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■ Abstract This review summarizes recent experimental studies of instabilities in
free-surface flows driven by thermocapillarity. Two broad classes are considered, de-
pending upon whether the imposed temperature gradient is perpendicular (Marangoni-
convection instability) or parallel (thermocapillary-convection instability) to the free
surface. Both steady and time-dependent instabilites are reviewed in experiments em-
ploying both large- and small-aspect-ratio geometries of various symmetries.

1. INTRODUCTION

The interfacial (surface) tension σ characterizes macroscopically the molecular

interactions that occur at the interface between two immiscible fluids. When the

fluids are subjected to an externally imposed temperature difference 1T , spatial

gradients in σ may be induced with the largest values of σ typically occurring at

the coldest regions on the interface (σT ≡ −dσ
dT

> 0). Shear stresses at the interface

arise to balance the surface-tension gradients, resulting in fluid motion; this is

known as the Marangoni effect (Scriven & Sternling 1960). The flow penetrates

into the bulk through viscous coupling to the motion at the interface; this is ther-

mocapillary flow. (Similar surface-tension-driven flows can arise from gradients

in other fields, e.g. concentration, electric field, etc; these cases are beyond the

scope of this article.)

Thermocapillary flow arises in a wide range of problems of historical, funda-

mental, and practical importance. Bénard (1900) observed beautiful cellular flow

patterns whose cause Rayleigh attributed to buoyancy. Much later, Pearson (1958)

first provided the correct explanation in terms of the Marangoni effect. Bénard’s

work established thermal convection as a model system for exploring fundamental
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94 SCHATZ ¥ NEITZEL

questions in fluid mechanics, in nonequilibrium pattern formation, and in tur-

bulence. Frequently, both thermocapillary and buoyancy effects are simultane-

ously present, and oftentimes thermocapillary convection is overshadowed by

buoyancy-driven motion.

However, for small geometry and/or microgravity environments, this is not

the case and thermocapillary is dominant. For example, thermocapillary driving

of flow plays an important role in industrial applications including the growth

of crystals in semiconductor materials, the rupture of thin films in heat transfer

devices, the texturing of surfaces in magnetic storage devices, and the propagation

of flames over liquid fuels.

Recent experimental work on instabilities in thermocapillary flow has focused

on highly simplified cases in an effort to make close contact with theoretical studies.

A liquid-gas two-fluid combination is usually chosen to provide a system that is

simpler both to implement experimentally and to describe theoretically. Addition-

ally, the liquid-gas systems are typically confined by boundaries with a high degree

of symmetry. With these restrictions, it is useful to categorize the instabilities we

describe into two general classes. In the first, known as Marangoni-convection

instability (Section 2), the externally imposed 1T yields imposed temperature

gradients that are primarily perpendicular to the interface. Here, the basic state is

static with a conduction temperature distribution; motion ensues with the onset

of instability when 1T exceeds some threshold. A second general class of ther-

mocapillary flow is known as thermocapillary-convection instability (Section 3)

whereby the externally imposed 1T yields imposed temperature gradients that

are primarily parallel to the interface. In these cases, motion occurs for any value

of 1T . For small enough temperature differences, the basic state is steady and

considered theoretically to be either one- or two-dimensional. The instabilities

of interest occur for larger 1T and result in the appearance of either steady or

unsteady three-dimensional flow. We focus here on the experimental description

and refer the reader to Davis (1987) for a cogent theoretical description of the

thermocapillary mechanisms at work in all cases we describe.

2. MARANGONI-CONVECTION INSTABILITY

2.1 Preliminaries

Thermocapillarity may drive flow when a liquid-gas system with an initially flat,

horizontal interface is sufficiently heated from below and cooled from above

(Figure 1). In this case, the strength of the thermocapillary driving is charac-

terized by the Marangoni number M = σT 1T d/ρνκ in terms of liquid layer

thickness d, temperature difference across the liquid layer 1T , the liquid’s den-

sity ρ, kinematic viscosity ν, thermal diffusivity κ , and surface tension tem-

perature coefficient σT . With heating from below, buoyant effects are also typ-

ically present as characterized by the Rayleigh number R = αg1T d3/νκ , with
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THERMOCAPILLARY INSTABILITIES 95

Figure 1 Cross section of apparatus for experiments on Marangoni instability. In most ex-

periments, convection patterns are usually viewed from above and are bounded by sidewalls

whose planform is circular.

the liquid’s thermal expansion coefficient α, and the gravitational acceleration

g. The ratio M/R = σT /(ραgd2) characterizes the strength of thermocapillar-

ity relative to buoyancy; the inverse R/M ≡ BoD is called the dynamic Bond

number. Flows driven solely by buoyancy (M/R = 0) are easily achieved in

experiments by elimination of all free surfaces. (This simple case, known as

Rayleigh-Bénard convection, is studied in the vast majority of experiments on

thermal convection.) This review focuses on Marangoni convection (sometimes

called surface-tension-driven Bénard convection or Bénard-Marangoni convec-

tion) where M/R $ 1 provides a necessary condition (Section 2.2.1) for thermo-

capillarity to dominate over buoyancy. Thermocapillarity is most readily made

dominant in experiments by choosing d sufficiently small; buoyant effects can be

virtually eliminated by performing space experiments where g almost vanishes

(Dupont et al 1992).

Experiments on Marangoni convection are most frequently performed with

silicone oil-air layers. Choosing air as the upper fluid layer (Figure 1) sim-

plifies the theoretical description by permitting the density and the viscosity of

the upper layer to be neglected. Silicone oils (polydimethylsiloxanes) are cho-

sen for the lower fluid layer because the oils have a very low surface tension.

Silicone oil-air interfaces are virtually unsusceptible to surface-active agents (sur-

factants), which can dramatically alter the stability properties of Marangoni con-

vection (Berg & Acrivos 1965). Moreover, silicone oils are readily available in a

range of Prandtl number Pr ≡ ν/κ (typically 50 & Pr & 1000). The polydispersity

of commercial oils may affect flow dynamics; single component silicone oils of

high purity can be obtained by simple distillation of commercial oils (Schatz &

Howden 1995).

A judicious choice of experimental geometry can greatly simplify connecting

the system’s temperature field to heat transport across the layers. Typically, the

bottom boundary temperature Tb is imposed uniformly by choosing the bound-

ary’s thermal conductivity to be much greater than that of the liquid layers. The

temperature across the lower layer 1T is defined by 1T ≡ Tb − 〈Ti 〉, where

Ti is the interface temperature and 〈〉 represents the spatial average horizontally
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96 SCHATZ ¥ NEITZEL

across the system. Ti can be obtained from noncontact optical measurements

(Schatz et al 1999). In experiments where the air layer is unbounded above

(dg → ∞; e.g. Bénard 1900, Cerisier et al 1987), heat transport is difficult to

characterize because buoyancy-driven convection in the air layer will typically

be present and can couple to thermocapillary flow in the oil layer in a way that

can only be described with a full two-fluid model. The buoyant instability can be

suppressed in the air layer by use of a top boundary of high thermal conductivity

placed at a sufficiently small distance dg above the interface; the top boundary

is cooled uniformly at Tt < Tb (Figure 1). In this case, heat transport in the air

is dominated by conduction for a substantial range of M ; this remains true even

when forced convective motion in the air arises as the interface moves due to

thermocapillarity (Eckert et al 1998). With this configuration, globally averaged

heat transport can be obtained either from calorimetry measurements or from in-

dependent measurement of 1T , Tb, and Tt (Pérez-Garcı́a et al 1998). We use M

defined in terms of 1T to describe experiments with any value of dg; however, a

suitable alternative reference temperature 1Tcond ≡ (Tb − Tt )Bi/(1 + Bi), with

the Biot number Bi = kgd/kdg(k and kg are, respectively, the oil and air thermal

conductivities), may be used for experiments where dg is sufficiently small to pre-

vent buoyant instability in the air layer. Although 1T = 1Tcond only when heat

is transported by pure conduction, 1Tcond is still well defined above the onset of

convection and is independent of the flow structure. (1T depends on the flow

structure through 〈Ti 〉.)
Lateral, thermal, and mechanical boundary conditions set by the sidewalls

(Figure 1) can significantly affect Marangoni convection. Ideally, the tempera-

ture at the top of the sidewall should be equal to 〈Ti 〉. However, this condition

is practically never achieved, even for pure conduction, because it is difficult to

match the thermal conductivity of the sidewall with that of the oil. Thus, lateral

temperature gradients can result and induce thermocapillary convection near the

sidewall (Section 3), which perturbs Marangoni convection. The mechanical at-

tachment of the interface at the lateral boundary can also determine the strength

of thermal perturbations to the flow. The liquid-gas interface should be flat, which

typically requires pinning the contact line at an edge at the brim of a sidewall.

Because the sidewalls are typically constructed from soft materials (e.g. acrylic,

Teflon, nylon), whose thermal conductivity is close to that of silicone oil, some

mechanical nonuniformity is usually present. The impact of the perturbations on

Marangoni convection experiments can be ameliorated somewhat by measures

such as buffer regions (Schatz et al 1995) or surrounding the sidewall on both

sides with fluid (Ondarçuhu et al 1993a). Cases where the influence of sidewall

perturbations may be important are discussed below.

2.2 Onset

Linear-stability analysis of the conduction (no fluid motion) state predicts one

of two different primary instabilities may be observed in experiments when M
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Figure 2 Marginal stability curves for Marangoni convection indicate two different types

of primary instabilities can typically arise. The stability curves are computed for ν =
0.10 cm2 s−1 silicone oil under terrestrial gravity with d ≪ dg . (a) Short-wavelength

modes (q 6= 0) are primary for thick oil layers; instability of these modes leads to the classic

cellular flows studied by Bénard (1900). (b) For sufficiently thin oil layers (d # 0.03 cm),

the global minimum is at q = 0, and modes with long-wavelength deformation of the

interface become primary.

exceeds a critical value Mc that depends on the wavenumber q scaled on d

(Figure 2). A short-wavelength (q ≈ 2) primary instability arises when diffu-

sion (thermal and viscous) is the main mechanism for damping perturbations at

the interface (Figure 2a), whereas a different, long-wavelength (q = 0) primary

instability arises when hydrostatic pressure is chiefly responsible for opposing

perturbations (Figure 2b). Selection between short-wave and long-wave modes at

onset is readily achieved in experiments since Mc(q = 0) varies strongly with d:

Mc(q = 0) = 2G/3 where G ≡ 2gd3/3νκ is the Galileo number.

2.2.1 Short-Wavelength Instability

Cellular patterns are found at convective onset due to short-wavelength instability;

the morphology of the observed patterns depends on the aspect ratio L/d. The

convection cells are typically hexagonal when L/d is large; by contrast, the cells’

symmetry is strongly influenced by the shape of lateral boundary when L/d is

small. Each of these cases is discussed in turn below.

2.2.1.1 Large Aspect Ratio Schatz et al (1995) examined both linear and non-

linear aspects of onset in Marangoni convection (Figure 3). Onset was observed

at Mc = 83.6 with a precision of ±0.5 but with an accuracy of ±11 primarily due

to the uncertainty in the thermal properties (k, κ , and σT ) of the purified silicone

oils used in the experiments. Comparison with linear theory requires accounting

for the effects of both buoyancy, as determined by M/R and the spatial depen-

dence of heat transport due to the normal-mode structure of interfacial temperature
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98 SCHATZ ¥ NEITZEL

Figure 3 Hysteresis at the onset of Marangoni convection. (a) Just prior to onset, weak

convection perturbs the flow at the boundary for ǫ = −5.6 × 10−3. (b) Finite amplitude

convection with a nearly ideal hexagonal planform arises for ǫ = −2.3 × 10−3. Upflow

is indicated by dark regions. (c) The abrupt onset of Marangoni convection is exhibited by

a plot of the Fourier mode amplitude A (from shadowgraph images) versus ǫ. Convection

appears suddenly for slowing increasing ǫ (squares) and persists below onset for slowly

decreasing ǫ (triangles).

perturbations. Spatially varying heat transport is described by a wavenumber-

dependent Biot number Biq(q) ≡ qkg

k tanh(qdg/d)
, which is valid when pure con-

duction dominates heat transport in the air layer. The resulting linear theory

for the experimental conditions of Figure 3 (M/R = 40, Biq = 0.4) predicts

a somewhat larger value of Mc = 95 (Pérez-Garcı́a et al 1998). [The compar-

ison to linear theory described in Schatz et al (1995) characterizes heat trans-

port using Bi = 0.2, which is valid only for q → 0.] The linear onset is

observed only indirectly because the instability is subcritical (i.e. akin to a first-

order phase transition in equilibrium thermodynamic systems) (Figure 3c). A

range of M exists where either conduction or convection is stable; in terms

of ǫ ≡ M−Mc

Mc
, the range of bistability is found for −0.032 < ǫ < 0. This hys-

teresis at onset is a nonlinear effect arising from the lack of up-down symme-

try in the system (Cross & Hohenberg 1993). A variety of theoretical studies

based on amplitude equations have predicted subcritical instability at onset (Scan-

lon & Segal 1967, Davis 1987, Bragard & Velarde 1998); the range of bicriti-

cality predicted by the theories (0.2−2.2%) is smaller than the 3.2% indicated

in Figure 3. As pointed out by Davis (1987), the predictions are only sugges-

tive since the theoretical models are not rigorously self-consistent. Schatz et al

(1995) noted that forcing at the lateral boundaries may obscure the observation

of hysteresis at transition and could explain onset observed at very low values

of M in earlier experimental studies of Marangoni convection (Koschmieder &

Biggerstaff 1986).

Early experiments noted that the onset of cellular convection is accompanied

by small but measurable deformation of the interface (∼1 µm) where upflows

(hot spots at the interface) may be concave (Bénard 1900) or convex (Jeffreys

1951). Linear theory accounts for this behavior by including both buoyancy and

thermocapillary effects (Davis & Homsy 1980); concave upflows occur for thin,

thermocapillary-dominated layers, while convex upflows occur for thicker,

buoyancy-dominated layers. The experiments of Cerisier et al (1984) and accom-

panying stability analyses by Pérez-Garcı́a et al (1985) found concave upflows
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THERMOCAPILLARY INSTABILITIES 99

for M/R * 0.6, which corresponds to d & 0.3 cm for silicone oil layers. This

result suggests a necessary condition for experiments on Marangoni convection

dominated by thermocapillarity.

Just above onset, Marangoni experiments exhibit highly ordered hexagonal pat-

terns, whose wavenumber q changes as ǫ is increased. Schatz et al (1995) observed

q = 1.90 at onset, while linear theory predicts a slightly larger qc = 1.97 (Pérez-

Garcı́a et al 1998); linear theory and experiment cannot be rigorously compared

due to the subcritical nature of the transition. As ǫ is slowly and monotonically in-

creased above onset, Koschmieder & Switzer (1992) found the pattern wavenumber

first increased and then decreased; they also found a larger range of ǫ with increas-

ing q when the oil layer depth was decreased. Eckert et al (1998) confirmed these

experimental findings and found a maximum q(ǫ) at ǫ ≈ 1 that was approximately

10% larger than q at onset. Numerical simulations with pure thermocapillary driv-

ing (no buoyancy) exhibit qualitatively similar ǫ dependence of q (Eckert et al

1998), which rules out an earlier suggestion by Koschmieder & Switzer (1992)

that the maximum in q(ǫ) is caused by competition between thermocapillarity and

buoyancy.

2.2.1.2 Small Aspect Ratio Koschmieder & Prahl (1990) investigated both the

onset and the planform in Marangoni convection with aspect ratios L/d sufficiently

small such that the lateral boundaries determine the flow structure (Figure 4).

Figure 4 Small-aspect-ratio Marangoni convection with circular lateral boundaries from

Koschmieder & Prahl (1990). (a) One-cell state: M = 330 and L/d = 4.32. (b) Two-cell

state: M = 81 and L/d = 5.31. (c) Three-cell state: M = 76.5 and L/d = 6.59. (d )

Four-cell state: M = 78 and L/d = 6.79. (e) Five-cell state: M = 71 and L/d = 8.62.

( f ) Six-cell state: M = 74 and L/d = 8.96.
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100 SCHATZ ¥ NEITZEL

At the smallest L/d with circular and square sidewalls, Koschmieder & Prahl

(1990) found that convective flow exhibits the symmetry of the lateral boundaries

with fluid upwelling in the center and flowing down near the sidewalls (Figure 4a).

As L/d is increased for circular boundaries, patterns with discrete rotational sym-

metries are observed. Sector-shaped cells are divided by downflow boundaries that

extend radially from the center of apparatus; the number of cells increases with

increasing L/d (Figure 4b–f ). For L/d $ 9, a distinct group of boundary cells

forms at sidewalls; these boundary cells encircle a group of polygonal interior

cells, which can exhibit clear hexagonal symmetry. Koschmieder & Prahl (1990)

observed a similar progression as L/d is increased for square boundaries; how-

ever, there is a greater tendency to observe nonsymmetrical patterns for L/d < 9.

Ondarçuhu et al (1993a) observed similar nonsymmetrical patterns in experiments

with an unbounded air layer and small L/d circular boundaries. Koschmieder &

Prahl (1990) found that M ≈ 450 at onset for their smallest L/d = 1.9. M at onset

is observed to decrease rapidly with increasing L/d until attaining, for L/d > 5,

a relatively constant value of M ≈ 60; however, this onset value is well below the

Mc ≈ 100 predicted by linear stability theory (Pérez-Garcı́a et al 1998). Quantita-

tive small-aspect-ratio experiments are extremely challenging to perform because

nonuniformities at the sidewalls, which are inevitably present in all Marangoni

convection experiments (Section 2.1), become more important as L/d decreases.

Thus, while theoretical studies can qualitatively capture some features such as the

L/d dependence of M at onset (Davis 1987) and the appearance of some con-

vective planforms above onset (Dauby & Lebon 1996), quantitative agreement

between theory and experiment for onset in small-aspect-ratio experiments has

not yet been achieved.

2.2.2 Long-Wavelength Instability

Deformation of the interface plays a central role in the onset and evolution of

long-wavelength modes, in contrast to the short-wavelength modes where defor-

mation is almost negligible (Section 2.2.1). The long-wave modes arise as the

primary instability in terrestrial experiments with sufficiently thin silicone oil lay-

ers. These deformation modes should not be confused with a completely different

long-wavelength instability that is predicted for a non-deformable, poorly conduct-

ing interface and an insulating bottom boundary (Pearson 1958). This instability

has not yet been observed in experiments because the requisite boundary con-

ditions cannot practically be achieved in experiments with thermally insulating

liquids like silicone oils.

The observations of VanHook et al (1995, 1997) demonstrated that good pre-

dictions of onset by linear theory must include the effect of deformation on heat

transfer. VanHook et al (1995) showed that linear theory overpredicts the onset

of the instability by approximately 65% when the heat transfer through the inter-

face is modeled by Bi. VanHook et al (1997) demonstrated that predictions are

greatly improved by accounting for the increased (decreased) heat transfer where

the air layer becomes thinner (thicker) as the interface deforms. When transport
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THERMOCAPILLARY INSTABILITIES 101

is by pure conduction in the air layer, this effect is described by a two-layer Biot

number F = d/dg−Bi

1+Bi
. In the experiments, F is typically varied by changing

d/dg , although F can also be modified by replacing the air layer with another gas

of a substantially different thermal conductivity (e.g. helium). For large F(d/dg

large), theory predicts onset well, but for small F (small d/dg), the theory signifi-

cantly overpredicts onset. With M/R > 100 in the experiments, buoyancy effects

are utterly negligible and cannot account for the discrepancies at onset. Experi-

ments with the smallest values of F typically correspond to the smallest values

of d / 100 µm where maintaining uniformity of the contact line at the sidewall is

most difficult; therefore, experiments at the smallest F are typically subjected to

substantial sidewall forcing (Section 2.1). Simulations by VanHook et al (1997)

and Becerril et al (1998) show nonuniform boundary conditions at the sidewall

advance the onset of instability and, therefore, can at least partially explain the

discrepancies between theory and experiment.

VanHook et al (1995, 1997) showed experimentally that nonlinear evolution

of long-wavelength flow states always leads to rupturing of the oil layer; steady

convective states with small to moderate deformation have not been observed. The

evolution toward rupture occurs in two different, mutually exclusive ways: either

from a depression (Figure 5a) that evolves to form a hole in the layer where fluid

drains away from a substantial area of the cell, or from an elevation (Figure 5b)

that evolves to form a spike where the liquid rises up to a sufficient degree to make

contact with the cooling window. VanHook et al (1997) demonstrated that weakly

nonlinear analysis, a one-dimesional potential model valid in the strongly nonlin-

ear regime, and numerical simulations (one- and two-dimensional) independently

predict subcritical instability; rupturing is found in both the potential model and

the numerical simulations. No stable deformed (unruptured) states were found in

the experiments or analyses of VanHook et al (1997); however, more recently, Or

et al (1999) predicted the existence of stable deformed states.

The evolution to either holes or spikes is captured by analyses and simulations

that characterize heat transfer with F ; in all cases, theory predicts that spikes form

Figure 5 Infrared images of finite amplitude states arising from long-wavelength insta-

bility in Marangoni convection: (a) a localized depression (hole) is indicated by a light

(warmer) circular region that occupies a substantial portion of the apparatus; (b) a localized

elevation (spike) is indicated by a dark (cooler) circular region forming in the lower half of

the apparatus; (c) coexistence of hexagons with a long-wavelength hole.
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for F ' 1/2 and holes form otherwise. (Models that describe heat transfer with Bi

exhibit only the formation of holes.) The predictions are in good accord with the

experimental observations where holes always form for F < 0.48, elevations form

for F > 0.58, and either state may form for 0.48 < F < 0.58. The largest values

of F correspond to the smallest values of dg; in this regime, the interface is most

sensitive to the presence of the top boundary because a given deformation of the

interface induces the largest relative variation in the air layer, favoring the formation

of spikes. Smaller values of F correspond to larger dg (for fixed conductivities of

the gas and oil layers); the influence of the top boundary is reduced, favoring the

formation of holes.

2.2.2.1 Competition with Short-Wavelength Modes Linear theory predicts a

critical depth dc where both the short- and the long-wavelength modes are si-

multaneously unstable (i.e. the two local minima in Figure 2 occur for the same

value of M); long-wave modes are more unstable for d < dc and short-wave modes

for d > dc. By varying d in experiments with small F , VanHook et al (1995, 1997)

only long-wavelength instability (holes) for d < 0.017 cm and short-wavelength

hexagons for d ≥ 0.024 cm, in good agreement with the linear stability prediction

of dc = 0.023 cm. In the range of 0.017 cm ≤ d < 0.024 cm, the long-wavelength

deformational mode arises first, in accord with linear theory, as ǫ is increased

quasistatically with the liquid volume fixed; the growth of the long-wave mode

forms a hole (here F < 1/2) and increases the local depth in the liquid layer

surrounding the hole. As a result, the local value of M in the liquid surrounding

the hole becomes sufficiently large to cause the formation of hexagons in the layer

(Figure 5c). Thus, the long-wavelength mode can induce the short-wave instability.

By contrast, the presence of the short-wave hexagons inhibits long-wavelength in-

stability (Golovin et al 1997). For d > dc, long-wavelength modes are never

observed as a secondary instability of the hexagonal state. Furthermore, rapid

ramping of ǫ leads to the formation of hexagons throughout the entire layer that

inhibit long-wavelength modes even for fixed d < dc. Hexagons can form first

with fast ramping of ǫ since the time-scale of formation of the short-wave modes

is the vertical diffusion time (d2/κ ≈ 0.1 s), while the time-scale for the long-

wavelength mode is the horizontal diffusion time (L2/κ ≈ 3 hours–for a more

precise estimate, see Wilson & Thess 1997). If ǫ is decreased slowly below the

onset of hexagons, then the long-wavelength mode can form once the hexagons

have disappeared.

2.3 Secondary Instability (Short-Wave Modes)

In large-aspect-ratio Marangoni convection, the hexagonal patterns observed at

onset lose stability for ǫ sufficiently large. Two main scenarios have been iden-

tified experimentally where thermocapillarity is dominant. In experiments using

silicone oils with very large Pr ∼ 1000, hexagons become unstable to increas-

ingly disordered polygonal patterns (Section 2.3.1) whereas in experiments with
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smaller Pr ∼ 100, hexagons lose stability to square patterns (Section 2.3.2). These

different transition scenarios have been qualitatively identified in numerical simu-

lations (Bestehorn 1996). Marangoni convection experiments have been conducted

where buoyancy effects are dominant (Cerisier et al 1987a). Although such exper-

iments are beyond the scope of this review, it is worth noting such systems exhibit

secondary instabilities to roll patterns that are qualitatively similar to scenarios ob-

served for Rayleigh-Bénard convection subjected to weak non-Boussinesq effects

(Ciliberto et al 1990). No small-aspect-ratio experiments on secondary instabilities

have been performed with M/R * 1; the results of small-aspect-ratio Marangoni

convection experiments with strong buoyancy effects are briefly discussed (see

Section 2.3.3).

2.3.1 Large Aspect Ratio: Pr ∼ 1000

Cerisier et al (1987b, 1996a, 1996b) demonstrated that defects govern the order-

disorder transition observed in Marangoni convection experiments performed in

this range of Pr (Figure 6). The dominant defect is a pentagon-heptagon pair

(penta-hepta defect), which is equivalent to a dislocation in two of the three sets

of rolls that superpose to form a hexagonal pattern (Cross & Hohenberg 1993).

Measurement of the defect density ρd , the ratio of the number of nonhexagonal

cells to the total number of cells, is a useful way to characterize the disorder;

because penta-hepta defects are dominant, ρd is chiefly a measure of the relative

number of pentagons and heptagons in the pattern (Cerisier et al 1996b).

Cerisier et al (1987b, 1996a) studied the evolution toward disorder as ǫ is in-

creased. For low values of ǫ, patterns are dominated by hexagons; however, some

fraction of defects are found even for small ǫ. Experiments with hexagonal sidewall

Figure 6 Disordered Marangoni convection at Pr ∼ 1000 (from Cerisier et al (1996b).
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boundaries exhibit ρd ≈ 0.04 for ǫ = 0.05; square and circular lateral boundaries

exhibit somewhat larger values of ρd at the same ǫ. With increasing ǫ, ρd in-

creases in a way that depends on Pr; ρd approaches 0.5 for sufficiently large

ǫ. Cerisier et al (1987b) reported that ρd(ǫ) fluctuates even at small ǫ = 0.05;

this behavior is surprising given that hexagonal patterns at similar ǫ are station-

ary in experiments at lower Pr where time-dependent effects are expected to be

stronger (Schatz et al 1999). Because, in at least some cases, the experiments of

Cerisier are conducted with an unbounded air layer, buoyant instability in the air

layer may be coupling to the flow and contributing to the pattern time dependence

(Section 2.1).

Cerisier et al (1993, 1996a) also studied the evolution toward disorder at fixed

ǫ by imposing regular patterns as initial conditions by means of an ingenious ther-

mal technique. Experiments at fixed ǫ reveal that imposed patterns with different

initial wavelengths evolve to a final mean wavelength that is unique. For most

cases, the evolution toward the final mean wavelength involves the generation of

defects that introduce increased disorder and a distribution of wavelengths about

the mean in the pattern (Cerisier et al 1993). However, if the initial imposed wave-

length of the hexagonal pattern is very near the final mean value, the final pattern

exhibits substantially more order, even at large ǫ ≈ 5 (Cerisier et al 1996a).

In addition to measurement of ρd , more sophisticated approaches have been

applied to characterize disorder. Methods such as radial and orientational corre-

lation functions (Occelli et al 1983), disorder functions (Cerisier et al 1987a), and

entropies (Cerisier et al 1996a) have some advantages; for example, disorder due to

distortion of a hexagonal lattice can be characterized even in the absence of defects

(ρd = 0). Statistical approaches that characterize topological properties [e.g. the

average area for cells with n sides (downflow boundaries), moments of the distri-

bution function for n] have been used (Cerisier et al 1996b). This approach permits

comparison to a wide variety of other physical systems (soap froths, biological

tissues, metallic structures, etc) where analogous disordered cellular patterns arise.

2.3.2 Large Aspect Ratio: Pr ∼ 100

As ǫ is slowly increased, hexagonal patterns (Figure 3) lose stability to patterns

of mixed symmetry (Figure 7a); with further increases in ǫ, the patterns evolve

to nearly ideal square patterns (Figure 7b) (Nitschke & Thess 1995, Eckert et al

1998, Schatz et al 1999). This transition sequence arises via a local change in

topology whereupon threefold vertices of the initial hexagonal cells become four-

fold; an edge that separates two vertices shrinks to zero length, and the two vertices

coalesce to form the intersection of four edges (Figure 7c–f ). In hexagonal net-

works found in many physical systems, the four edges will swap neighbors as

the intersection splits up into two new vertices that are separated by a new edge;

this topological transformation is known as a T1 process (Cerisier et al 1996b).

However, for the present case, this T1 process is arrested; as the vertices coalesce,

the angle between adjacent edges changes from 120◦ to 90◦ and the intersection

of four edges becomes stable. Initially, this process forms pentagons (Figure 7e).
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Figure 7 Transition to square patterns in Marangoni convection for d = 0.072 cm. (a)

At ǫ = 3.9, a stationary pattern of mixed hexagonal, pentagonal, and square symmetry is

observed. (b) At ǫ = 7.23, a stationary, nearly ideal square pattern arises. Close observation

of a few cells demonstrates local changes in topology from threefold to fourfold vertices as

ǫ is gradually increased from (c) 2.67, through (d ) 2.98, and (e) 3.3, to ( f ) 3.89.

Moreover, the occurrence of this process induces formation of fourfold vertices in

neighboring cells, leading to the appearance of chains of pentagons (penta-lines)

in the pattern. With increasing ǫ, formation of additional fourfold vertices leads

to the formation of squares, which dominate for ǫ sufficiently large (Figure 7b).

As ǫ is then decreased, the square pattern loses stability; patterns of mixed sym-

metry as seen in Figure 7a reappear, and a planform dominated by hexagonal cells

reappears with ǫ sufficiently small.

Both the wavenumber and the value of ǫ for the transition between hexagons

and squares depend strongly on the previous history of the patterns. The relative

fraction of square cells ns is chosen as an order parameter to characterize the tran-

sition, which occurs at ǫs and corresponds to ns = 0.5. If ǫ is increased until ns just

exceeds 0.5 (e.g., Figure 7a) and then is decreased, ns exhibits hysteresis (Eckert

et al 1998, Schatz et al 1999). The wave numbers exhibit little evidence of hystere-

sis in this range of ǫ. However, in experiments where ǫ is increased until obtaining

a nearly perfect pattern of squares (e.g. Figure 7b), the observed hysteresis in ns

occurs at a larger value of ǫs . Furthermore, the transition at larger ǫ is accompanied

by a substantial decrease in q. (Compare, for example, the wavenumber of square

cells in Figure 7a,b.) The decrease in q persists as ǫ is cycled over a specified range.

In other words, small q square patterns in turn induce small q hexagonal pattern

when ǫ is reduced (Schatz et al 1999). Thus, the transition does not occur with

unique values of ǫs or q(ǫs), although, in general, the wavenumbers for squares qs

and for hexagons qh decrease with increasing ǫ. Numerical simulations by Eckert
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et al (1998) exhibit a hysteretic transition that is dependent on Prandtl number

P; they estimate the transition occurs at ǫcond = 0.28P0.68 where ǫcond ≡ Mcond−Mc

Mc

(Section 2.1). This prediction lies above the range of experiments by Eckert et al

(1998; ǫcond = 6.4 predicted versus 3.5 < ǫcond < 4.5 observed) and in the range of

experiments by Schatz et al (1999; ǫcond = 5.6 predicted versus 4.5 < ǫcond < 6.4

observed); in the latter case, it should be noted that the simulations of Eckert

et al and the experiments of Schatz et al differ in Bi , and the simulations do not

include the dependence of the transition on pattern wavenumber observed in the

experiments.

Eckert et al (1998) carried out careful heat-transfer measurements that demon-

strate increased heat transfer associated with the appearance of square patterns

(Figure 8). The heat transfer is characterized by the Nusselt number Nu, which is

the ratio of heat flux measured experimentally to the heat flux that would arise solely

from conduction for the same imposed Tb and Tt . The convective contribution to

the heat transport, Nu − 1, exhibits a clear increase at values of ǫ that coincide with

marked increases in ns (Figure 8). This result suggests that square patterns rather

than hexagons become more efficient at transporting heat for ǫ sufficiently large.

Numerical simulations by Eckert et al (1998) exhibit similar behavior by showing

that for small ǫ, hexagons are more efficient at heat transport than squares, but for

ǫ sufficiently large, squares become more efficient. The comparison is qualitative,

however, because the heat transport simulations are performed on only a single cell

(hexagon or square); thus, for example, crossover occurs at much lower ǫ ≈ 0.45

than the observed hexagon-square transition in experiments.

0 2 4 6

 0

0.2

0.4

0.6

ε

Nu-1

0 

 0.1

 0.2

 0.3

n
s

n
s

Figure 8 Measurements of convective heat transfer (Nu − 1) are compared with the relative

fraction of squares ns as a function of ǫcond at the onset of square instability for Marangoni

convection (from Eckert et al 1998).
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Experiments differ as to the temporal behavior of patterns at fixed ǫ. In the ex-

periments of Eckert et al (1998), after hexagons lose stability, they exhibit patterns

that continually evolve over slow timescales comparable to the horizontal diffu-

sion time τh . By contrast, Schatz et al (1999) observed that all patterns (hexagonal,

mixed, and square) are time independent for ǫ that has been fixed for a sufficiently

long time (*τh). Simulations suggest that both square and mixed patterns are

time independent for P > 40; however, the smaller aspect ratios investigated in

the simulations can have a stabilizing effect on patterns that may not be present

in the larger aspect ratio of the experiments. Future simulations at large aspect

ratio should shed some light on this issue. Differences in buoyant effects may ac-

count for the different observations since buoyancy is stronger in the experiments of

Eckert et al (1998). (The simulations neglect buoyancy.) As always with Marangoni

experiments, nonuniformity at the lateral boundary can drive cell motion and may

account for the time dependence in the experiments.

2.3.3 Small Aspect Ratio

No experiments have probed secondary instabilities in small-aspect-ratio systems

where M/R > 1; however, Ondarçuhu et al (1993a,b, 1994) performed a series

of experiments that studied the appearance of time-dependent flow in cases where

both buoyancy and thermocapillarity are significant. As ǫ is increased, convec-

tion states that exhibit the symmetry of the container (Section 2.2.1) lose stability

to time-independent states that break the symmetry. With further increases in ǫ,

Ondarçuhu et al (1993a) found that the asymmetric states in square containers

become time-dependent via a Hopf bifurcation and after increasing ǫ still further,

an additional bifurcation occurs to symmetric oscillations. For convective flow

in square containers, Ondarçuhu et al (1993b) demonstrated that the sequence of

bifurcations was well-modeled by a Takens-Bogdanoff normal form. Studies of

extensions of this model predict chaotic dynamics, which are observed in experi-

ments (Ondarçuhu et al 1994).

2.4 Beyond Secondary Instability

Preliminary experiments indicate that square patterns lose stability to disordered

time-dependent cellular flows when M is sufficiently large (Figure 9). Disorder and

time dependence coincide as the preference for vertices with fourfold coordina-

tion number is lost; threefold vertices are most common but unstable, continually

undergoing sideswapping T1 processes. With further increases in M , cell division

(mitosis) is also observed. The average cell size is observed to increase monoton-

ically with M , obtaining, for M ∼ 5000, an average cell area nearly an order of

magnitude larger than the cell area at the onset of convection. This coarsening is

analogous to the growth of cell size in other cellular networks (e.g. soap films,

magnetic bubbles), which exhibit power law scaling; preliminary experiments are
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Figure 9 Observation of pattern coarsening in Marangoni convection as ǫ is increased

beyond the onset of squares for d = 0.122 cm. The convection cells become become both

larger and time dependent with increasing ǫ. (a) ǫ = 10.5, (b) ǫ = 18.3, and (c) ǫ = 47.8.

suggestive of power law scaling in Marangoni convection. It should be noted that

buoyancy effects are likely to be significant in this range of M .

3. THERMOCAPILLARY CONVECTION INSTABILITY

3.1 Preliminaries

Thermocapillary convection refers to motions driven by the application of a tem-

perature gradient along the interface. Flow will be driven for any such surface-

temperature gradient, no matter how small, and thus the existence of a critical,

or threshold, temperature gradient is not required. These basic states become un-

stable for large enough applied temperature gradients and lead to alternate states

consisting of either steady, cellular (most often, a form of roll cell) structures or

oscillatory states.

Most of the research done over the last few decades on such instabilities has

been motivated by the transition to oscillatory flow because of its importance

in technological applications such as crystal growth. The appearance of oscilla-

tory thermocapillary convection, coupled with solidification processes has been

shown (see, e.g. the paper by Gatos 1982) to lead to a degradation of the result-

ing crystal. A review by Schwabe (1981) describes some of the earlier work on

this problem.

For the purpose of classifying the types of experiments that have been per-

formed, it is useful to think in terms of three categories, shown schematically in

Figure 10. The direction of the body-force vector g is indicated for all three cases

for those experiments conducted on Earth. The geometry of Figure 10a is a model

of a float-zone or, for the case in which the temperature gradient is of a single sign

along the free-surface, the half-zone. The latter case has been studied extensively

as a model of the full float-zone. The actual crystal-growth application obviously

possesses melting and solidifying interfaces at the top and bottom, but they will

not be discussed here. The planar layer of Figure 10b is a model system motivated

by the hydrodynamic-stability analysis of Smith & Davis (1983) (see also the
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l

w

d

∆Tl

r

∆T

∆T

a
b

(c)

d

g

(a) (b)

Figure 10 Types of thermocapillary convection: (a) liquid bridge, (b) rectangular layer

or slot, (c) annular geometry.

review article by Davis 1987). These investigators discovered a new convective

instability called a hydrothermal wave that was later shown by Xu & Davis (1984)

to be relevant to the geometry of Figure 10a as well. For both cases (a) and (b), l

is used to indicate the distance between solid walls in the direction of the applied

temperature gradient. Finally, a limited number of experiments have examined the

situation depicted in Figure 10c, for which the free surface is the upper, annular

region a < r < b, where r (not shown in the figure) indicates the radial coordinate

in a cylindrical coordinate system. Such a system could represent a model of the

Czochralski crystal-growth process or be an alternate model for case (b), using the

annulus to eliminate a sidewall effect. In case (c), the difference b−a is analogous

to the distance l in case (b).

As discussed for the systems of Section 2, silicone oils have been frequently

employed as test liquids in the geometries of Figure 10. In addition to their resis-

tance to contamination, these oils are transparent, permitting optical access to the

interior of the flows, which has aided in the characterization of the instabilities.

However, because of the motivation of crystal-growth processes and the fact that

the Prandtl numbers of silicone oils and liquid metals differ by three or more orders

of magnitude [Pr = O(10−2) for molten silicon, while Pr = O(10) or greater for

silicone oils], these model systems are less than ideal for addressing the ques-

tions relevant to crystal growth. Nevertheless, much has been learned about the

instability of thermocapillary convection from such studies, and the combination
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of experiments, theoretical stability analyses, and numerical experimentation has

been helpful in bridging the Prandtl-number gap.

3.2 Liquid-Bridge Instability

The vast majority of liquid-bridge investigations performed to date have focused

on the so-called half-zone owing to its relevance to the float-zone process. Because

this process had once been regarded as a candidate for space-based manufacturing

of semiconductor material, some experiments have been performed aboard micro-

gravity (µg) platforms such as sounding rockets or the Space Shuttle. The use of

space was conceived, in part, because it was erroneously thought that oscillation-

induced dopant striations were the result of the instability of buoyancy-driven

convection. Experiments by Eyer et al (1985) demonstrated that material grown

using the float-zone method in a µg environment produced crystal with dopant

striations, thus confirming the suspicions that striations were caused by oscillatory

thermocapillary, rather than buoyancy-driven, convection. The half-zone consists

of a liquid bridge held between two solid, planar endwalls across which a temper-

ature difference is applied. The usual case is to have the upper endwall hotter than

the lower, contributing to a stabilizing axial buoyancy gradient. As such, the half-

zone models the lower portion of an actual float-zone melt for which the hottest

region of the free surface is somewhere between the melting and solidifying mate-

rial interfaces. For all liquids of interest in the experiments described here, surface

tension decreases with increasing temperature (σT > 0). Thus, the basic state of

thermocapillary convection consists of a single toroidal roll, with the surface mo-

tion directed downward from the hot upper disk to the cold lower one. In spite

of the relatively simple geometry of the half-zone, factors remain that complicate

comparisons between experiments. One of these, the volume of liquid contained

in the bridge, is discussed briefly below. However, even in situations for which

the volume of liquid is chosen to be that of a right-circular cylinder of a diameter

equal to that of the heaters, the interface deformation caused by Earth’s gravity

depends on the size of the zone and the physical properties of the liquid. Such

shape changes influence the basic state and resulting stability properties.

Chun & Wuest (1979, 1982) and Chun (1980) employed 5 centistoke (cS)

silicone oil, methanol, and octadecane half and full zones, using thermocouple data

to determine the onset of oscillations. Often the thermocouple was inserted through

the free surface, although this practice is recognized to be undesirable because of its

intrusive nature. Chun & Wuest (1982) and Chun (1980) also examined the use of

rotation of cold endwalls to counteract the effect of thermocapillarity through the

centrifugal pumping of liquid with an opposite sense of circulation. Kamotani &

Kim (1988) obtained similar results using rotation to stabilize 4 mm diameter half-

zones of 2 and 5 cS silicone oil, although destabilization was observed for rotation

rates in excess of 50 revolutions per minute.

Schwabe and colleagues have made substantial contributions to the literature.

Preisser et al (1983) performed half-zone experiments with molten sodium nitrate
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between graphite rods of d = 4, 5, or 6 mm. Although the Prandtl number was

reported as having a value of 8.9, it actually appears to be closer to the value of 7.

Using both flow visualization and temperature measurements (with thermocouples

sometimes inserted through the free surface), they determined temperature differ-

ences, and hence, Marangoni numbers at the onset of oscillatory flow. They also

determined azimuthal wavenumbers m, finding them to increase (1 ≤ m ≤ 5) as

the aspect ratio A = l/r is decreased from just less than 2.5 to 0.5; a correlation

that appears to fit their data reasonably is m A ≈ 2.2. Figure 11 shows sheet-

illuminated flow-visualization photographs for oscillatory flow with azimuthal

wavenumbers of m = 1, 2 for the upper and lower pairs, respectively. Subse-

quently, Velten et al (1991) conducted experiments with sodium nitrate, potassium

chloride, (Pr = 1) and tetracosane (C24H50; Pr = 49), and additionally tested the

configurations by reversing the sign of the surface-temperature gradient, as was

also done earlier by Schwabe et al (1990). This work had reported that transition M

values were higher in the heated-from-below cases (Schwabe et al 1990). Velten

et al (1991) posited that the differences are due to alterations in the flows of gas

surrounding the zone, which is confined by a larger quartz cylinder. In the heating

from above case, this gas flow exhibits a pair of counter-rotating tori which, in

turn, modify the radial heat transfer. Velten et al (1991) also reportedly observed

Figure 11 Oscillatory thermocapillary convection in a liquid bridge (Preisser et al 1983).

The upper pair of photographs (a) show a non-axisymmetric m = 1 mode; the lower pair

(b) show an m = 2 mode.
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axisymmetric and other instabilities that appeared to be axially running waves,

although not rotationally symmetric.

The experiments of Frank & Schwabe (1997) employed an upper solid surface

consisting of sapphire to permit both uniform heating and visualization of the

flow in the radial-azimuthal plane. Of particular interest was the measurement

of various types of time-dependent flow: simple oscillatory flow, quasi-periodic,

period doubling, and chaotic flows. Consequently, most experiments are performed

at highly supercritical Marangoni numbers. Among the results obtained is the

finding that earlier reports of axisymmetric (m = 0) oscillatory modes (e.g. by

Velten et al 1991) were more likely misinterpreted m = 1, 2 pulsating modes.

Recently, Muehlner et al (1997) also performed experiments in a 2.6 cS silicone-

oil (Pr = 35) bridge of unit aspect ratio, observing the surface-temperature distri-

bution with an infrared (IR) camera and mirrors. They observed an m = 1 mode as

the primary one at the onset of time dependence, with an m = 2 harmonic traveling

with the same phase speed. At higher values of M , however, a secondary m = 2

mode traveling at the fundamental wave speed appears. Comparing these results

with simultaneous measurements made with a thermistor placed near the surface

showed that a misinterpretation of the thermistor data could allow the appearance

of a subharmonic component to be mistaken for a period-doubling transition. The

IR camera data suggest it actually arises from an interaction between the primary

m = 1 and secondary m = 2 modes.

Finally, experiments by Petrov et al (1996, 1998) demonstrated suppression of

oscillatory convection in liquid bridges through the sensing of surface-temperature

variations and the application of surface heating using externally placed elements.

Ideas from nonlinear dynamics were applied to effect control, with the control

law constructed from observations of the bridge response to randomly applied

perturbations. Attempts to effect control of a helical traveling-wave state using a

single sensor/heater pair were unsuccessful—it changed the mode into a standing

wave with a node at the sensor location. This was resolved with the addition

of a second sensor/heater pair that permits the algorithm to distinguish between

clockwise- and counterclockwise-propagating waves.

3.2.1 Microgravity Experiments

Experiments performed to date in a µg environment suffer, in general, from

the limited time available for either a given experiment or for an ensemble of

experiments. This, coupled with the limited availability of such environments,

makes it very difficult to draw general conclusions from the results of this body

of work. For example, Schwabe et al (1982) conducted sodium nitrate exper-

iments in a 6 mm diameter half-zone of aspect ratio A = 1.1 aboard a sound-

ing rocket with a 360 s µg period. For two supercritical states, the measured

(thermocouple) frequencies for ground and µg experiments were virtually identi-

cal. On the other hand, measurements performed in microgravity and on ground

by Schwabe & Scharmann (1985) showed instability at lower Ma for µg,

with frequencies that were also slightly lower. The authors speculated that the
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stabilizing buoyancy gradient present in the ground experiments could be partially

responsible.

Yao et al (1997) used a 10-s drop tower to study changes in temperature

and free-surface oscillations in half zones of 10 cS silicone oil (Pr = 105). The

zones had 3 and 4 mm diameters with aspect ratios of A = 1.6. In addition, they

were underfilled with d/d0 < 1, where d is the minimum diameter of the zone

and d0 is the endwall diameter. Oscillation frequencies for highly supercritical

states were observed to decrease in microgravity, and free-surface oscillation am-

plitude was observed to increase. Measurements of surface-wave patterns were

also made, although the sample size was too small for general conclusions to

be drawn. Some experiments were performed for states close to 1 g critical

states.

Microgravity experiments were carried out aboard the Space Shuttle by

Carotenuto et al (1998) using large (30–60 mm diameter) zones of 5 cS sili-

cone oil (Pr = 74). Because of the time limitations of space experimentation and

the desire to investigate as many conditions as possible, temperature ramping was

used to increase 1T through the transition to oscillatory flow. Velocities inside

the zone and on the surface were measured using embedded tracer particles and

either sheet illumination (interior) or a small laser diode mounted near the pe-

riphery of the zone, shining along the axis (surface). The latter was necessary

due to the cylindrical-lens effect that obscures observations near the free surface.

For the cases investigated, with 1.5 ≤ A ≤ 4, the transition to oscillatory flow is

seen as a standing wave [what Frank & Schwabe (1997) termed a pulsating mode]

with azimuthal wavenumber m = 1. Based on their results and those of oth-

ers, Carotenuto et al (1998) propose a scaling for the onset frequencies f as a

function of aspect ratio of the form f

F
=

√

l
d

, where F ≡ VM M−1/3

2π
√

ld
is a refe-

rence frequency, M = σT l1T
ρνκ

the Marangoni number and VM ≡ σT 1T
ρν

is a

Marangoni reference speed.

3.2.2 Liquid Metals

Only a limited number of experiments have been performed with liquid metals

in spite of their relevance to the crystal-growth problem motivating this area of

research. Part of the difficulty is the fact that such liquids are optically opaque,

thus limiting diagnostic capabilities. Additional complications arise from the sur-

rounding gaseous environment and/or chemical reactions between the melt and

the material comprising the endwalls.

Jurisch (1990) used 4- and 6-mm diameter rods of Nb and Mo (Pr = 0.025)

that were melted using an electron-beam heating facility. Surface temperatures

were monitored with a micropyrometer and indicated the presence of oscilla-

tory thermocapillary convection. Hysteresis was observed when power was in-

creased/decreased, but the results are inconclusive, in part, because the zone length

also changes with power input. Note that hysteresis is not observed in half-zone

experiments using silicone oils.
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Han et al (1996) created half-zones of mercury between two copper rods of

3 mm diameter. The use of inert materials such as graphite or stainless steel was

not possible due to the fact that mercury does not wet them. In addition to the aspect

ratio, the effect of zone shape was also of interest, here quantified in terms of V/V0,

the volume ratio of the zone to that of a right-circular cylinder of the same endwall

diameter. The onset of oscillations was detected optically using interference fringes

generated by light reflected from a laser onto a screen. The appearance of a surface

skin that could suppress thermocapillary convection was noted by observing the

motions of dust particles or other impurities on the free surface. Analysis of the

mercury surface in cases when such a skin was observed to form indicated that

it likely results from the presence of a copper-mercury amalgam that forms as

the temperature difference between the copper rods is increased. Measurements

of critical M were made for increasing and decreasing 1T ; the lowest value

M = 900 is found for A = 1.2, V/V0 = 0.814 with measurements made while

M is increasing (the condition for which the skin is least likely to form).

Levenstam et al (1996) conducted experiments with molten silicon in a modi-

fied float-zone geometry, measuring oscillations with a thermocouple. They also

performed companion three-dimensional, unsteady numerical simulations. From

the latter, the first transition appears to be to a steady, three-dimensional mode,

followed by the appearance of oscillatory convection.

3.2.3 Free-Surface Deformation

The experiments of Yao et al (1997) and Han et al (1996) reported on above in-

cluded considerations of the volume of liquid occupying the liquid bridge. Other

sets of experiments by Hu and colleagues (Cao et al 1992; Shu et al 1994) have

also examined the influence of free-surface deformation as quantified by either

a diameter ratio or volume ratio. More systematic treatments of this effect have

been given by Monti et al (1992) and Hu et al (1994); the former experiments have

been extended by Sumner et al (2001). An interesting feature of these results is the

existence near V/V0 ≈ 1 of a local maximum in the value of M at which oscilla-

tions appear. Neither numerical experimentation (Shevtsova & Legros 1998) nor

energy-stability theory (Sumner et al 2001) has yet succeeded in fully explaining

the presence of this maximum.

3.3 Planar Rectangular Layers and Slots

These geometries (Figure 10b) are characterized by rectangular horizontal cross-

sections. In the slot geometry, the planform aspect ratio l/w << 1, making these

flows resemble thermocapillary-flow analogs of the driven-cavity problem. The

experiments that have been performed in layers with l/w = O(1) have been moti-

vated by the theoretical analysis of Smith & Davis (1983), which predicts a direct

transition from a steady, unicellular basic state to an oscillatory state in the form

of hydrothermal waves.
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3.3.1 Slot Experiments

Daviaud & Vince (1993) examined thermocapillary convection in a slot of l = 1 cm

stream-wise and w = 20 cm span-wise extents using 0.65 cS silicone oil

(Pr = 10). A temperature difference is imposed through copper endwalls, and

shadowgraphic visualization is done through the transparent glass bottom of the

apparatus. As in later experiments by others, a meniscus exists at all vertical

surfaces, meaning that the free surface is not flat. When critical temperature

differences are exceeded, patterns of longitudinal (i.e. in the stream-wise di-

rection parallel to the imposed temperature difference) waves appear. For small

layer depths (d < 2.8 mm) these patterns propagate nearly laterally, while for

the larger depths examined (up to 10 mm) stationary rolls are observed. The

depth d = 2.8 mm at which this change occurs corresponds to the condition

BoD = 1, where BoD is the dynamic Bond number (Section 2.1). This transition

point is indicative of a change in the dominant flow driver from thermocapillar-

ity (thin layers) to buoyancy (thicker layers). The authors tried unsuccessfully to

compare their results with the theory of Smith & Davis (1983); for large layer

depths the comparison is clearly unwarranted because of geometrical consider-

ations, but for small depths (e.g. d = 0.8 mm) significant differences exist be-

tween the critical Marangoni number and frequencies obtained from theory and

experiment. These may possibly be related to the small stream-wise extent of

the container used.

Gillon & Homsy (1996) were concerned with transitions from two- to three-

dimensional flow rather than with the onset of time dependence. Their experiments

were performed using 0.65 cS silicone oil (Pr = 8.4 at 25◦C; Pr = 9.5 at 13◦C)

in an apparatus (with glass endwalls) with stream-wise aspect ratio l/d = 1 and

a span-wise aspect ratio w/d = 3.8. Particle-image velocimetry was utilized to

determine velocities at various span-wise locations. The cavity was underfilled

with liquid to a depth of 0.68 of the height of the endwall. The contact angle was

estimated to be 53◦ (whether the contact line was pinned at the endwall top was not

stated, although this is indicated in their figure). The range of Marangoni numbers

investigated was 6.33 × 103 ≤ M ≤ 4.22 × 105 corresponding to temperature dif-

ferences 0.3◦C ≤ 1T ≤ 20.0◦C. The flow was determined to be two-dimensional,

with no span-wise variation for M < 1.1 × 105. Transitions to three-dimensional

flow were determined by integration of the stream-wise velocity profile (fitted

with splines) over the depth of the layer because values differing from zero are

indicative of mass flux in the spanwise direction. The three-dimensional effects

were observed to begin at the spanwise sidewalls and propagate inward, char-

acteristic of an imperfect bifurcation; no evidence of hysteresis was observed,

indicating the bifurcation to be supercritical. The best estimate for the transition

to three-dimensional flow (obtained from visualization) is M = 1.5 × 105. Span-

wise visualization through the plane midway between the heated/cooled endwalls

indicates the structure to be cardioid and approximately cubical, in agreement

with numerical simulations of Mundrane & Zebib (1993), which were performed
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assuming a 90◦ contact angle. Gillon & Homsy conclude that the instability is

therefore “associated with the thermocapillary vortex, as modified by the buoy-

ancy layers on the side walls, and is unassociated with free surface deflections and

is insensitive to the curvature of the meniscus.”

Finally, Braunsfurth & Homsy (1997) conducted experiments (using acetone

with Pr = 4.44) that are similar to those of Gillon & Homsy (1996) but with

the additional feature that both horizontal aspect ratios are held fixed at the same

value and oscillatory flow is also observed. That is, the container has a (nearly)

square footprint and depth is varied. No attempt is made to pin the contact line

to form a flat surface. Particle-image velocimetry is used to obtain quantitative

velocity data and to determine the onset of three-dimensional flow in the form

of longitudinal (stream-wise) rolls. The transition curve for the onset of three-

dimensional flow was determined to be Mc = 106 − 2.7 × 105 A, where A =
l/d = w/d is either of the horizontal aspect ratios. The reason for the decrease

in the transition Marangoni number with increasing aspect ratio is attributed to

the fact that the sidewalls play less of a constraining role for larger A (although

the authors properly caution that all parameters are changing when A is changed).

The onset of three-dimensional flow is also observed to result in the flow at the

free surface at the centerline location along the cold wall moving in the direction

opposite to that which would be expected from either buoyancy or thermocapillary

considerations. The transition to oscillatory flow is marked by the growth of this

backward eddy filling as much as half the container (see Figure 12a) and the

appearance of a small eddy at the hot wall, which ultimately oscillates in both

size and strength (Figure 12b). For A < 3.5 and A > 5, oscillations are regular

with frequencies of roughly 0.7 Hz; for A near 4.5, however, long, transient

periods are observed prior to the establishment of a regular oscillation. The authors

speculate on an instability mechanism for the onset of oscillatory flow related to the

existence of a meniscus and the backward eddy coming from the hot wall, which

moves the free-surface stagnation point toward the cold wall, thus strengthening

the thermocapillary eddy.

Figure 12 Oscillatory thermocapillary-buoyancy flow in a cavity from Braunsfurth &

Homsy (1997): (a) streak visualization, (b) schematic diagram of oscillating corner eddy

in (a).
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3.3.2 Planar Rectangular Layers

This class of experiments is designed to most closely mimic the conditions of

the Smith & Davis (1983) analysis, which assumes a layer of infinite horizon-

tal extent, but with a return-flow basic state, i.e. including pressure-driven flow

along the bottom of the cavity as required to satisfy continuity in a cavity of fi-

nite extent. Typically, for these experiments, both horizontal dimensions are large

in comparison with the depth of liquid layers being considered, but this is not

universally true. Villers & Platten (1992) performed both numerical and labo-

ratory experiments to examine thermocapillary convection in a laterally heated

layer. Their numerical simulations were two-dimensional and compare well with

measurements for cases of steady unicellular and multicellular convection. Ex-

periments were performed in an apparatus with l = 30 mm, w = 10 mm, and a

conducting bottom using acetone (Pr = 4.24 at 20◦C). No attempt was made to pin

the contact line, which resulted in the presence of a meniscus. Quantitative flow

measurements were performed using laser-Doppler velocimetry (LDV), which is

adequate for basic-state characterization but not well suited to time-dependent sit-

uations. In particular, it is difficult with point measurements to sort out the spatial

structure of the unsteady flows. Villers & Platten (1992) always observed a first

transition from steady unicellular flow to steady multicellular flow. This transi-

tion was also observed in the later experiments of Riley & Neitzel (1998) (who

used a liquid of slightly larger Prandtl number Pr = 13.9), but only for layers

whose depths corresponded to BoD > 0.2. A calculation of dynamic Bond num-

bers from the tabulated data of Villers & Platten (1992) shows them to be quite

large; in fact, only one experiment was conducted at BoD < 0.2. The numerical

simulations for time-dependent flow performed by Villers & Platten should not

be expected to yield results in good agreement with their unsteady experiments

since they were two-dimensional and the anticipated instability is clearly three-

dimensional.

Subsequently, De Saedeleer et al (1996) conducted experiments using decane

(Pr = 15) in an apparatus of 10 mm span-wise width w but variable stream-wise

length l. Like Villers & Platten (1992), they employed LDV to measure velocity

profiles and detect transitions. Once again, no attempt was made to pin the contact

line. These investigators realized, however, the importance of measuring the actual

temperature gradient in the liquid for the purpose of computing the Marangoni

number due to the presence of surface thermal boundary layers at the heated/cooled

walls. These measurements were made by inserting a small thermocouple just

beneath the surface, alternating between hot and cold endwalls (moving with a

step size of 1 mm). Like Villers & Platten (1992), they found the first transition to

be to a steady, multicellular state with transitions to oscillatory flow occurring at

larger Marangoni number. For two of the cases described (with layer depths of 2.5

and 3.6 mm), calculations of the dynamic Bond numbers yield values of 0.51 and

1.05, respectively, which are well above the maximum value reported by Riley &

Neitzel (1998) for the appearance of pure hydrothermal waves.
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Riley & Neitzel (1998) were the first to experimentally verify the direct transi-

tion from steady, unicellular thermocapillary convection to an oscillatory,

hydrothermal-wave state. Their experiments were performed in a variable-depth

layer of rectangular cross-section (l = 30 mm × w = 50 mm) using 1 cS sili-

cone oil with Pr = 13.9 as the test liquid. In order to obtain layers of uniform

depth, variations attributed to the presence of a meniscus were eliminated by

having the free surface pinned at a sharp edge, the top of which was coated with

a wetting barrier. By adjusting the position of a vertically movable (insulating)

bottom and the liquid volume, a flat interface was attained. Transitions between

various states were determined through a combination of sheet-illuminated flow

visualization, shadowgraphy (which is sensitive to the onset of time dependence),

and IR thermography of the free surface. It was found that, when thick layers

(i.e. d * 1.2 mm in this apparatus) were employed, the observed transitions were

from steady, unicellular flow to steady, multicellular flow, as observed by Villers &

Platten (1992) and De Saedeleer et al (1996), prior to the onset of time-dependent

flow. However, for thinner layers, the hydrothermal-wave transition predicted

by Smith & Davis (1983) was observed. Figure 13 shows thermographs of the

free surface for the hydrothermal-wave, steady-multicell and oscillatory-multicell

states. The transition map determined for this set of experiments is provided in

Figure 14. The Smith & Davis (1983) theory was developed assuming zero body

force, which implied a dynamic Bond number of zero. Because BoD contains the

square of the layer depth in its numerator, thinner layers begin to approximate the

theoretically assumed state. The transition points appear to converge well to a zero-

Bond-number linear-stability limit (marked by an × on the ordinate of Figure 14)

Figure 13 Thermocapillary flow states in a rectangular layer: (a) hydrothermal waves

(HTW), (b) steady multicellular flow (SMC), (c) oscillatory multicellular flow (OMC), (d )

enhancement of (c).
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Figure 14 Phase diagram of thermocapillary flow states in a rectangular layer. SUF refers

to steady unicellular flow, although there is always the presence of an eddy near the hot

wall. Solid symbols are for M computed using ∂T/∂x , the actual gradient, in the core flow;

open symbols are for M computed using 1T/ l, the overall gradient.

appropriate for Pr = 13.9. The value of the dynamic Bond number below which

pure hydrothermal waves were observed is roughly BoD = 0.2. As observed by

De Saedeleer et al (1996), to obtain the best comparisons with theoretical results

these investigators found it necessary to determine the actual temperature gradient

in the core of the flow, away from the thermal boundary layers near the heated and

cooled boundaries. In the case of these experiments, this was done nonintrusively

using the overhead IR thermographs.

Benz et al (1998) demonstrated that the hydrothermal-wave state found by

Riley & Neitzel (1998) could be suppressed by interfering with the instability

mechanism postulated by Smith & Davis (1983) and Smith (1986). Since, for

high-Pr liquids, this mechanism involves a communication between free-surface

temperature perturbations and bulk-liquid temperature, Benz et al (1998) spec-

ulated that by eliminating the free-surface temperature oscillations caused by

hydrothermal waves this coupling could be broken and the oscillations would

cease. This scheme was demonstrated using the same apparatus as employed by

Riley & Neitzel (1998). Free-surface temperature oscillations of a hydrothermal-

wave state were sensed at two locations using an infrared camera, allowing the

phase speed of each wave to be determined. At a location further downstream

(in the sense of the wave-propagation direction), a CO2 laser used the actual

temperature signature of each hydrothermal wave to supply heat to troughs of dis-

turbance temperature. When done successfully, hydrothermal waves disappeared

downstream of the periodic-heating location. Suppression of waves through the
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application of constant surface heating was also demonstrated, although it was

pointed out that this merely effected a change of the basic state rather than control

of the instability.

3.4 Planar Layers in Cylindrical Geometries

For the final category of thermocapillary-convection instabilities, we examine the

cylindrical geometry of Figure 10c. As described in the preliminary remarks, this

geometry might be used to model the Czochralski crystal-growth process in which

a crystal is pulled from a crucible of molten material. Were this the case, then the

outer portion of the annulus would be heated and the inner portion (simulating the

crystal) cooled. Temperature gradients in the deep-liquid cases described below

are reversed so that none represents such a model. When convection is considered

in very thin layers, one may be approximating the flows discussed in Section 3.3.2,

but without the effect of sidewalls. Consider the case in which the inner portion

of the annulus is heated and the outer cooled so that the basic state of unicellular

motion consists of a flattened torus with motion outward along the free surface.

In order for the results from experiments conducted in such a geometry to be

comparable with, for instance, those of De Saedeleer et al (1996), Riley & Neitzel

(1998), or the theory of Smith & Davis (1983), the effect of curvature would have to

be minimized, which implies that a/b → 1, akin to the small-gap assumption often

made when discussing the stability of Taylor-Couette flow (DiPrima & Swinney

1981). In addition, approximation of the assumption that l/d = (b − a)/d → ∞
requires the fabrication of a large apparatus. For instance, if one were operating

with a nominal depth of 1 mm and l = 30 mm as in the experiments of Riley &

Neitzel (1998), attainment of a radius ratio a/b = 0.95 would require an apparatus

with an outer-wall radius of 600 mm. None of the experiments described in the

following meets such requirements.

3.4.1 Thin Layers

A pair of papers describe experiments conducted in shallow, annular regions.

Schwabe et al (1992) performed experiments in both annular (a = 20 mm and

b = 77 mm, so that a/b = 0.26) and rectangular geometries (although the bulk

of the presented results were for the former case) using ethanol (Pr = 17). A

cold, copper bottom was used for the annulus, whereas both this and an insulating

bottom were used for the rectangular geometry. In the annulus, the meniscus was

eliminated at the inner hot boundary, but no attempt was made to eliminate it at the

outer cold boundary, in spite of statements regarding the necessity of obtaining a

flat interface. In all instances, the observed transitions were from a single-cell to a

multicell state prior to the onset of oscillatory flow. It was suspected that this tran-

sition was due to the bottom boundary condition in the annulus, but experiments

with an insulated boundary in the rectangular geometry yielded similar results. A

rough computation of the dynamic Bond numbers appropriate for the experimental

cases considered yielded values roughly an order of magnitude larger than those
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determined by Riley & Neitzel (1998) to be the maximum at which hydrother-

mal waves could be observed. Oscillatory convection of two types was observed

in the annulus: short-wavelength instabilities, which propagated obliquely, and

long-wavelength instabilities, which propagated radially near onset (radial sym-

metry was broken at higher M). Short-wavelength instabilities were preferred for

depths less than 1.4 mm and long waves for depths greater than this, although both

were observed over the entire range of depths investigated. Surface deformations

were observed with the aid of a shadowgraphic technique and are an order of mag-

nitude higher for the long waves than for the short ones. Finally, the authors recog-

nized the importance of computing M based upon the actual surface-temperature

gradient. When doing so, transition values of M were computed that are more

in line with the theoretical predictions of Smith & Davis (1983) for rectangular

layers, although the geometries differ.

Ezersky et al (1993) performed experiments using 5 cS silicone oil in an an-

nular geometry of 100 mm diameter for which heating is supplied using a copper

cylinder mounted flush with the bottom of the liquid layer. Consequently, the

surface-temperature gradient is created through indirect heating of the free surface

by the natural convection (driven by either/both vertical and horizontal tempera-

ture gradients) of hot liquid near the heater. The diameter of the heating cylinder is

not stated in the paper, but from the sketch, the aspect ratio appears to be roughly

the same as that used by Schwabe et al (1992), although the basic state is dif-

ferent. Observations of unstable flows are made using shadowgraphic imaging

of the free surface, detecting the presence of flow-induced surface waves. For

d < 0.3 cm the first transition is to a state of concentric, steady rolls. For larger

depths, such rolls were not observed; rather, the steady convection transforms to a

traveling-wave state. At large temperature differences, numerous thermal plumes

were observed in the heated region that gave rise to waves propagating away

from this region. For smaller temperature differences, the plumes were absent.

While these investigators believe they have observed pure hydrothermal waves,

the later work of Riley & Neitzel (1998) suggests that this is likely not true. Fi-

nally, Ezersky et al (1993) discussed theoretically determined critical Marangoni

numbers and frequencies for their experiment in spite of the fact that their basic

state has never been subjected to an analysis that would have determined these

values.

3.4.2 Deep Layers

Two teams of investigators have experimented with the deep-annulus configura-

tion. Here, of course, the basic state is entirely different from that just described

because the thermocapillary-driven eddy does not normally extend to the bot-

tom of the vessel. Kamotani et al (1992) presented results of terrestrial labora-

tory experiments (subsequent microgravity experiments were also performed) in

a deep-annular geometry in which the surface-temperature gradient is imposed by

heating a wire (cylinder) located at the origin and cooling the outer cylinder. Re-

sults are presented in terms of an S parameter defined as S ≡ σT 1T
σPr

, which is meant
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to account for surface deflection. Thermocouples are used for point temperature

measurements, and infrared thermography is employed to sense the free-surface

temperatures. The appearance of oscillations is marked by a wavy return-flow pat-

tern which precesses azimuthally. As the aspect ratio becomes large (d/b → 2),

the critical value of the S parameter at which oscillations appear approaches

S = 0.007, four times larger than that found in a float-zone experiment, which,

according to the authors, “suggests that the critical value of S is a function of

configuration.”

Lavalley et al (2001) performed numerical simulations and conducted experi-

ments in a deep-annular region similar to that studied by Kamotani et al (1992). The

test liquid was 1 cS silicone oil and two test cells were employed, one designed to

permit flow visualization and particle-image velocimetry without extensive correc-

tion to compensate for index-of-refraction effects. Attempts were made to achieve

a flat surface in one of these cells through the establishment of pinned contact lines.

Results indicated that the presence of a meniscus served to increase the value of

the Marangoni number at which oscillations were observed, a feature of likely

relevance to some of the other experiments discussed above. Agreement between

the numerical simulations, performed assuming a flat, nondeformable interface,

and experiments is quite good, both qualitatively and quantitatively. As a result,

Lavalley et al (2001) conclude that free-surface deformation due to disturbances

plays no role in the instability. Finally, the character of the instability appears to

be purely hydrodynamic and not of the hydrothermal-wave variety appropriate to

half zones of liquids of similar Prandtl number.

4. FUTURE DIRECTIONS

Future experiments on control of thermocapillary instabilities could have broad

fundamental and practical impact. The inherent two-dimensionality of interfacial

driving suggests that direct measurement and manipulation of surface-tension gra-

dients is feasible for a wide range of M in some thermocapillary flow problems.

Benz et al (1998) demonstrated that optical methods can be used to both probe

and alter thermocapillary flow. Further development of optical techniques should

permit nearly simultaneous operation at multiple independent locations in the flow.

Experiments with such multipoint capabilities would provide valuable test beds

for advancing understanding of the behavior of spatially extended flows and could

suggest ways to control dynamics that are complex in both space and time (e.g.

spatiotemporal chaos).

Thermocapillarity may prove useful for the management of micron-sized drop-

lets in fluidic devices constructed using microelectronic fabrication technologies.

Planned applications such as genetic analysis and chemical sensing in these devices

require precise metering of picoliter fluid volumes. Surface forces like thermocapil-

larity are important at this scale; thermocapillary instabilities that lead to rupturing
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(Section 2.2.2) might be employed to subdivide tiny droplets into volumes of any

desired size.

One recently explored phenomenon that may be driven by thermocapillary flow

is the forced noncoalescence of two bodies of the same liquid. If the bodies are

at sufficiently different temperatures, thermocapillary-driven free-surface motion

will drag a layer of surrounding fluid into the gap between the free surfaces,

thereby keeping them apart [see Dell’Aversana & Neitzel (1998) for a general

overview]. Under certain conditions, however, Dell’Aversana et al (1997) showed

that the associated flows become unstable and exhibit oscillatory flow that may be

undesirable in some applications. Such instabilities need to be better understood

if these applications are to be pursued.

As pointed out above, the crystal-growth applications that motivated extensive

research on unstable thermocapillary flows involve molten liquids of extremely

low Prandtl number. These low-Prandtl-number cases have received little attention

from experimentalists because of the hostile nature of the environment (e.g. very

high temperatures) and the opacity of liquid metals to visible light. Recent work by

Hibiya and his collaborators (Hibiya et al 1998, Nakamura et al 1999) has employed

X-ray interrogation of flow fields in molten silicon with embedded tracer particles,

and Koster and colleagues (Pool & Koster 1994; Campbell & Koster 1994, 1997)

have also used radiography to track melting/solidification fronts in crystal-growth

melts. Such techniques offer promise for additional quantitative data to further the

understanding of instabilities in such systems.
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