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ABSTRACT. Many problems in artificial intelligence involve the searching of large trees of 
alternative possibilities for example, game-playing and theorem-proving. The problem of 
efficiently searching large trees is discussed. A new method called "dynamic ordering" is de- 
scribed, and the older minimax and Alpha-Beta procedures are described for comparison pur- 
poses. Performance figures are given for six variations of the game of kalah. A quantity called 
"depth ratio" is derived which is a measure of the efficiency of a search procedure. A theoretical 
limit of efficiency is calculated and it is shown experimentally that the dynamic ordering pro- 
cedure approaches that limit. 
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1.  I n t r o d u c t i o n  

Tree searching is a task  which must  be done in many different types of computer 

procedures. Game-playing [1, 3, 4, 11, 13, 15, 16], theorem-proving [7, 8, 19], and 

many other heuristic programs [8, 18. 19] must perform some kind of tree search. 

The efficiency of tree searching is crucial to  such procedures because tree searching 

is usually very  time-consuming. In  this paper we are concerned with techniques for 

reducing the effort required to search ,~ given tree. All the procedures described in 

this paper were wr i t ten  in Lisp 1.5 and run on tm I B M  7094 computer. 

As an example of a tree-searching problem, consider the game of checkers. Let  

us define P as the current  position of the game; P includes the location and identi ty 

of each man on the board  and an indication of whose turn  it is to move. The rules 

of the game permit  B different alternative moves from P. Each such move defines 

a new game position P~. We say t h a t  the successors of P are P1,  P~, • • " , P ,  • I n  

playing the game it is necessary to select one of these alternative possibilities. Bu t  

in order to make a wise choice, it is necessary to look several moves ahead. If  each 

successor of P~ also has B successors, then two moves ahead, there will be B 2 suc- 

cessors designated b y  P i , :  , P 1 . ~  , " ""  , P : . ,  , P 2 . ~  . ' " '  , P B . B  • In  general, looking 

D moves ahead we find B 9 positions, each one identified by  a D-tuple. This is 

assuming tha t  B remains constant.  I n  checkers, 10 is a typical value for B. Thus  in 

looking ahead six moves, we have one million positions to consider. A checker- 

playing procedure would assign a value to each one of the terminal positions by  

means of some evaluation function, back these values up to the D = 1 level by  

assuming tha t  each player will choose, ~t each node, tha t  move which is best for 

himself, and then select tha t  move which has the largest backed-up value. 

This work was performed at Lawrence Radiation Laboratory, Livermore, California, operated 
by the University of California for the Atomic Energy Commission. 
• Division of Computer Research and Technology. 
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Positions are usually evaluated by a value function which assigns ~ numer i ca l  

value to each position. We define VA,~.c to be the value of position PA.~  .c - A~ value 
function is usually a linear combination of features. For example, i n  c h e c k e r s  a 
simple evaluation polynomial might be two times the man a d v a n t a g e  p l u s  three 
times the king advantage, where "advantage" means the number ~ p l a y e r  has 
mirms the number his opponent has. If we assume a two-person, z e r o - s u m  game, 
then a large value is favorable to one player and unfavorable to t h e  o t h e r  player. 
We call the former player Max and the latter player Min. By c o n v e n t i o n ,  it is 

Max's turn to move at P, the top position of a tree. 
The value of a position determined by direct application of the v a l u e  funct ion 

is called the static value of the position. The backed-up value of a p o s i t i o n  is the 
value obtained by generating successors, evaluating them, and b a c k i n g  u p  a vMue 
by means of some backing-up function. 

There are several types of backing-up functions, but the minimax p r o c e d u r e  is 
the one most commonly used in game-playing programs. It is based o n  t h e  assump- 
tion that each player will choose that move which is most advan tageous  t o  himself. 
Thus, we back up the maximum successor value when it is Max's ~ u r n  t o  move 
(called a "Max  position") and the minimum successor vMue w h e n  i t  is Miffs 
turn to move (called a "Min position"). Although other types a r e  p o s s i b l e ,  ~ all 
the work described in this paper was done with a minimax back ing-up  procedure .  

The backing-up procedure may be applied recursively to back-up v a l u e s  from 
any depth. Thus, each position has a static value, a first backed-up v a l u e  d e r i v e d  from 
the static values of the immediate successors, a second backed-up v a l u e  derived 
from the static values of the successors of the successors, a third b a c k e d - u p  value, 
and so on. In principle one could back up Win/Lose/Draw values o n  t h e  complete 
game tree. Usually, of course, the tree is so large that it is not pract ica l  t o  r e a c h  the 
end, so we must stop at some depth called DMAX • 

The relationship between shallow and deep backed-up values of  ~ p o s i t i o n  is 
central to the tree-searching problem. The value function is i n t e n d e d  t o  predict 
which positions are most likely to lead to winning the game. D e e p e r  backed-up  
values are presumably more accurate than shallow ones. But we e x p e c t  t o  find a 
correlation between shallow and deep values. If the static value of P1 i s  l a r g e r  than 
the static value of P2, it is likely that backed-up values will also b e  l a r g e r  for P~ 
than for P~. The relation of shallow and deeper values for all ten  o f  t h e  depth-1 
positions in one version of the game of kMah is shown in Figure 1. (A. s i m i l a r  graph 
for a different version of kalah is shown in Figure 6.) 

The fact that shallow values predict deeper values suggests a w a y  t o  r e d u c e  the 
size of a large tree. For example, if the static value of one successor t o  a 1V~ax posi- 
tion is very low compared to the others, it is unlikely that deeper s e a r c h  w i l l  reveal 
a backed-up value that is higher than the others. Hence, it may save  t i m e  t o  "for- 
ward prune" the low-valued successor from the tree, that is, make n o  d e e p  search 
under it. However, all of the methods discussed in this paper operate w i t h o u t  forward 
pruning. Thus it is guaranteed that, for a given depth of search, one o f  t h e  highest 
vMued successors will be chosen. 

Since all of the tree-search programs described herein were t e s t e d  o n  kalah.  

The  M and N procedure [18] backs up some functi(m of the M highes t  va~lued  s u c c e s s o r s  of a 

Max posit ion and some funct ion of the N lowest valued successors  of a M i n  p o s i t i o n .  P re l imV 
nary  resul ts  indicate that  the M and N procedure is super ior  to minimax 
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| '  5 STARTING POSITION FOR 3HN-A-HOLE KALAH 

0, 1 HOLES OWNED BY MIN 1 

-~ L @ @ @ @ @ @  
~.~ 
> Min's Max'~ 
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.61 THE FIRST FEW MOVES OFA KALAH GAME 

-7 0 STARTING POSITION 0 333333 
333333 0 

P10 SIMPLE MOVE 333304 1 

-8 1 MAX STARTS WITH A 0 333334 

-9 2 MIN gETALIAT~S WITH A 2 500334 
} , I ~ ) ) GO-AGAIN MOVE 443304 t 

=I0 -- 2 3 4 5 b 
3 MAX MAKES A 2 500304 

PEPTH CAPTURE MOVE 054404 5 

FIG. 1. Value versus depth, 2-in-a-hole FiG. 2. An illustration of the rules of 
kalah. Values are given for the ten depth-1 kalah 
successors. Values at depth = 1 are static 

values. Others are backed-up values. 

brief description of the rules of the game is now given. The game is played with a 

number of stones and a number of holes. Each player owns one big hole, called a 

kalah, and six smaller holes. At the beginning of the game the kalahs are empty and 

there are N stones in each of the other holes. 
Figure 2 (top) shows the starting position for three-in-a-hole kalah. A player 

wins if he gets more than half the stones in his kalah. 
To make a move, a player first picks up all the stones in one of his holes: He then 

proceeds counterclockwise around the board, putting one stone in each hole, in- 

eluding his own kalah, but skipping his opponent's kalah until all the picked-up 

stones are gone. What  happens next depends on where the last stone lands. There 

arc three alternatives. If the last stone lands in the player's own kalah, he makes 

another move. This is called a "go-again." 
The second alternative is called a "capture." If the last stone lands in an empty 

hole owned by the player, and if the opponent's hole directly opposite contains at 

least one stone, then the player captures all the stones in the opponent's hole. The 

player places all the captured stones and his own last stone in his kalah, and the 

opponent moves next. The third alternative is the simplest case. If the last stoIm 
lands so that  neither a go-again nor  a capture occurs, then the opponent moves 

next. 
There are two conditions which end the game. If a player gets more than half of 

the stones in his kalah, the game is over and he is the winner. If all the holes owned 

by one player, say Min, become empty (even if it is not his turn to move), then all 

the stones remaining in Max's holes are put  in Max's kalah and the game is over. 

In either case the winner is the player who has more stones in his kalah at the end 

of the game. 
These rules are illustrated by several moves shown in Figure 2 (bottom).  
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TABLE I. MINIMAX RESULTS* 

No. stones per hole 

DMAX 

Av 

1 NBP 
Time 

2 NBP 
Time 

3 NBP 
Time 

4 NBP 
Time 

5 NBP 
Time 

6 NBP 
Time 

1 

10 
1 

98 
21 

676 
10 

4 , 3 8 0  
63 

19,168 
310! 

7 3 , 7 9 4  
1,046 

2 

1O 
1 

98 
2 

724 

1O 

5,512 
74 

41,014 
491 

295,296 
3,677 

3 4 

10 10 
1 1 

106 116 
2 2 

818 1,022 
11 12 

6,834 9,862 
141 106 

61,241 125,843 
673 1,369 

536,000t 1,090,836 
5,500t 11,211 

5 

10 
1 

108 
2 

1,055 
12 

6,727 
75 

44,695 
489 

292,196 
3,221 

6 

10 
1 

60 
2 

329 
8 

1,907 
45 

12,441 
236 

80,209 

1,155 

10 
1 

98 
2 

770 
10.5 

5,840 
84 

50,236 
595 

394,721 
4,302 

10 

10 

9.16 

8.74 

8.73 

8.58 

* N B P  = number  of bot tom positions; time is given in seconds; B = b ranch ing  factor. 
"~ Es t imated  (this problem would not run since it  needed more than  the avai lable  free storage). 

An obvious value function to use in this game is the number of stones in Max's 

kalah minus the number of stones in Min's kalah. This value function, called the 

kalah advantage, was used in all the programs described in this paper. 

Now we consider results obtained with the simplest kind of tree-searching pro- 

cedure, the simple minimax procedure. This method examines every possible suc- 

cessor down to D~aax. The positions at the bottom of the tree are evaluated and 
the results are backed up to the first level by the minimax backing-up procedure. 

The procedure moves to the first depth-1 position with the highest backed-up value. 

Table I gives search time and size of tree generated in terms of the number of posi- 

tions at the bottom of the tree (NBP).  Six different forms of kalah were tested to 

lend greater generality to conclusions. 

The number of stones in each hole at the start of the game was varied from one 
to six. This provides six similar but  distinctly different games on which to test the 

procedures. 

2. Alpha-Beta 

Alpha-Beta 2 is a tree-search procedure that  is faster than minimax but  still equiva- 

lent in the sense that both procedures will always choose the same depth-1 successor 

at best, and will assign the same value to it. Alpha-Beta is typically several orders 

of magnitude faster than minimax. I t  saves time by not searching certain branches 

of the tree. Under certain conditions the values of certain branches do not affect 

the value which is ultimately backed up to higher levels of the tree. Hence, there is 
no point in evaluating these branches. When the Alpha-Beta program detects these 

The Alpha-Beta  procedure was first used by Newell, Shaw, and Simon in 1958 (see [8], p. 56), 
bu t  was not  given a specific name. The procedure is discussed in more detail  by  Edwards and 

Har t  in [6]. 
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MAX 
POSITION 
DEPTH 0 

B A C K E D _ U ~ ~  

~. A4IN 

VALUES---~'-- 5 10 12 3 10 0 5 1 POSITLONS 
POSITIONS blOT X X X DEPTH 2 
EVALUATED DUE TO 
ALPHA CUTOFF 

FIG.  3. Example of Alpha-Beta pro- 
cedure, case of D~AX -- 2 

O:l 

D~2 

D~3 

b=4 

D=5 

D:6 

F I G .  4, 

a=10 a=lO 

¥:8 V=EI 

I)eep alpha cutoffs. X means cutoff. 

c o n d i t i o n s ,  it stops work on one b r a n c h  and skips to another. This event is called 

a n  a l p h a  or beta cutoff. 

T o  see how the Alpha-Beta  p r o g r a m  works, consider the example shown in Figure 

3 .  A l p h a - B e t a  starts  just  like the m i n i m a x  procedure by evaluating all the successors 

o f  P , .  The min imum of these s t a t i c  values  is then backed up to P, since P1 is a 

5~Iin position. The backed-up v a l u e  of  P, is alpha and has the value 5 in the ex- 

a m p l e .  

A l p h a  is a lower limit for the b a c k e d - u p  value of the top position, P. Since P i s a  

h / l a x  position, we back up the v a l u e  of  the largest valued successor of P. Since we 

h a v e  evaluated only one successor a~ this time, we do not know what the final 

v a l u e  of P will be, bu t  we do k n o w  t h a t  it will be 5 or larger. The  value of alpha 

m a y  change as the other successors a r e  evaluated, but  it can only increase, not de- 

c r e a s e .  

H a v i n g  evaluated P~,  the p r o c e d u r e  begins work on P2 • An alpha cutoff takes 

p l a c e  a t  P2.~ since V:,j = 3 is less t h a n  alpha. Since P.2 is a Min position, V~.~ is an 

u p p e r  limit for V2 • Since V2 is less t h a n  alpha, P: is definitely eliminated as candidate 

f o r  the  largest valued successor of P .  The re  is no point in evaluating the other suc- 

c e s s o r s  of P2 so the procedure b e g i n s  work  on P~ next. 

T h e  alpha cutoffs save the m a c h i n e  a good deal of time. In  the example shown in 

F i g u r e  3 there is an alpha cutoff ~ t  P2.J • which means that  the machine need not 

b o t h e r  to evaluate P2,2 or P~.~. A second  alpha cutoff occurs at P3,2, which elimi- 

n a t e s  P3~. Thus in this e x a m p l e  t he  Alpha-Beta program would evaluate only 

s i x  of the bottom-level  successors w h i l e  a minimax program would evaluate all nine. 

Al though the example is g iven f o r  a tree of only three levels, it is clear tha t  the 

p r o c e d u r e  will work just  the s a m e  be low any Max position. P~. a t  any depth in a 

l a r g e  tree, provided oniy tha t  t h e r e  are at  least two levels below P~.  If  there were 

m o r e  bevels below P~ .~ in the e x a m p l e  then  we could use the backed-up value of P~a 

i l l s t ead  of the static value. I f  t h e r e  are  more levels above P. then  we would back 

u p  the  final value of P. Moreover ,  i t  is possible to pass a value of alpha down f rom 

t h e  top  of a large tree. Thus an ~ l p h a  established at  depth 1 could be used to pro- 

d u c e  cutoffs at depths 2, 4, and  6. T h e s e  deep cutoffs are illustrated in Figure 4. 

A lpha  is defined b y  the values  o f  the  successors of a Max position (odd depths) 
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T A B L E  II .  ALPHA-I3ETA I~ESUL'rs* 

DMAX 

1 N B P  
Time 

2 N B P  
Time 

3 N B P  
Time 

4 N B P  
Time 

5 N B P  
Time 

6 N B P  
Time 

1 

10 
1 

70 
1.3 

~80 

6.9 

1,315 
29.0i 

4, [68 
tOl.1 

6, ~86 
182.9 

No. stones per hole A l p h a - B e t a ,  ~ f ln imax ,  
_ a v  ( D R  ~ a v  

. . . . . . . . .  ,~ 7 ~ ' )  ( D R  = 1.00) 

10 
0.42 

75 
1.2 

381 
6.1 

1,066 
24.5 

5,349 
134.0 

15,685 
471.5 

3 

10 
0.9: 

66 
1.3 

300 
6.1 

1,285 
34.7 

5,686 
142.6 

18,008 
848.3 

4 6 

10 10 1 0  10 

0.41 t 0 .43 1 1 

00 15 5 4  98 

1.3 0 .83 1 . 2  2 

275 68 2 7  6 770 
7.2 1.6 5 . 5  10.5 

1,237 131 0)46 5,840 
30.5 4 .7  2 3 . 4  84 

5,213 759 4 , 0 3 7  50,736 

137.1 14.7 9 8 . 3  595 

20,726 12,359 [ 2,989 1 2 , 7 7 5  394,721 
515.9 294.3]  75.6 3 6 4 . 8  4,302 

* NBP = number  of bo t tom posit ions;  t ime  is given in seconds. 

while alpha cutoffs occur among successors of a Min position ( e v e n  d e p t h s ) .  It is 

possible to define another variable, beta, which is established at e v e n  d e p t h s  and 

generates cutoffs at odd depths. The action of beta cutoffs is exac t l y  t h e  i n v e r s e  of 

that for alpha cutoffs. In fact, it is the usual practice of the author w h o  d i d  t h e  pro- 

gramming (Dixon) to write the functions in LISP which evaluate M a x  p o s i t i o n  and 

then have the computer automatically write the corresponding f u n c t i o n s  for  Min 

positions simply by interchanging Max and Min, alpha and beta, < a n d  > ,  a n d  so on. 

The results of applying an Alpha-Beta tree search to kaIah are g i v e n  i n  T a b l e  II. 

The effect of alpha and beta cutoffs is to make the tree grow more s l o w l y  w i t h  depth. 

Thus, the advantage of Alpha-Beta over minimax depends on d e p t h .  I t  is about 

twice as good at DMAX = 3 and about thirty times as good at  D M A x  --  6. This 

dependence on depth of tree-search procedures is typical. 
Hence, it would be convenient to have a depth-independent m e a s u r e  of  t h e  rela- 

tive efficiency of a tree-searching program. Such a measure is DR,  t h e  d e p t h  ratio, 

defined as 

DR - log N 
log NMM ' 

where N is the number of nodes at the bottom of the tree, and NMM is t h e  number 

of nodes at the bottom of the tree in a minimax search. DR is a n u m b e r  b e t w e e n  0 

and 1 and indicates the effective depth of a search procedure in c o m p a r i s o n  to the 

minimax procedure. For example, a DR = 0.667 would indicate t h  a t  t h e  program 

in question could search a tree to depth 6 with approximately as  m u c h  effort  as 

the minimax procedure would need to search to depth 4. Thus D R  ~- 1 f o r  simple 
minimax procedure. 

DR may be converted into relative tree size and an estimate of c o m p u t e r  rumfing 

time, thus: 

T N B (DR)D 
_ _  __ B ( D R - - 1 )  D, 

TMM ~ NMM B D 
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where NMM is the number of nodes and T~uat is the running time of our standard, 
the minimax procedure. 

The Alpha-Beta procedure has a DR of 0.733 at, DMax = 6. It is clear that the 
Alpha-Beta procedure is a substantial improvement in tree-searching technique. 

The Alpha-Beta procedure is equivalent to minimax in the sense that the two 
procedures will always choose the same depth-1 successor as best and will always 
give the same value for that  successor. All the other procedures described in this 
paper have the same equivalence property with respect to the minimax procedure, 
except that some programs may choose another depth-1 successor of equal value. If 
several depth-1 successors have the same final value, and if that value is the maxi- 
mum depth-1 value, then the one which is first evaluated will be chosen as best. 
Samuel [16] refers to this as the "hazardless" property. 

3. Fixed Ordering 

The number of cutoffs generated by the Alpha-Beta procedure depends on the order 
in which the successors are evaluated. Consider Figure 3, for example. If the ma- 
chine had evaluated P~, then P3, then P , ,  alpha would have been 0, then 1, then 
5, and there would have been no alpha cutoffs at all. 

This fact suggests the possibility of improving the Alpha-Beta procedure by 
ordering successors of a position in order to generate a large number of alpha and 
beta cutoffs. 

This can in fact be done by ordering the successors by their static values. The 
largest valued successor of a Max position is put first and the reverse order is used 
for successors of a Min position. This procedure is based on the assumption that  
the static value of a position is positively correlated with the deeper, backed-up 
value of that position. 

This procedure is equivalent to the Alpha-Beta procedure except that it will 

sometimes choose a different depth-1 successor but one of equal value. Thus, if the 

order in which the successors are evaluated is changed, the program may choose a 

different one as best. 

The results of a fixed-order, Alpha-Beta program are shown in Table Ill. The 

same starting positions of kalah were used as before so that the data can be com- 

pared. Let us consider the typical case of five-in-a-hole kalah searched to DMAX = 6. 

Counting positions at the bottom, this tree has a full size of 292,196 by minimax 

search. Alpha-Beta needs to look at only 12,359 positions, while fixed ordering cuts 

the search down to only 2,515 positions. Thus, by this measure, the fixed-ordering 

program represents 'all improvement of two orders of magnitude over the simple 

minimax program. The depth ratio of the tree is 0.589 at DMAX = 6. 

It is obvious that the program does not run any faster if ordering is done at the 

bottom level of the tree, since this would only mean that the bottom positions are 

evaluated twice. However, it is not intuitively clear whether it is worthwhile to 

order at the next level above the bottom or not. The question of where to stop 

ordering was experimentally investigated by means of a parameter called SWD. 

SWD (SWitch Depth) is the number of levels above the bottom of the tree at which 

the program stops ordering and reverts to the plain Alpha-Beta procedure. Thus, 

SWD = 0 means that ordering takes place at all levels including the bottom, 

SWD = 1 means that the bottom level is not ordered, and so on. 
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TABLE i i i .  FiXED-ORDEi¢ING RESUL'rs* 

DMAX 

1 NBP 
Time 

2 NBP 
Time 

3 NBP 
Time 

4 NBP 
Time 

5 NBP 
Time 

6 NBP 
Time 

7 NBP 
T i m e  

8 N BP 
Time 

1 

t0 
0.44 

37 
1.2 

61 
2.7 

86 
4.4 

322 
12.3 

344 
17.8 

037 
40.6 

842 
67.6 

Fixed-ordering,t no. stones per hole 

2 3 

10 
0.42 

38 50 
1.2 1 .8  

83 174 
2.9 5.3 

94 433 
6.0 19.7 

741 1,482 
20.1 56.6 

831 3,521 
54.8 280.5 

3,064 
118.9 

2,269 11,073 
160.2 666.9 

4 5 

. . . .  i i ;  . . . . . . . . . . . . . . .  1 0  

0.43 0.4 

31 20 
1.3 1.2 

222 228 
5.7 5.4 

258 273 
16.8 13.6 

3,101 1,348 
64.3 37.8 

3,804 2,515 
254.6 107.9 

Fixed- 
ordering, av 

6 

10 10 
0.43 0.43 

15 32 
0.99 1.3 

66 137 
1.8 3.7 

106 208 
5.5 11.0 

496 1,246 
13.1 34.0 

976 1,998 
36.6 125.4 

Alpha- 
Beta, av 

10 

1 

54 
! 

1.2 

276 

5.5 

946 

23.4 

4,037 

98.3 

12,775 

364.8 

* NBP = number of bottom positions; time is given in seconds 

t DR = 0.589 at DMAX = 6. 

TABLE IV. SEARCH TIME VERSUS SWD 

3-in-a-hele kalah, DMAX = 4 

SWD slow ordering function) 

0 1 2 3 

Time, sec 55.8 25.0 22.4 29.1 
Number CONSes 135,504 58,821 50,389 65,753 

SWD (fast ordering fu,~clion) 

Time, see 22.8 18.3 19.4 28.0 
Number CONSes 53,396 41,134 43,188 62,881 

Expe r imen ta l  results showing the effect of S W D  oll computer  runn ing  t ime a r e  

shown  in Table  IV. Ea r ly  results showed tha t  S W D  = 2 was fastest.  Rumf ing  t i m e s  

fo rmed  a broad min imum with S W D  = 1 and S W D  = 3 being wi th in  abou t  3 0  

pe r c e n t  of the minimum. S W D  = 0 ran 50 to 100 percent  longer. " N u m b e r  C O N S e s ' "  

in Tab l e  IV refers to ti le number  of t imes the  Lisp funct ion C O N S  was c a l l e d .  

E a c h  call  to CONS consumes one word of compute r  memory  to crea te  new l i s t  

s t ruc tu re .  " C O N S "  is derived fl 'om "cons t ruc t . "  The  number  of C O N S e s  is o f t e n  ~t 

g o o d  measure of computer  effort. 

A t  a later time, the ordering function was r ewr i t t en  and made much  faster. R e s u l t s  

w i t h  the  new ordering function are also shown in Tab le  IV. S W D  = 1 was best t h i s  

t i m e  with  S W D  = 2 and S W D  = 3 close and S W D  = 0 much slower. So we ca  I l 

conc lude  tha t  the best  value for S W D  depends oll the speed of the  ordering f u n c t i o n  

in re la t ion  to the other  functions of the program. 
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4. Dynamic Ordering 

Ordering the successors o n  the basis of static values makes tree-searching go a good 

deal faster. But tile ordering obtained by static vMues is not always correct. As 

tile deep search progresses under a given position our state of knowledge about 

that position gradually improves and it becomes possible to make more and more 

accurate estimates of the true deep value of the position. Occasionally we discover 

that  our original estimate based on the static value was quite wrong and that  the 

position we have chosen to evaluate first will really have a very bad (low for suc- 

cessor of Max position) backed-up value. Intuition suggests that, if not too much 

work has already been done on the position, it might be wise to stop work, return 

the estimated bad vMue, reorder the positions, and make another choice for the first 
position to evaluate. Then later when the original position is evaluated, we have a 

targer value of alpha (or a lower value for beta) and will get a great many cutoffs 
which would otherwise have been missed. 

Consider the example shown in Figure 5. The list of numbers after "Fixed Order" 

shows the order in which the depth-2 positions would be evaluated by a fixed-order 

program. The X indicates that the position was not evaluated because of an alpha 

cutoff. 
The sequence of events in the dynamic case is as follows: First, the positions at 

depth 1 are ordered on the basis of their static values. The static values are P~ = 10, 

P2 = 9, and P3 = 6. The static value of P~ is called A. This value is important 

because P2 is ~he next choice in case the decision is made to reorder. Next, the ma- 

chine begins to evaluate P~. P~.~ is evaluated and the result ( -  1) is compared to 

,4 ( + 9 ) .  Since - 1  is a great deal lower than 9, the machine decides to abandon P~ 

and reorder. The new order isP2 = 9. P8 = 6, P~ = - 1 .  
Now A is set to 6 and P2 and is evaluated. P~,~ has thc value 5 which is less than 

A, but not very much less. The machine decides to continue with P~. P~,2 and 

P2.3 are evaluated and the Min value 5 is backed up to P~. Alpha is now assigned 

the value 5 and the rest of successors are evaluated by the Alpha-Beta procedure. 

An alpha cutoff occurs at P3.~, saving two depth-2 evaluations, and again at PE.~, 
saving another two evaluations. A total of six depth-2 positions are evaluated by 

the dynamic-ordering procedure. This compares with seven positions evaluated by 

the fixed-order procedure. 
The tree in Figure 5 has a maximum depth of only 3. This is the most shallow 

tree on which dynamic reordering can be used. On deeper trees the procedure is 

FIG. 5. 

. ~  DEPTH 0 

/ l \  STATIC 

DEPTH 1 

DEEP ~ ~ 
VALUES-...,~--~ 0 2 5 6 7 ~-~'="T'"*6"" DEPTH2 

FIXED 1 2 3 4 5 6 7 X X TOTAL 7 
ORDER 

DYNAMIC I 2 3 a 5 X X TOTAL 6 
ORDER 6 X X 

Comparison of fixed ordering and dynamic ordering 
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more complex. If the depth of the tree is 4 or more, then we can dynamical ly  reordei" 

the positions at level 3. Since these are the successors of a Min position, we a t tempt  
to explore the lowest valued position first. B is the name of the second best  (second 

lowest valued) position. The decision to reorder will be made if deeper search reveals 

that  the value of the best (lowest valued) position is probably going to  be too much 

larger than B. Thus the procedure for B cutoffs is analogous to that  for A cutoffs. 

The roles of "greater" and "less" are interchanged. The relation between A and B is 

just the same as the relation between alpha and beta. 
If the tree has a maximum depth of 5 or greater, then two or more A's  may  exist 

in the tree at the same time. One will be generated at depth 1 (A,) and another a t  
depth 3 (A3). The value of A below level 3 is the larger of A1 or As • An A cutoff 

below level 3 will cause reordering at level 1 if the returned value meets  cutoff 

criteria with respect to A1. Otherwise reordering will take place a~ level 3. If the 
tree has a maximum depth of 6 or greater then there will be two or more B's and 

an an•ogous procedure can be used to resolve conflicts between the several B's. 

The procedure is recursive so it can be used on trees of any depth and reordering 

can take place at any level except the bottom. 
This is called the A-B, Alpha-Beta procedure. B is the variable used to decide 

about reordering successors of a Min position. It should be noted tha t  A and B are 

always shallow or estimated values, while alpha and beta  are always deep vslues 

which have been backed up from the bottom of the tree. 
The decision to reorder is the crucial element in the success of the A-B, Alpha- 

Beta procedure. An early program, called deep A-B, made the reorder decision by 

comparing A or B with deep or backed-up values. Deep A-B proved to be slower 

than fixed-order Alpha-Beta. 
Too much time was invested in the first choice before the reorder decision was 

made. Another program, called SHALLOWAB, made the reorder decision by  com- 

paring A and B with shallow static values at each level while the p rogram was still 

working its way toward maximum depth. SHALLOWAB proved to be be t te r  thaxl 

ordered Alpha-Beta where parameters were properly adjusted. 
An important parameter of the A-B procedure is DELTA.  D E L T A  is the quant i ty  

which determines how stubborn the procedure is about reordering. Mo re  exactly, 

reordering takes place if the current estimated value of the first Choice is less tharl 

A - DELTA or greater than B ~ DELTA. Intuitively, we would expect  tha t  with 

a large enough DELTA, the procedure would never reorder and would run  just the 

same as the fixed-order procedure. Conversely, with a small D ELTA ,  the prograra 

would be slowed by an excessive number of reorderings. This is, in fact,  w h a t  hap- 

pens. Typical results are shown in Table V. NVAL in Table V is the  number  of 

times the value function is called. NVAL is a measure of the size of the  tree, but i t  

is larger than NBP. Time in Table V is given in seconds. NCONS is the  number of 

times the Lisp function CONS is called. NREO is the number of reorderings which 

occur. 
I t  is evident that DELTA must be carefully chosen if SHALLOWAB is to  be more 

efficient than the fixed-order program. The running times and tree size of SHAL- 

LOWAB are shown in Table VI. SHALLOWAB produces a tree tha t  is typically 10 

percent smaller than ordered Alpha-Beta and has a D R of 0.582. This  advantage 

tends to increase with depth. Epsilon, shown in Table VI, is discussed next. 

Since the SHALLOWAB program makes reordering decisions by  comparing 
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TABLE V. EFFECTS OF DI~LTA ON SHALLOWAB PROGRAM 

199 

2-in-a-hole kalah, DM,tX ~ 5 3-in-a-hale halah,  D M A X  = 5 

DELTA NVAL Time, N C O N S  NREO NVAL Time,see 
$ec 

NCONS NREO 

0 1,915 55.6 128,015 150 2,204 76.1 173,754 143 
1 1,395 40.1 94,058 89 1,700 60.0 135,361 86 
2 1,242 35.8 81,635 54 2,401 82.6 186,575 68 
3 1,437 37.2 85,229 34 2,513 83.3 186,617 41 
4 1,121 28.3 65,329 20 2,620 84.2 189,085 29 
5 797 20.4 46,652 3 2,689 83.7 186,950 19 
6 996 20.2 47,192 6 2,730 76.2 176,351 3 
7 1,006 20.1 47,292 0 2,789 76.8 179,367 0 
8 1,015 20.3 47,381 0 2,810 77.6 179,577 0 

TABLE VI. SHALLOWAB RESULTS* 

SHALLOWAB,t No. stones per hole 

DMAX 

1 NBP 
Time 

2 NBP 
Time 

3 NBP 
Time 

4 NBP 
Time 

5 NBP 
Time 

6 NBP 
Time 

7 NBP 
Time 

8 NBP 
Time 

1 

10 
0.43 

37 
1.2 

61 
3.6 

86 
7.0 

322 
20.3 

319 
30.6 

968 
66.3 

z 

10 
0.43 

38 
1.7 

83 
4.0 

94 
9.0 

608 
26.9 

588 
64.8 

2,059 
158.4 

3 

10 
0.41 

50 
1.3 

146 
5.9 

360 
23.5 

1,637 
94.0 

2,664 
275.5 

4 

10 
0.42 

31 
2.0 

282 
8.6 

547 
32.7 

2,695 
126.0 

4,665 
430.0 

5 

10 
0.52 

20 
1.3 

.94 
5.8 

L50 
14.4 

T85 
35.9 

i20 
89.2 

6 

10 
0.43 

15 
1.0 

68 
2.4 

99 
7.1 

476 
18.0 

1,675 
80.9 

SHAL- Fixed- 
LOWAB, order, av 

av 

10 10 
0.44 0.43 

32 32 
1.4 1 .3  

139 137 
5.0 3.7 

2O6 208 
15.6 11.0 

1,087 1,246 
53.5 34.0 

1,838 1,998 
161.3 125.4 

* NBP = number of bottom positions; t i m e  is given in seconds. 
t SWD = 1; SWDD = 1; DELTA = 5; E P S I L O N  = 1.5; DR = 0.582 at D~Ax = 6. 

values derived at  different depths,  i t  i s  n a t u r a l  to ask if such values are really com- 

parable. Figure 6 (a )  shows t h a t  t h e y  a r e  not.  There  is a pronounced rhythmic rise 

and fall of the va lue -versus -dep th  f u n c t i o n .  This  is caused by  the fact tha t  each 

player has a t e m p o r a r y  a d v a n t a g e  w h e n  i t  is his t u r n  to move. This  causes values 

from even depths  to be an  average of 1 .5  smal ler  t han  values from odd depths. Thus ,  

values obtained f rom even  depths  w o u l d  t e n d  to cause too m a n y  A-type  reorderings, 

whereas values ob ta ined  f rom odd  d e p t h s  would tend to cause too many  B- type  

reorderings. However,  the effect c a n  b e  canceled by adding 1.5 to the value of all 

even depth positions. The  results  of a d d i n g  this constant ,  called epsilon, are shown 

in Figure 6 (b ) .  

Many var ia t ions  of S H A L L O W A B  were  tested in  a t tempts  to improve its per- 
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(a) Value versus depth, 4-in-a-hole kalah 

TABLE VII. 

J .  R. S L A G L E  ANJT~ 5 .  I-,C. D I X O N  

7 I I I 

6 t  ~ 

5 

4 

3 

2 

I 

0 

"e 
I _ _ . - - L -  

DEPTH 

(b) Value plus epsilon v e r s u s  d e p t h ,  4 - i n -  
a-hole k a l a h  

SAVELIST RESULTS* 

DMAX 

1 NBP 
Time 

2 NBP 
Time 

3 NBP 
Time 

4 NBP 
Time 

5 NBP 
Time 

6 NBP 
Time 

1 

10 
0.4: 

37 
1.2 

61 
2.7 

86 
4.9 

320 
14.2 

300 
21.3 

S A V E L I S T A  No. stones per ~le 

2 3 

10 l0 
0.43 0.42 

38 50 
1.7 1.3 

83 146 
2.5 5.3 

94 353 5~32. 6 
7.1 18.3 

595 1,254 2,294 
23.7 66.6 100.9 

492 2 ,0455  4,179 
52.5 195.0~ 

4 

10 
0.42 

31 
2.0 

282 
6.7 

22.6 

94 
00.9 

79 
334.3 

5 

10 
0.52 

20 
1.3 

194 
5.1 

150 
11.4 

785 
25.9 

1,119 
69.9 

.43 
10 

15 t 
1.0 

68 
1.8 

99 
5.1 

476 
13.0 

1,675 
61.2 

S A V E L I S T ,  
av 

2;~ixed-order~ 

10 10 
0 . 4 4  O .43 

32 32 
1 . 4  1 . 3  

139 13'7 
4 .O 3 . 7  

221 208 
1 1 . 6  11 .0  

954 1 , 2 4 6  
4 0 . 7  3 4 . 0  

1,625 1 , 9 9 8  
1 2 2 . 3  [ 125 .4  

I 

* NBP = immber of bottom positions; time is given in seconds. 
t DELTA = 4; SWD = 1; SWDD = 1; DR = 0.572 at DMAX = 6. 

Estimated by extrapolation since this problem would not fil into memory. 

formance. The one variat ion which proved most efficient is a p r o g r a m  c a l l e d  S A V E -  

LIST. When this program decides to reorder, it saves the  tree w h i c h  h a s  ~ l r e a d y  

been generated in the form of a list. Thus  it never has to generate  a n y  p o s i t i o n  t w i c e .  

Typical SAVELIST results are shown in Table  VII .  I t  is a b o u t  2 0  p e r c e n t  m o r e  

efficient than  the fixed-order program, and has a D R  of 0.572. 

Tables VI and VII  refer to the parameter  SWDD.  This p a r a m e t e r  i s  t h e  n u m b e r  

of levels at  which reordering is inhibited, so tha t  only  fixed o r d e r i n g  t a k e s  p l a c e .  

The opt imum value for this parameter  was found to be 1. Thus ,  in a t r e e  o f  d e p t h  6, 
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d y n a m i c  ordering takes place at t h e  top four levels, fixed ordering at depth 5, and 

s i m p l e  Alpha-Beta with no order ing at depth 6. 

I t  can be concluded that  dynamic  ordering represents a modest improvement over 

f i x e d  ordering. 

5.  Perfect Ordering 

t ) e r h a p s  ~he reason that  dynamic order ing  produced so modest an improvement is 

t h a t  the ordering of tile successors is already nearly perfect. Theoretical analysis 

s h o w s  that if the ordering is p e r f e c t  so that  every possible alpha or beta cutoff 

a c t u a l l y  occurs, the tree would g r o w  at  ~bout the one-half power of its usual rate. 

.SCIore exactly: 

THEOREM 1. I f  perfect ordering is achieved at every level, so that every possible 

a l p h a  or beta cutoff occurs, then the number  of positions at the bottom of the tree of depth 

D and  constant branching factor B is: 

ND = 2B D/2 --  1 for D even, 

ND = B (D+~)I2 + B (D-1)j~ - 1 for D odd. 

T h i s  theorem is attr ibuted to Michae l  Levin in [6]. I t  is illustrated in Figure 7. 

i p roof  of the theorem is now g iven  since, to the authors' knowledge, no proof has 
b e e n  previously published. 

PROOF. Let  us call the number  of positions to be evaluated N .  where D is the 

m a x i m u m  depth of the tree. Figure  7 is an aid to following this proof. I t  is convenient 

t o  count  ND in two parts. Those u n d e r  P~ we call XD. The others we call Y , .  Thus 
b y  definition, 

ND = X D +  Y , .  (1) 

T h e  first alpha cutoffs occur a t  D = 2. There are no cutoffs in the X part so 

X~ = B. (2) 

T h e  X part  of the search es tabl ishes  an optimum value for alpha, so in the Y 

p a r t  all possible alpha cutoffs will be  at tained.  At D = 2 we need to evaluate only 
o n e  successor to each position at  t h e  D = 1 level. Thus, 

D=0 

D=I 

D=2 

D=3 

D=4 

X I Y 
I 

I 

FiG.  7. Alpha and beta cutoffs in a te rnary  tree which is perfectly ordered. * means cutoff. 
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Y2 = B - 1, 

N2 = X,2-+- Y2 = B + B -  1 = 2 B -  1, 

(3) 

(4) 

Now the theorem for D = 2 is established. Next we prove the t h e o r e m  for nit 

D > 2 by induction. But  first, some lemmas are needed. 
LEMMA 1. The Alpha-Beta search under P1 to depth D must evaluate the same 

number of positions as a search to depth D - 1 under P. 

The lemma is true by symmetry.  The search under P~ is the same as  t h e  search 

under P except that  Max positions are exchanged for Min positions. A l p h a  and 

beta start  at their initial values in both cases. The Alpha-Beta a l g o r i t h m  is sym- 

metrical with respect to Max and Min positions provided we assume t h a t  each set 

of successors is in perfect order (monotonic increasing for successors of a M a x  posy 

tion and monotonic decreasing for successors of a Min position). H e n c e  w e  have a 

recursive formula for the X part:  

X~ = N , _ i ,  D > 2. (5) 

Now we consider the Y part. 
LEMMA 2. Every possible alpha cutoff occurs in the Y part of the tree. 

The X part of the search under P1 establishes an op t imum value for  a lpha .  No 

other successor has a higher backed-up value. Because of the per fec t  order ing of 

successors at every level, an alpha cutoff will take place every t ime t h e  first  suc- 

cessor of a Min position is evaluated. 

LI~MMA 3. No beta cutoffs will take place in the Y part of the tree. 

In order to have a beta  cutoff, there must be at least two successors to  a Min 

position, but an alpha cutoff always occurs at the first successor. 

Lemma 2 implies that  every Min position in the Y part  of the t r e e  will have 

exactly one successor. If  D is odd and we increase D by one, we add  e x a c t l y  one 

successor to each Min position at the bot tom of the tree in ' the Y pa r t .  H e n c e ,  

YD = Y~-~ for D even. (6) 

Lemma 3 implies that  every Max position in the Y part  of the t ree wi l l  have  ex- 

actly B successors. Hence, if D is even and we increase D by one, we  m u s t  give B 

successors to each Max position at the bot tom of the tree. Thus, 

Y~ = BYD-1 for D odd. 

LEMMA 4. 

(7) 

YD = (B -- 1)B (D-:)/~ for D even, (8) 

Y~ = (B - 1)B (D-1)/~ for D odd. (9)  

We prove this lemma by induction. Assume (8) holds for D - 1. D wi l l  beodd 

in this case. Replacing D by D - 1 in (8) we get 

Y,-1 = ( B -  1)B (D-3)z~ for D odd. (10) 

By (7) we have 

YD = BYD-, = (B - 1)B (D-1)/~ for D odd. (11) 
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This shows that  (9) follows from (8). Now we show that  (8) follows from (9). 
Replacing D with D - 1 in (9) we get 

Yo-i = ( B -  1)B (D-~)/2 for D even. 

Applying (6), 

(12) 

YD = Yo-1 = ( B -  1)B ("-2)/2 for D even. (13) 

Since we have already shown tha t  the lemma is correct for D = 2 in eq. (3), this 
concludes the proof of Lemma  4. 

Now we must  add in the X par t  and prove the main theorem by induction. First 
we show that  the expression for odd D follows from the equation for even D. Re- 
placing D by D - 1 in the expression for even D we get 

N ~ - i  = 2B  (D-1)/~ - 1 for D odd. (14) 

Applying (5) we get 

X ~  = No_j  = 2B (D-1)/2 - 1 for D odd. (15) 

Substituting (9) and (15) in (1) we get 

N ,  = 2 B  (D-1)/2 -q- ( B  - -  1 ) B  (D-1)/2 - 1 for D odd; (16)  

simplifying, 

ND = B (D+1)/2 q- B (D-1)/~ - 1 for D odd. (17) 

Equation (17) agrees with the theorem. Now we show that  the even part  of the 
theorem follows from the odd part.  Replacing D with D - 1 in (17) we get 

ND-1 = B (D)/2 + B (D-~)/2 - 1 for D even. (18) 

Applying (5) we get 

X D  = N D - 1  "~ B ¢D)/2 -q- B (9-2)/2 - 1 for D even. (19) 

Substituting (19) and  (8) in (1) we get 

N v  = B (D)/2 -k B (D-2)/2 - 1 --f- (B - 1)B (D-2)/2 for D even. (20) 

Simplifying we get 

ND = 2B D / 2 -  1 for D e v e n ,  (21) 

which agrees with the even par t  of the theorem. Since we have already established 

the theorem for D = 2 in eq. (4), this eompletes the proof of the theorem. 

The first few ND'S given by these formulas are: 

No cutoff 

N2 2 B  - 1 Bz 

N~ B 2 5- B - 1 B 3 

N4 2 B  2 - 1 B 4 

N~ B ~ h" B 2 1 B 5 

N~ 2 B  ~ 1 B e 

Note that  the rate of growth with respect to depth is not uniform. For D even, 
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N D - 1  

For D odd, 

2B N -- 1 2B N 

B N + B .~'-1 - 1 - - -B  u + B N-1 

N £  = B "~v + B u-I - 1 1 B + 1 
N ~ _ i  2 B  N-z - 1 ~ 2 2" 

Thus in the limiting case of large B, the size of the tree increases by the factor 2 

from odd to even depths and by the factor B/2  from even to odd depths. 

Now let, us consider the theoretical advantage of Alpha-Beta over minimax, in 

the case where we get every possible cutoff. For even D, 

1 L N , ( N )  1 DRpo = ~ = ~ L N , ( 2 B  D/2 -- 1); 

.~ 1 LN,(2B~/2)  1 1 DR,,o c.._ 1,) = D LN~(B~'/'2) + I)  LNB 2; 

1 1 • • 

DR,,o ~ ,~ + 1) LNi~ 2. 

For the typical cases, B = 10, D = 6, a n d D  = 4, 

1 1 1 1 
DRpo -~- ~ -t- ~ LNlo 2 = ~ + ~ 0.301 ~ 0.5 + 0.05; 

D R v o ~ 0 . 5 5  for D = 6; 

DRpo-.~'-~().575 for D = 4. 

The DR = 0.572 of the SAVELIST procedure at D M A  x = 6 is quite close to the 
theoretical lirnit of 0.550. 

To confirm the hypothesis that tile limit of perfect ordering was being approached, 

a program was written which artificially put the successors at every level into per- 

fect order. This program is very slow but it does determine the  size of a tree which 
is perfectly ordered at every level. The results are shown in Table VI I I .  

6. Comparison With Other Procedures 

We now discuss some other efficient tree-searching procedures which have been 

proposed and compare them with the A - B  procedure. We consider five procedures, 
proposed by Amarel [2], Doran and Michie [5], Nilsson [14], Slagle and Bursky [20], 

and Samuel [10]. All these procedures have some form of what Amarel calls "atten- 

tion control." They periodically reconsider the part ly searched tree to decide where 

to work next. Thus they make immediate use of the information gained from the 

expansion of a node in an at tempt to keep the procedure working on that  part  of the 
tree which appears to be most promising at any time. 

Samuel's procedure [16] is the one most similar to A-B.  The mMn difference is 

that Samuel makes reorder decisions only ~t even depths; thus it is like one-half of 

the A-B procedure. I t  generates A cutoffs but no B cutoffs. Samuel's procedure uses 
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TABLE VII.I. PmtFECT ORDERING COMPARED WITH OTHER PROGRAMS 
Figures giver~ are numbers of nodes at the bottom of the tree (NBP). 
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SHA L- Perfect-order 
Stones Fixed- LOWA B, ~A VELIST  

per hole Minimax Alpha-Beta order, S W D  = 1, SWD = 1,' 
S W D  ~ 1 S W D D  = 1, S W D D  ~ 1, SWD S W D  

DELTA ~ 5  D E L T A  = 4  = 1 = 0  

-iU)~Ax = 2 1 98 70 37 37 37 37 17 

2 98 75 38 38 38 38 17 

3 106 66 50 50 50 37 19 

4 116 60 31 31 31 31 19 

5 108 37 20 20 20 20 19 

6 60 15 15 15 15 15 15 

arOmA x = 3 1 676 380 61 61 61 61 61 

2 724 381 83 83 83 83 74 

3 818 300 174 146 226 156 117 
4 1,022 275 222 282 114 157 118 

5 1,055 253 228 194 181 147 111 

6 329 68 66 68 76 76 72 

-D~AX = 4 1 4,380 1,318 86 86 90 111 101 

2 5,512 1,066 94 94 100 100 100 

3 6,834 1,285 433 360 346 220 196 

4 9,682 1,237 258 547 192 263 224 

5 6,727 639 273 150 223 221 151 

6 1,907 131 106 99 110 103 110 

D m A x  = 5 1 19,168 4,168 322 322 320 90 

2 41,014 5,349 741 608 595 100 

3 61,241 5,686 1,482 1,637 1,254 229 
4 125,843 5,213 3,101 2,695 2,294 227 
5 44,695 3,049 1,348 785 785 156 

6 12,441 759 496 476 476 519 

delta of zero, so presumably it does more flitting about than the A-B procedure. 
Samue l  also uses two types of forward pruning. 

The other four tree-search routines are intended for general problem-solving 
r a t h e r  than just game-playing. They search the tree to find an answer rather than 
searching to a fixed depth. They can, of course, be adapted to game-playing with 
s l igh t  modification. 

All these routines make an estimate of the difficulty of solving each node and 
t h e n  back up these estimates, taking account of parallel problems, to the top of 
t~he tree. It is then possible to descend the tree, choosing the most meritorious 
successor at each fork, eventually arriving at the most meritorious unexpanded 
za~de. The Amarel procedure includes work already done from the top of the tree 
i n  the estimate of the difficulty of solving each node. Thus the Amarel procedure is 
ixltended to find the shortest proof rather than the one which can be most quickly 
found.  One version of Doran and Michie's graph traverser also has this feature. 

In backing up the estimates of difficulty, most of the procedures take account of 
parallel problems at either conjunctive nodes or disjunctive nodes. Doran and 
:SAichie's graph traverser, however, can handle only disjunctive nodes. Slagle's 
2~¢IULTIPLE procedure is the most general since it can handle an arbitrary Boolean 
:function at each node. 
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Cutoffs take a different form in these procedures since they search  f o r  ~ s o l u t i o n  

wherever it may appear rather than searching the tree to a fixed d e p t h -  ~ ' h e  a l p h a  

or beta cutoff does not occur. Cutoffs do occur in the sense tha t  u n p r o i r l i s i n g  n o d e s  

are not expanded; however, these are always tentative cutoffs, while a l p h a  a n d  b e t a  

cutoffs are permanent. The sharp distinction between forward a n d  b , ~ e k w a r d  

pruning also disappears in most of these procedures. Certain v e r s i o n s  o f  A m a r e l ' s  

procedure and Doran and Michie's procedure use operator  s e l e c t i o n  r u l e s  w h i c h  

have the irrevocable character of forward pruning. 
In  general, the relationship of the A-B  procedure to these o t h e r  p r o c e d u r e s  is 

tha t  A-B is similar in general concept but  specialized for the task of  g n o m e - p l a y i n g .  

A-B  is also a simplification of most of these procedures since A - B  d o e s  n o t  e s t i m a t e  

the effort required to expand a node nor is any consideration g i v e n  t o  t h e  s i z e  of 

parallel portions of the tree. 

7. Conclusions 

Several fast tree-searching procedures have been described. These h a l v e  b e e n  t e s t e d  

on six different variations of the game kalah. The  fixed-ordering p r o g r a m  i s  m u c h  

faster than  the Alpha-Beta or minimax programs. The  d y n a m i c - o r d e r i n g  p r o g r a m s  

are only slightly faster than fixed ordering because the limit of p e r f e c t  o r d e r i n g  is 

being approached. The parameters used in these search rout ines m u s t  b e  a d j u s t e d  

for best results and opt imum values will depend on relative speeds  o f  t h e  v a r i o u s  

parts  of the program. 
Future efforts to produce faster tree-searching routines by  i n c r e a s i n g  t h e  n u m b e r  

of alpha and beta cutoffs through improved ordering and reordering p r o c e d u r e s  are 

not likely to yield substantial improvements for the game of ka lah ,  s i n c e  t h e  l imit  

of perfect ordering is now being approached. 
The Alpha-Beta procedure produces a worthwhile i m p r o v e m e n t  i n  s e~ t r ch ing  

efficiency at depths of 2 or more. The fixed-order procedure p r o d u c e s  a~ w o r t ~ h w h i l e  

improvement  at  depths of 4 or more. Dynamic ordering becomes  w o r t h w h i l e  a~ 

depths of 6 or more. Hence, we can conclude that  the more complex  p r o c e d u r e s  are 

more useful for deeper trees. 
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