
Experiments With Some Programs That Search

Game Trees

J A M E S R. S L A G L E AND J O H N K. D I X O N

National Institutes of Health,* Bethesda, Maryland

ABSTRACT. Many problems in artificial intelligence involve the searching of large trees of
alternative possibilities for example, game-playing and theorem-proving. The problem of
efficiently searching large trees is discussed. A new method called "dynamic ordering" is de-
scribed, and the older minimax and Alpha-Beta procedures are described for comparison pur-
poses. Performance figures are given for six variations of the game of kalah. A quantity called
"depth ratio" is derived which is a measure of the efficiency of a search procedure. A theoretical
limit of efficiency is calculated and it is shown experimentally that the dynamic ordering pro-
cedure approaches that limit.

K E Y W O R D S A N D P H R A S E S : artificial intelligence, heuristic procedures, game-playing, kalah,
problem-solving, tree searching, Alpha-Beta procedure

CR CATEGORIES: 3.64

1. I n t r o d u c t i o n

Tree searching is a task which must be done in many different types of computer

procedures. Game-playing [1, 3, 4, 11, 13, 15, 16], theorem-proving [7, 8, 19], and

many other heuristic programs [8, 18. 19] must perform some kind of tree search.

The efficiency of tree searching is crucial to such procedures because tree searching

is usually very time-consuming. In this paper we are concerned with techniques for

reducing the effort required to search ,~ given tree. All the procedures described in

this paper were wr i t ten in Lisp 1.5 and run on tm I B M 7094 computer.

As an example of a tree-searching problem, consider the game of checkers. Let

us define P as the current position of the game; P includes the location and identi ty

of each man on the board and an indication of whose turn it is to move. The rules

of the game permit B different alternative moves from P. Each such move defines

a new game position P~. We say t h a t the successors of P are P1, P~, • • " , P , • I n

playing the game it is necessary to select one of these alternative possibilities. Bu t

in order to make a wise choice, it is necessary to look several moves ahead. If each

successor of P~ also has B successors, then two moves ahead, there will be B 2 suc-

cessors designated b y P i , : , P 1 . ~ , " "" , P : . , , P 2 . ~ . ' " ' , P B . B • In general, looking

D moves ahead we find B 9 positions, each one identified by a D-tuple. This is

assuming tha t B remains constant. I n checkers, 10 is a typical value for B. Thus in

looking ahead six moves, we have one million positions to consider. A checker-

playing procedure would assign a value to each one of the terminal positions by

means of some evaluation function, back these values up to the D = 1 level by

assuming tha t each player will choose, ~t each node, tha t move which is best for

himself, and then select tha t move which has the largest backed-up value.

This work was performed at Lawrence Radiation Laboratory, Livermore, California, operated
by the University of California for the Atomic Energy Commission.
• Division of Computer Research and Technology.

Journal of the Association for Computing Machinery, Vol. lfi, No. 9, April 1969, pp, 189-207.

190 J . R . SLAGLE ANllD J " ~ ° DIXON

Positions are usually evaluated by a value function which assigns ~ numer i ca l

value to each position. We define VA,~.c to be the value of position PA.~ .c - A~ value
function is usually a linear combination of features. For example, i n c h e c k e r s a
simple evaluation polynomial might be two times the man a d v a n t a g e p l u s three
times the king advantage, where "advantage" means the number ~ p l a y e r has
mirms the number his opponent has. If we assume a two-person, z e r o - s u m game,
then a large value is favorable to one player and unfavorable to t h e o t h e r player.
We call the former player Max and the latter player Min. By c o n v e n t i o n , it is

Max's turn to move at P, the top position of a tree.
The value of a position determined by direct application of the v a l u e funct ion

is called the static value of the position. The backed-up value of a p o s i t i o n is the
value obtained by generating successors, evaluating them, and b a c k i n g u p a vMue
by means of some backing-up function.

There are several types of backing-up functions, but the minimax p r o c e d u r e is
the one most commonly used in game-playing programs. It is based o n t h e assump-
tion that each player will choose that move which is most advan tageous t o himself.
Thus, we back up the maximum successor value when it is Max's ~ u r n t o move
(called a "Max position") and the minimum successor vMue w h e n i t is Miffs
turn to move (called a "Min position"). Although other types a r e p o s s i b l e , ~ all
the work described in this paper was done with a minimax back ing-up procedure .

The backing-up procedure may be applied recursively to back-up v a l u e s from
any depth. Thus, each position has a static value, a first backed-up v a l u e d e r i v e d from
the static values of the immediate successors, a second backed-up v a l u e derived
from the static values of the successors of the successors, a third b a c k e d - u p value,
and so on. In principle one could back up Win/Lose/Draw values o n t h e complete
game tree. Usually, of course, the tree is so large that it is not pract ica l t o r e a c h the
end, so we must stop at some depth called DMAX •

The relationship between shallow and deep backed-up values of ~ p o s i t i o n is
central to the tree-searching problem. The value function is i n t e n d e d t o predict
which positions are most likely to lead to winning the game. D e e p e r backed-up
values are presumably more accurate than shallow ones. But we e x p e c t t o find a
correlation between shallow and deep values. If the static value of P1 i s l a r g e r than
the static value of P2, it is likely that backed-up values will also b e l a r g e r for P~
than for P~. The relation of shallow and deeper values for all ten o f t h e depth-1
positions in one version of the game of kMah is shown in Figure 1. (A. s i m i l a r graph
for a different version of kalah is shown in Figure 6.)

The fact that shallow values predict deeper values suggests a w a y t o r e d u c e the
size of a large tree. For example, if the static value of one successor t o a 1V~ax posi-
tion is very low compared to the others, it is unlikely that deeper s e a r c h w i l l reveal
a backed-up value that is higher than the others. Hence, it may save t i m e t o "for-
ward prune" the low-valued successor from the tree, that is, make n o d e e p search
under it. However, all of the methods discussed in this paper operate w i t h o u t forward
pruning. Thus it is guaranteed that, for a given depth of search, one o f t h e highest
vMued successors will be chosen.

Since all of the tree-search programs described herein were t e s t e d o n kalah.

The M and N procedure [18] backs up some functi(m of the M highes t va~lued s u c c e s s o r s of a

Max posit ion and some funct ion of the N lowest valued successors of a M i n p o s i t i o n . P re l imV
nary resul ts indicate that the M and N procedure is super ior to minimax

Journal of the Association for Computing Machinery, Vol. 16, No. 2, April 1969

Experiments With Some Programs That Search Game Trees 191

| ' 5 STARTING POSITION FOR 3HN-A-HOLE KALAH

0, 1 HOLES OWNED BY MIN 1

-~ L @ @ @ @ @ @
~.~
> Min's Max'~

-3 KALAH " - J r ~ KALAH

_ I @ ® ® @ ® @ ' ,
I HOLES OWNED BY MAX [I

-s a - L_ i

.61 THE FIRST FEW MOVES OFA KALAH GAME

-7 0 STARTING POSITION 0 333333
333333 0

P10 SIMPLE MOVE 333304 1

-8 1 MAX STARTS WITH A 0 333334

-9 2 MIN gETALIAT~S WITH A 2 500334
} , I ~)) GO-AGAIN MOVE 443304 t

=I0 -- 2 3 4 5 b
3 MAX MAKES A 2 500304

PEPTH CAPTURE MOVE 054404 5

FIG. 1. Value versus depth, 2-in-a-hole FiG. 2. An illustration of the rules of
kalah. Values are given for the ten depth-1 kalah
successors. Values at depth = 1 are static

values. Others are backed-up values.

brief description of the rules of the game is now given. The game is played with a

number of stones and a number of holes. Each player owns one big hole, called a

kalah, and six smaller holes. At the beginning of the game the kalahs are empty and

there are N stones in each of the other holes.
Figure 2 (top) shows the starting position for three-in-a-hole kalah. A player

wins if he gets more than half the stones in his kalah.
To make a move, a player first picks up all the stones in one of his holes: He then

proceeds counterclockwise around the board, putting one stone in each hole, in-

eluding his own kalah, but skipping his opponent's kalah until all the picked-up

stones are gone. What happens next depends on where the last stone lands. There

arc three alternatives. If the last stone lands in the player's own kalah, he makes

another move. This is called a "go-again."
The second alternative is called a "capture." If the last stone lands in an empty

hole owned by the player, and if the opponent's hole directly opposite contains at

least one stone, then the player captures all the stones in the opponent's hole. The

player places all the captured stones and his own last stone in his kalah, and the

opponent moves next. The third alternative is the simplest case. If the last stoIm
lands so that neither a go-again nor a capture occurs, then the opponent moves

next.
There are two conditions which end the game. If a player gets more than half of

the stones in his kalah, the game is over and he is the winner. If all the holes owned

by one player, say Min, become empty (even if it is not his turn to move), then all

the stones remaining in Max's holes are put in Max's kalah and the game is over.

In either case the winner is the player who has more stones in his kalah at the end

of the game.
These rules are illustrated by several moves shown in Figure 2 (bottom).

192 J. R. SLAGLE AND J. K. DIXON

TABLE I. MINIMAX RESULTS*

No. stones per hole

DMAX

Av

1 NBP
Time

2 NBP
Time

3 NBP
Time

4 NBP
Time

5 NBP
Time

6 NBP
Time

1

10
1

98
21

676
10

4 , 3 8 0
63

19,168
310!

7 3 , 7 9 4
1,046

2

1O
1

98
2

724

1O

5,512
74

41,014
491

295,296
3,677

3 4

10 10
1 1

106 116
2 2

818 1,022
11 12

6,834 9,862
141 106

61,241 125,843
673 1,369

536,000t 1,090,836
5,500t 11,211

5

10
1

108
2

1,055
12

6,727
75

44,695
489

292,196
3,221

6

10
1

60
2

329
8

1,907
45

12,441
236

80,209

1,155

10
1

98
2

770
10.5

5,840
84

50,236
595

394,721
4,302

10

10

9.16

8.74

8.73

8.58

* N B P = number of bot tom positions; time is given in seconds; B = b ranch ing factor.
"~ Es t imated (this problem would not run since it needed more than the avai lable free storage).

An obvious value function to use in this game is the number of stones in Max's

kalah minus the number of stones in Min's kalah. This value function, called the

kalah advantage, was used in all the programs described in this paper.

Now we consider results obtained with the simplest kind of tree-searching pro-

cedure, the simple minimax procedure. This method examines every possible suc-

cessor down to D~aax. The positions at the bottom of the tree are evaluated and
the results are backed up to the first level by the minimax backing-up procedure.

The procedure moves to the first depth-1 position with the highest backed-up value.

Table I gives search time and size of tree generated in terms of the number of posi-

tions at the bottom of the tree (NBP). Six different forms of kalah were tested to

lend greater generality to conclusions.

The number of stones in each hole at the start of the game was varied from one
to six. This provides six similar but distinctly different games on which to test the

procedures.

2. Alpha-Beta

Alpha-Beta 2 is a tree-search procedure that is faster than minimax but still equiva-

lent in the sense that both procedures will always choose the same depth-1 successor

at best, and will assign the same value to it. Alpha-Beta is typically several orders

of magnitude faster than minimax. I t saves time by not searching certain branches

of the tree. Under certain conditions the values of certain branches do not affect

the value which is ultimately backed up to higher levels of the tree. Hence, there is
no point in evaluating these branches. When the Alpha-Beta program detects these

The Alpha-Beta procedure was first used by Newell, Shaw, and Simon in 1958 (see [8], p. 56),
bu t was not given a specific name. The procedure is discussed in more detail by Edwards and

Har t in [6].

Journal of the Association for Computing Machinery, Vol. 16, No. 2, April 1969

Experiments With Some Programs 'That Search Game Trees 193

MAX
POSITION
DEPTH 0

B A C K E D _ U ~ ~

~. A4IN

VALUES---~'-- 5 10 12 3 10 0 5 1 POSITLONS
POSITIONS blOT X X X DEPTH 2
EVALUATED DUE TO
ALPHA CUTOFF

FIG. 3. Example of Alpha-Beta pro-
cedure, case of D~AX -- 2

O:l

D~2

D~3

b=4

D=5

D:6

F I G . 4,

a=10 a=lO

¥:8 V=EI

I)eep alpha cutoffs. X means cutoff.

c o n d i t i o n s , it stops work on one b r a n c h and skips to another. This event is called

a n a l p h a or beta cutoff.

T o see how the Alpha-Beta p r o g r a m works, consider the example shown in Figure

3 . A l p h a - B e t a starts just like the m i n i m a x procedure by evaluating all the successors

o f P , . The min imum of these s t a t i c values is then backed up to P, since P1 is a

5~Iin position. The backed-up v a l u e of P, is alpha and has the value 5 in the ex-

a m p l e .

A l p h a is a lower limit for the b a c k e d - u p value of the top position, P. Since P i s a

h / l a x position, we back up the v a l u e of the largest valued successor of P. Since we

h a v e evaluated only one successor a~ this time, we do not know what the final

v a l u e of P will be, bu t we do k n o w t h a t it will be 5 or larger. The value of alpha

m a y change as the other successors a r e evaluated, but it can only increase, not de-

c r e a s e .

H a v i n g evaluated P~, the p r o c e d u r e begins work on P2 • An alpha cutoff takes

p l a c e a t P2.~ since V:,j = 3 is less t h a n alpha. Since P.2 is a Min position, V~.~ is an

u p p e r limit for V2 • Since V2 is less t h a n alpha, P: is definitely eliminated as candidate

f o r the largest valued successor of P . The re is no point in evaluating the other suc-

c e s s o r s of P2 so the procedure b e g i n s work on P~ next.

T h e alpha cutoffs save the m a c h i n e a good deal of time. In the example shown in

F i g u r e 3 there is an alpha cutoff ~ t P2.J • which means that the machine need not

b o t h e r to evaluate P2,2 or P~.~. A second alpha cutoff occurs at P3,2, which elimi-

n a t e s P3~. Thus in this e x a m p l e t he Alpha-Beta program would evaluate only

s i x of the bottom-level successors w h i l e a minimax program would evaluate all nine.

Al though the example is g iven f o r a tree of only three levels, it is clear tha t the

p r o c e d u r e will work just the s a m e be low any Max position. P~. a t any depth in a

l a r g e tree, provided oniy tha t t h e r e are at least two levels below P~. If there were

m o r e bevels below P~ .~ in the e x a m p l e then we could use the backed-up value of P~a

i l l s t ead of the static value. I f t h e r e are more levels above P. then we would back

u p the final value of P. Moreover , i t is possible to pass a value of alpha down f rom

t h e top of a large tree. Thus an ~ l p h a established at depth 1 could be used to pro-

d u c e cutoffs at depths 2, 4, and 6. T h e s e deep cutoffs are illustrated in Figure 4.

A lpha is defined b y the values o f the successors of a Max position (odd depths)

Journal Gf the Association for Computing Machinery, Voi. 16, No. 2, April 1969

194
J. I~. SLAGLE AN]-) J" ~7_. DIXON

T A B L E II . ALPHA-I3ETA I~ESUL'rs*

DMAX

1 N B P
Time

2 N B P
Time

3 N B P
Time

4 N B P
Time

5 N B P
Time

6 N B P
Time

1

10
1

70
1.3

~80

6.9

1,315
29.0i

4, [68
tOl.1

6, ~86
182.9

No. stones per hole A l p h a - B e t a , ~ f ln imax ,
_ a v (D R ~ a v

. ,~ 7 ~ ') (D R = 1.00)

10
0.42

75
1.2

381
6.1

1,066
24.5

5,349
134.0

15,685
471.5

3

10
0.9:

66
1.3

300
6.1

1,285
34.7

5,686
142.6

18,008
848.3

4 6

10 10 1 0 10

0.41 t 0 .43 1 1

00 15 5 4 98

1.3 0 .83 1 . 2 2

275 68 2 7 6 770
7.2 1.6 5 . 5 10.5

1,237 131 0)46 5,840
30.5 4 .7 2 3 . 4 84

5,213 759 4 , 0 3 7 50,736

137.1 14.7 9 8 . 3 595

20,726 12,359 [2,989 1 2 , 7 7 5 394,721
515.9 294.3] 75.6 3 6 4 . 8 4,302

* NBP = number of bo t tom posit ions; t ime is given in seconds.

while alpha cutoffs occur among successors of a Min position (e v e n d e p t h s) . It is

possible to define another variable, beta, which is established at e v e n d e p t h s and

generates cutoffs at odd depths. The action of beta cutoffs is exac t l y t h e i n v e r s e of

that for alpha cutoffs. In fact, it is the usual practice of the author w h o d i d t h e pro-

gramming (Dixon) to write the functions in LISP which evaluate M a x p o s i t i o n and

then have the computer automatically write the corresponding f u n c t i o n s for Min

positions simply by interchanging Max and Min, alpha and beta, < a n d > , a n d so on.

The results of applying an Alpha-Beta tree search to kaIah are g i v e n i n T a b l e II.

The effect of alpha and beta cutoffs is to make the tree grow more s l o w l y w i t h depth.

Thus, the advantage of Alpha-Beta over minimax depends on d e p t h . I t is about

twice as good at DMAX = 3 and about thirty times as good at D M A x -- 6. This

dependence on depth of tree-search procedures is typical.
Hence, it would be convenient to have a depth-independent m e a s u r e of t h e rela-

tive efficiency of a tree-searching program. Such a measure is DR, t h e d e p t h ratio,

defined as

DR - log N
log NMM '

where N is the number of nodes at the bottom of the tree, and NMM is t h e number

of nodes at the bottom of the tree in a minimax search. DR is a n u m b e r b e t w e e n 0

and 1 and indicates the effective depth of a search procedure in c o m p a r i s o n to the

minimax procedure. For example, a DR = 0.667 would indicate t h a t t h e program

in question could search a tree to depth 6 with approximately as m u c h effort as

the minimax procedure would need to search to depth 4. Thus D R ~- 1 f o r simple
minimax procedure.

DR may be converted into relative tree size and an estimate of c o m p u t e r rumfing

time, thus:

T N B (DR)D
_ _ __ B (D R - - 1) D,

TMM ~ NMM B D

Journal of the Association for Computing Machinery, Vol. 16, No. 2, April 1969

Experiments With Some Programs That Search Game Trees 195

where NMM is the number of nodes and T~uat is the running time of our standard,
the minimax procedure.

The Alpha-Beta procedure has a DR of 0.733 at, DMax = 6. It is clear that the
Alpha-Beta procedure is a substantial improvement in tree-searching technique.

The Alpha-Beta procedure is equivalent to minimax in the sense that the two
procedures will always choose the same depth-1 successor as best and will always
give the same value for that successor. All the other procedures described in this
paper have the same equivalence property with respect to the minimax procedure,
except that some programs may choose another depth-1 successor of equal value. If
several depth-1 successors have the same final value, and if that value is the maxi-
mum depth-1 value, then the one which is first evaluated will be chosen as best.
Samuel [16] refers to this as the "hazardless" property.

3. Fixed Ordering

The number of cutoffs generated by the Alpha-Beta procedure depends on the order
in which the successors are evaluated. Consider Figure 3, for example. If the ma-
chine had evaluated P~, then P3, then P , , alpha would have been 0, then 1, then
5, and there would have been no alpha cutoffs at all.

This fact suggests the possibility of improving the Alpha-Beta procedure by
ordering successors of a position in order to generate a large number of alpha and
beta cutoffs.

This can in fact be done by ordering the successors by their static values. The
largest valued successor of a Max position is put first and the reverse order is used
for successors of a Min position. This procedure is based on the assumption that
the static value of a position is positively correlated with the deeper, backed-up
value of that position.

This procedure is equivalent to the Alpha-Beta procedure except that it will

sometimes choose a different depth-1 successor but one of equal value. Thus, if the

order in which the successors are evaluated is changed, the program may choose a

different one as best.

The results of a fixed-order, Alpha-Beta program are shown in Table Ill. The

same starting positions of kalah were used as before so that the data can be com-

pared. Let us consider the typical case of five-in-a-hole kalah searched to DMAX = 6.

Counting positions at the bottom, this tree has a full size of 292,196 by minimax

search. Alpha-Beta needs to look at only 12,359 positions, while fixed ordering cuts

the search down to only 2,515 positions. Thus, by this measure, the fixed-ordering

program represents 'all improvement of two orders of magnitude over the simple

minimax program. The depth ratio of the tree is 0.589 at DMAX = 6.

It is obvious that the program does not run any faster if ordering is done at the

bottom level of the tree, since this would only mean that the bottom positions are

evaluated twice. However, it is not intuitively clear whether it is worthwhile to

order at the next level above the bottom or not. The question of where to stop

ordering was experimentally investigated by means of a parameter called SWD.

SWD (SWitch Depth) is the number of levels above the bottom of the tree at which

the program stops ordering and reverts to the plain Alpha-Beta procedure. Thus,

SWD = 0 means that ordering takes place at all levels including the bottom,

SWD = 1 means that the bottom level is not ordered, and so on.

Journal of the Association for Computing Machinery, Vol. 16, No. 2, April 1969

19(; J. I~. SLAGL7g AND a. K. DI~o~£2.q

TABLE i i i . FiXED-ORDEi¢ING RESUL'rs*

DMAX

1 NBP
Time

2 NBP
Time

3 NBP
Time

4 NBP
Time

5 NBP
Time

6 NBP
Time

7 NBP
T i m e

8 N BP
Time

1

t0
0.44

37
1.2

61
2.7

86
4.4

322
12.3

344
17.8

037
40.6

842
67.6

Fixed-ordering,t no. stones per hole

2 3

10
0.42

38 50
1.2 1 .8

83 174
2.9 5.3

94 433
6.0 19.7

741 1,482
20.1 56.6

831 3,521
54.8 280.5

3,064
118.9

2,269 11,073
160.2 666.9

4 5

. . . . i i ; 1 0

0.43 0.4

31 20
1.3 1.2

222 228
5.7 5.4

258 273
16.8 13.6

3,101 1,348
64.3 37.8

3,804 2,515
254.6 107.9

Fixed-
ordering, av

6

10 10
0.43 0.43

15 32
0.99 1.3

66 137
1.8 3.7

106 208
5.5 11.0

496 1,246
13.1 34.0

976 1,998
36.6 125.4

Alpha-
Beta, av

10

1

54
!

1.2

276

5.5

946

23.4

4,037

98.3

12,775

364.8

* NBP = number of bottom positions; time is given in seconds

t DR = 0.589 at DMAX = 6.

TABLE IV. SEARCH TIME VERSUS SWD

3-in-a-hele kalah, DMAX = 4

SWD slow ordering function)

0 1 2 3

Time, sec 55.8 25.0 22.4 29.1
Number CONSes 135,504 58,821 50,389 65,753

SWD (fast ordering fu,~clion)

Time, see 22.8 18.3 19.4 28.0
Number CONSes 53,396 41,134 43,188 62,881

Expe r imen ta l results showing the effect of S W D oll computer runn ing t ime a r e

shown in Table IV. Ea r ly results showed tha t S W D = 2 was fastest. Rumf ing t i m e s

fo rmed a broad min imum with S W D = 1 and S W D = 3 being wi th in abou t 3 0

pe r c e n t of the minimum. S W D = 0 ran 50 to 100 percent longer. " N u m b e r C O N S e s ' "

in Tab l e IV refers to ti le number of t imes the Lisp funct ion C O N S was c a l l e d .

E a c h call to CONS consumes one word of compute r memory to crea te new l i s t

s t ruc tu re . " C O N S " is derived fl 'om "cons t ruc t . " The number of C O N S e s is o f t e n ~t

g o o d measure of computer effort.

A t a later time, the ordering function was r ewr i t t en and made much faster. R e s u l t s

w i t h the new ordering function are also shown in Tab le IV. S W D = 1 was best t h i s

t i m e with S W D = 2 and S W D = 3 close and S W D = 0 much slower. So we ca I l

conc lude tha t the best value for S W D depends oll the speed of the ordering f u n c t i o n

in re la t ion to the other functions of the program.

Journal of the Association for Computing Machinery, Vol. 16. No. 2, April 1969

Experiments With Some Programs That Search Game Trees 197

4. Dynamic Ordering

Ordering the successors o n the basis of static values makes tree-searching go a good

deal faster. But tile ordering obtained by static vMues is not always correct. As

tile deep search progresses under a given position our state of knowledge about

that position gradually improves and it becomes possible to make more and more

accurate estimates of the true deep value of the position. Occasionally we discover

that our original estimate based on the static value was quite wrong and that the

position we have chosen to evaluate first will really have a very bad (low for suc-

cessor of Max position) backed-up value. Intuition suggests that, if not too much

work has already been done on the position, it might be wise to stop work, return

the estimated bad vMue, reorder the positions, and make another choice for the first
position to evaluate. Then later when the original position is evaluated, we have a

targer value of alpha (or a lower value for beta) and will get a great many cutoffs
which would otherwise have been missed.

Consider the example shown in Figure 5. The list of numbers after "Fixed Order"

shows the order in which the depth-2 positions would be evaluated by a fixed-order

program. The X indicates that the position was not evaluated because of an alpha

cutoff.
The sequence of events in the dynamic case is as follows: First, the positions at

depth 1 are ordered on the basis of their static values. The static values are P~ = 10,

P2 = 9, and P3 = 6. The static value of P~ is called A. This value is important

because P2 is ~he next choice in case the decision is made to reorder. Next, the ma-

chine begins to evaluate P~. P~.~ is evaluated and the result (- 1) is compared to

,4 (+ 9) . Since - 1 is a great deal lower than 9, the machine decides to abandon P~

and reorder. The new order isP2 = 9. P8 = 6, P~ = - 1 .
Now A is set to 6 and P2 and is evaluated. P~,~ has thc value 5 which is less than

A, but not very much less. The machine decides to continue with P~. P~,2 and

P2.3 are evaluated and the Min value 5 is backed up to P~. Alpha is now assigned

the value 5 and the rest of successors are evaluated by the Alpha-Beta procedure.

An alpha cutoff occurs at P3.~, saving two depth-2 evaluations, and again at PE.~,
saving another two evaluations. A total of six depth-2 positions are evaluated by

the dynamic-ordering procedure. This compares with seven positions evaluated by

the fixed-order procedure.
The tree in Figure 5 has a maximum depth of only 3. This is the most shallow

tree on which dynamic reordering can be used. On deeper trees the procedure is

FIG. 5.

. ~ DEPTH 0

/ l \ STATIC

DEPTH 1

DEEP ~ ~
VALUES-...,~--~ 0 2 5 6 7 ~-~'="T'"*6"" DEPTH2

FIXED 1 2 3 4 5 6 7 X X TOTAL 7
ORDER

DYNAMIC I 2 3 a 5 X X TOTAL 6
ORDER 6 X X

Comparison of fixed ordering and dynamic ordering

Journal of the Association for Computing Machinery, Vol. 16, No. 2, April 196

198 J . R. S L A G L E A N D J , K , DIXON v

more complex. If the depth of the tree is 4 or more, then we can dynamical ly reordei"

the positions at level 3. Since these are the successors of a Min position, we a t tempt
to explore the lowest valued position first. B is the name of the second best (second

lowest valued) position. The decision to reorder will be made if deeper search reveals

that the value of the best (lowest valued) position is probably going to be too much

larger than B. Thus the procedure for B cutoffs is analogous to that for A cutoffs.

The roles of "greater" and "less" are interchanged. The relation between A and B is

just the same as the relation between alpha and beta.
If the tree has a maximum depth of 5 or greater, then two or more A's may exist

in the tree at the same time. One will be generated at depth 1 (A,) and another a t
depth 3 (A3). The value of A below level 3 is the larger of A1 or As • An A cutoff

below level 3 will cause reordering at level 1 if the returned value meets cutoff

criteria with respect to A1. Otherwise reordering will take place a~ level 3. If the
tree has a maximum depth of 6 or greater then there will be two or more B's and

an an•ogous procedure can be used to resolve conflicts between the several B's.

The procedure is recursive so it can be used on trees of any depth and reordering

can take place at any level except the bottom.
This is called the A-B, Alpha-Beta procedure. B is the variable used to decide

about reordering successors of a Min position. It should be noted tha t A and B are

always shallow or estimated values, while alpha and beta are always deep vslues

which have been backed up from the bottom of the tree.
The decision to reorder is the crucial element in the success of the A-B, Alpha-

Beta procedure. An early program, called deep A-B, made the reorder decision by

comparing A or B with deep or backed-up values. Deep A-B proved to be slower

than fixed-order Alpha-Beta.
Too much time was invested in the first choice before the reorder decision was

made. Another program, called SHALLOWAB, made the reorder decision by com-

paring A and B with shallow static values at each level while the p rogram was still

working its way toward maximum depth. SHALLOWAB proved to be be t te r thaxl

ordered Alpha-Beta where parameters were properly adjusted.
An important parameter of the A-B procedure is DELTA. D E L T A is the quant i ty

which determines how stubborn the procedure is about reordering. Mo re exactly,

reordering takes place if the current estimated value of the first Choice is less tharl

A - DELTA or greater than B ~ DELTA. Intuitively, we would expect tha t with

a large enough DELTA, the procedure would never reorder and would run just the

same as the fixed-order procedure. Conversely, with a small D ELTA , the prograra

would be slowed by an excessive number of reorderings. This is, in fact, w h a t hap-

pens. Typical results are shown in Table V. NVAL in Table V is the number of

times the value function is called. NVAL is a measure of the size of the tree, but i t

is larger than NBP. Time in Table V is given in seconds. NCONS is the number of

times the Lisp function CONS is called. NREO is the number of reorderings which

occur.
I t is evident that DELTA must be carefully chosen if SHALLOWAB is to be more

efficient than the fixed-order program. The running times and tree size of SHAL-

LOWAB are shown in Table VI. SHALLOWAB produces a tree tha t is typically 10

percent smaller than ordered Alpha-Beta and has a D R of 0.582. This advantage

tends to increase with depth. Epsilon, shown in Table VI, is discussed next.

Since the SHALLOWAB program makes reordering decisions by comparing

Journal of the Association for Computing Machinery, Vol. 16, No. 2, April 1969

Experiments W i t h S o m e Programs T h a t Search Game Trees

TABLE V. EFFECTS OF DI~LTA ON SHALLOWAB PROGRAM

199

2-in-a-hole kalah, DM,tX ~ 5 3-in-a-hale halah, D M A X = 5

DELTA NVAL Time, N C O N S NREO NVAL Time,see
$ec

NCONS NREO

0 1,915 55.6 128,015 150 2,204 76.1 173,754 143
1 1,395 40.1 94,058 89 1,700 60.0 135,361 86
2 1,242 35.8 81,635 54 2,401 82.6 186,575 68
3 1,437 37.2 85,229 34 2,513 83.3 186,617 41
4 1,121 28.3 65,329 20 2,620 84.2 189,085 29
5 797 20.4 46,652 3 2,689 83.7 186,950 19
6 996 20.2 47,192 6 2,730 76.2 176,351 3
7 1,006 20.1 47,292 0 2,789 76.8 179,367 0
8 1,015 20.3 47,381 0 2,810 77.6 179,577 0

TABLE VI. SHALLOWAB RESULTS*

SHALLOWAB,t No. stones per hole

DMAX

1 NBP
Time

2 NBP
Time

3 NBP
Time

4 NBP
Time

5 NBP
Time

6 NBP
Time

7 NBP
Time

8 NBP
Time

1

10
0.43

37
1.2

61
3.6

86
7.0

322
20.3

319
30.6

968
66.3

z

10
0.43

38
1.7

83
4.0

94
9.0

608
26.9

588
64.8

2,059
158.4

3

10
0.41

50
1.3

146
5.9

360
23.5

1,637
94.0

2,664
275.5

4

10
0.42

31
2.0

282
8.6

547
32.7

2,695
126.0

4,665
430.0

5

10
0.52

20
1.3

.94
5.8

L50
14.4

T85
35.9

i20
89.2

6

10
0.43

15
1.0

68
2.4

99
7.1

476
18.0

1,675
80.9

SHAL- Fixed-
LOWAB, order, av

av

10 10
0.44 0.43

32 32
1.4 1 .3

139 137
5.0 3.7

2O6 208
15.6 11.0

1,087 1,246
53.5 34.0

1,838 1,998
161.3 125.4

* NBP = number of bottom positions; t i m e is given in seconds.
t SWD = 1; SWDD = 1; DELTA = 5; E P S I L O N = 1.5; DR = 0.582 at D~Ax = 6.

values derived at different depths, i t i s n a t u r a l to ask if such values are really com-

parable. Figure 6 (a) shows t h a t t h e y a r e not. There is a pronounced rhythmic rise

and fall of the va lue -versus -dep th f u n c t i o n . This is caused by the fact tha t each

player has a t e m p o r a r y a d v a n t a g e w h e n i t is his t u r n to move. This causes values

from even depths to be an average of 1 .5 smal ler t han values from odd depths. Thus ,

values obtained f rom even depths w o u l d t e n d to cause too m a n y A-type reorderings,

whereas values ob ta ined f rom odd d e p t h s would tend to cause too many B- type

reorderings. However, the effect c a n b e canceled by adding 1.5 to the value of all

even depth positions. The results of a d d i n g this constant , called epsilon, are shown

in Figure 6 (b) .

Many var ia t ions of S H A L L O W A B were tested in a t tempts to improve its per-

Journal of tile A~ociation for Computing Machinery, Vol. 16, No. 2, April 1969

~00

7 r--------j I - - - T - V - - - - - "
G

3 -

2
P2

- -]

_! • 0

I 2 3 4 5
DEPIH

FIG. 6

(a) Value versus depth, 4-in-a-hole kalah

TABLE VII.

J . R. S L A G L E ANJT~ 5 . I-,C. D I X O N

7 I I I

6 t ~

5

4

3

2

I

0

"e
I _ _ . - - L -

DEPTH

(b) Value plus epsilon v e r s u s d e p t h , 4 - i n -
a-hole k a l a h

SAVELIST RESULTS*

DMAX

1 NBP
Time

2 NBP
Time

3 NBP
Time

4 NBP
Time

5 NBP
Time

6 NBP
Time

1

10
0.4:

37
1.2

61
2.7

86
4.9

320
14.2

300
21.3

S A V E L I S T A No. stones per ~le

2 3

10 l0
0.43 0.42

38 50
1.7 1.3

83 146
2.5 5.3

94 353 5~32. 6
7.1 18.3

595 1,254 2,294
23.7 66.6 100.9

492 2 ,0455 4,179
52.5 195.0~

4

10
0.42

31
2.0

282
6.7

22.6

94
00.9

79
334.3

5

10
0.52

20
1.3

194
5.1

150
11.4

785
25.9

1,119
69.9

.43
10

15 t
1.0

68
1.8

99
5.1

476
13.0

1,675
61.2

S A V E L I S T ,
av

2;~ixed-order~

10 10
0 . 4 4 O .43

32 32
1 . 4 1 . 3

139 13'7
4 .O 3 . 7

221 208
1 1 . 6 11 .0

954 1 , 2 4 6
4 0 . 7 3 4 . 0

1,625 1 , 9 9 8
1 2 2 . 3 [125 .4

I

* NBP = immber of bottom positions; time is given in seconds.
t DELTA = 4; SWD = 1; SWDD = 1; DR = 0.572 at DMAX = 6.

Estimated by extrapolation since this problem would not fil into memory.

formance. The one variat ion which proved most efficient is a p r o g r a m c a l l e d S A V E -

LIST. When this program decides to reorder, it saves the tree w h i c h h a s ~ l r e a d y

been generated in the form of a list. Thus it never has to generate a n y p o s i t i o n t w i c e .

Typical SAVELIST results are shown in Table VII . I t is a b o u t 2 0 p e r c e n t m o r e

efficient than the fixed-order program, and has a D R of 0.572.

Tables VI and VII refer to the parameter SWDD. This p a r a m e t e r i s t h e n u m b e r

of levels at which reordering is inhibited, so tha t only fixed o r d e r i n g t a k e s p l a c e .

The opt imum value for this parameter was found to be 1. Thus , in a t r e e o f d e p t h 6,

Journal of the Association for Computing Machinery, Vol. 16, No. 2, April 1969

-Experiments With Some Programs That Search Game Trees 201

d y n a m i c ordering takes place at t h e top four levels, fixed ordering at depth 5, and

s i m p l e Alpha-Beta with no order ing at depth 6.

I t can be concluded that dynamic ordering represents a modest improvement over

f i x e d ordering.

5. Perfect Ordering

t) e r h a p s ~he reason that dynamic order ing produced so modest an improvement is

t h a t the ordering of tile successors is already nearly perfect. Theoretical analysis

s h o w s that if the ordering is p e r f e c t so that every possible alpha or beta cutoff

a c t u a l l y occurs, the tree would g r o w at ~bout the one-half power of its usual rate.

.SCIore exactly:

THEOREM 1. I f perfect ordering is achieved at every level, so that every possible

a l p h a or beta cutoff occurs, then the number of positions at the bottom of the tree of depth

D and constant branching factor B is:

ND = 2B D/2 -- 1 for D even,

ND = B (D+~)I2 + B (D-1)j~ - 1 for D odd.

T h i s theorem is attr ibuted to Michae l Levin in [6]. I t is illustrated in Figure 7.

i p roof of the theorem is now g iven since, to the authors' knowledge, no proof has
b e e n previously published.

PROOF. Let us call the number of positions to be evaluated N . where D is the

m a x i m u m depth of the tree. Figure 7 is an aid to following this proof. I t is convenient

t o count ND in two parts. Those u n d e r P~ we call XD. The others we call Y , . Thus
b y definition,

ND = X D + Y , . (1)

T h e first alpha cutoffs occur a t D = 2. There are no cutoffs in the X part so

X~ = B. (2)

T h e X part of the search es tabl ishes an optimum value for alpha, so in the Y

p a r t all possible alpha cutoffs will be at tained. At D = 2 we need to evaluate only
o n e successor to each position at t h e D = 1 level. Thus,

D=0

D=I

D=2

D=3

D=4

X I Y
I

I

FiG. 7. Alpha and beta cutoffs in a te rnary tree which is perfectly ordered. * means cutoff.

Journal of t he Association for Computing Machinery, Vol. 16, No. 2, April 1969

202 J. R. SLAGLE AND J- K. DIxoN

Y2 = B - 1,

N2 = X,2-+- Y2 = B + B - 1 = 2 B - 1,

(3)

(4)

Now the theorem for D = 2 is established. Next we prove the t h e o r e m for nit

D > 2 by induction. But first, some lemmas are needed.
LEMMA 1. The Alpha-Beta search under P1 to depth D must evaluate the same

number of positions as a search to depth D - 1 under P.

The lemma is true by symmetry. The search under P~ is the same as t h e search

under P except that Max positions are exchanged for Min positions. A l p h a and

beta start at their initial values in both cases. The Alpha-Beta a l g o r i t h m is sym-

metrical with respect to Max and Min positions provided we assume t h a t each set

of successors is in perfect order (monotonic increasing for successors of a M a x posy

tion and monotonic decreasing for successors of a Min position). H e n c e w e have a

recursive formula for the X part:

X~ = N , _ i , D > 2. (5)

Now we consider the Y part.
LEMMA 2. Every possible alpha cutoff occurs in the Y part of the tree.

The X part of the search under P1 establishes an op t imum value for a lpha . No

other successor has a higher backed-up value. Because of the per fec t order ing of

successors at every level, an alpha cutoff will take place every t ime t h e first suc-

cessor of a Min position is evaluated.

LI~MMA 3. No beta cutoffs will take place in the Y part of the tree.

In order to have a beta cutoff, there must be at least two successors to a Min

position, but an alpha cutoff always occurs at the first successor.

Lemma 2 implies that every Min position in the Y part of the t r e e will have

exactly one successor. If D is odd and we increase D by one, we add e x a c t l y one

successor to each Min position at the bot tom of the tree in ' the Y pa r t . H e n c e ,

YD = Y~-~ for D even. (6)

Lemma 3 implies that every Max position in the Y part of the t ree wi l l have ex-

actly B successors. Hence, if D is even and we increase D by one, we m u s t give B

successors to each Max position at the bot tom of the tree. Thus,

Y~ = BYD-1 for D odd.

LEMMA 4.

(7)

YD = (B -- 1)B (D-:)/~ for D even, (8)

Y~ = (B - 1)B (D-1)/~ for D odd. (9)

We prove this lemma by induction. Assume (8) holds for D - 1. D wi l l beodd

in this case. Replacing D by D - 1 in (8) we get

Y,-1 = (B - 1)B (D-3)z~ for D odd. (10)

By (7) we have

YD = BYD-, = (B - 1)B (D-1)/~ for D odd. (11)

Journal of the Assoeiation for Computing Machinery, Vol. 16, No. 2, April 1969

Experiments Wi th Some Programs That Search Game Trees 203

This shows that (9) follows from (8). Now we show that (8) follows from (9).
Replacing D with D - 1 in (9) we get

Yo-i = (B - 1)B (D-~)/2 for D even.

Applying (6),

(12)

YD = Yo-1 = (B - 1)B ("-2)/2 for D even. (13)

Since we have already shown tha t the lemma is correct for D = 2 in eq. (3), this
concludes the proof of Lemma 4.

Now we must add in the X par t and prove the main theorem by induction. First
we show that the expression for odd D follows from the equation for even D. Re-
placing D by D - 1 in the expression for even D we get

N ~ - i = 2B (D-1)/~ - 1 for D odd. (14)

Applying (5) we get

X ~ = No_j = 2B (D-1)/2 - 1 for D odd. (15)

Substituting (9) and (15) in (1) we get

N , = 2 B (D-1)/2 -q- (B - - 1) B (D-1)/2 - 1 for D odd; (16)

simplifying,

ND = B (D+1)/2 q- B (D-1)/~ - 1 for D odd. (17)

Equation (17) agrees with the theorem. Now we show that the even part of the
theorem follows from the odd part. Replacing D with D - 1 in (17) we get

ND-1 = B (D)/2 + B (D-~)/2 - 1 for D even. (18)

Applying (5) we get

X D = N D - 1 "~ B ¢D)/2 -q- B (9-2)/2 - 1 for D even. (19)

Substituting (19) and (8) in (1) we get

N v = B (D)/2 -k B (D-2)/2 - 1 --f- (B - 1)B (D-2)/2 for D even. (20)

Simplifying we get

ND = 2B D / 2 - 1 for D e v e n , (21)

which agrees with the even par t of the theorem. Since we have already established

the theorem for D = 2 in eq. (4), this eompletes the proof of the theorem.

The first few ND'S given by these formulas are:

No cutoff

N2 2 B - 1 Bz

N~ B 2 5- B - 1 B 3

N4 2 B 2 - 1 B 4

N~ B ~ h" B 2 1 B 5

N~ 2 B ~ 1 B e

Note that the rate of growth with respect to depth is not uniform. For D even,

Journal of the Association for Comput ing Machinery, Vol. 16, No. 2, April 1969

204 J . R . S L A G L E AND J . K . DIXON

N D - 1

For D odd,

2B N -- 1 2B N

B N + B .~'-1 - 1 - - -B u + B N-1

N £ = B "~v + B u-I - 1 1 B + 1
N ~ _ i 2 B N-z - 1 ~ 2 2"

Thus in the limiting case of large B, the size of the tree increases by the factor 2

from odd to even depths and by the factor B/2 from even to odd depths.

Now let, us consider the theoretical advantage of Alpha-Beta over minimax, in

the case where we get every possible cutoff. For even D,

1 L N , (N) 1 DRpo = ~ = ~ L N , (2 B D/2 -- 1);

.~ 1 LN,(2B~/2) 1 1 DR,,o c.._ 1,) = D LN~(B~'/'2) + I) LNB 2;

1 1 • •

DR,,o ~ ,~ + 1) LNi~ 2.

For the typical cases, B = 10, D = 6, a n d D = 4,

1 1 1 1
DRpo -~- ~ -t- ~ LNlo 2 = ~ + ~ 0.301 ~ 0.5 + 0.05;

D R v o ~ 0 . 5 5 for D = 6;

DRpo-.~'-~().575 for D = 4.

The DR = 0.572 of the SAVELIST procedure at D M A x = 6 is quite close to the
theoretical lirnit of 0.550.

To confirm the hypothesis that tile limit of perfect ordering was being approached,

a program was written which artificially put the successors at every level into per-

fect order. This program is very slow but it does determine the size of a tree which
is perfectly ordered at every level. The results are shown in Table VI I I .

6. Comparison With Other Procedures

We now discuss some other efficient tree-searching procedures which have been

proposed and compare them with the A - B procedure. We consider five procedures,
proposed by Amarel [2], Doran and Michie [5], Nilsson [14], Slagle and Bursky [20],

and Samuel [10]. All these procedures have some form of what Amarel calls "atten-

tion control." They periodically reconsider the part ly searched tree to decide where

to work next. Thus they make immediate use of the information gained from the

expansion of a node in an at tempt to keep the procedure working on that part of the
tree which appears to be most promising at any time.

Samuel's procedure [16] is the one most similar to A-B. The mMn difference is

that Samuel makes reorder decisions only ~t even depths; thus it is like one-half of

the A-B procedure. I t generates A cutoffs but no B cutoffs. Samuel's procedure uses

Journal of the Associatkm for Computing Machinery, Vol. 16, No. 2, April 1969

~xperiments With Some Programs That Search Game T~'ees

TABLE VII.I. PmtFECT ORDERING COMPARED WITH OTHER PROGRAMS
Figures giver~ are numbers of nodes at the bottom of the tree (NBP).

205

SHA L- Perfect-order
Stones Fixed- LOWA B, ~A VELIST

per hole Minimax Alpha-Beta order, S W D = 1, SWD = 1,'
S W D ~ 1 S W D D = 1, S W D D ~ 1, SWD S W D

DELTA ~ 5 D E L T A = 4 = 1 = 0

-iU)~Ax = 2 1 98 70 37 37 37 37 17

2 98 75 38 38 38 38 17

3 106 66 50 50 50 37 19

4 116 60 31 31 31 31 19

5 108 37 20 20 20 20 19

6 60 15 15 15 15 15 15

arOmA x = 3 1 676 380 61 61 61 61 61

2 724 381 83 83 83 83 74

3 818 300 174 146 226 156 117
4 1,022 275 222 282 114 157 118

5 1,055 253 228 194 181 147 111

6 329 68 66 68 76 76 72

-D~AX = 4 1 4,380 1,318 86 86 90 111 101

2 5,512 1,066 94 94 100 100 100

3 6,834 1,285 433 360 346 220 196

4 9,682 1,237 258 547 192 263 224

5 6,727 639 273 150 223 221 151

6 1,907 131 106 99 110 103 110

D m A x = 5 1 19,168 4,168 322 322 320 90

2 41,014 5,349 741 608 595 100

3 61,241 5,686 1,482 1,637 1,254 229
4 125,843 5,213 3,101 2,695 2,294 227
5 44,695 3,049 1,348 785 785 156

6 12,441 759 496 476 476 519

delta of zero, so presumably it does more flitting about than the A-B procedure.
Samue l also uses two types of forward pruning.

The other four tree-search routines are intended for general problem-solving
r a t h e r than just game-playing. They search the tree to find an answer rather than
searching to a fixed depth. They can, of course, be adapted to game-playing with
s l igh t modification.

All these routines make an estimate of the difficulty of solving each node and
t h e n back up these estimates, taking account of parallel problems, to the top of
t~he tree. It is then possible to descend the tree, choosing the most meritorious
successor at each fork, eventually arriving at the most meritorious unexpanded
za~de. The Amarel procedure includes work already done from the top of the tree
i n the estimate of the difficulty of solving each node. Thus the Amarel procedure is
ixltended to find the shortest proof rather than the one which can be most quickly
found. One version of Doran and Michie's graph traverser also has this feature.

In backing up the estimates of difficulty, most of the procedures take account of
parallel problems at either conjunctive nodes or disjunctive nodes. Doran and
:SAichie's graph traverser, however, can handle only disjunctive nodes. Slagle's
2~¢IULTIPLE procedure is the most general since it can handle an arbitrary Boolean
:function at each node.

Journal of the Association for Comput ing Machinery, Vol. 16, No. 2, April 1969

206 J. R. SLAGLE ANID J - I~. I) I X O N

Cutoffs take a different form in these procedures since they search f o r ~ s o l u t i o n

wherever it may appear rather than searching the tree to a fixed d e p t h - ~ ' h e a l p h a

or beta cutoff does not occur. Cutoffs do occur in the sense tha t u n p r o i r l i s i n g n o d e s

are not expanded; however, these are always tentative cutoffs, while a l p h a a n d b e t a

cutoffs are permanent. The sharp distinction between forward a n d b , ~ e k w a r d

pruning also disappears in most of these procedures. Certain v e r s i o n s o f A m a r e l ' s

procedure and Doran and Michie's procedure use operator s e l e c t i o n r u l e s w h i c h

have the irrevocable character of forward pruning.
In general, the relationship of the A-B procedure to these o t h e r p r o c e d u r e s is

tha t A-B is similar in general concept but specialized for the task of g n o m e - p l a y i n g .

A-B is also a simplification of most of these procedures since A - B d o e s n o t e s t i m a t e

the effort required to expand a node nor is any consideration g i v e n t o t h e s i z e of

parallel portions of the tree.

7. Conclusions

Several fast tree-searching procedures have been described. These h a l v e b e e n t e s t e d

on six different variations of the game kalah. The fixed-ordering p r o g r a m i s m u c h

faster than the Alpha-Beta or minimax programs. The d y n a m i c - o r d e r i n g p r o g r a m s

are only slightly faster than fixed ordering because the limit of p e r f e c t o r d e r i n g is

being approached. The parameters used in these search rout ines m u s t b e a d j u s t e d

for best results and opt imum values will depend on relative speeds o f t h e v a r i o u s

parts of the program.
Future efforts to produce faster tree-searching routines by i n c r e a s i n g t h e n u m b e r

of alpha and beta cutoffs through improved ordering and reordering p r o c e d u r e s are

not likely to yield substantial improvements for the game of ka lah , s i n c e t h e l imit

of perfect ordering is now being approached.
The Alpha-Beta procedure produces a worthwhile i m p r o v e m e n t i n s e~ t r ch ing

efficiency at depths of 2 or more. The fixed-order procedure p r o d u c e s a~ w o r t ~ h w h i l e

improvement at depths of 4 or more. Dynamic ordering becomes w o r t h w h i l e a~

depths of 6 or more. Hence, we can conclude that the more complex p r o c e d u r e s are

more useful for deeper trees.

REFERENCES

* Not cited in text
1. ADELSON-VELSKIY, G. M., A.RLASAROV, V. L.. AND USKOV, A.G. P r o g r a m m e playing

chess. Rep. on Symp on Theory and Computing Methods in the Upper M a n t le P r o b l e m
(Translation from Russian; source unknown.)

2. AMAREL, SAUL. An approach to heuristic problem solving and theorem p r o v i n g in the
propositional calculus. In Hart, J F.. and Takasu, S. (Eds.), Systems a n d Computer
Science, U. of Toronto Press, Toronto, Ontario, Canada, 1967, pp. 125-220.

3. BAYLOR, G. W., AND SII~ION, I-I. A. A chess mating combinations p r o g r a m . P r o c . AFIPS
1966 Spring Joint Compu~. Conf., Vol. 28, pp. 431-447.

4. BERNSTEIN, A., ROBERTS, M. DEV., ARBUCKLE, T., AND BELSKY, M.A. A c h e s s playing
program for the IBM 704. Proc. 1958 Western Joint Comput. Conf., Vol. 13, pp . 157-159.

5. DORAN, J. E., AND MICHIE, D. Experiments with the graph traverser P r o g r a m . Proc
Roy. Soc. {A}, ~95, 1437 (1966), 235-259

0. EDWARDS, T). J., AND HART, T.P. The a-fl heuristic. Artif. Intel. Merao N o. 30 (revised) .
MIT Research Laboratory of Electronics and Computation Center, C ~ n b r i d g e , Mass.
Oct. 28, 1963.

Journal of the Association for Computing Machinery, Vol. 16, No. 2, April 1969

Experiments With Some Programs That Search Game Trees 207

7. ERNST, ~.~. W., AND NEWELL, A.. Generality and GPS. Center for Study of Information
Processing, Carnegie Inst. of Technology, Pittsburgh, Pa., Jan. 1967.

8. FEIGENBAUM, E., AND FELDMAN, J. (EDs.). Computers and Thought. McGraw-Hill,
New York, 1963.

"9. GELERNTER, H. Realization of a geometry theorem proving machine. Proc. hit. Conf.
on Information Processing, UNESCO House, Paris, 1959, pp. 273-282. (Reprinted in
[8], pp. 134-152.)

*10. GELERNTER, tI., HANSEN, J. R., AND LOVELAND, I). W. Empirical explorations of the
geometry theorem machine. Proc. 1960 Western Joint Comput. Conf., Vol. 17, pp. 143-147.
(Reprinted in [8], pp. 153-163.)

11. KISTER, J., STEIN, P., ULAM, S., WALDEN, W., AND WELLS, M. Experiments in chess.
J. ACM 4i, 2 (April 1957), 174-177.

'12. McCARTHY, J., ABRAHAMS, P. W., EDWARDS, D. J., HART, T. P., AND LEVIN, M.I. LISP
1.5 Programmer's Manual. MIT Press, Cambridge, Mass., 1962.

13. NEWELL, A., SHAW, J. C., AND SIMON, H.A. Chess playing programs and the problem of
complexity. IBM J. Res. Develop. 2 (Oct. 1958), 320-335.

14. NILSSON, N. J. Searching problem-solving and game-playing trees for minimal cost
solutions. IFIP Congress 68, Booklet H: Applications 3, pp. tt125-H130.

15. SAMUEL, A.L. Some studies in machine learning using the game of checkers. IBM J. Res.

Develop. 3 (July 1959), 211-229. (Reprinted, with minor additions and corrections, in
[8], pp. 71-105.)

16. SAMUEL, A.L. Some studies in machine learning using the game of checkers. II--Recent
Progress. IBM J. Res. Develop. 11, 6 (Nov. 1967), 601-617. Stanford Artif. Intel. Project
Memo No. 52, Stanford U., Stanford, Calif., June 5, 1967.

'17. SIMON, H. A., AND SIMON, P .A . Trial and error search in solving difficult problems:
Evidence from the game of chess. Behavioral Sci. 7 (Oct. 1962), 425-429.

18. SLAGLE, J .R . Game Trees, m & n minimaxing, and the m & n alpha-beta procedure.
Artif. Intel. Group Rep. No. 3, UCRL-4671, Lawrence Radiation Laboratory, U. of
California, Livermore, Calif., Nov. 1963.

19. SLAGLE, J. R. A multipurpose theorem proving heuristic program that learns. Proc.
IFIP Congress 65, Vol. 2, pp. 323-324 (Spartan Books, Washington, D. C.).

20. SLAGLE, J. R., AND BURSKY, P. Experiments with a multipurpose, theorem-proving
heuristic program. J. ACM 15, 1 (Jan. 1968), 85-99.

'21. SLAGLE, J .R . A heuristic program that solves symbolic integration problems in fresh-
man calculus. J. ACM 10, 4 (Oct. 1963), 507-520. (Reprinted in [8], pp. 191-203.)

*22. TUNING, A. M. Digital computers applied to gains. In Bowden, B. V. (Ed.), Fasler
Than Thought: A Symposium on Digital Computing Machines, Pitman, London, 1953,
Ch. 25, pp. 286-310.

*23. WEISSMAN, C. LISP 1.5 Primer. Dickenson Pub. Co., Belmont, Calif., 1967.

RECEIVED AUGUST, 1967; REVISED OCTOBER, 1968

Journal Of the Association for Computing Machinery, Vol. 16. No. 2. April 1969

