Experiments With Some Programs That Search

Game Trees

JAMES R. SLAGLE AND JOHN K. DIXON
Natzonal Institutes of Health,® Bethesda, Maryland
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1. Introduction

Tree searching is a task which must be done in many different types of computer
procedures. Gume-playing [1, 3, 4, 11, 13, 15, 18], theorem-proving [7, 8, 19], and
many other heuristic programs {8, 18, 19] must perform some kind of tree scarch.
The efficiency of tree searchmg is erucial to such procedures because tree searching
is usually very time-consuming. In this paper we are concerned with techniques for
reducing the effort required to search a given tree. All the procedures deseribed in
this paper were writteri in Lise 1.5 and run on an IBM 7094 computer.

As an example of a tree-searching problem, congider the game of checkers. Let
us define P as'the current position of the game; P includes the location and identity
of each man on the board and an indication of whose turn it is to move. The rules
of the game permit B different alternative moves from P. Each such move deﬂnes
A new game posm(m P, . We say that the successors of P ave Py, Py, -+, Ps. In
playing the game it is necessary to select one of these alternative pObSlbllltl(’b But
in order to make a wise choice, it is necessary to look several moves ahead. If each
successor of I, also has B SUCCesIOrs, then two moves ahead, there will be B® sue-
cessors designated by £ 1, _JP1 o, -, Pia, Pon, -+, Pss. In general, looking
D ‘moves ahead we find B” posﬂzlons, each one 1dent1ﬁed by a D-tuple. This is
assuming that B remains constant. In checkers, 10 is a typical value for B. Thus in
looking ahead six moves, we have one million positions to consider. A checker-
playing procedure would aSSIgIl a value to each one of the terminal positions by
means of somé evaluation function, back these values up to the £ = 1 level by
assuming that each player will choose, at each node, that move which is best for
himself, and then select that move which has the largest backed-up value,
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Positions are usually evaluated by a value function which assigns & numerical
value to each position. We define V 4 5.0 to be the value of position F 4.5, - A va,lufz
function is usually a linear combination of features, For example, 1D checlkers a
simple evaluation polynomial might be two times the man advantage plus three
times the king advantage, where “‘advantage” means the number & player has
minus the number his opponent has. If we assume a two-person, zerQ-SUIN. SR,
then a large value is favorable to one player and unfayorable to the other pla'ye?.
We call the former player Max and the latter player Min. By convention, 1t 18
Max’s turn to move at P, the top position of a tree, i

The value of a position determined by dircet application of the value f uz%ctmu
is called the static value of the position. The backed-up value of a position I8 the
value obtained by generating successors, evaluating them, and backing up a value
by means of some backing-up function. .

There are several types of backing-up functions, but the minimax procedure s
the one most commonly used in game-playing programs. It is based on the assump-
tion that each player will choose that move which is most advantageous to himself.
Thus, we back up the maximurm successor value when it is Max’s twrn to move
(called a “Max position”) and the minimum successor value when it is Min's
turn to move (called a “Min position”). Although other types are 1:)(){5sifl;)ie,1 all
the work described in this paper was done with 2 minimax backing-up procedure.

The backing-up procedure may be applied recursively to back-up wvalues from
any depth. Thus, each position has a static value, a first backed-up value derived from
the static values of the immediate successors, a second backed-up value derived
from the static values of the successors of the successors, a third backed-up value,
and 8o on. In principle one could back up Win/Lose/Draw values on the complete
game tree. Usually, of course, the tree is so large that it is not practical t0 reach the
end, so we must stop at some depth called Dyax .

The relationship between shallow and deep backed-up values of a position is
central to the tree-searching problem. The value function is intended to predict
which positions are most likely to lead to winning the game. Deeper bagcked-up
values are presumably more accurate than shallow ones. But we expect to find »
correlation between shallow and deep values. If the static value of Py is larger than
the static value of Py, it is likely that backed-up values will also be larger for P,
than for Py, The relation of shallow and deeper values for all ten of the depth-1
positions in one version of the game of kalah is shown in Figure 1. (A similar graph
for o different version of kalah is shown in Figure 6.)

The fact that shallow values predict deeper values suggests 8 way to reduce the
size of a large tree. For example, if the static value of one suceessor to a Max post:
tion is very low compared to the others, it is unlikely that deeper search will roveal
a backed-up value that is higher than the others. Hence, it may save time to “for-
ward prune” the low-valued successor from the tree, that is, make no deep Séai'dh
under it. However, all of the methods discussed in this paper operate without forward
pruning. Thus it is _guaranteed that, for a given depth of search, one of the highest
valied successors will be chosen. .

Since all of the tree-search programs described herein were tested on ka_]ah, &

! The M and N procedure [18] backs up some function of the M highest valued Suceessars of 4
Max position and some function of the N lowest valued successors of a Min Position Preli'mi
nary results indicate that the Af and N procedure is superior to minimax, S
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brief description of the rules of the game is now given. The game is played with a
nurmber of stones and a number of holes. Each player owns one big hole, called a
kalah, and six smaller holes. At the beginning of the game the kalahs are empty and
there are N stones in each of the other holes.

Tigure 2 (top) shows the starting position for three-in-a-hole kalah. A player
wins if he gets more than half the stones in his kalah. _

To make a move, a player first picks up all the stones in one of his holes. He then
procecds counterclockwise around the board, putting one stone in each hole, in-
cluding his own kalah, but skipping his opponent’s kalah until all the picked-up
stones are gone. What happens next depends on where the last stone lands. There
are three alternatives. If the last stone lands in the player’s own kalah, he makes
another move, This is called a “go-again.”

The second alternative is called a “capture.”” If the last stone lands in an empty
hole owned by the player, and if the opponent’s hole directly opposite ¢ontains at
least one stone, then the player captures all the stones in the opponent’s hole. The
player places all the captured stones and his own last stone in his kalah, and the
opponent moves next. The third alternative is the simplest case. If the Jast stone
lands 8o that neither a go-again nor a capture oceurs, then the opponent moves
next. T

There are two conditions which end the game. If a player gets more than half of
the stones in his k&lah, the game is over and he is the winner. If all the holes owned
by one player, say Min, become empty (even if it is not his turn to move), then all
the stones remaining in Max’s holes are put in Max’s kalah and the game is over.
In either case the winner is the player who has more stones in his kalah at the end
of the game.

These rules are illustrated by several moves shown in Figure 2 (bottom).
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TABLE I. Minivax Resvnrs®

No. stungs per hale

Daax e
i 2 3 ‘ ¢ 5 5 Az 5

1 NBP 10 10 10 | 10 10 10 0 o {w
Time 1 1 1 H 1 i 1

2 NBP 98 98 106 116 108 650 98 10
Time 2 2 2 2 2] 2 2

3 NBP 76 724 818 1,022 1,085 329 770 o .18
Time 10 10 11 12 12 8 10.5

4+ NBP 4,380 5,512 6,834 9,862 | 6,727 | 1,907 5,840 | 574
Time 63 74 141 106 75 45 84

5 NBI 19,168 | 41,014 | 61,241 125,843 | 44,695 | 12,441 | 50,238 R.72
Time 310 491 673 1,369 489 236 5935

6 NBP 73,794 | 205,296 | 536,0001 | 1,000,836 | 292,196 | 80,200 | 394,721 8.5%
Time | 1,046 3,677 5,5007 11,211 3,221 1,155 4,302

* NBP = number of bottom positions; time is given in seconds; B = branching factor? T

T Estimated (this problem would not run sinee it nceded more than the available frec storage),

An obvious value function to use in this game is the number of stones in Max's
kalah minus the number of stones in Min’s kalah. This value function, called the
kalah advantage, was used in all the programs described in this paper.

Now we consider results obtained with the simplest kind of trec-searching pro-
cedure, the simple minimax procedure. This method examines every possible suc-
cessor down to Dyax . The positions at the bottom of the tree are evaluated and
the results are backed up to the first level by the minimax hacking-up procedure.
The procedure moves to the first depth-1 position with the highest backed-up value.
Table I gives search time and size of tree generated in terms of the number of posi-
tions at the bottom of the tree (NBP), Six different forms of kalah were tested to
lend greater generality to conclusions, '

The number of stones in each hole at the start of the game was varied from one
to six. This provides six similar but distinetly different games on which to test the
procedures.

9. Alpha-Beta

Alpl1a~Be’sa2 is a trec-search procedure that is faster than minimax but still equiva-
lent in the sense that both procedures will always choose the same depth-I suceessor
at best, and will assign the same value to it. Alpba-Beta ig typically several orders
of magnitude faster than minimax. It saves time by not searching certain branches
of the tree. Under certain conditions the values of certain branches do not affect
the value which is ultimately backed up to higher levels of the tree. Hence, there is
no point in evaluating these branches. When the Alpha-Beta program detects these

¢ The Alpha-Beta procedure was first used by Newell, Shaw, and Simon in 1958 (ses 8], P- 56},
but was not given 2 speeific name. The procedure is discussed in more detail by Edwards and
Hart in [6],
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cedure, case of Dyax = 2.

conditions, it stops work on one branch and skips to another. This event is ealled
an alpha or heta cutoff,

T'o see how the Alpha-Beta program worlks, consider the example shown in Figure
3. Alpha-Beta starts just like the minimax procedure by evaluating all the successors
of P,. The minimum of these static values is then backed up to £, since: Py is a
Min position. The backed-up value of P, is alpha and has the value § in the cx-
ample.

Alpha is a lower lnmt, for the hacked-up value of the tep position, P: Smce P isa
Max position, we back up the value of the largest valued successor of P Since we
have evaluated only one successor at this time, we do not know what‘the final
value of P will he, but we do know that it will be 5 or larger. The value of alpha
may change as the other successors are evaluated, but it can only increase, not de-
crease. :

Having evaluated ), the procedure begins Work on Py, An alpha, cutoﬂ' takes
place at Py, since Vi, = 3 is less than alpha. Sinee P is a Min position, Vi1 1s an
upper limit for ¥, . Since Vs is less than alpha, P, is definitely eliminated as candidate
for the largest valued successor of £2. There is no point in evaluating the other sue-
cessors of Py so the procedure begins work on P; next.

The alpha cutoffs save the machine a good deal of time. In the example shown n
Figure 3 there is an alpha cutoff at P, , which means that the machine need not
bother to evaluate P:; or Ps3. A second alpha cutoff occurs at Py, which elimi-
nates P;i. Thus in this example the Alpha-Beta program would evaluate only
six of the bottom-level suceessors while a minimax program would evaluate all nine.

Although the example is given for a tree of only three levels, it is clear that the
procedure will work just the same below any Max position, P, at any depth in a
large tree, provided only that there arc at least two levels below P.. If there were
more _le{rels below Py, in the example then we could use the backed-up value of Py
instead of the static-value. If there are more levels above P, then we would back
up the final value of P. Moreover, it is possible to pass a value of alpha down from
the top of a large tree. Thus an alpha established at depth 1 eould be used to pro-
duce cutoffs at depths 2, 4, and 6. These deep eutoffs are ilustrated in Figure 4.

Alpha is defined by the values of the suceessors of a Max position (odd depths)

Journal of the Assosiation for Computing Mackinery, Vol, 16, No. 2, April 1969
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TABLE I1. ALpHA-Bwra Resunis™ T

Du No. stones per hote - ﬁif;z%ﬁa{la, Aﬂ'ﬂg:mx,
MAX — 0.733) (DR = 150}
i 2 K F 5 4 I B

1 NBP 10 10 10 10 10 10 10 1?
Time i 0.42 0.91 0.41 0.41 0.43 1

2 NBP 70 75 66 f0 37 15 54 ., 9;
Time 1.3 1.2 1.3 1.3 1.2 0.83 1.2

3 NBP 380 381 300 75 254 68 276 : 7"{'8 3
Time 6.9 6.1 6.1 7.2 5.5 1.6 5.5 0

4 NBP | 1,315 | 1,066 1,285 1,237 639 131 946 5,840
Time 29.0 24.5 34.7 30.5 17 .4 4.7 23 .4 84

5 NBP {4,168 | 5,349 5,686 5,213 3,040 | 759 4,087 50,736
Time 101.1 134.0 142.6 137.1 60.4 . 14.7 8.3 595

G NBP 6,886 | 15,685 | 18,008 | 20,726 | 12,359 | 2,989 12,775 |394,721
Time 182.00 4715, 848.3 515.9 294.3 75.6 364.8] 4,302

* NBP = number of bottom positions; time is given in seconds.

while alpha eutoffs oceur among successors of a Min position (even depths). It is
possible to define another variable, beta, which is established at ever depths and
generates eutoffs at odd depths, The action of beta cutoffs is exactly the inwverse of
that for alpha cutolfs. In fact, it is the usual practice of the author who did the pro-
gramming (Dixon) to write the functions in Lise which evaluate Max position and
then have the computer automatically write the corresponding functions for Min
positions simply by interchanging Max and Min, alpha and beta, < and >, and soon.

"The results of applying an Alpha-Beta tree search to kalah are given in Table II.
The effect of alpha and beta cutoffs is to make the tree grow more slowly with depth.
Thus, the advantage of Alpha-Beta over minimax depends on depth: It is about
twice as good at Dyax = 3 and about thirty times as good at Dyyax = 6. This
dependence on depth of tree-search procedures is typiecal.

Henee, it would be convenient to have a depth-independent measure of the rela-
tive efficiency of a tree-searching program. Such a measure is DR, the depth ratio,
defined as

log N
DR = ———
].Of.’; Nuw ’

where & is the number of nodes at the bottom of the tree, and N a5, is the number
of nodes at the bottom of the tree in a minimax search. DR is a number betweén 0
and 1 and indicates the effective depth of a search procedure in comparison to the
minimax procedure. For example, a DR = 0.667 would indicate that the program
in question could search a tree to depth 6 with approximately as raureh offort as
the minimax procedure would need to search to depth 4. Thus DR —
minimax procedure,
DR may be converted into relative tree size and an estimate of computer runnin

time, thus: ne

1 for siniple

T N B(DR)D {(DR--1}D
Ton ~Waw ~ WP :
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where Ny 15 the number of nodes and 7y is the running time of our standard,
the minimax procedure.

The Alpha-Beta procedure has a DR of 0.733 al Dyax = 6. It is clear thut the
Alpha-Beta procedure is a substantial improvement in tree-searching technigue.

The Alpha-Beta procedure is equivalent to minimax in the sense that the two
procedures will always choose the same depth-1 successor as best and will always
give the same value for that successor. All the other procedures described in this
paper have the same equivalence property with respect to the minimax procedure,
except that some programs may choose another depth-1 successor of equal value. If
several depth-1 successors have the same (inal value, and if that value is the maxi-
mum depth-1 value, then the one which is first evaluated will be chosen as best.
Samuel [16] refers to this as the ““hazardless” property.

3. Fized Ordering

The number of cutoffs generated by the Alpha-Beta procedure depends on the order
in which the successors are evaluated. Consider Figure 3, for example. If the ma-
chine had evaluated Py, then Py, then Py, alpha would have been 0, then 1, then
5, and there would have been no alpha cutoffs at all.

This Tact suggests the possibility of improving the Alpha-Beta procedure by
ordering successors of a position in order to generate a large number of alpha and
beta cutoffs.

This ean in fact be done by ordering the suceessors by their static values, The
largest valued suceessor of a Max position is put first and the reverse order is used
for successors of & Min position. This procedure is based on the assumption that
the static value of a position is positively correlated with the deeper, backed-up
value of that position.

This procedure is eguivalent to the Alpha-Beta procedure except that it will
sometimes choose a different depth-1 successor but one of equal value. Thus, if the
order in which the successors are evaluated is changed, the program may choose a
different one as best.

The results of & fixed-order, Alpha-Beta program are shown in Table III. The
same starting positions of kalah were used as before so that the data can be com-
pared. Let us consider the typical ease of five-in-a-hole kalah searched to Dyax = 6.
Counting positions at the bottom, this tree has a full size of 202,196 by minimax
search. Alpha-Beta needs to look at only 12,359 positions, while fixed ordering cuts
the search down to only 2,515 positions. Thus, by this measure, the fixed-ordering
program represents an improvement of two orders of magnitude over the simple
minimax program. The depth ratic of the tree is 0.580 at Dyax = 6.

It is obvious that the program does not run any faster if ordering is done at the
bottom level of the tree, since this would only mean that the bottom positions are
evaluated twice. However, it is not intuitively clear whether it is worthwhile to
order at the next level ahove the bottom or not. The guestion of where to stop
ordering was experimentally investigated by means of a parameter called SWD.
SWD (8Witeh Depth) is the number of levels above the bottom of the tree at which
the program stops ordering and reverts to the plain Alpha-Beta procedure. Thus,
SWD = 0 means that ordering takes place at all levels ineluding the bottom,
SWD = 1 means that the bottom level is not ordered, and so on.

Journat of the Assosiation for Computing Machinery, Vol. 16, No, 2, April 1989
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TABLE m i*x\m ()m)nmnm Rmm st

Fived-ordering,t no. sienes per hole . h
Fixed- Alpi
Duax £ T Urflez::;g, av 1%5“;;
4 2 3 4 1 H .6
1 NBP 10 10 10 0 1 10 i 10
Time 0.44 0.43 0.42 0.43 043 0.43 0.43 1
2 NBP 37 ‘50 31 20 15 32 54
Time 1.2 1.2 1.8 1.3 1.2 0.99 1.3 1.9
3 NBP 61 83 174 222 Lo2e8 66 137 276
Time 2.7 2.9 5.3 5.7 54 @ 1.8 3. 5.5
4 NBP 86 94 433 258 273 106 208 946
Time = 4.4 6.0 19.7 16.8 13.6 5.5 1.0 23 4
5 NBP 322 741 1,482 3,101 1,348 496 1,246 4,087
Time 12.3 26.1 56.6 G4.3 37.8 | 13.1 34.0 8.3
6 NBP 344 31 3,521 3,804 2,415 76 1,998 12,775
Time 17.8 5.8 280.5 254.0 107.9 | 36.6 125.4 ‘ 364.8
§
7 NBP 1,087 3,064 |
Time 40.6 . 118.9
8§ NBP | 82 2,20 11,073
Time G7.6 160.2 666.9
« NBP = number of bottom positions; time is given in seconds.
IR = 0.589 at Dyax = 6.
TABLE IV. Searca Time Vessus SWD
J-in-a-hole kalah, Dacax = 7
SWL (siow ordering funchion)
¢ ! 2 3
Time, sec 55.8 25.0 - 22.4 © 29,1
Number CONSes 133,604 58,821 50,380 85,753
SWI (Jast ordering funclion)
Time, sec 22.8 18.3 194 28.0
Number CONSes 53,390 41,134 43,188 62,881

Experimental results showing the effect of SWI) on computer running time arc
shown in Table IV. Early results showed that SWD = 2 was fastest. Running times
formed & broad minimum with SWD = 1 and SWD = 3 being within about 30
percent of the minimum. SWD = 0 ran 50 to.100 percent longer. ‘“Number CON Ses’",
in Table IV refers to the number of times the Lise function CONS was called.:
Each call to CONS consumes one word of computer memory to create new list
strueture. “CONS” is derived from “construet.” The number of CONBes is often: &
gaod measure of computer effort.

At a luter time, the ordering function was rewritten and made much faster. Results:-
with the new ordering funetion are also shown in Fable IV. SWD = 1 was best this
time with SWD = 2 and SWD = 3 close and SWD = 0 much slower: So we e8Ik
conelude that the best value for SWID depends on the speed of the ordering funetio ™
in relation to the other functions of the program. :
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4.  Dynamic Ordering

Ordering the suceessors on the basis of statie values makes tree-scarching go a good
deal faster. But the ordering obtained by static valucs is not always correct. As
the deep search progresses under a given position our state of knowledge about
that position gradually improves and it becomes possibie to make more and more
accurate cstimates of the true deep value of the position. Oceasionally we discover
that our original estimate based on the static value was quite wrong and that the
position we have chosen to evaluate first will really have a very bad {low for sue-
cessor of Max position) backed-up value. Intuition suggests that, if not too much
work has alrcady been done on the position, it might be wise to stop work, return
the estimated bad value, reorder the positions, and make another ehoice for the first
position to evaluate. Then later when the original position is evaluated, we have a
larger value of alpha (or a lower value for beta) and will get a great many cutoffs
which would otherwise have been missed.

Consider the example shown in I'igure 5. The list of numbers after “Fixed Order”
shows the order in which the depth-2 positions would be evaluated by a fixed-order
program. The X indicates that the position was not evaluated because of an alpha
cutoff.

The sequence of events in the dynamic case is as follows: First, the positions at
depth 1 are ordered on the basis of their statie values. The static values are P, = 10,
Py = 9, and P; = 6. The static value of Py is called 4. This value is important
because P, is the next choice in case the decision is made to reorder. Next, the ma-
chine begins to evaluate P,. £, is evaluated and the result (—1) is compared to
A (+9). Since —1 1s & great deal lower than 9, the machine decides te abanden P
and reorder. The new orderis Po = 8, P =6, F, = —1, '

Now 4 is set to 6 and Ps and s evaluated. Py, has the value 5 which is less than
A, but not very mueh less. The machine decides to confinue with Py, FP.s and
P, 5 are evaluated and the Min value 5 is backed up to P . Alpha s now assigned
the value 5 and the rest of successors are evaluated by the Alpha-Beta procedure.
An alpha cutolf oceurs at Py, saving two depth-2 evaluations, and again at 17, ,
saving atother two evaluations. A total of six depth-2 pesitions are evaluated by
the dynamic-ordering procedure. This compares with seven positions evaluated by
the fixed-order procedure.

The tree in Figure 5 has a maximum depth of only 3. This is the most shallow
tree on which dynamic reordering can be used. On decper trees the procedure is

DEPTH D
STATIC
YALUES ——» 10

DEPTH |
3,355:5"' g DEPTH 2
g;(gﬁnk 1.2 3 4 & &8 7 X K TOMALY
DYMAMIC 1 208 4 5 X X oo

© ORDER & XK

Fre. 5. Comparison of fixed ordering and dynamic ordering
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more complex. If the depth of the tree is 4 or more, then we can dynamicully reorder
the positions at level 3. Since these are the successors of a Min position, we atterpt
1o explore the lowest valued position first. B is the name of the second best {=econd
lowest valued) position. The decision to reorder will be made if deeper scarch reveals
that the value of the best (lowest valued) position is probably going to be too much
larger than B. Thus the procedure for B cutoffs is analogous to that for A cufoffs.
The roles of “greater”” and “less” arc interchanged. The relation between A and B is
just the same as the relation between alpha and beta. N

If the tree has a maximum depth of 5 or greater, then two or more 4’s may exist
in the tree at the same time. One will be generated at depth 1 (4,) and another at
depth 3 (A4a). The value of 4 below level 3 is the larger of 4, or 4;. An A cuatoff
below level 3 will cause reordering at level 1 if the refurned value meets eutoff
criterin with respect to A, . Otherwise reordering will take place at level 3. If the
tree has a maximum depth of 6 or greater then there will be two or more B's and
an analogous procedure can be used to resolve conflicts between the several B’s.
The procedure is recursive so it ean be used on trees of any depth and reordering
can take place at any level except the bottom.

This is called the A-B, Alpha-Beta procedurc. B is the variable used to decide
about reordering successors of a Min position. It should be noted that A and B are
always shallow or estimated values, while alpha and beta are always deep values
which have been backed up from the bottom of the tree.

The decision to recrder is the crucial element in the suceess of the 4-B, Alpha-
Beta procedure. An early program, called deep A-B, made the reorder deeision by
comparing A or B with deep or backed-up values. Deep A-B proved to be slower
than fixed-order Alpha-Beta. : R

Too much time was invested in the first choice before the reorder decision was
made. Another program, called SHALLOWAB, made the reorder decision by com-
paring 4 and B with shallow static values at each level while the program was still
working its way toward maximum depth. SHALLOWAB proved to be better than
ordered Alpha-Beta where parameters were properly adjusted. L

An important parameter of the 4-B procedure is DELTA. DELTA is the quantity
which determines how stubborn the procedure is about reordering. More, exactly,
reordering takes place if the current estimated value of the first choice is less than
A — DELTA or greater than B 4+ DELTA. Intuitively, we would expect that with.
a large enough DELTA, the procedure would never reorder and would run just the
same as the fixed-order procedure. Conversely, with a small DELTA, the program
would be slowed by an excessive number of reorderings. This is, in fact, what hap-
pens. Typical results are shown in Table V. NVAL in Table V is the number of
times the value function is called. NVAL is a measure of the size of the tree, but it
is larger than NBP. Time in Table V is given in seconds. NCONS is the number of
times the Lisp function CONS is called. NREQ is the number of reorderings which
oceur.

It is evident that DELTA must be carefully chosen if SHALLOWADB is to be more
efficient than the fixed-order program. The running times and trec size of SHAL-
LOWARB are shown in Table VI, SHALLOWAB produces a tree that is typically 10
percent smaller than ordered Alpha-Beta and has a DR of 0.582. This advantage
tends to increase with depth, Epsilon, shown in Table VI, is discussed next.

Since the SHALLOWAB program makes reordering decisions by comparing
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TABLE V. Errects OF DEL’I;A oN SHALLOWAB Program

2in-g-hole halah, Darax =5 3-in-a-hole kalah, Dyrax =3
PELLA wvar  Tme yeows  NREO wvar  Time  yeoxs  wREO
0 1,015 5.6 128,013 150 2,904  76.1 173,754 143
1 1,305  40.1 94,058 89 1,700 60.0 133,361 86
9 1,242 35.8 81,635 54 2,401 82.4 186,575 68
3 1,437  87.2 85,229 34 2,513 83.3 186,617 41
4 1,121 28.3 65,329 20 2,620  84.2 180,085 29
5 797 20.4 46,0852 3 2,680  83.7 186,950 19
6 996  20.2 47,192 6 2,730  76.2 176,351 3
7 1,006  20.1 47,292 0 2,78 76.8 179,367 0
8 1,015  20.3 47,381 0 2,810 77.6 179,577 0
TABLE VI. SHALLOWAB Resvirs*
SHALLOWAB,t Nao. sloves per hoie SHAL- )
Darax ‘ LOWAR, | oo
i z T3 4 § ] i
1 NBP 10 10 10 10 10 10 10 10
Time 0.43 0.43-|  0.42 0.42 0.52 0.43 0.44 0.43
2 NBP 37 38 50 31 | 15 32 32
Time 1.2 1.7 1.8 2.0 1.3 1.0 1.4 1.3
3 NBP 61 83 146 282 194 68 | 139 187
. Time 3.6 4.0 5.9 8.6 5.8 2.4 5.0 3.7
4 NBP 86 04 360 547 150 99 206 208
Time 7.0 9.0 23.5 32.7 14.4 7.1 15.6 11.0
5 NBP 322 608 1,637 2,605 785 476 1,087 1,246
Time 20.3 26.9 94.0 126.0 35.9 18.0 53.5 34.0
& NBP 319 588 (2,664 4,665 1,120 |1,675 1,838 1,908
Time 30.6 64.8 | 275.5 430.0 89.2 80.9 161.3 125 .4
7 NBP 968 |2,059
Time 66.3 158.4
3 NBP '
Time

*NBP = number of bottom positions; time is given in seconds.
{SWD = 1; SWDD = 1; DELTA = 5; EPSILON = 1.5; DR = 0.582 at Duax = 6.

values derived at different depths, it is natural to ask if such values are really com-
parable. Figure 6(a) shows that they are not. There is a pronounced rhythmic rise
and fall of the value-versus-depth funetion. This is caused by the faet that each
player has a temporary advantage when it is hig turn to move. This causes values
from even depths to be an average of 1.5 smaller than values from odd depths. Thus,
values obtained from even depths would tend to cause too many A-type reorderings,
whereas values obtained from odd depths would tend to cause too many B-type
reorderings, However, the effect.can be canceled by adding 1.5 to the value of all
even depth positions. The results of adding this constant, called epsilon, are shown
in Figure 6(b). o _

Many variations of SHALLOWAB were tested in attempts to improve its per-
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(a} Value versus depth, 4-in-a-hole kalah (b) Value plus epsilon versus dep th, 4-in-
a-hole kalah

TABLE VII. BAVELIST Resurrs*

SAVRLIST,t No. stones per hale e )
n SAVELIST, Fixed-order,
MAX ey au
1 2 3 4 5 ]
1 NBP 10 10 10 10 10 10 10 10
Time 0.43 1 0.43 0.42 0.42 0.52 0.43 044 0.43
2 NBP 37 38 50 31 20 15 32 ' 32
Time 1.2 1.7 1.3 2.0 1.3 1.0 1.4 1.3
3 NBP 61 83 146 282 194 68 139 137
Time 2.7 2.5 5.3 67 | 4.1 1.8 £:0 a7
4 NBP 84 94 353 543 160 99 221 208
Time 4.9 7.1 18.3 22.8 1.4 5.1 11.6 110
5 NBP 320 55 1,254 [2,204 785 476 Oh4 1,240
Time 14.2 | 23.7 66.6 | 100.9 25.9 13.0 40 .7 340
G NBP 300 4092 |2,0457 14,179 1,119 1,675 1,625 1,008
Time 21,3 | 52.5 | 195.0f | 334.3 69.9 61.2 122.3 | 125.4

* NP = number of bottom positions; time is given in seconds.
tDELTA = 4; SWD = 1; SWDD = 1; DR = 0.572 at Duax = €.
i listimated by extrapolation sinee this problem would not fit into memaory,

formance. The one variation which proved mast efficient is a program’ called SAVE.
LIST. When this program decides to reorder, it saves the trec which has alreaﬂy
been generated in the form of a list. Thus it never has to generate any position twice
Typical SAVELIST results are shown in Table VII. It is about 20 percent m(:ir'f;
efficient than the fixed-order program, and has a DR of 0.572. : R
Tahles VI and VII refer to the parameter SWDD. This parameter'is the numhber
of levels at which reordering is inhibited, so that only fixed ordering talcag plac
The optimum value for this parameter was found to be 1. Thus, in a trec (jf"c"ﬁeptll g'
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dynamic ordering takes place at the top four levels, fixed ordering at depth 5, and
simple Alpha-Beta with no ordering at depth 6.

It can be concluded that dynamic ordering represents a modest improvement over
fixed ordering.

5. Perfect Ordering
Perhaps the reason that dynamic ordering produced so modest an improvement is
that the ordering of the successors is already nearly perfect. Theoretical analysis
shows that if the ordering is perfect so that every possible alpha or beta cutoff
actually oceurs, the tree would grow at about the one-hall power of its usual rate.
More exactly:

TrrorEM 1. If perfect ordering ¥s achieved al every level, so that every possible
alpha or bela culel] occurs, then the roumber of nosilions al the battom of the tree of depth
I and constant branching factor B 7s:

Ny = 2B"" — 1 for D even,
Np = BYW® 4 BPPY 1 for D odd.

"This theorem is attributed to Michael Levin in {8]. It is illustrated in Figure 7.
A proof of the theorem is now given sinee, to the authors’ knowledge, no proof has
‘been previously published.

IProor. Let us call the number of positions to be evaluated N, where D is the
maximum depth of the tree. Figure 7 is an aid to following this proof. Tt is convenient
to count Np in two parts. Those under £, we call X, . The others we call ¥ . Thus
by definition,

Np=Xp+ Y. (1)
The first alpha eutoffs oceur at I} = 2. There are no eutoffs in the X part 50
Xg - B. (2)

The X part of the search establishes an optimum value for alpha, so in the ¥
. part all possible alpha cutoffs will be attamed At D = 2 we need to evaluate only
one successor Lo each position at the ' = 1 leével, Thus,

p=0 S B
e

g

|
I
| “
|
t
t
|

J
|
|
\
|
i
|
1y
i
i
©.Fie. 7. Alpha and beta cuboffs in a ternary tree which is perfectly ordered. * means eutoff.
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ng = B - 1, (3)
Ny=Xo+ Yo=B+B—1=28-1 {4)

Now the theorem for I) = 2 is established. Next we prove the theorem for all
D > 2 by induction. But first, some lemmas arc needed.

Lemma 1. The Alpha-Beta search under Iy fo depth 1) musi evaluode the same
number of positions as a search to depth D — 1 under P

The lemma i true by symmetry. The search under l”1 is the same as the search
under £ except that Max positions are exchanged for Min positions. Alpha and
beta start at their initial values in both cases. The Alpha-Beta algorithm is sym-
metrical with respect to Max and Min positions pmvided we assume that each set
of successors is in perfect order (monotonie increasing for successors of a Max posi-
tion and monotonic decreasing for successors of a Min position). Hence we have a
recursive formula for the X part:

XD = ]\TD_.l s D 2 2. (5)

Now we consider the ¥ purt.

Lemva 2. Every possible alpha cutolf occurs in the ¥ part of the tree.

The X part of the search under P; establishes an optimum value for alpha. Ne
other successor has a higher backed-up value. Because of the perfect ordering of
successors at every level, an alpha cutoff will take place every time the first sue-
cessor of a Min position is evaluated.

LemMa 3. No beta cutoffs will take place @n the Y part of the tree.

* In order to have a beta cutoff, there must be at least two successors to & Mm
position, but an alpha cutofl always occurs at the first successor.

Lemma 2 implies that every Min position in the ¥ part of the tree will have
exactly one successor. If I¥ is odd and we increase D) by one, we add exactly one
suceessor to each Min position at the bottom of the tree in the ¥ part. Hence,

Yp=Yp. for Deven (6)

Lemma 3 implies that every Max position in the ¥ part of the tree will have ex-
actly B successors. Hence, if D is even and we increase ) by one, we must give B
‘suceessors to each Max position at the bottom of the tree. Thus,

Yp=BY¥p., for D odd. (7)

Lrvma 4.
Yo = (B—=1DB"®* four D even, (8)
Yo = (B = 1DBYP% for D odd (9)

We prove this lemma by induction. Assume (8) holds for D — 1. D will be odd
in this case. Replacing D by D — 11in (8) we get

Voo = (B — 1DBY™* for D odd. £10)
By (7) we have
¥p=BYpa = (B—1)B""" for D odd. 1)
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This shows that (9) follows from (8). Now we show that (8) follows from (9).
Replacing D with D — 1in (9) we get

You=(B—10B""% tn Deven. (12)

Applying (6),
Yp=Yor= (B~ DBE"®" tor D oven {13)

Since we have already shown that the lemma is correct for ) = 2in eq. (3), this
concludes the proof of Lemma 4,

Now we must add in the X part and prove the main theorem by induetion. First
we show that the expression for odd D follows from the equation for even D, Re-
placing D by D — 1 in the expression for even I} we get

Npa=2B"""" _ 1 for D odd. (14)
Applying (5) we get
Xp=0Np,;, =2B""% _ 1 for Dodd (15)
Substituting (9) and (15) in (1) we get
Np=2B""? L (B~ 1)B®”P2 _ | tor D odd; (18)
simplifying,
Np = B2 L BP D2 o D odd. (17)

Equation {17} agrees with the theorem. Now we show that the even part of the
theorem follows from the odd part. Replacing D with ) — 1 in (17) we get

Npoy = BP”? 4 BP22 _ 1 for D even. (18)
Applyiﬁg (5) we gét
Xp = Ny = B L p@as_ I for D even. (19)
Substituting (19) and (8) in (1) we get
Np = B L B4 | 4 (B~ 1}BY™ for D even. (20)
Simplifying we get
Np = 2B”* — 1 for D evern, (21)

which agrees with the even part of the theorem. Since we have already estahlished
the theorem for D = 2 in eq. (4), this completes the proof of the theorem.
The ﬁ_rst few Np’s given by these formulas are:

No cuinff
N 2B —1 ' B2
Ng ' By B =1 - B3
Ny 282 ~ 1 B
Ns . .. Bt -+ B — 1 8
Ny 2B -1 B

Note that the rate of growth with respeet to depth is not uniform. For D) even,
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o nd —1 l
N 2B -1 2 :2(1 E_) wz(i__.)_
N‘-,i = [3\ _+. [ Nl ?l' =~ BN + B‘Vul —l— B B

204

Tor [ odd,

i = R
Thus in the lmiting case of large #, the size of the tree inereases by the factor 2
from odd to even depths and by the factor B/2 from even to odd depths.
Now let us consider the theoretical advantage of Alpha-Beta over minimax, in
the case where we get every possible cutoff, For even 1),

LATE(ZBD/:Z - 1 ))

o

- 1 _
DRpo = ELNH(N) =

1

f2 Ir. 1 <
I)H;»O ot }) I.! B(ZBDMJ = LATB(BD 2) + 1-)- L‘]Vﬂ 2,

&l

T 1 1.,
DRI‘(/ - Q ‘+‘ ,?} Ia B 2
For the typical cases, B = 10, D = 6, and D = 4,
) | 1 I 1 N i
DReo 5 + 2 LN 2 = 5 + 7 0301 2~ 0.5 -+ 0.05;
2 () J () .

I)I{pa ~ (.45 for D = 6,
:Dr{.pg o ().575 fDl' 1.) = 4

The DR = 0.572 of the SAVELIST procedure at D,y = 6 is quite close to the
theoretical limit of 0.550.

To confirm the hypothesis that the Hmil of perfeet ordering was being approached,
& program was written which artificially put the suecessors at every level into per-
feet order. This program is very slow but it does determine the size of a tree which
is perfectly ordered at every level. The resulis are shown in Table VLIL

6. Comparison With Other Procedures
We now discuss some other efficient tree-searching procedures which have been
proposed and compare them with the A-B procedure. We consider five procedures,
proposed by Amarel [2], Doran and Michie [3), Nilsson [14], Slagle and Bursky [20],
and Samuel [16]. Al these procedures have some form of what Amarel calls “atten-
tion control.” They periodically reconsider the partly searched tree to decide where
to work next. Thus they make immediate use of the information gained from the
expansion of a node in an attempt, to keep the procedure working on that part of the
tree which appears to be most promising at any time.

Samuel’s procedure [16] is the one most similar to 4-B. The main difference is
that Samuel makes reorder decisions only at even depths; thus it is like one-half of
the 4-B8 procedure. It generates A cutoffs but no B eutolfs. Bamuel’s procedure uses
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TABLE VIII. Parrper Orperive Comparsly WIiTH OTHEER ProGrays
Figures given are numbers of nodes at the bottom of the tree (NBP).

T SHAL- erren  Pore
Stores Ao Fisad- oW, SAVBLIST, __ erfectorder
per hole Minimax Pha-Bela L order, ¥ :WJ, S‘WDD x 1' SWD SED

Swn =4 SWDD -1 prrra <y 07 CEY
Fpas = 2 1 98 70 37 & 37 37 17
2 08 75 35 3% 38 38 17
3 106 66 50 50 50 37 19
4 116 60 31 31 3l 31 19
3 108 37 20 20 20 20 19
[¢] 6 15 15 15 15 15 15
Frinx =3 1 676 380 61 61 61 61 61
2 724 381 83 83 83 83 74
3 818 300 174 146 226 156 117
4 1,022 275 222 282 114 157 118
3 1,055 253 228 194 181 147 111
1} 329 68 66 68 70 76 72
gy =4 1 4,380 1,318 86 86 9 111 101
: 2 5,512 1,066 04 04 100 100 100
3 6,834 1,285 433 360 346 220 196
4 9,682 1,237 258 547 192 263 9224
] 6,727 639 273 150 223 22 151
a 1,907 131 106 99 [10 103 110
Fryax =5 ] 19,168 4,168 322 3922 320 50
2 41,014 5,340 741 608 395 160
3 61,241 5,686 1,482 1,637 1,95¢ 229
4 125,843 5,213 3,101 2,695 2,204 237
a 44,695 3,049 1,348 783 785 156
6

12,441 759 496 476 476 519

A, delta of zero, so presumably it does more flitting about than the 4-B proeedure.
Samuel also uses two types of forward pruning.

The other four tree-search routines are intended for general problem-solving
rather than just game-playing. They search the tree to find an answer rather than
searching to a fixed depth. They ean, of course, be adapted to game-playing with
s1ight modification.

All these routines make an estimate of the difficulty of solving each node and

then back up these estimates, taking account of parallel problems, to the top of
the tree. It is then possible to descend the tree, choosing the most meritorious
sucecessor at each fork, eventually arriving at the most meritorious unexpanded
node. The Amarel procedure includes work already done from the top of the tree
‘111 the estimate of the difficulty of solving each node. Thus the Amarel procedure is
intended to find the shortest proof rather than the one which can be most quickly
found. One version of Doran and Michie’s graph traverser also has this feature.
" In backing up the estimates of difficulty, most of the procedures take account of
parallel problems at either conjunctive nodes or disjunctive nodes. Doran and
Michie’s graph traverser, however, can handle only disjunctive nodes. Slagle’s
MMULTIPLE procedure is the most general sinee it ean handle an arbitrary Boolean
fuanction at each node.
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a solution

Clutoffs take a different form in these procedures since they seareh for
e alpha

wherever it may appear rather than searching the tree to a [ixed depth. Th
or beta cutoff does not oceur. Cutoffs do oceur in the sense that unpromisingﬁ nodes
are not expanded; however, these are always tentative eutoffs, while alpha and betu
cutoffs arc permanent. The sharp distinction between forward and bElC—liWani
pruning also disappears in most of these procedures. Certain versions of Am&l'B.l_S
procedure and Doran and Michie’s procedure use operator selectiorl rules which
have the irrevocable character of forward pruning. _

In general, the relationship of the A-B procedure to these other prncedure:q is
that 4-B is similar in general concept but specialized for the task of ga,meiplz?y ing.
A-B is also a simplification of most of these procedures since A-B does not estl.rna!,e
the effort required to expand a node nor is any consideration given to the size of
parallel portions of the tree.

7. Conclusions

Several fast tree-searching procedures have been described. These have been tested
on six different variations of the game kalah. The fixed-ordering program is much
fagter than the Alpha-Beta or minimax programs. The dynamic-ordering programs
are only slightly faster than fixed ordering because the limit of perfect ordering is
being approached. The parameters used in these search routines must be adjusted
for hest results and optimum values will depend on relative speeds of the warious
parts of the program.

Future efforts to produce faster tree-searching routines by inereasing the nmumber
of alpha and beta cutoffs through improved ordering and reordering procedures are
not likely to yield substantial improvements for the game of kalah, since the limit
of perfect ordering is now being approached.

The Alpha-Beta procedure produces a worthwhile improvement in searching
efficiency at depths of 2 or more. The fixed-order procedure produces a worthwhile
improvement at depths of 4 or more. Dynamic ordering bhecomes worthwhile at
depths of 6 or more. Hence, we can conclude that the more complex procedures are
more useful for deeper trees.
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