
Proceedings of the 10th Conference on Computational Natural Language Learning (CoNLL-X),
pages 166–170, New York City, June 2006. c©2006 Association for Computational Linguistics

Experiments with a Multilanguage Non-Projective

Dependency Parser

Giuseppe Attardi

Dipartimento di Informatica

largo B. Pontecorvo, 3

I-56127 Pisa, Italy

attardi@di.unipi.it

1 Introduction

Parsing natural language is an essential step in

several applications that involve document

analysis, e.g. knowledge extraction, question

answering, summarization, filtering. The best

performing systems at the TREC Question

Answering track employ parsing for analyzing

sentences in order to identify the query focus, to

extract relations and to disambiguate meanings of

words.

These are often demanding applications, which

need to handle large collections and to provide

results in a fraction of a second. Dependency

parsers are promising for these applications since a

dependency tree provides predicate-argument

relations which are convenient for use in the later

stages. Recently statistical dependency parsing

techniques have been proposed which are

deterministic and/or linear (Yamada and

Matsumoto, 2003; Nivre and Scholz, 2004). These

parsers are based on learning the correct sequence

of Shift/Reduce actions used to construct the

dependency tree. Learning is based on techniques

like SVM (Vapnik 1998) or Memory Based

Learning (Daelemans 2003), which provide high

accuracy but are often computationally expensive.

Kudo and Matsumoto (2002) report a two week

learning time on a Japanese corpus of about 8000

sentences with SVM. Using Maximum Entropy

(Berger, et al. 1996) classifiers I built a parser that

achieves a throughput of over 200 sentences per

second, with a small loss in accuracy of about 2-

3 %.

The efficiency of Maximum Entropy classifiers

seems to leave a large margin that can be exploited

to regain accuracy by other means. I performed a

series of experiments to determine whether

increasing the number of features or combining

several classifiers could allow regaining the best

accuracy. An experiment cycle in our setting

requires less than 15 minutes for a treebank of

moderate size like the Portuguese treebank

(Afonso et al., 2002) and this allows evaluating the

effectiveness of adding/removing features that

hopefully might apply also when using other

learning techniques.

I extended the Yamada-Matsumoto parser to

handle labeled dependencies: I tried two

approaches: using a single classifier to predict

pairs of actions and labels and using two separate

classifiers, one for actions and one for labels.

Finally, I extended the repertoire of actions used

by the parser, in order to handle non-projective

relations. Tests on the PDT (Böhmovà et al., 2003)

show that the added actions are sufficient to handle

all cases of non-projectivity. However, since the

cases of non-projectivity are quite rare in the

corpus, the general learner is not supplied enough

of them to learn how to classify them accurately,

hence it may be worthwhile to exploit a second

classifier trained specifically in handling non-

projective situations.

1. Summary of the approach

The overall parsing algorithm is an inductive

statistical parser, which extends the approach by

Yamada and Matsumoto (2003), by adding six new

reduce actions for handling non-projective

relations and also performs dependency labeling.

Parsing is deterministic and proceeds bottom-up.

Labeling is integrated within a single processing

step.

166

The parser is modular: it can use several

learning algorithms: Maximum Entropy, SVM,

Winnow, Voted Perceptron, Memory Based

Learning, as well as combinations thereof. The

submitted runs used Maximum Entropy and I

present accuracy and performance comparisons

with other learning algorithms.

No additional resources are used.

No pre-processing or post-processing is used,

except stemming for Danish, German and Swedish.

2 Features

Columns from input data were used as follows.

LEMMA was used in features whenever

available, otherwise the FORM was used. For

Danish, German and Swedish the Snowball

stemmer (Porter 2001) was used to generate a

value for LEMMA. This use of stemming slightly

improved both accuracy and performance.

Only CPOSTAG were used. PHEAD/PDEPREL

were not used.

FEATS were used to extract a single token

combining gender, number, person and case,

through a language specific algorithm.

The selection of features to be used in the parser

is controlled by a number of parameters. For ex-

ample, the parameter ��������	�� determines

for which tokens the POS tag will be included in

the context, ���
�������	�� determines how

many left outermost children of a token to con-

sider, ����������� tells how many previous ac-

tions to include as features.

The settings used in the submitted runs are listed

below and configure the parser for not using any

word forms. Positive numbers refer to input to-

kens, negative ones to token on the stack.

���������	�������������������������
��������	���������������������������
��	�������	�������������������
��������	������������������
���
�������	�����������
���
����������������������
���
����������������������
�����������	����������
�������������������������
�����������������������
������������������������

The context for POS tags consisted of 1 token left

and 3 tokens to the right of the focus words, except

for Czech and Chinese were 2 tokens to the left

and 4 tokens to the right were used. These values

were chosen by performing experiments on the

training data, using 10% of the sentences as held-

out data for development.

3 Inductive Deterministic Parsing

The parser constructs dependency trees employing

a deterministic bottom-up algorithm which per-

forms Shift/Reduce actions while analyzing input

sentences in left-to-right order.

Using a notation similar to (Nivre and Scholz,

2003), the state of the parser is represented by a

quadruple �S, I, T, A�, where S is the stack, I is the

list of (remaining) input tokens, T is a stack of

temporary tokens and A is the arc relation for the

dependency graph.

Given an input string W, the parser is initialized

to �(), W, (), ()�, and terminates when it reaches a

configuration �S, (), (), A�.

The parser by Yamada and Matsumoto (2003)

used the following actions:

 ��� in a configuration �S, n|I, T, A�, pushes

n to the stack, producing the configura-

tion �n|S, I, T, A�.

����� in a configuration �s1|S, n|I, T, A�, adds

an arc from s1 to n and pops s1 from the

stack, producing the configuration �S,

n|I, T, A∪{(s1, r, n)}�.

��� in a configuration �s1|S, n|I, T, A�, adds

an arc from n to s1, pops n from input,

pops s1 from the stack and moves it

back to I, producing the configuration

�S, s1|I, T, A∪{(n, r, s1)}�.

At each step the parser uses classifiers trained on

treebank data in order to predict which action to

perform and which dependency label to assign

given the current configuration.

4 Non-Projective Relations

For handling non-projective relations, Nivre and

Nilsson (2005) suggested applying a pre-

processing step to a dependency parser, which con-

sists in lifting non-projective arcs to their head re-

peatedly, until the tree becomes pseudo-projective.

A post-processing step is then required to restore

the arcs to the proper heads.

1 Nivre and Scholz reverse the direction, while I follow here

the terminology in Yamada and Matsumoto (2003).

167

I adopted a novel approach, which consists in

adding six new parsing actions:

����� in a configuration �s1|s2|S, n|I, T, A�,

adds an arc from s2 to n and removes s2

from the stack, producing the configu-

ration �s1|S, n|I, T, A∪{(s2, r, n)}�.

���� in a configuration �s1|s2|S, n|I, T, A�,

adds an arc from n to s2, pops n from

input, pops s1 from the stack and moves

it back to I, producing the configuration

�s2|S, s1|I, T, A∪{(n, r, s2)}�.

����� in a configuration �s1|s2|s3|S, n|I, T, A�,

adds an arc from s3 to n and removes s3

from the stack, producing the configu-

ration �s1|s2|S, n|I, T, A∪{(s3, r, n)}�.

���� in a configuration �s1|s2|s3|S, n|I, T, A�,

adds an arc from n to s3, pops n from

input, pops s1 from the stack and moves

it back to I, producing the configuration

�s2|s3|S, s1|I, T, A∪{(n, r, s3)}�.

!"�	���� in a configuration �s1|s2|S, n|I, T, A�,

move s2 from the stack to the temporary

stack, then ���, producing the con-

figuration �n|s1|S, I, s2|T, A�.�

#���	�� in a configuration �S, I, s1|T, A�, pops s1

from T and pushes it to the stack, pro-

ducing the configuration �s1|S, I, T, A�.

The actions ����� and
���� are sufficient to

handle almost all cases of non-projectivity: for in-

stance the training data for Czech contain 28081

non-projective relations, of which 26346 can be

handled by
����/�����, 1683 by

����/����� and just 52 require !"�

�	���/#���	�.

Here is an example of non-projectivity that can

be handled with ����� (nejen � ale) and
����

(fax � V�tšinu):

V�tšinu t�chto p�ístroj� lze take používat nejen jako fax,

ale sou�asn� …

The remaining cases are handled with the last two

actions: !"�	��� is used to postpone the creation

of a link, by saving the token in a temporary stack;

#���	� restores the token from the temporary

stack and resumes normal processing.

This fragment in Dutch is dealt by performing an

!"�	��� in configuration �moeten|gemaakt|zou,

worden|in, A� followed immediately by an #��

��	�, leading to the following configuration,

which can be handled by normal ���/������

actions:

Another linguistic phenomenon is the anticipation

of pronouns, like in this Portuguese fragment:

$���� %� �����&��� ������	�	� ��� �� #'�
 ��(�����������������)��������*+������

�����	�����	���)�������)�…�

The problem here is due to the pronoun $���

(Anything), which is the object of ������	�	

(find), but which is also the head of ����� (from)

and its preceding comma. In order to be able to

properly link ����� to $���, it is necessary to

postpone its processing; hence it is saved with !"�

�	��� to the temporary stack and put back later in

front of the comma with #���	�. In fact the pair

!"�	���/#���	� behaves like a generalized

�����/
����, when n is not known. As in the

example, except for the case where n=2, it is diffi-

cult to predict the value of n, since there can be an

arbitrary long sequence of tokens before reaching

the position where the link can be inserted.

5 Performance

I used my own C++ implementation of Maximum

Entropy, which is very fast both in learning and

classification. On a 2.8 MHz Pentium Xeon PC,

the learning time is about 15 minutes for Portu-

guese and 4 hours for Czech. Parsing is also very

fast, with an average throughput of 200 sentences

per second: Table 1 reports parse time for parsing

each whole test set. Using Memory Based Learn-

ing increases considerably the parsing time, while

as expected learning time is quite shorter. On the

other hand MBL achieves an improvement up to

5% in accuracy, as shown in detail in Table 1.

zou moeten worden gemaakt in

zou gemaakt moeten worden in

V�tšinu t�chto p�ístroj� lze take používat nejen jako fax , ale

168

Language
Maximum Entropy MBL

LAS

%

Cor-

rected

LAS

UAS

%

LA

%

Train

time

sec

Parse

time

sec

LAS

%

UAS

%

LA

%

Train

time

sec

Parse

time

sec

Arabic 53.81 54.15 69.50 72.97 181 2.6 59.70 74.69 75.49 24 950

Bulgarian 72.89 72.90 85.24 77.68 452 1.5 79.17 85.92 83.22 88 353

Chinese 54.89 70.00 81.33 58.75 1156 1.8 72.17 83.08 75.55 540 478

Czech 59.76 62.10 73.44 69.84 13800 12.8 69.20 80.22 77.72 496 13500

Danish 66.35 71.72 78.84 74.65 386 3.2 76.13 83.65 82.06 52 627

Dutch 58.24 63.71 68.93 66.47 679 3.3 68.97 74.73 75.93 132 923

German 69.77 75.88 80.25 78.39 9315 4.3 79.79 84.31 86.88 1399 3756

Japanese 65.38 78.01 82.05 73.68 129 0.8 83.39 86.73 89.95 44 97

Portuguese 75.36 79.40 85.03 80.79 1044 4.9 80.97 86.78 85.27 160 670

Slovene 57.19 60.63 72.14 69.36 98 3.0 62.67 76.60 72.72 16 547

Spanish 67.44 70.33 74.25 82.19 204 2.4 74.37 79.70 85.23 54 769

Swedish 68.77 75.20 83.03 72.42 1424 2.9 74.85 83.73 77.81 96 1177

Turkish 37.80 48.83 65.25 49.81 177 2.3 47.58 65.25 59.65 43 727

Table 1. Results for the CoNLL-X Shared task (official values in italics).

For details on the CoNLL-X shared task and the

measurements see (Buchholz, et al. 2006).

6 Experiments

I performed several experiments to tune the parser.

I also tried alternative machine learning algo-

rithms, including SVM, Winnow, Voted Percep-

tron.

The use of SVM turned out quite impractical

since the technique does not scale to the size of

training data involved: training an SVM with such

a large number of features was impossible for any

of the larger corpora. For smaller ones, e.g. Portu-

guese, training required over 4 days but produced a

bad model which could not be used (I tried both

the TinySVM (Kudo 2002) and the LIBSVM

(Chang and Lin 2001) implementations).

Given the speed of the Maximum Entropy clas-

sifier, I explored whether increasing the number of

features could improve accuracy. I experimented

adding various features controlled by the parame-

ters above: none appeared to be effective, except

the addition of the previous action.

The classifier returns both the action and the la-

bel to be assigned. Some experiments were carried

out splitting the task among several specialized

classifiers. I experimented with:

1. three classifiers: one to decide between

 ���/������, one to decide which ������

action and a third one to choose the depend-

ency in case of
���/���� action

2. two classifiers: one to decide which action to

perform and a second one to choose the de-
pendency in case of
���/���� action

None of these variants produced improvements in

precision. Only a small improvement in labeled

attachment score was noticed using the full, non-

specialized classifier to decide the action but dis-

carding its suggestion for label and using a special-

ized classifier for labeling. However this was

combined with a slight decrease in unlabeled at-

tachment score, hence it was not considered worth

the effort.

7 Error Analysis

The parser does not attempt to assign a dependency

relation to the root. A simple correction of assign-

ing a default value for each language gave an im-

provement in the LAS as shown in Table 1.

7.1 Portuguese

Out of the 45 dependency relations that the parser

had to assign to a sentence, the largest number of

169

errors occurred assigning ,-��!� (62), ��� (46),

�#. (43), �/$ (40), ,- (34), �- (30).

The highest number of head error occurred at

the CPOS tags ��� with 193 and . with 176. In

particular just four prepositions (��, ��, �, ��	�)

accounted for 120 head errors.

Most of the errors occur near punctuations. Of-

ten this is due to the fact that commas introduce

relative phrases or parenthetical phrases (e.g. “��

��������)� ��� �0� ����)� 1��� �	�*���”),

that produce diversions in the flow. Since the

parser makes decisions analyzing only a window

of tokens of a limited size, it gets confused in cre-

ating attachments. I tried to add some global con-

text features, to be able to distinguish these cases,

in particular, a count of the number of punctuation

marks seen so far, whether punctuation is present

between the focus words. None of them helped

improving precision and were not used in the sub-

mitted runs.

7.2 Czech

Most current parsers for Czech do not perform well

on ���� (apposition), ���	� (coordination) and

!"� (ellipses), but they are not very frequent. The

largest number of errors occur on 2*+ (166), ��&

(155), * (113), ��	 (98). There is also often con-

fusion among these: 33 times 2*+ instead of ��&,

32 * instead of 2*+, 28 ��	 instead of ��&.

The high error rate of / (adjective) is expected,

mainly due to coordination problems. The error of

� (preposition) is also relatively high. Prepositions

are problematic, but their error rate is higher than

expected since they are, in terms of surface order,

rather regular and close to the noun. It could be

that the decision by the PDT to hang them as heads

instead of children, causes a problem in attaching

them. It seems that a post-processing may correct a

significant portion of these errors.

The labels ending with 3��, 3�� or 3�� are

nodes who are members of the Coordination, Ap-

position or the Parenthetical relation, so it may be

worth while omitting these suffixes in learning and

restore them by post-processing.

An experiment using as training corpus a subset

consisting of just sentences which include non-

projective relations achieved a LAS of 65.28 %

and UAS of 76.20 %, using MBL.

Acknowledgments. Kiril Ribarov provided in-

sightful comments on the results for Czech.

The following treebanks were used for training the

parser: (Afonso et al., 2002; Atalay et al., 2003;

Böhmovà et al., 2003; Brants et al., 2002; Chen et

al., 2003; Civit Torruella and Martì Antonìn, 2002;

Džeroski et al., 2006; Hajiç et al., 2004; Kawata

and Bartels, 2000; Kromann, 2003; Nilsson et al.,

2005; Oflazer et al., 2003; Simov et al., 2005; van

der Beek et al., 2002).

References

A. Berger, S. Della Pietra, and M. Della Pietra. 1996. A

Maximum Entropy Approach to Natural Language

Processing. Computational Linguistics, 22(1).

S. Buchholz, et al. 2006. CoNLL-X Shared Task on

Multilingual Dependency Parsing. In Proc. of the

Tenth CoNLL.

C.-C. Chang, C.-J. Lin. 2001. LIBSVM: a library for

support vector machines.

http://www.csie.ntu.edu.tw/~cjlin/libsvm/

W. Daelemans, J. Zavrel, K. van der Sloot, and A. van

den Bosch. 2003. Timbl: Tilburg memory based

learner, version 5.0, reference guide. Technical Re-

port ILK 03-10, Tilburg University, ILK.

T. Kudo. 2002. tinySVM.

http://www.chasen.org/~taku/software/TinySVM/

T. Kudo, Y. Matsumoto. 2002. Japanese Dependency

Analysis using Cascaded Chunking. In Proc. of the

Sixth CoNLL.

R. McDonald, et al. 2005. Non-projective Dependency

Parsing using Spanning Tree Algorithms. In Proc. of

HLT-EMNLP.

J. Nivre, et al. 2004. Memory-based Dependency Pars-

ing. In Proc.s of the Eighth CoNLL, ed. H. T. Ng and

E. Riloff, Boston, Massachusetts, pp. 49–56.

J. Nivre and M. Scholz. 2004. Deterministic Depend-

ency Parsing of English Text. In Proc. of COLING

2004, Geneva, Switzerland, pp. 64–70.

J. Nivre and J. Nilsson, 2005. Pseudo-Projective De-

pendency Parsing. In Proc. of the 43rd Annual Meet-

ing of the ACL, pp. 99-106.

M.F. Porter. 2001. Snowball Stemmer.

http://www.snowball.tartarus.org/

V. N. Vapnik. 1998. The Statistical Learning Theory.

Springer.

H. Yamada and Y. Matsumoto. 2003. Statistical De-

pendency Analysis with Support Vector Machines. In

Proc. of the 8th International Workshop on Parsing

Technologies (IWPT), pp. 195–206.

170

