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3 Geomet r i c Reasoning N e t w o r k s 
The key geometric reasoning data type for high-level computer vision 
is the pos i t ion, tha t represents the relat ive spat ia l re lat ionship between 
two v isual features (e.g. wor ld- to-camera, camera-to-model , or model-
to-subcomponent) . A posi t ion consists of a 3-vector representing rela-
t ive t rans la t ion and a un i t quatern ion (4-vector) representing relat ive 
or ienta t ion (of the fo rm (cos(0/2),sin(0/2)w) for a ro ta t ion of 0 about 
the axis w). 

Sets of these constraints are generated as recognit ion proceeds. 
Next , we would l ike to est imate the values of the constrained quan­

t i t ies (e.g. object posi t ion) f rom the known model and data values and 
their relat ionships f rom a set of constraints. A l ternat ive ly , we would 
l ike to determine tha t the set of constraints is inconsistent, so tha t the 
hypothesis can be rejected. 

A compl icat ion is tha t each data measurement may have some error 
or unce r t a i n l y , and hence the est imated values may also have these. 
Or , a variable may be only par t ia l l y constrained in the model or by o 
priori scene in fo rmat ion . Hence, each numer ica l quan t i t y is represented 
by an in terva l and is bounded using the network methodology described 
in section 2. 

The creat ion of the networks is t ime-consuming, requi r ing a sym­
bolic analysis of the algebraic inequali t ies. For tunate ly, there is a nat­
ura l modu lar s t ructure arising f rom the types of problems encountered 
dur ing scene analysis, where most geometric constraints are of the type 
described above. Hence, i t is possible to pre-compile network modules 
for each re lat ionship, and merely connect a new instance of the module 
in to the network as scene analysis proceeds. To date, we have identi f ied 
and implemented network modules for: 

SS - two scalers are close in value 
PP - two po in ts are close in locat ion 
VV - two vectors po in t in nearly the same di rect ion 
D O T S - the dot p roduct of two 3-vectors is above a scaler 

We now include a simple example of network use. Suppose sub­
components B and C are r ig id ly connected to fo rm object A. Given the 
est imated posit ions of the subcomponents in the global coordinate sys­
tem, Tg-B and Tg-c, and the t ransformat ions between the object and 
subcomponent coordinate systems, TA-D and TA-c, then these can be 
used to est imate the global object pos i t ion, TG-A using two instances 
of the ' ' T T " module l isted above. Figure 2 shows this network. Notice 
tha t each subcomponent gives an independent estimate of TG-A, SO 
tha t the network keeps the t ightest bounds on each component of the 
posi t ion. A n y t ighter resul t ing bounds then propagate back through 
the modules to refine the subcomponent posi t ion estimates. 

A~C 

Figure 2: A Simple Geometric Reasoning Network 

4 B i n d i n g Degrees of Freedom 
Bind ing degrees-of-freedom is a typ ica l v isual geometric reasoning prob-
lem, such as finding the posi t ional parameters, as above. Another ex­
ample is es t imat ing an int r ins ic l inear degree-of-freedom, as in a pris­
mat ic robo t j o in t . I ts underconstrained posi t ion can be modeled by 
using a variable in the reference frame t rans la t ion. Then , bounds on 
this variable can be est imated by using the network method to compute 
i ts reference frame relat ionship relat ive to i ts main object. 

The more di f f icul t case is a ro ta t iona l degree-of-freedom, as in a 
robot revolute j o i n t , wh ich we now consider in more deta i l . The prob­
lem w i t h th is case is tha t there is no element of the ro ta t ion specif ication 
tha t exact ly corresponds to the degree-of-freedom (unl ike the t ransla­
t ion case). For tunate ly , the cos(0/2) component of a quatern ion can 
be related to a jo in t ' s ro ta t i on . Figure 3 shows how to explo i t th is 
cos(6/2) re lat ionship in a subnetwork t ha t solves the prob lem. 

The key subcomponents are B and D, w i t h the i r est imated global 
posit ions TG-B and TG - D F rom the mode l , we know wh ich vector 
in each of the i r local reference frames is the axis of ro ta t ion (axisb 
and axisd). Also, f rom the model we have reference vectors, r e / 6 and 
r e f d , such t ha t when they are al igned, the ro ta t i on is zero. These two 
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show tha t the ou tpu t error varies approximately l inearly w i t h inpu t 
error and has magni tude about 5.5 times as big. The results were 
generated by per tu rb ing each component of Tg-B and Tg-B by an 
error e for a randomly chosen ro ta t ion , and then looking at the ou tpu t 
error of the cos{6) ro ta t ion estimate. The results also show tha t the 
error reaches a m a x i m u m when the inpu t error reaches about e = 0.18, 
so the input posit ions need to be somewhat constrained for jo in t angle 
est imat ion to work . 

Figure 6 also show tha t there is some var iab i l i ty in the results (be­
sides the under ly ing trend) which is undesirable. One cont r ibutor to 
the problem is several special cases to the T V 2 module that solve for 
the ro ta t ion using a different set of bounds f rom the main case, and 
hence have different numerical propert ies. 

7 A Large N e t w o r k Examp le 
Figure 8 shows the fu l l network generated for analysing the posi t ion 
of a robot in a test scene. As before, the boxes represent transfor­
mat ions, but there are more types used here. The T P n boxes stand 
for n instances of a TP module. The circular " J n " boxes represent 
three ident ical instances of subnetworks allocated for t ransformat ions 
invo lv ing jo in t angles, which are omi t ted to simpl i fy the diagram (each 
contains 7 network modules). The core of the subnetworks was shown 
in f igure 3, bu t some addi t ional modules are added to al ign reference 
frames. The relat ive posit ions of objects are given by the T structures, 
such as Tg-R, which represents the posi t ion of the robot in the global 
reference frame. These are l inked by the various transformations. L inks 
to model or data vectors or points are represented by the unconnected 
segments ex i t ing from some boxes. 

The top posi t ion Tg-c is the posit ion of the camera in the global 
coordinate system, and the subnetwork to the left and below relates 
features in the camera frame to corresponding ones in the global co-
ordinate system. Below and r ight is the posi t ion TG-R of the robot 
in the global coordinate system and the posi t ion TC-R, of the robot 
in the camera coordinate system, al l l inked by a TT posi t ion t rans-
fo rmat ion module. Next , to the bo t tom left is the subnetwork for the 
cy l indr ica l robo t body Tg - B . The " J 1 " node connects the robot posi­
t ion to the rest ( " l i nk " ) on the r igh t , whose posit ion is T G - L K - I ts left 
subcomponent is the r ig id shoulder A S S E M B L Y (SH) w i t h its subcom­
ponents, the shoulder body (SB) and the smal l shoulder patch (SO). To 
the r igh t , the ' ' J2" node connects to the "armasm" A S S E M B L Y ( U A ) , 
l ink ing the upper arm (U) to the lower a rm (L ) , again v i a another jo in t 
angle (J3). At the bo t t om are the modules that l ink model vectors and 
points to observed surface normals, cy l indr ica l axis vectors, and central 
points, etc. Al together, there are 61 network modules containing about 
96,000 funct ion nodes. 

The network st ructure closely resembles the model subcomponent 
hierarchy, and only the b o t t o m level is data-dependent. There, new 
nodes are added whenever new model- to-data pair ings are made, pro­
ducing new constraints on feature posit ions. 

Evaluat ing the complete network f rom the raw data requires about 
1,000,000 node evaluations in 800 "clock-periods" (thus imp ly ing over 
1000-way paral le l ism). Given the s impl ic i ty of operations in a node 
evaluat ion, a fu tu re machine should be able to support easily a 1 m i ­
crosecond cycle t ime. Th is suggests tha t an approximate answer to this 
compl icated problem could be achieved in about one mil l isecond. 

Because the resul t ing intervals are not t igh t , confidence tha t the 
mean interval value is the best estimate is reduced, though the bounds 
are correct, and the mean interval values provide useful posit ion es­
t imates. To t ighten estimates, a post-processing phase progressively 
shrinks the bounds on the intervals. Each posi t ion variable was ex­
amined to see if i ts interval was t ight . If not , it was reduced in size 
by 10% and the new bounds were then allowed to propagate through 
the network. For the robot example, this required an addi t ional 12,000 
cycles, imp ly ing a t o ta l solut ion t ime of about 13 mill iseconds on our 
hypothet ica l paral lel machine. 

Using the geometric reasoning network, the numerical results for 
the whole robot in the test scene are summarised in Table 1. Here, the 
values are given in the global reference frame rather than in the camera 
reference frame. 
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The results of the posit ion est imat ion can been seen more clearly if 
we look at Figure 7, t ha t shows the est imated robot posit ion overlaying 
the or ig ina l scene. Now, we are using the camera posi t ion of the whole 
robot assembly plus the estimated jo in t angles f rom above. Whi le the 
posit ions of the ind iv idua l components are reasonable, the accumulated 
errors in the posi t ion and jo in t angle estimates cause the predicted 
posi t ion of the gr ipper to dr i f t somewhat f rom the true posi t ion. The 
i terat ive bounds t ighten ing procedure described above produced th is 
result , wh ich was sl ight ly better than the one-pass method . 

8 D i scuss ion 

We have seen how the network methods can detect inconsistency and es­
t imate degrees-of-freedom. From the examples given, i t is obvious that 
th is network approach can solve complex geometric reasoning problems, 
has an incremental modular st ructure and has potent ia l for wide-scale 
paral le l ism. Unfor tunate ly , after experience w i t h use of the network 
approach, it has become obvious tha t there are also problems, part ic­
u lar ly when work ing w i t h noisy data. 

One inherent prob lem concerns the ambigu i ty in the quaternion ro­
ta t ion representat ion, as the ro ta t ion (qo, q1, q2, q3) is equivalent to the 
ro ta t ion (—qo, — q1 — q2, —q3)- When coupled w i t h the interval a r i th ­
met ic, sometimes the bounds on terms cannot choose between alterna­
t ives, producing unnecessarily large bounds. For example, the q0 te rm 
may acquire a bound [ - a - e, + a + c], when the bound (+a - c, + c] 
may be equally satisfactory. It is not possible to require that qo > 0 
always, because the composi t ion of some rotat ions satisfying this con­
d i t ion may produce a ro ta t ion tha t violates this (using the standard 
quaternion ro ta t ion fo rmula t ion) . A related problem also occurs w i t h 
a tolerance c about qo terms near one, creat ing intervals [l — e, l] and 
[ - 1 , - 1 + c ] . 

These problems suggest tha t the model-based reasoning program 
may have to analyse the results and occasionally spl i t or introduce al­
ternat ive cases, given an understanding of the representation problems. 

Whi le the error analysis given in section 6 showed that errors usually 
do not grow too quickly, when we look at the robot network (Figure 
8), we s t i l l f ind a prob lem. In par t icu lar , i t turns out tha t the chain of 
reference frame transformat ions f rom the robot in the global reference 
frame (Tg-R) to the data vectors involved in the lower a rm posi t ion 
(below Tg-.L) involve ten T V 2 and three TT modules. Assuming each 
has an ou tpu t in terva l w i d t h of 1.7 t imes the inpu t in terva l w i d t h means 
tha t the combined cont r ibu t ion of the lowerarm evidence to the robot 
has an error in terval w i d t h of (1 .7) 1 3 = about 1000 t imes the inpu t 
error in terval . As the max imum ou tpu t in terval can be only [-1,+1) for 
the ro ta t ion , this implies tha t the input u n c e r t a i n l y can be at most 
about 0.01, which is unreasonably s t r ic t . 

However, this error analysis must also consider tha t many of the 
reference frame transformat ions are the ident i ty t ransformat ion, wh ich 
create l i t t le error (and need not even be introduced into the network) . 
Fur ther , though the estimates may not propagate a l l the way to the 
robot global posi t ion node, they w i l l help constrain more closely l inked 
structures. 

I t should be noted tha t geometric reasoning involv ing a mul t ip le 
jo in t ar t iculated object is a genuinely compl icated prob lem, whereas 
most object recognit ion problems have a much flatter model hierarchy, 
invo lv ing fewer compound degrees-of-freedom, i f any at al l . 

A final problem posed by the interval approach is tha t of finding the 
"best" estimate for a parameter, when the intervals are large, par t ic­
u lar ly w i t h ro ta t ion parameters. Whi le integrat ing enough randomly 
d is t r ibu ted errors w i l l cause the wid ths of the intervals to converge to 
a "correct" answer, we seldom have more than a few measured values 
(e.g. surface normals, curvature axes). Consequently, a stat is t ica l tech­
nique (e.g. Du r ran t -Why te 1987) or a final least-squared error posi t ion 
ref inement step also seems at t rac t ive , though they migh t have problems 
handl ing ro ta t iona l degrees-of-freedom. 
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Though research on the efficient use of these networks is cont inu­
ing, problems overcome by the new technique included the bounding 
of t ransformed parameter estimates and par t ia l ly constrained variables 
and effective detect ion of geometric inconsistencies. The network mod­
ule decomposit ion means tha t networks can be constructed incremen­
ta l ly as scene analysis proceeds. The network also has the potent ia l for 
large scale paral lel evaluat ion. Th is is impor tan t because a consider­
able por t ion of the processing t ime in three dimensional scene analysis 
is spent doing geometric reasoning. 
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