
IJDAR (2001) 3: 150–159

Experiments with adaptation strategies
for a prototype-based recognition system
for isolated handwritten characters

V. Vuori1, J. Laaksonen1, E. Oja1, J. Kangas2

1 Helsinki University of Technology, Laboratory of Computer and Information Science, P.O. Box 5400, 02015 HUT, Finland;
e-mail: {vuokko.vuori,jorma.laaksonen,erkki.oja}@hut.fi

2 Nokia Research Center, P.O. Box 100, 33721 Tampere, Finland; e-mail: jari.a.kangas@nokia.com

Received June 30, 1999 / Revised September 29, 2000

Abstract. This paper describes an adaptive recognition
system for isolated handwritten characters and the ex-
periments carried out with it. The characters used in
our experiments are alphanumeric characters, including
both the upper- and lower-case versions of the Latin al-
phabets and three Scandinavian diacriticals. The writers
are allowed to use their own natural style of writing. The
recognition system is based on the k-nearest neighbor
rule. The six character similarity measures applied by
the system are all based on dynamic time warping. The
aim of the first experiments is to choose the best combi-
nation of the simple preprocessing and normalization op-
erations and the dissimilarity measure for a multi-writer
system. However, the main focus of the work is on online
adaptation. The purpose of the adaptations is to turn
a writer-independent system into writer-dependent and
increase recognition performance. The adaptation is car-
ried out by modifying the prototype set of the classifier
according to its recognition performance and the user’s
writing style. The ways of adaptation include: (1) adding
new prototypes; (2) inactivating confusing prototypes;
and (3) reshaping existing prototypes. The reshaping al-
gorithm is based on the Learning Vector Quantization.
Four different adaptation strategies, according to which
the modifications of the prototype set are performed,
have been studied both offline and online. Adaptation
is carried out in a self-supervised fashion during normal
use and thus remains unnoticed by the user.

Key words: Handwriting recognition – Pattern recog-
nition – Isolated characters – Unconstrained writing style
– Online recognition – Intelligent user interface – Adap-
tation – Learning systems – k-nearest neighbor rule –
Learning vector quantization – Dynamic time warping –
Elastic matching

Correspondence to: V. Vuori

1 Introduction

Online recognition of handwritten text has been an ongo-
ing research problem for four decades. It has been gain-
ing more interest lately due to the increasing popularity
of hand-held computers, digital notebooks, and advanced
cellular phones. Traditionally, man-machine communica-
tion has been based on keyboard and pointing devices.
These methods can be very inconvenient when the ma-
chine is only slightly larger or of the same size as human
palm. A keyboard is very difficult to integrate in small
devices and it usually determines the size of the whole
apparatus. This is especially true when the number of
characters is very large as in Chinese and Japanese. A
pointing device, for example, a track ball or a pen, is
insufficient or very slow when used alone and when also
textual input is desired.

Due to these problems, new methods for input have
been developed, for example, systems that recognize
speech and handwriting. Because they both are very nat-
ural ways to communicate, people would easily learn to
use them. Unfortunately, these recognition tasks are not
that easy for computers, whose artificial intelligence is
different from that of humans. Both recognition prob-
lems are still not completely solved. Very high accuracy
is required for such systems before they could be com-
monly accepted. Handwriting recognition is a more at-
tractive input method, especially in noisy environments
and when privacy is needed.

Recognition accuracy is a key factor in determining
the acceptability of a handwriting recognition system
and the whole application in which it is implemented.
The relationship between user acceptance of a pen inter-
face and recognition accuracy is highly task-dependent
according to experiments performed by Frankish et al.
[1]. In general, the required recognition rate for hand-
writing recognizer is very high – even higher than hu-
mans can perform. Guyon and Warwick [2] have carried
out experiments in which good typists wrote with a spe-
cial keyboard that made random errors with a predefined

tsonkkil
Copyright 2001 Springer-Verlag, reprinted with permission.

V. Vuori et al.: Experiments with adaptation strategies 151

rate. These tests showed that writers tolerate errors up
to 1%, while 0.5% is not noticeable and 2% is intolerable.

These error rates are lower than error rates for human
readers. An early experiment organized by Neisser and
Weene [3], which involved 200 writers and nine readers,
showed that the average human recognition error rate
for isolated, handwritten, and context-free characters is
4.1%. Almost the same result, 4.0%, was obtained in a
more recent experiment in which context-free characters
from ten writers were recognized by ten readers. The best
writer-reader couples had zero error percentages while
the error rate for the worst couple was as high as 21% [4].

The most prominent problem in handwriting recog-
nition is the vast variation in personal writing styles.
There are also differences in one person’s writing style
depending on the context. The mood of the writer and
the writing situation can have an effect on style. The
writing style may evolve with time or practice, too. A
recognition system should be insensitive to minor vari-
ations and still able to distinguish different, but some-
times very similar-looking, characters. Recognition sys-
tems should, at least in the beginning, be able to recog-
nize many writing styles. Such multi-user systems usu-
ally have quite limited recognition accuracy. One way to
increase performance is adaptation, which means that
the system learns its user’s personal writing style.

The work described in this paper concentrates on
adaptation methods which are applied during normal use
in a self-supervised fashion. The users are allowed to use
their own natural styles of writing. In the beginning, the
recognition performance of the system is relatively low,
especially for people who have peculiar writing styles.
However, after entering a few samples per each charac-
ter, the error rate will be considerably decreased.

We have studied six dissimilarity measures and four
adaptation strategies. First, a writer-independent recog-
nition system was formed by finding the best combina-
tion of the preprocessing and normalization methods and
dissimilarity measure. Next, the capabilities of the adap-
tation strategies to turn the writer-independent system
into a writer-dependent one and to increase the recogni-
tion performance were examined.

2 Adaptive elastic matching classifier

2.1 General overview of the classifier

The classifier used in our work is based on prototype
matching. The k-nearest neighbor (k-NN) rule [5] is used
as a decision criterion. The k-NN rule is a data-driven
approach and a completely parameter-free method, as
it does not rely on any assumptions on the underlying
probability distributions of the character classes. The
classification is based only on the known classifications
of the training or design samples which form the proto-
type set. The classification of an unknown character is
made according to the majority of its k-nearest, or most
similar, prototypes in the prototype set.

The classification rule applied in our recognition sys-
tem resembles the condensed nearest neighbor (CNN)

rule [6], a variant of the k-NN rule. The CNN rule clas-
sifies unknown patterns in a similar manner as the k-NN
rule, but is based on a subset of the training samples in-
stead of the whole training set. In our work, the subset
of prototypes was selected by a clustering algorithm.

2.2 Prototype pruning and ordering

Computational savings can be achieved if the prototypes
are pruned or ordered prior to the matching phase. In
our work, connected parts of a drawn curve in which the
pressure between the pen and writing surface exceeds a
given value are considered as strokes. The prototypes are
pruned according to their number of strokes. Arakawa [7]
and Tappert [8] have used similar pruning methods suc-
cessfully.

In addition to the pruning, computation time can be
saved by ordering the prototypes so that distances to
the well-matching prototypes will be evaluated in the
early stages of the search, and distance-evaluation is in-
terrupted as soon as it becomes clear that the prototype
is not among the k best-matching ones.

Each character sample can be assigned to one of six-
teen categories depending on the rough shape of its first
stroke. The category is determined by the quadrants of
the coordinate plane in which the starting and ending
points of the first stroke are located. Prior to determin-
ing the category, the origin of the coordinate system has
to be moved to the center of the character. A four-bit
binary value is constructed for each category so that a
change in the value of one of the bits corresponds to
moving the starting or the ending point to a neighboring
quadrant. The distance between two categories is then
the count of bit differences in their binary representa-
tions.

2.3 Dissimilarity measures used in the matching
and clustering of the characters

The number of data points per character is not fixed
because the pen position is sampled with a constant
sampling frequency and the size of the characters, writ-
ing speed, and style vary (see Fig. 1). Even if the pen
point movements were resampled in order to get spatially
equidistant data points, the number of data points would
be nearly the same only for very similar-shaped strokes
of the same size. Therefore, the metric used as a dis-
similarity measure for the characters should be defined
between curves which do not consist of the same num-
ber of data points. In addition, the dissimilarity measure
should preferably be symmetric and independent of the
actual number of data points.

All the six dissimilarity measures tested in the recog-
nition system are based on the dynamic time warping
(DTW) algorithm and thus are suitable for nonlinear
curve matching [9]. They all are defined on stroke basis.
If the number of strokes in two characters is different, the
dissimilarity measure between the characters is defined
to be infinite. Otherwise, it is the sum of the dissimi-
larity measures between the corresponding strokes. The

152 V. Vuori et al.: Experiments with adaptation strategies

main difference between the dissimilarity measures is the
cost of matching a data point. All the matching costs
and continuity and boundary constraints of the DTW-
algorithm are symmetric. Therefore, all the dissimilarity
measures used are symmetric. The DTW-algorithm de-
termines the optimal matching of the data points which
yields the minimum sum of the matching costs. The op-
timal matching of two strokes is defined by the opti-
mal time-warping path. An example of such a matching
is shown in Fig. 1. The DTW-algorithm is explained in
more detail in [9].

The dissimilarity measures used in our work are called
Point-to-point, Normalized point-to-point, Point-to-line,
Normalized point-to-line, Kind-of-area and Simple-area
distances. The continuity and boundary constraints of
these dissimilarity measures are similar to each other.
The continuity constraints require that the data points
are matched in the same order as they have been pro-
duced. In addition, all data points are matched at least
once and several data points can be matched against
one. According to the boundary constraints, the first and
last data points of the strokes are matched against each
other or to lines interpolated between the first, or last,
two data points.
Point-to-point distance uses the squared Euclidean

distance between the data points as the matching cost.
In the case of Point-to-line distance, the data points are
matched to lines interpolated between the data points.
The matching cost is the minimum squared Euclidean
distance between the line and the point. All the data
points, except the first and last of one of the strokes,
are matched. Normalized point-to-point and Normalized
point-to-line distances are otherwise similar to Point-to-
point and Point-to-line distances, respectively, but the
sums of the matching costs are divided stroke-wise by
the number of matchings, i.e., the length of the warping
path.
Kind-of-area(n,m) distance also matches data points

against data points. However, the matching cost is a
product of two terms. The first term is the nth power
of the Euclidean distance between the data points. The
second term is the mth power of the sum of the Euclidean
distances from the matched data points to their neigh-
boring data points. Kind-of-area(2,0) and Point-to-point
distances are equivalent. As illustrated in Fig. 1, each
matching of data points, except the first one, defines a
new triangle or quadrilateral. Simple-area distance uses
the areas of these polygons as the matching cost.

The main difference between the dissimilarity mea-
sures is their sensitivity to the dynamical variations of
handwriting, such as speed and acceleration, and the
timing of the sampling process. These factors affect
Point-to-point distance most. Point-to-line distance is
not so sensitive to the phase of sampling due to the in-
terpolations. In case of Normalized point-to-point and
point-to-line distances, the effects of dynamical varia-
tions are reduced by the normalization. The sensitivity
of Kind-of-area(n,m) distance to the dynamical varia-
tions can be controlled with the parameter m. Provided
that the sampling frequency is high, the area between
two strokes does not depend much on the dynamics of

Fig. 1. The point-to-point correspondence of two characters
established with a DTW-algorithm

the writing. Therefore, Simple-area distance depends the
least on the dynamical properties of the strokes. These
dissimilarity measures are discussed in more detail and
their mathematical formulations are given in [10].

2.4 Prototype selection algorithm

As the initial user-independent prototype set, only a sub-
set of all training samples is used. This prototype set is
formed by clustering training samples and selecting one
sample from each cluster to present all samples in that
cluster. The clustering algorithm is semiautomatic. This
means that the number of clusters, or prototypes, must
be predefined. In the current system, this number is the
same for every class. The maximum number of different
writing styles for a character class, which was seven, was
found by manually examining the data and it is used
as the total number of prototypes per class. The num-
ber of clusters per stroke number variation was selected
so that it roughly corresponds to the respective share
of all the writing styles of that character. For example,
let us assume that there are 63, 27, and nine samples
of some letter written with one, two, or three strokes,
respectively. Thus, the numbers of prototypes assigned
to different stroke number variations are 4, 2, and 1.

After deciding the number of clusters, training sam-
ples are divided into clusters by an automatic and it-
erative algorithm. The number of clusters is increased
iteratively until the predefined count is reached or the
samples run out. The iterative algorithm starts by find-
ing the centers of the clusters, or in other words, the
items which yield the minimum sum of dissimilarity mea-
sures between themselves and all other items belonging
to the same cluster. Next, all the items are ordered into
an increasing series {x1, x2, . . . , xN} according to their
distance to the center item of their cluster. A new cluster
is formed of the items furthest from their cluster centers.
The number of items in the new cluster is determined by
minimizing splitting criterion function J(i) which is de-
fined in the following way:

J(i) = D(xi, xold(i)) + max
i≤j≤N

D(xj , xnew(i)), (1)

where xi is the item with order index i and xold(i) is
the old center item of its cluster, xnew(i) is the center
item of the new cluster consisting of {xi, . . . , xN}, and

V. Vuori et al.: Experiments with adaptation strategies 153

function D(x, y) is the similarity measure between two
items x and y. A new cluster is formed in the following
way: if

J(i∗) = min
i

J(i), (2)

items which have order index i ≥ i∗ are included in the
new cluster. Before the next round of the clustering al-
gorithm, the cluster centers are iteratively recalculated
and each item is assigned to the cluster center nearest
to it. This is repeated until a stationarity partition is
reached [11].

2.5 Adaptation strategies

The initial writer-independent prototype set must be
modified so that it represents the user’s writing style
better. We have studied four different adaptation strate-
gies for this. The ways of adaptations include: (1) adding
new prototypes; (2) inactivating confusing prototypes;
and (3) reshaping existing prototypes. The adaptation
strategy Add(k) examines the classes of the k prototypes
nearest to the input character. The classification is car-
ried out according to the k-NN rule. The input character
is added to the prototype set if any one of the k-nearest
prototypes belongs to a wrong class, even if the classifica-
tion was correct. Problems arise if the initial prototypes
represent styles of writing which the writer uses but for
different characters, or, if the writer uses similar writing
styles for two different classes. In these cases, the adap-
tation adds new prototypes in vain: the neighborhood of
the k-nearest prototypes consists of prototypes of very
similar writing styles but different classes no matter how
many new prototypes have been added.

The adaptation strategy Inactivate(N, G) is used for
inactivating those prototypes which are more harmful
than useful. Some character classes tend to be confused,
for example ‘g’ and ‘9’, as some writers write them in
exactly the same way. If the prototype set includes pro-
totypes very similar to characters written by the user but
which belong to wrong classes, they should be removed.
After each recognition, the Inactivate(N ,G)-strategy
checks whether the prototype nearest to the input char-
acter should be inactivated: if its goodness value g is
below a given limit, G, and it has been the nearest pro-
totype for at least N times, it is removed from the set
of active prototypes. The goodness value is defined as
follows:

g =
Ncorr − Nerr

Ncorr + Nerr
, (3)

where Ncorr and Nerr are the numbers of times when
the prototype has been the nearest one and its class has
been correct or incorrect, respectively. Parameters G and
N control the strictness and reaction rate of the inac-
tivation rule, respectively. Reasonable values of G are
between −1 and 1 and for N approximately 3.

When a character written by the user is basically sim-
ilar to a prototype of the correct class, for example it has
the same number and order of strokes, but it is of slightly

different shape, the existing prototype can be reshaped
instead of adding the input character to the prototype
set. This can be performed with an adaptation strategy
called Lvq(α) based on a modified version of Learning
Vector Quantization (LVQ) [12]. If the nearest proto-
type belongs to the same class as the input character,
the data points of the prototype are moved towards the
corresponding points of the input character. When the
classes differ, the points are moved in the opposite di-
rection. The classification is carried out according to the
1-NN rule.

The traditional form of LVQ cannot directly be ap-
plied, as the prototype and input characters do not gen-
erally have the same number of data points. The point-
to-point correspondence can, however, be established by
using the DTW-algorithm. Suppose the first stroke con-
sists of N1 points p1(1), . . . , p1(N1) and the second stroke
of N2 points p2(1), . . . , p2(N2). The modified LVQ train-
ing is defined as follows [13]: let P (h) = (i(h), j(h)) be
the optimal time-warping path between the strokes S1 =
(p1(1), . . . , p1(N1))T and S2 = (p2(1), . . . , p2(N2))T . The
Point-to-point distance between the strokes is

D(S1, S2) =
H∑

h=1

d(p1(i(h)), p2(j(h)), (4)

where d(p1, p2) is the squared Euclidean distance be-
tween two points and H is the total number of data point
matchings in the optimal time-warping path. When the
data points of stroke S2 are moved, their new locations
are given by

Snew
2 =

{
Sold

2 − α∇S2D(Sold
1 , Sold

2), if ω1 �= ω2

Sold
2 + α∇S2D(Sold

1 , Sold
2), otherwise

, (5)

where α is a positive learning coefficient and ω1 and ω2
the classes of the input character and prototype. In ad-
dition,

∇S2D(S1, S2) =

− 2

H∑
h=1

δ(1, j(h))(p1(i(h)) − p2(1))

...
H∑

h=1

δ(k, j(h))(p1(i(h)) − p2(k))

...
H∑

h=1

δ(N2, j(h))(p1(i(h)) − p2(N2))

, (6)

where δ(i, j) is Kronecker’s delta function.
The adaptation strategy Hybrid combines Add - and

Lvq-strategies. The k nearest prototypes are examined.
If any one of them belongs to the same class as the in-
put character, the nearest prototype is modified with
Lvq. Otherwise, the input character is added to the pro-
totype set. In this way, the increase in the size of the pro-
totype set should be moderate compared with the pure

154 V. Vuori et al.: Experiments with adaptation strategies

Add -strategy. Nevertheless, the system is able to learn
completely new writing styles in a similar way to the
Add -strategy. This behavior cannot be obtained by only
modifying existing prototypes with the Lvq-strategy.

3 Data used in the experiments

3.1 Data collection setup

All the characters were collected with a pressure-
sensitive Wacom ArtPad II tablet attached to a Silicon
Graphics workstation. The resolution of the tablet is 100
lines per millimeter and the sampling rate is at maxi-
mum 205 data points per second. The loci of the pen
point movements consist of the x- and y-coordinates,
the pen’s pressure against the writing surface, and a
time stamp. The writing area was a rectangle of size
50mm × 20mm placed at the center of the tablet. The
characters were written one at a time. Writers were ad-
vised to use their natural handwriting style. All the data
were saved in UNIPEN format [14]. The essential details
of the databases are summarized in Table 1.

The first database (database 1) consists of charac-
ters which were written without any visual feedback: the
trace of the pen was shown neither on the tablet nor on
the screen. Therefore, the pressure level thresholding the
pen movements into either pen-up or pen-down move-
ments was set individually for each writer afterwards.
Some of the characters were written in alphabetical or-
der, but most of them were written according to the
dictation of a short story. The distribution of the classes
(a–z, A–Z, å, ä, ö, Å, Ä, Ö, 0–9, (,), /, +, −, %, $, @, !,
?, :, ., and ,) is somewhat similar to that of the Finnish
language. This means that some of the lower-case letters,
for example, ‘a’, ‘i’, ‘t’, and ‘n’, are overrepresented when
compared to upper-case letters and digits. However, at
least two samples of each class were collected from each
writer.

The rest of the databases (databases 2–4) were col-
lected with a program which showed the pen trace on the
screen and recognized the characters online. The mini-
mum writing pressure for showing the trace of the pen on
the screen and detecting pen-down movements was the
same for all writers. The characters were written in the
same random order by all subjects. The number of col-
lected samples was the same for all the character classes
(a-z, A-Z, å, ä, ö, Å, Ä, Ö, and 0-9). When a character
was misrecognized, the writer had to determine whether
the character was not properly written or whether the
error should be considered as a failure of the recognizer.
The user interface of the data collection program is illus-
trated in Fig. 2. Either of the two buttons in the bottom
of the window labeled ‘Writer Mistake’ and ‘Recognizer
Mistake’ was used after each misrecognition for indicat-
ing the type of the error. All the samples were checked
and those which were reported as the writer’s mistakes
or clearly incorrect were abandoned. None of the writers
of database 1 appeared in any of the databases 2–4.

Table 1. Summary of the databases used in the experiments

Data Subjects Left-handed Females Items
DB1 22 1 1 ∼ 10 400
DB2 8 2 5 ∼ 13 200
DB3 16 2 5 ∼ 21 200
DB4 8 0 5 ∼ 8 100

Fig. 2. The user interface of the data collection program

3.2 Preprocessing and normalization operations

Prior to clustering and matching, the characters were
preprocessed. The preprocessing operations are very sim-
ple as they were mainly used for choosing a suitable sam-
pling method and frequency. Characters were collected
with a system whose properties, such as the sampling
rate and resolution, are beyond the capabilities of the
existing hand-held devices. Therefore, it is important to
examine how sensitive the recognition method is to the
amount of data for each character.

The original data consisted of sample points equidis-
tant in time and the sampling rate was relatively high.
The sampling frequency was altered with operations
called Decimate(n) or Interpolate(n). Decimate(n) keeps
every (n+1)th data point and abandons the intermediate
ones. Interpolate(n) does just the opposite – it interpo-
lates n equally spaced points between every original data
point pair. The former operation reduces both the sam-
pling rate and the amount of information in the data.
The latter operation only increases the sampling rate as
the data points added do not contain any additional dy-
namic information and are slightly misplaced from the
actual smooth path of the pen. The data points can
be made spatially equidistant with the EvenlySpaced-
Points(d)-operation, where d is the requested distance
between the adjacent points.

In Fig. 3, the original and two preprocessed versions
of an example character are shown. It can be seen in the
figure that the original sampling rate is at least sufficient
because no peculiar corners appear when the adjacent
data points are connected with lines.

V. Vuori et al.: Experiments with adaptation strategies 155

a b c

Fig. 3a. An original character and its two preprocessed ver-
sions when b Decimate(2), and c EvenlySpacedPoints(60) has
been applied

The writers were allowed to write anywhere on the re-
stricted writing area. Therefore, the unknown character
and the prototypes must be moved to same location be-
fore they can be matched. This is carried out by moving
their center points to the origin of the coordinate sys-
tem. The normalization method MassCenter moves the
mass center of the character to the origin, and the nor-
malization method BoundingBoxCenter does the same
according to the center of the character’s bounding box.
The size variations in the characters are normalized with
an operator called MinMaxScaling which scales the size
of the character so that the length of the longer side of
the bounding box is set to 1 000 units while the aspect
ratio remains unchanged. TheMinMaxScaling-operation
was performed in all the experiments.

4 Experiments and their results

4.1 Selection of the dissimilarity measure,
normalization, and preprocessing operations

In the first experiments, the six dissimilarity measures
were compared with each other without any prototype
adaptation. The most suitable preprocessing and nor-
malization operations were selected separately for each
of them. These selections were based on the recognition
performance of the system. The initial prototype sets
were formed by using database 1 and the same dissimi-
larity measure, normalization, and preprocessing opera-
tions as in the recognition phase. As several parameter
values were tried for the preprocessing methods and all
the combinations of the preprocessing and normalization
methods were tested with each of the dissimilarity mea-
sures, only the lower-case letters and digits of database 2
were used as a test set. This way, the recognition task
was still challenging, and the experiments could be car-
ried out in a reasonable time.

The best recognition results and the corresponding
preprocessing methods are presented in Table 2. It can
be seen that Point-to-point distance yields the lowest to-
tal error percentage Etot. The best preprocessing method
seems to be Decimate(2) which abandons two data
points out of three and does not distort the dynamic in-
formation implicitly stored in the remaining data points.
MassCenter is a better normalization method for all
the dissimilarity measures. The implicit dynamic infor-
mation is evidently of paramount importance, as data

Table 2. The lowest error percentage for each dissimilarity
measure. The lower-case letters and digits of database 2 were
used as a test set

Dissimilarity measure Preprocessing Etot

Point-to-point Decimate(2) 15.93
Point-to-line none 17.07
Normalized point-to-point Decimate(1) 16.13
Normalized point-to-line Decimate(2) 17.07
Simple-area none 29.75
Kind-of-area(1,0) Decimate(2) 18.25

points distributed unevenly in space and the dissimi-
larity measure most sensitive to the point distribution
yield the lowest error rate. In addition, the dissimilar-
ity measure totally independent of the data point distri-
bution, namely Simple-area distance, was significantly
worse than the other measures. The fact that the most
suitable value for the parameter m of Kind-of-area dis-
tance is zero also emphasizes the importance of the data
point density.

4.2 Comparison of the adaptation strategies

After choosing the best combination of dissimilarity mea-
sure, preprocessing, and normalization operations, sev-
eral parameter values were tried for the adaptation
strategies. Once again, all the experiments were carried
out by using lower-case letters and digits. The initial
prototype set was the same as used in the previous ex-
periments. The characters of each writer in database 3
were recognized one by one and in the same order as
they were collected. The adaptation was performed after
each classification. The system was re-initialized for ev-
ery user. The parameter values which yielded the lowest
total error rates were selected. The recognition results
were verified with writers in database 4.

The selected parameter values are presented in Ta-
ble 3. The figures in the first four columns are the param-
eter values used for the adaptation strategies. The other
figures are various error percentages. Etot

des. and Etot
verif.

are the total error rates for all the characters of the de-
sign and verification set. Efinal

verif. is the error rate for the
last 200 characters of each writer. From Table 3 it can be
seen that all the adaptation strategies can improve the
recognition accuracy significantly. The adaptation strat-
egy Add yields the lowest total error. It reduces the total
error rate from 14% down to 3%. However, the size of
the prototype set increases considerably. The total error
obtained with the Hybrid -strategy is also quite good,
about 4%. The adaptation strategy Lvq is not sufficient
when used alone as it cannot learn writing styles which
are fundamentally different from those represented by
the initial prototypes. Nevertheless, it is quite useful in
combination with Add, as good recognition results can be
obtained by using the Hybrid -strategy which adds only
few new prototypes.

The probabilities that a new sample will be added to
the prototype set are illustrated in Fig. 4 for both Add -

156 V. Vuori et al.: Experiments with adaptation strategies

Table 3. Error percentages for the design set database 3
and the verification set database 4. Only lower-case letters
and digits have been recognized

Add Lvq Hybrid Inact. Etot
des. Etot

verif. Efinal
verif.

14.33 14.13 14.06
4 2.93 3.12 1.81

0.3 6.81 9.89 8.63
4 3,0 2.95 3.04 1.56

3,0.3 3.06 4.18 2.50
3,0.3 16,0 3.33 4.26 2.75

and Hybrid -strategies. The probabilities are average val-
ues for all the writers of the verification set and were
calculated by using a forwarded moving window of 100
samples. It can be seen from both plots that more pro-
totypes are added at the beginning of adaptation. In the
case of the Add -strategy, the initial probability is nearly
0.7 and at the end of the experiment it is still remarkably
high, approximately 0.15. For the Hybrid -strategy, the
initial probability is about 0.04 and the final probability
is less than 0.01. As a result, the final number of proto-
types with the Hybrid -strategy is only 2% higher than
the initial, whereas for strategy Add it is 66% higher.

It should be noted that the probabilities mentioned
above and shown in Fig. 4 are average values and there
are considerable variations between character classes and
writers. If the Add -strategy is applied and the user writes
certain characters, say, ‘0’ and ‘O’, in an identical way,
new prototypes will be added for these character classes
ad infinitum. On the other hand, for those character
classes in which the writer uses distinct styles, no new
prototypes will be added if there are already k proto-
types. At the end of the adaptation, the easily confused
character classes will be overrepresented. In the case of
the Hybrid -strategy, this problem is less likely to arise
as new prototypes will be added only until there is one
good prototype for each character class and writing style.
One way to avoid adding new prototypes and thereby in-
creasing the recognition time in vain, is to set an upper
limit for the number of prototypes per class.

The adaptation strategy Add applied together with
Inactivate works better than Add -strategy used alone for
the verification set. The effects of the Inactivate-strategy
seem to be more prominent for the last 200 characters
as the relative difference between the final error rates is
larger than between the total error rates. However, the
Inactivate-strategy is rarely used, in total, 40 times with
the Add - and 11 times with Hybrid -strategy, and it does
not really limit the size of the prototype set. This was
not a totally unexpected result as bad samples had been
removed from the databases.

4.3 Online experiments and nonadaptive simulations

In the collection of database 4, the Add(4)-strategy was
applied. This can be considered as a genuine online test
of that adaptation strategy. To evaluate the effects of the
adaptation, the characters were also recognized offline

0 50 100 150 200 250 300 350 400 450
0

0.2

0.4

0.6

Add−strategy

0 50 100 150 200 250 300 350 400 450
0

0.01

0.02

0.03

0.04

number of samples used in the adaptation

pr
ob

ab
ili

ty
 o

f n
ew

 p
ro

to
ty

pe

Hybrid−strategy

Fig. 4. Probability that new samples will be added to the
prototype set when adaptation strategies Add(4) and Hy-
brid(3,0.3) are used. These results have been obtained by av-
eraging the results for the eight writers of database 4. Only
lower-case letters and digits have been recognized. Notice
that the plots are scaled differently

with a nonadaptive system. These recognition results
are presented and analyzed next. As the results were ob-
tained with all the character classes, not only with digits
and lower-case letters, they cannot be directly compared
to the previous results. However, they give valuable in-
sight into the problems which emerge when there are
more classes. In addition, some of the classes, such as ‘l’
and ‘1’, ‘g’ and ‘9’, ‘S’ and ‘5’,‘O’ and ‘0’, are quite easily
confused even by humans when no contextual informa-
tion is available.

The following observations were made on the basis
of the experiments: (1) a low final error rate for the
adaptive experiment does not necessarily follow from a
good total error rate for the nonadaptive experiment.
The initial accuracy of the recognizer is determined by
the writer-independent prototype set. It is high for those
writers whose writing style is covered by the initial pro-
totype set. On the other hand, the benefits of the adap-
tation, and thus the final accuracy, depend on the con-
sistency and nature of the writing style. On the average,
adaptation was able to drop the error rate from 23%
down to 4.0%; (2) the initial rate of learning is high if
the initial accuracy is low; (3) the increase in the size of
the prototype set is more prominent if the final error rate
is high. Due to the adaptation, the average final number
of prototypes was 1.8-fold compared to the initial num-
ber; (4) the writers cannot change their writing styles
so that the characters would more closely resemble the
initial writer-independent prototypes and thus be bet-
ter recognized. On the contrary, the error percentage for
the last 200 characters was on the average slightly higher
than the total error rate for all characters.

Some interesting figures for both the true adaptive
and simulated nonadaptive data collections are shown
in Table 4. Etot,A and Etot,NA stand for the total error

V. Vuori et al.: Experiments with adaptation strategies 157

Table 4. Error percentages for the true collection of
database 4, in which adaptation strategy Add(4) has been
applied, and for the nonadaptive simulation

Writer Etot,A Etot,NA Efinal,A Efinal,NA

DB4:8 3.25 22.27 0.50 24.50
DB4:6 4.87 30.62 1.00 31.50
DB4:5 6.55 18.87 2.00 20.50
DB4:4 6.31 37.27 2.00 36.50
DB4:2 4.61 15.59 2.50 18.00
DB4:3 6.94 21.11 6.00 18.50
DB4:1 9.51 19.92 8.00 21.50
DB4:7 11.25 20.14 10.00 17.50
avg 6.66 23.19 4.00 23.56

Table 5. Percentages of different error types that occurred
during the true collection of database 4 in which adaptation
strategy Add(4) has been applied (TC), and in the nonadap-
tive simulation (SC)

Test Ed El Eu E1 E2 E3 E4

TC 4.10 7.74 6.46 2.97 1.28 0.42 2.00
SC 12.80 25.06 24.93 7.86 4.23 2.75 8.34

percentages of the true and simulated data collections,
respectively. Efinal,A and Efinal,NA are the error percent-
ages for the last 200 characters. It can be seen that the
variations between the writers are significant.

4.4 Analysis of typical errors

To obtain a deeper analysis of the recognition errors,
the characters were divided into three groups: lower- and
upper-case letters, and digits. The error rates shown in
Table 5 are denoted with superscript d, u, and l for the
digits, upper-, and lower-case letters, respectively. Ab-
breviations TC and SC stand for the true and simulated
collections of database 4. All the error percentages are
calculated over the whole test. Superscripts 1, 2, 3, and
4 correspond to different types of errors, namely: (1) a
confusion between the lower- and upper- case versions
of same letter; or (2) between a number and letter; or
(3) between lower- and upper-case versions of different
letters; and (4) all other mistakes.

From Table 5 it can be seen that, as a group, dig-
its are best recognised and lower-case letters are worst
recognized. The error probability for digits is naturally
the lowest as the group contains the least classes. The
relative proportions of misrecognitions in the three char-
acter groups (digits, lower-, and upper-case letters) were
roughly the same for the adaptive (22%, 42%, and 35%,
respectively) and nonadaptive (20%, 40%, and 40%, re-
spectively) experiments. Therefore, the initial prototypes
of the three character groups can be considered to be
equally representative.

In both the adaptive and nonadaptive experiments,
the 1-type error is the most probable of the errors in
which two character groups are confused. This was not
an unexpected result as many of the subjects used very

similar shapes but different sizes for the lower- and
upper-case versions of a letter and the size information
is lost due to MinMaxScaling-normalization. The follow-
ing character pairs were very prone to 1-type error in
the adaptive experiments: ‘s’ and ‘S’ (44 cases), ‘z’ and
‘Z’ (42), ‘c’ and ‘C’ (40), and ‘x’ and ‘X’ (36). The most
typical examples of the 2-type error were: ‘1’ and ‘I’ (11),
‘9’ and ‘g’ (11), ‘2’ and ‘Z’ (9), ‘1’ and ‘l’ (9), and ‘0’ and
‘O’ (8). The 3- and 4-type errors were more evenly dis-
tributed over the classes and thus typical errors cannot
be clearly pointed out. The character pairs mentioned
above for the adaptive experiments were also among the
most troublesome in the nonadaptive experiments. The
classification method and the adaptation strategy do not
seem to be sufficient for separating these pairs – there is
no sense in having and no gain in adding almost identical
prototypes for two different classes.

4.5 Experiments with separate prototype sets

The easiest and commonly used way to avoid confusions
between character groups is to demand that the user
explicitly specifies the group in which the input character
belongs. In such systems, the prototype sets of the groups
can be kept separated. For example, specific input areas
can be used for each character group. It is less convenient
for the user but can be, at least partially, justified by
the reduced error probability. In Tables 6 and 7, the
results for simulated adaptive (Add(4)) and nonadaptive
collections of database 4 are shown. It is now assumed
that the group of the character is known prior to its
recognition. All the notations have similar meanings as
in the previous tables. In this case also, subscript final
means that the error percentage is calculated for the last
200 samples of each writer.

The figures in Table 6 are the combined results of the
three character groups and they can be compared with
the figures in Table 4. It is evident that the use of sepa-
rate prototype sets for the character groups is beneficial:
the total error rate of the nonadaptive system drops from
23% to 9.8% and the final error rate of the adaptive sys-
tem drops from 4.0% to 0.63%. In addition, the final
number of prototypes is significantly lower: only 1.5-fold
the initial. Specific results for the character groups are
presented in Table 7.

The evolution of the error rate during the experi-
ments is illustrated in Fig. 5. The lower plot corresponds
to the adaptive test and the upper plot to the nonadap-
tive test. It can be seen from the lower plot that the error
rate improves quite steadily during the first 300 charac-
ters and then fluctuates between 0.5% and 2%. These
300 characters were collected in approximately 20 min.
Hence, on the average, a single character was prompted,
written, and processed, and if requested, the type of the
recognition error was declared in 4 s.

5 Conclusions

In this work, adaptation methods for a handwriting rec-
ognizer based on elastic matching have been studied.

158 V. Vuori et al.: Experiments with adaptation strategies

Table 6. Simulated collection of database 4 in which adapta-
tion strategy Add(4) and separate prototype sets for different
character groups have been used. The error percentages have
been calculated by combining the group-wise results

Eall
tot,A Eall

tot,NA Eall
final,A Eall

final,NA

2.16 9.83 0.63 10.69

Table 7. Simulated collections of database 4 in which adap-
tation strategy Add(4) and separate prototype sets have been
used. Error percentages for the three character groups are
shown individually

Ed
tot,A El

tot,A Eu
tot,A Ed

tot,NA El
tot,NA Eu

tot,NA

0.42 2.93 1.95 2.60 13.78 10.13

 100 200 300 400 500 600 700 800 900
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

number of characters used in adaptation

er
ro

r
ra

te

Fig. 5. Evolution of the error rate in the simulated collections
of database 4 in which three separate prototype sets have
been used for digits and lower- and upper-case letters. The
lower plot is obtained with adaptation strategy Add(4) and
the upper plot with a nonadaptive system

First, a writer-independent recognizer was constructed
by choosing the combination of preprocessing and nor-
malization methods and a dissimilarity measure most
suitable for a set of writers. The major conclusion made
in this phase of the work was that the implicit dynamic
information, which is contained in data points sampled
with a constant frequency, is beneficial. The recognition
accuracy improves if not only the shapes of the charac-
ters but also the implicit dynamic features, such as the
velocity and acceleration, of their generation are consid-
ered in the dissimilarity measure.

This is an interesting result, as explicit dynamic fea-
tures are often used only for character or stroke seg-
mentation and the data points are preprocessed so that
they become evenly spaced in the spatial domain. In our
experiments, the dissimilarity measure (Point-to-point)
and centering normalization (MassCenter) most sensi-
tive to the data point distribution were found to be bet-
ter than the dissimilarity measures and centering nor-
malization insensitive to the point density. These results
speak for the benefits of the implicit dynamic informa-
tion.

The main goal of the research was to study the adap-
tation of the system to the individual user. Several proto-
type set adaptation strategies were used for this. After
adaptation, a recognition accuracy high enough to be
acceptable for real-world applications was attained for
most of the writers. Due to the adaptation, the recog-
nition error rate for digits and upper- and lower-case
letters was reduced from 23% down to 4%. In addition,
when separate prototype sets were maintained for the
three character groups, the final error rate was less than
1%. It should be noticed, however, that the data used in
the experiments was collected from a fairly limited set of
subjects and the recognition results varied considerably
between the writers. In order to get more general results,
the experiments should be repeated with a large public
database.

An important phenomenon which can be observed in
the true online test of the adaptation strategy Add is the
user’s adaptation to the performance of the recognition
system. Instead of trying to improve the recognition re-
sults by themselves by writing more carefully and consis-
tently, some of the users tend to demand more and more
from the system as it learns and their writing styles be-
come less careful. In such cases, the users probably had
no other motivation than to get away from the tiresome
test as soon as possible. User adaptation might be quite
different in a more realistic experiment in which the user
has to perform some real tasks, for example, write a let-
ter, and the time consumed in the test directly depends
on the recognition accuracy. It would be very interesting
to test the recognition method and learn the users’ opin-
ions of it with a portable device and in realistic tasks. Be-
fore this, the supervision method of the learning process,
the user interface, all error situations, and the system’s
sensitivity to bad learning samples must be considered
more deeply. These are the topics of our recent work.

References

1. C. Frankish, R. Hull, and P. Morgan, “Recognition ac-
curacy and user acceptance of pen interfaces,” in Pro-
ceedings ACM CHI’95 Conference on Human Factors in
Computing Systems, 1995

2. I. Guyon and C. Warwick, “Joint EC-US survey of
the state-of-the-art in human language technology,”
http://www.cse.ogi.edu/CSLU/HLTsurvey.htm, 1996

3. U. Neisser and P. Weene, “A note on human recognition
of hand-printed characters,” Information and Control,
no. 3, pp. 191–196, 1960

4. M. Parizeau and R. Plamondon, “Machine vs humans
in a cursive script reading experiment without linguistic
knowledge,” in Proceedings of International Conference
on Pattern Recognition, 1994, vol. 2, pp. 93–98

5. E. Fix and J.L. Hodges, “Discriminatory analysis–
nonparametric discrimination: Consistency properties,”
Tech. Rep. Number 4, Project Number 21-49-004, USAF
School of Aviation Medicine, Randolph Field, Texas,
1951

6. P.E. Hart, “The condensed nearest neighbor rule,” IEEE
Transactions on Information Theory, vol. 14, no. 3, pp.
515–516, May 1968

V. Vuori et al.: Experiments with adaptation strategies 159

7. H. Arakawa, “On-line recognition of handwritten charac-
ters – alphanumerics, Hiragana, Katakana, Kanji,” Pat-
tern Recognition, vol. 16, no. 1, pp. 9–16, 1983

8. C.C. Tappert, “Speed, accuracy, and flexibility trade-offs
in on-line character recognition,” International Journal
of Pattern Recognition and Artificial Intelligence, vol. 5,
no. 1&2, pp. 79–95, 1991

9. D. Sankoff and J.B. Kruskal, Time warps, string edits,
and macromolecules: the theory and practice of sequence
comparison, Addison-Wesley, 1983

10. Vuokko Vuori, “Adaptation in on-line recognition of
handwriting,” M.S. thesis, Helsinki University of Tech-
nology, 1999

11. Jorma Laaksonen, Vuokko Vuori, Erkki Oja, and Jari
Kangas, “Adaptation of prototype sets in on-line recog-
nition of isolated handwritten Latin characters,” in Ad-
vances in Handwriting Recognition, Seong-Whan Lee,
Ed., pp. 489–497. World Scientific Publishing, 1999

12. Teuvo Kohonen, Self-Organizing Maps, vol. 30 of
Springer Series in Information Sciences, Springer-Verlag,
1997, Second Extended Edition

13. Jorma Laaksonen, Jarmo Hurri, Erkki Oja, and Jari
Kangas, “Comparison of adaptive strategies for on-line
character recognition,” in Proceedings of International
Conference on Artificial Neural Networks, 1998, pp. 245–
250

14. I. Guyon, L. Schomaker, R. Plamondon, M. Liberman,
and S. Janet, “Unipen project of on-line data exchange
and recognizer benchmark,” in Proceedings of Interna-
tional Conference on Pattern Recognition, 1994, pp. 29–
33

Vuokko Vuori received her
M.SC. degree in system analysis
and operation research from Hel-
sinki University of Technology,
Finland, in 1999. Currently, she
is a graduate student and working
as a researcher at the Laboratory
of Computer and Information Sci-
ence in the same university. Her
research interests are pattern
recognition and usability issues in
general, emphasis being on adap-
tive handwriting recognition
methods. MS Vuori is the secre-

tary of Pattern Recognition Society of Finland.

Jorma Laaksonen received his
D.Sc. degree in 1997 from Helsinki
University of Technology, Finland,
where he is presently Senior Re-
search Scientist at the Laboratory
of Computer and Information Sci-
ence. He is an author of several
journal and conference papers on
pattern recognition, statistical
classification, and neural networks.
His research interests are in con-
tent-based image retrieval and
recognition of handwriting.
Dr. Laaksonen is a founding mem-

ber of the SOM and LVQ Programming Teams, PicSOM De-
velopment Group, and a member of the International Asso-
ciation of Pattern Recognition (IAPR) Technical Committee
3: Neural Networks and Machine Learning.

Erkki Oja received his D.Sc. degree in 1977 from Helsin-
ki University of Technology, Finland, where he is present-
ly Professor of Computer Science and Director of the Neu-
ral Networks Research Centre. His research interests are in
the study of principal components, independent components,
self-organization, statistical pattern recognition, and apply-
ing artificial neural networks to computer vision and signal
processing. Dr. Oja is an IEEE Fellow, IAPR Fellow, and
President of the European Neural Network Society. He is
member of the editorial boards of several journals, includ-
ing “Neural Computation”, “IEEE Transactions on Neural
Networks”, and “Int. Journal of Pattern Recognition and Ar-
tificial Intelligence”.

Jari Kangas received his M.Sc.
degree in computer science from
Helsinki University of Technology,
Espoo, Finland, in 1988, and his
D.Sc. degree from the same uni-
versity in 1994. He is currently a
R&D manager and Principal Sci-
entist at Nokia China R&D Cen-
ter, Beijing, China. His research
interests are in pattern recognition
in general, emphasis being in meth-
ods and techniques to enhance the
User Interface functions of mobile
terminals by using, for example,

handwriting recognition, speech recognition and image anal-
ysis.

