DI
water. Finally, the surface was dried with a jet of nitrogen and
immediately used in the preparation of the gradient. The gradient
was formed inside a desiccator. It is important to form the gradient
under conditions of low relative humidity. When needed, a glovebox
was used to lower the relative humidity in the environment to
approximately 15%. A silk thread saturated with trichlorosilane was
suspended above the edge of the strip for a period of up to 5 min.
The chemical evaporates from the thread and diffuses along the
silicon surface, reacting with its surface silanol groups. Locations
on the surface that are closer to the thread become relatively more
hydrophobic (less wettable). After forming the gradient, the strip
was stored overnight inside the desiccator until the next day when
the experiments on drop motion were performed.

In preparing the gradients, two different silanes (dodecyltrichlo-
rosilane (C12H25Cl3Si) and decyltrichlorosilane (C10H21Cl3Si) from
Gelest) were tried at different source heights, varying from 1.5 to
3.5 mm. It was found from contact angle measurements that the use
of decyltrichlorosilane at a source height of 3.5 mm leads to a surface
with the smallest gradient in the cosine of the contact angle; the
largest gradient is obtained with dodecyltrichlorosilane at a source
height of 1.5 mm. In most of the experiments reported here, the
gradient was prepared using dodecyltrichlorosilane at a source height
of 2.5 mm for an exposure time of 5 min. This leads to a gradient
of the cosine of the contact angle that we label “intermediate.” To
test our approach for accommodating hysteresis effects, which is

discussed in the Results and Discussion section, additional data
obtained on a gradient surface formed using dodecyltrichlorosilane
with a source height of 1.5 mm and an exposure time of 4 min (sharp
gradient) and using dodecyltrichlorosilane with a source height of
3.5 mm and an exposure time of 5 min (gentle gradient) are also
presented near the end and compared with predictions.

Measurement of Drop Velocities and Sizes.Drops of tetra-
ethylene glycol (Sigma-Aldrich, 99%) of a range of nominal volumes
from 50 to 2500 nL were each introduced on a separate unused
migration path on the strip (hereafter called a track) near the beginning
of the gradient region, and their motion was captured using the
image acquisition system. The video frames were acquired at a rate
of 50 frames/s. The positions of both the advancing and the receding
ends of the migrating drop were tracked from one frame to the next
using Spotlight-8 software.23 Using both the side view and the top
view, along with calibration information, the size of a drop and its
position could be obtained from any given video frame. The
instantaneous velocity at a given position was calculated as the local
slope of a straight line fitted to a set of points chosen symmetrically
about the selected position of the center of the drop’s footprint on
the position versus time curve. The number of points was chosen
judiciously to minimize the error associated with scatter in the data
if too few points are taken and the error associated with possible
curvature in the data if too many points are chosen. In the first 2
mm of the gradient, seven points were chosen on each side of the
position at which the velocity was being calculated; 16 points on
either side were used from 2 to 5 mm, and 30 points on either side
were employed from 5 mm to the end of the gradient. In the case
of one of the drops that moved slowly between 6 and 10 mm, 50
points were used on each side.

Measurement of Static Contact Angles.It has been noted in
refs 10 and 11 that sufficiently small drops do not move on a
wettability gradient surface because of contact angle hysteresis. We
found that drops that were less than 13 nL in volume (and 0.25 mm
in footprint radius) did not move in the relatively gentle parts of the
gradient surface. We therefore characterized the wettability gradient
by making static contact angle measurements using such drops. The
procedure adopted after considerable trial and error consisted of
displacing a single small drop of the test liquid by small intervals
along the gradient and capturing digital images from the side at a
resolution of 1.2µm/pixel. G-contact24 software was then used to
extract the shape of the drop, termed “profile” from hereon, from
the image using Canny; the relative advantages and disadvantages
of this method of extracting the profile when compared with those
of other methods such as Sobel, Prewitt, and Laplacian of Gaussian
(LOG) are discussed in depth in Bateni et al.,25 who also provide
guidelines on how best to obtain the contact angle from digitized
images. We found that, as recommended by Bateni et al., fitting a
third-degree polynomial to the profile near the contact line and
obtaining the slope of the fitted polynomial where it intersects the
solid surface gave the most stable results for the contact angles.
Typically, it was necessary to use approximately 100 data points to
fit the profile. Also, to eliminate the consequences of optical distortion
in the region immediately adjacent to the contact line, about 13µm
of chord length (or approximately 13 data points beginning at the
contact line) was removed.26 In this manner, the contact angles at
the front and the rear were obtained from the images of the drop at
various locations along the gradient surface. We found that the drop
was not absolutely stationary on the gradient surface in the region
where the gradient was strong. A small amount of liquid was
withdrawn from the drop to try to reduce the motion of the drop in
this region so that its radius was approximately 0.2 mm; the velocity
of the drop was sufficiently small (1-35 µm/s ) for sharp images
to be obtained for analysis. At locations where the gradient was not
strong, the drop was indeed stationary for practical purposes.
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Normally, on a homogeneous surface, a stationary drop should
exhibit the same contact angle over the entire contact line. Because
of the wettability gradient present on the experimental surface, one
would expect the contact angle at the front to be smaller than that
at the rear. Because the stationary drop used in characterizing the
wettability gradient was small, we found that the difference in the
measured contact angle between the front and the back of the drop
was on the order of(1°, which was the typical uncertainty in the
contact angle measurement itself. Therefore, we averaged the values
from the front and the back and assigned this average contact angle
to the location of the center of the small drop. To test whether this
was appropriate, we also measured, in selected cases, the contact
angles at the two ends of the drop in an end view that was obtained
in a direction parallel to the wettability gradient. In this view, which
was obtained using an improved optical system, the contact angles
at the left and right ends should be the same, in principle. We found
in these experiments that the contact angles measured from the two
ends again differed by up to(1° and, within this measurement error,
were equal to the contact angles measured from the side view. We
took this as justification for the protocol that the average of the
values from the front and rear of the drop can be taken as the static
contact angle at the location of the center of the drop’s footprint.
In this manner, graphs of the static contact angle (presumed to be
the equilibrium value) and its cosine against position along the
gradient were prepared. Each data set was fitted to a sigmoidal,
logistic, four-parameter function for use in calculating the driving
force and the hydrodynamic drag on the moving drops at various
positions along the wettability gradient.

Theory

In the present experiments, the drops were sufficiently small
for the gravitational deformation of their shapes to be negligible,
and their motion was sufficiently slow for flow-induced
deformation also to be negligible. The drops assumed a shape
that could be fitted to a spherical cap, which is the shape assumed
by a static drop in the absence of gravitational effects.
Furthermore, the Reynolds number for the motion, defined in
the Results and Discussion section, was found to be small
compared with unity in all the experiments so that the flow
within the drops can be assumed to be inertia-free. As noted in
the Introduction, theoretical predictions for spherical cap drops
moving in a wettability gradient have been obtained recently by
Subramanian et al.3 for the case of quasi-steady Stokes motion.
Two principal results for the hydrodynamic resistance from that
work are reproduced here. The first result is based on ap-
proximating the drop as a collection of wedges. In this case, the
magnitude of the hydrodynamic forceFh exerted by the solid
surface on the moving drop is given by

where

Here, µ is the viscosity of the liquid,U is the instantaneous
velocity of the drop,Rthe radius of its footprint,θ is the dynamic
contact angle formed by the spherical cap drop, assumed to be
uniform around the contact line, andε ) Ls/R, whereLs is the
length of the region in which slip is permitted to occur. The
integral in eq 2 must be evaluated numerically. An alternative
analytical result, obtained using lubrication theory, also was given

in reference 3. This result is given below.

where

In writing the above results, we have made slight changes in
notation from ref 3 for convenience. We note that the hydro-
dynamic resistance in eqs 1 and 3 can be written as

whereâ is a resistance coefficient.
The driving force for the motion for a constant value of the

gas-liquid surface tensionγ is given in ref 3 as

Here, the integration is performed over the polar angleφ in a
cylindrical polar coordinate system (r, φ) with its origin at the
center of the drop’s footprint. The ray corresponding toφ ) 0
points in the direction of the gradient. The symbolθe refers to
the equilibrium contact angle, and the subscripts f and r correspond
to front and rear, respectively. If the variation of the equilibrium
contact angle along the gradient surface is known, then the
integration required in eq 6 can be performed to obtain the driving
force. In the present work, we fitted the measured static contact
angles (assumed to approximate the equilibrium contact angle)
along the gradient surface to a simple function of position and
performed the integration numerically to obtain the driving force
on a drop at any given location on the gradient surface. In
estimating the parameterε, we used a value ofLs ) 0.5 nm. By
equating the driving force and the hydrodynamic resistance, the
quasi-steady velocity of the drop can be calculated.

The precise value ofLs, defined here as the length of the
region near the contact line in which a slip model must be used,
is not known. Discussions of the concept as well as the magnitude
of Lscan be found in refs 27-29. For normal liquids and smooth
surfaces,Ls is usually assumed to be on the order of the molecular
size. Given the size of the liquid molecule used in the experiments
and the estimate obtained from molecular dynamics simulations
in ref 28 thatLs ≈ 1.8σ, whereσ is a Lennard-Jones parameter
that can be assumed to be approximately the molecular diameter,
we arrived at the estimate ofLs ) 0.5 nm. In the next section,
we provide an estimate of the sensitivity of the predicted
hydrodynamic resistance to the value ofLs that is chosen.

Because the observed velocity of the drop changes with position
along the gradient and therefore with time, one might wonder
about the importance of unsteady-state effects. An approximate
analysis of these effects can be found in ref 3, in which it is
shown that, for a fixed driving force and a resisting force written
in the form in eq 5, the time scale in which a drop of massm
is accelerated to its steady velocity is given bym/â. Under the
conditions of the experiments, this time constant is found to vary
from approximately 2× 10-5 to 2× 10-4 s. Furthermore, using
the relevant physical properties of tetraethylene glycol and a
typical length scale of the drop, the time scale for the viscous

(27) de Gennes, P. G.ReV. Mod. Phys.1985, 57, 827.
(28) Thompson, P. A.; Brinckerhoff, W. B.; Robbins, M. O.J. Adhes. Sci.

Technol.1993, 7, 535.
(29) Kim, H.-Y.; Lee, H. J.; Kang, B. H.J. Colloid Interface Sci.2002, 247,

372.

Fh ) -8µUR f(θ, ε) (1)

f(θ, ε) )

∫0

1 - ε
(1 - Y2)tan2 θ[12ln(1 - Y2) - ln ε]

[tan θx1 - Y2 -

(1 + {1 - Y2}tan2 θ)tan-1(tanθ x1 - Y2)]

dY (2)

Fh ) 6πµUR[g(θ, 0) - g(θ, 1 - ε)] (3)

g(θ, ê) ) cot θ ln(xcosec2 θ - ê2 - cot θ) +

xcosec2 θ - ê2 - cot θ (4)

Fh ) âU (5)

Fdriving ) 2Rγ∫0

π/2
{cos(θe)f - cos(θe)r}cosφ dφ (6)
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drag to relax to its steady description in a transient analysis
(R2/ν, whereν is the kinematic viscosity of the liquid) can be
estimated to be between 0.004 and 0.064 s. In the largest of these
time scales, 0.064 s, the fastest drop would move approximately
0.12 mm, a distance in which the driving force and drag do not
change appreciably. In view of this, it suffices to use a quasi-
steady force balance to evaluate the theoretical prediction for the
velocity of the drop at any given location on the gradient surface,
and this is the procedure we follow in making predictions.

Results and Discussion

An important difference between the results of the present
work and those presented in earlier studies10,11 is the fact that
we have measured the velocity of a given drop as a function of
position. The trajectory of a typical drop on an “intermediate”
gradient surface is shown in Figure 1. The inferred velocities of
several drops, plotted as a function of position along the gradient,
are displayed in Figure 2. The numbering of the drops corresponds
to track numbers on the strip (i.e., adjacent numbers represent
adjacent tracks). In Figures 1 and 2 and subsequent drawings in
which experimental data are displayed, when the uncertainty in
the measurement is not explicitly displayed, the uncertainty
estimate is within the size of the symbols used. Also, the images
were recorded at a frequency of 50 frames/s, but for clarity in
the drawings, results are shown at 0.2 mm intervals in position.

It is seen from Figure 2 that the velocity of each drop rises
to a peak in the first few millimeters and decays by as much as
an order of magnitude as the drop moves into the more hydrophilic
region on the strip. Figure 2 also demonstrates the reproducibility

of the results on a given strip by comparing the behavior of drops
of the same nominal volume introduced along different non-
adjacent tracks on the gradient surface. The drop volume was
varied from 50 nL for the smallest drop to 2500 nL for the largest
drop. The radius of a given drop’s footprint varies as it moves
along the gradient and spreads out. The radius at the beginning
of the motion varied from 0.33 to 1.33 mm, and that near the
end of the motion varied from 0.44 to 1.71 mm. On the basis
of these radius values and the measured velocities of the drops,
it is possible to estimate a Reynolds number defined as Re)
UR/ν, whereν is the kinematic viscosity of tetraethylene glycol
at room temperature, which is 4.54× 10-5 m2/s. This Reynolds
number varied from 5.13× 10-4 to 5.05 × 10-2 in the
experiments. Likewise, a capillary number can be defined as Ca
) µU/γ . Using a dynamic viscosity ofµ ) 5.11× 10-2 Pa‚s
and a surface tension ofγ ) 46 mN/m for tetraethylene glycol
at room temperature, we estimate the range of values of the
capillary number to be 5.9× 10-5 to 1.9 × 10-3 in the
experiments. The values of the Reynolds number are sufficiently
small for the flow within the drops to be considered inertia-free,
and those of the capillary number are sufficiently small for
deformation caused by motion to be negligible, as mentioned
earlier. Therefore, the drops should assume a shape close to their
static shape. The Bond number, Bo) FgR2/γ, whereF ) 1.13
× 103 kg/m3 is the density of tetraethylene glycol at room
temperature andg) 9.81 m2/s is the magnitude of the acceleration
due to gravity, varied from 0.027 to 0.70 in the experiments.
This implies that the static shape of a drop on a homogeneous
surface should be very close to that of a spherical cap. Of course,
the drops are present on a gradient surface, where the equilibrium
contact angle varies around the periphery of the drop. If this
variation is considered to be sufficiently small, then the drops
should assume the shape of a spherical cap as a first approximation.
We found that the footprints of the drops in the experiments
were well approximated by a circle and that the shapes of all of
the drops from the side view could be fitted to an arc of a circle,
confirming the validity of the spherical cap approximation to the
shape of the moving drops.

Figure 3 shows the measured wettability gradient, plotted in
the form of cosθe versus the position on the strip. An inset is
used in this Figure to show the behavior of the angleθe with
position along the gradient. For convenience in calculating the
theoretical estimates of the driving force and resistance to motion,
the data in the Figure were fitted to a sigmoidal, logistic, four-
parameter function, which also is shown in Figure 3. It is evident
from the Figure that the driving force is not uniform along the

Figure 1. Position of a drop of nominal volume 500 nL plotted
against the time of traverse.

Figure 2. Velocities of several drops plotted against position on
an intermediate gradient surface. The origin is chosen arbitrarily at
the hydrophobic end where the contact angle is 70°, and the numbers
assigned to the drops correspond to track numbers on the strip. The
nominal volumes of the drops are 1 (2500 nL); 2, 4 (2000 nL); 3,
5 (500 nL), 6, 8 (1000 nL); 7, 9 (200 nL); 10 (140 nL); and 11
(50 nL).

Figure 3. Cosine of the equilibrium contact angleθeplotted against
position along the gradient surface. The solid curve shows the
sigmoidal logistic function fitted to the data. The inset displays the
angleθe plotted against position.
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gradient surface, suggesting one reason for the variation of the
velocity with position; the other is the fact that the local quasi-
steady resistance coefficient changes continually as the drop
moves along the strip. By resistance coefficient we mean
coefficientâ in eq 5. This change inâ is caused by the change
in the radius of the drop’s footprint as well as the change in the
dynamic contact angle; the ratio of the largest footprint radius
to the smallest footprint radius is at most 1.3 so that a significant
part of the change inâ arises from its dependence on the contact
angle. To demonstrate the extent of the variation in the driving
force and the resistance along the gradient, we have chosen a
representative drop of intermediate size in Figure 2 (drop 5, with
a footprint radius ofR) 0.74 mm when it begins moving). The
driving force, calculated from eq 6 using the fitted result for the
cosine of the equilibrium contact angle, is displayed in Figure
4 as a function of position along the gradient. Likewise, the
magnitudes of hydrodynamic resistance coefficientâ from the
wedge approximation calculated from eqs 1 and 2 and that from
lubrication theory calculated from eqs 3 and 4 are displayed in
Figure 5.

In calculating the hydrodynamic resistance coefficient plotted
in Figure 5, we used the equilibrium contact angle evaluated at
the location of the center of the drop’s circular footprint as the
value of the dynamic contact angle of the moving drop. It is
evident from Figures 4 and 5 that the driving force and the
resistance coefficient vary substantially along the gradient surface.
The driving force initially increases along the gradient surface,
reaching a peak at a distance of roughly 4 mm, and then decreases
to half that value near the end of the gradient. The coefficient
â, evaluated from the wedge approximation, starts at a relatively

small value and increases by nearly a factor of 6 along the surface.
As noted in ref 3, the resistance predicted from lubrication theory
is observed to be smaller than that predicted by the wedge
approximation but is nearly the same for positions at which the
contact angles are less than or equal to about 40°. In calculating
the results in Figure 5, the length of the slip region was assumed
to be 0.5 nm. It is worth noting that the magnitude of the resistance
coefficient is increased by approximately 10% when the length
of the slip region is decreased to 0.1 nm, an extreme value;
likewise, it is reduced by about the same extent when the length
of the slip region is increased from 0.5 to 2 nm. This is a relatively
small variation when compared with the nearly 6-fold change
in the resistance coefficient over the gradient surface.

It is evident that the changes in the local driving force and the
resistance coefficient are the reason for the spatial variation of
the velocity of drop 5 observed in Figure 2. In Figure 6, we have
compared the velocity obtained at each location by equating the
local driving force and the resistance with the experimentally
measured velocity for this drop. The comparison shows that the
theoretical model approximately captures the behavior of the
velocity as a function of position along the gradient surface. The
wedge approximation yields a better prediction than lubrication
theory. For comparison, we also have included the prediction
from a result provided by Brochard4 in the same Figure. It is seen
that even though the wedge approximation does well in predicting
the variation of the velocity with position, discrepancies remain
between the predicted and observed values of the velocity. Similar
discrepancies were noted when the data for the other drops were
compared with the predictions from the best-performing theo-
retical model, namely, the wedge approximation, in Moumen’s
thesis.30

There are several reasons for the observed differences between
the measured and predicted velocities. First, the theoretical
prediction is approximate and not based on a complete numerical
solution of the governing equations. Even a complete numerical
solution would entail some approximation because it would
require the use of some model of the slip region. As noted in ref
3, an exact solution should yield a larger predicted resistance
than that from the wedge approximation, thereby moving the
predicted velocities closer to the observed velocities. Second,
the surface is assumed to be completely smooth in the model,
and the roughness of the surface can contribute to increased
resistance. Third, it is possible that dissipation at the contact line
of the type envisioned in refs 14 and 15 can be important,
contributing additionally to the resistance. Fourth, the theoretical

(30) Moumen, N. Motion of a Drop on a Horizontal Solid Surface with a
Wettability Gradient. Ph.D. Thesis, Clarkson University, Potsdam, NY, 2006.

Figure 4. Driving force experienced by drop 5 plotted against
position along the gradient surface.

Figure 5. Hydrodynamic resistance coefficientâ experienced by
drop 5 plotted against position along the gradient surface. The solid
line shows the resistance coefficient calculated from the wedge
solution, and the dashed line corresponds to the resistance coefficient
calculated from lubrication theory.

Figure 6. Comparison of the predicted and observed velocities of
drop 5 plotted against position along the gradient surface. Shown
are the data and the predictions from the wedge approximation, the
lubrication theory solution, and the solution from Brochard.4
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model assumes the shape of the drop to be that of a spherical
cap, whereas the actual shape can be a bit different, being
influenced both by gravitational and hydrodynamic effects.
Finally, contact angle hysteresis can play a role in affecting the
velocity of the drops. We had noticed when making contact
angle measurements that drops that were sufficiently small did
not move on the gradient surface. This fact also was recorded
in refs 10 and 11, and Daniel and Chaudhury10actually suggested
a method for accommodating the reduction in driving force caused
by hysteresis using the idea of a “critical” drop size, which we
shall termRc. This is the footprint radius of a drop that is at the
transition between drops that would move and those that would
not at a given location on the gradient surface. For such a drop,
one might postulate that the driving force is zero. The approach
suggested by Daniel and Chaudhury10consists of using the driving
force on a drop of footprint radiusRc as an additional form of
resistance to be subtracted from the driving force on a given drop
with R > Rc . We found that this yields a correction to the
prediction that is too small, being proportional toRc

2 when cos
θe varies linearly with distance. Instead, we propose a different
approach in which the cosine of the contact angle around the
periphery of a drop of radiusR > Rc is reduced by the extent
necessary to yield a zero driving force for a drop of critical radius
Rc. This yields a correction that is proportional toRRc when cos
θevaries linearly with distance and therefore is larger, providing
better agreement of the prediction with observation. Also, we
found that the critical drop radius depends on the position along
the gradient, and therefore accommodated this dependence.
Details are given below.

Instead of using the equilibrium value of the contact angle
around the periphery of the drop in eq 6, a reduced value for the
receding portion of the contact line and an increased value for
the advancing portion of the contact line must be used in evaluating
the driving force corrected for hysteresis.

If one imagines the drop’s footprint to be divided into differential
strips parallel to the direction of motion, then on each stripθf

hys

) θr
hys for the critical-size drop. Because the cosines of the

measured equilibrium contact angles at the front and rear can be
evaluated over the periphery of the critical-sized drop, this
provides a quantitative estimate of the correction over the
advancing portion of the contact line, [cos(θe)f - cosθf

hys], and
that over the receding portion of the contact line, [cosθr

hys -
cos(θe)r], at the position on the gradient surface where the drop
is located. This concept is illustrated graphically in the sketch
in Figure 7 in which locally linear behavior of the plot of cos
θe versusx has been assumed.

The solid line in Figure 7 represents the equilibrium contact
angle at each position. The two dashed lines above and below
it, located such that their horizontal distance from the solid line
is Rc, provide plots of cosθr

hysversus position and cosθf
hysversus

position, respectively. Thus, to obtain the difference{cosθf
hys -

cosθr
hys} along each differential strip of the footprint of a given

drop (parallel to the direction of motion), one would, in effect,
use the curve of cos(θe) versus position but evaluate this function
at the periphery of an imaginary drop of radiusR - Rc. Of
course, to make this revision in the driving force, one must know
the critical size at different locations along the gradient surface.
For this purpose, we selected a few locations along the surface
where the velocities of drops of various sizes had been measured
and plotted the velocity as a function of drop radius at each
location, as shown as Figure 8.

It is seen from Figure 8 that the velocity scales approximately
linearly with drop size, which is consistent with theory3 because
the factor lnε that appears in the theoretical result does not
change substantially over the range of drop radii employed. We
fitted the set of data for a given position to a straight line and
used the intercept on thex axis (where the velocity is zero) as
the critical radiusRc for that location. A graph showing the
behavior ofRc, obtained by this method, against position is
displayed as Figure 9, along with a curve that represents a cubic
function that was used to fit these data, so that we could calculate
interpolated values ofRcat any desired location. Then, the driving
force corrected for hysteresis was evaluated using the scheme
explained above.

In Figure 10, we have compared the data on the velocity of
drop 5 as a function of position with two modified predictions
and also included the prediction from the wedge approximation
with the unmodified driving force for comparison. One of the
modified predictions corresponds to evaluating the hysteresis
effect as recommended by Daniel and Chaudhury,10and the other
corresponds to the present approach to correcting for hysteresis
described using Figure 7. The comparison demonstrates that the
present approach performs remarkably well in closing the gap
between the predicted and observed velocities.

Fdriving ) 2Rγ∫0

π/2
{cosθf

hys - cosθr
hys}cosφ dφ (7)

Figure 7. Sketch showing how the effect of hysteresis can be
accommodated by evaluating the difference [cos(θe)f - cos(θe)r]
around the periphery of an imaginary drop of radiusR - Rc. The
ideal driving force is the difference between the ordinates ofA and
B; the reduced driving force is the difference between the ordi-
nates ofA′ andB′, which is the same as the difference between the
ordinates ofA′′ andB′′, which correspond to the equilibrium con-
tact angles for a drop of radiusR- Rc at the given location. Shown
in the sketch is the section of the drop in the symmetry plane;
at other sections, similar reasoning applies, but the horizontal
distances from the location of the center of the drop become
(R - Rc)cosφ .

Figure 8. Velocities of drops plotted as a function of footprint
radius at several selected positions along the gradient. Also shown
in each case are the best-fit straight lines.
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In Figure 11, we have plotted the data on drop velocity as a
function of position for several drops along with the modi-
fied prediction from the wedge approximation, using the pres-
ent approach for correcting the driving force. To avoid clutter,
we have eliminated some of the drops in presenting this Fig-
ure, but the extent of agreement is comparable for the ex-
cluded drops as noted in ref 30. The improved agreement be-
tween the data and the modified prediction suggests that the
hypothesis that the driving force indeed is reduced due to

hysteresis is viable in explaining the behavior of the drops on
the gradient surface.

We also attempted other ways, described in ref 30, of explaining
the discrepancy between the data and the unmodified prediction
from the wedge approximation. These attempts involved
modifying the resistance by assuming that there exists additional
resistance to the motion that is proportional to either the drop
velocity or the product of the drop velocity and drop radius (as
is true of the hydrodynamic model or one based on contact line
resistance). We then extracted a coefficient for this additional
resistance by requiring the data on an intermediate-sized drop
to match the revised prediction. Then, using this additional
resistance coefficient as a function of position along the gradient
surface, we attempted to predict the velocity versus distance
behavior for all the other drops. Although reasonably successful,
this attempt did not lead to the level of agreement of the predicted
and observed velocities that is noted in Figures 10 and 11. The
best agreement was obtained when we used the idea of an
additional resistance that was independent of drop radius or
velocity, but this is precisely the type of correction provided by
the hysteresis model used in modifying the driving force in Figure
10. Therefore, it appears that the discrepancy between the
uncorrected predictions and the data in the present experiments
is more likely due to a reduction in the driving force rather than

Figure 9. Critical drop radiusRc plotted as a function of position
along the gradient surface. Also shown is the cubic fit that was used
for the purpose of interpolation.

Figure 10. Comparison of predicted and observed velocities of
drop 5 plotted against position along the gradient surface. Shown
are the data and the predictions from the wedge approximation with
the original driving force, the wedge approximation with the driving
force corrected for hysteresis using the approach in ref 10, and the
wedge approximation with the driving force corrected for hysteresis
using the present approach.

Figure 11. Comparison of predicted and observed velocities of
several drops. The solid curves represent predictions made using the
wedge approximation and a driving force modified using the present
approach to accommodate the effect of hysteresis.

Figure 12. Sharp gradient: comparison of predicted and observed
velocities of selected drops. The solid curves represent predictions
made using the wedge approximation and a driving force modified
using the present approach to accommodate the effect of hysteresis.
The numbers assigned to the drops correspond to track numbers on
the strip. The nominal volumes of the drops are 7 (150 nL), 11 (50
nL), and 16 (500 nL).

Figure 13. Gentle gradient: comparison of predicted and observed
velocities of selected drops. The solid curves represent predictions
made using the wedge approximation and a driving force modified
using the present approach to accommodate the effect of hysteresis.
The numbers assigned to the drops correspond to track numbers on
the strip. The nominal volumes of the drops are 3 (500 nL), 8 (1000
nL), and 10 (2000 nL).
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an additional resistance arising either from a hydrodynamic origin
or from contact line dissipation of the form envisioned in refs
14 and 15. The agreement between the observed and predicted
velocities in Figure 11 is not perfect, especially during the early
part of the traverse, and the remaining differences may be due
to a variety of reasons discussed earlier, also including the fact
thatwecanonlyapproximatelyaccommodate thehysteresiseffect.

As noted in the subsection on Surface Preparation, the gradient
used in the above experiments is termed intermediate. To test
whether the theoretical model from ref 3, modified to accom-
modate hysteresis effects as outlined here, is able to predict the
behavior of drops in other experiments, experiments were also
performed using “sharp” and “gentle” gradient surfaces; these
terms are defined in the subsection on Surface Preparation. Re-
sults obtained from these experiments for the velocities of
drops of different sizes as a function of position along the gradi-
ent surface are presented in Figures 12 and 13 and compared
with the predictions from the wedge model from ref 3, cor-
rected for hysteresis effects in the manner outlined here. It ap-
pears that the present approach does a reasonable job of pre-
dicting the velocities of the drops in these experiments as well.
Additional results are presented and discussed in Moumen’s
doctoral thesis.30

Concluding Remarks
Detailed measurements of the velocity of a drop along a

wettability gradient surface reveal the complex nature of the
variation of the velocity in response to the change in driving
force and in the resistance to the motion of the drop along the
gradient. We demonstrate that it is possible to interpret and
organize the results using a simple hydrodynamic model in which
inertial effects and deformation due to gravity as well as motion
are neglected. The predictions from the wedge approximation
describe the qualitative features of the shape of the curve of
velocity versus position along the gradient surface, and the quan-
titative differences are mostly accommodated by approximately
accounting for the influence of hysteresis on the motion of the
drops.
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