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Abstract— This paper describes a novel experiment in which
two very different methods of underwater robot localization are
compared. The first method is based on a geometric approach in
which a mobile node moves within a field of static nodes, and all
nodes are capable of estimating the range to their neighbours
acoustically. The second method uses visual odometry, from
stereo cameras, by integrating scaled optical flow. The fun-
damental algorithmic principles of each localization technique
is described. We also present experimental results comparing
acoustic localization with GPS for surface operation, and a
comparison of acoustic and visual methods for underwater
operation.

I. INTRODUCTION

Performing reliable localization and navigation within

highly unstructured underwater environments is a difficult

task. Knowing the position and distance an Autonomous

Underwater Vehicle (AUV) has moved is critical to ensure

that correct and repeatable measurements are being taken

for reef surveying and other applications. A number of

techniques are used, or proposed, to estimate vehicle motion

which can be categorized as either acoustic or vision-based.

Leonard et al. [1] provide a good survey of underwater

localization methods. Acoustic sensors such as Doppler

velocity logs are a common means of obtaining accurate

motion information, measuring speed with respect to the

sea floor. Position can be estimated by integration but will

be subject to unbounded growth in error. Long Base Line

(LBL) systems employ transponder beacons whose position

is known from survey, or GPS if they are on the surface. The

vehicle periodically pings the transponders and estimates its

position based on the round trip delay. Ultra Short Base Line

(USBL) systems determine the angle as well as distance to

a beacon. The largest source of uncertainty with this class

of methods is the speed of sound underwater which is a

complex function of temperature, pressure and salinity.

A number of authors have investigated localization using

vision as a primary navigation sensor for robots moving in

6DOF, for example Amidi [2] provides an early and detailed

investigation into feature tracking for visual odometry for

an autonomous helicopter, and Corke [3] describes the use

vision for helicopter hover stabilization. The use of vision

underwater has been explored for navigation [4] and station

keeping [5], [6]. Dagleish presents a survey of vision-based

underwater vehicle navigation for the tracking of cables,

pipes and fish [7], and for station-keeping and position-

ing [8]. Of critical importance in these systems is the long-

term stability of the motion estimate. Current research is

thus focusing on reducing motion estimation drift in long

image sequences through techniques such as mosaicing and

SLAM. Many examples are presented, but most algorithms

were only applied to recorded data sets or implemented on

an ROV allowing significant computing power, not on an

energy-constrained AUV.

Each method above has different advantages and disad-

vantages. Visual odometry, by its nature integrates perceived

motion and is subject to long-term drift, and requires occa-

sional “position fixes” to keep error in check. The acoustic

localization system involves the creation of infrastructure

which must be powered, but provides absolute position es-

timates. Complementary or hybrid systems could be created

that would exploit the advantages of each method, but are

not the subject of this paper.

In this paper we compare, for the first time, these two

quite different underwater localization methods. Our acoustic

localization system is able to self calibrate the location of

the static nodes, and then provide location information to

the underwater vehicle. We compare the vehicle locations

measured by the acoustic system with GPS during surface

operations. In previous work it has been difficult to ground

truth the visual odometry system since it requires close

proximity to the sea floor, whereas as GPS requires operation

at the surface. In this work we compare the dead reckoned

location, from visual odometry, with the estimate from the

acoustic localization system. We present experimental results

from a recent ocean trial.

The remainder of the paper is organized as follows. We

describe the experimental platforms and procedures, and then

present results for the acoustic and vision systems. Finally

we compare the two methods and conclude.

II. EXPERIMENTAL STUDY

A. Experimental Platforms

1) Sensor Nodes: The sensor nodes shown in Figure 1

were developed at MIT. These nodes package communica-

tion, sensing, and computation in a cylindrical water-tight

container of 6in diameter and 10in height. Each unit includes

an acoustic modem we designed and developed. The system

of sensor nodes is self-synchronizing and uses a distributed

time division multiple access (TDMA) communications pro-

tocol. The system is capable of ranging and has a data rate of

300 b/s verified up to 300 m in fresh water and in the ocean.

Each unit also includes an optical modem implemented using



Fig. 1. The sensor nodes drying in the sun.

green light. The sensors in the unit include temperature,

pressure, and camera with inputs for water chemistry sensors.

The sensor nodes differ from traditional LBL networks

in a number of ways. First, the acoustic modems allow

bidirectional communication. This allows the dissemination

of range information to neighbors. The nodes obtain ranges

using three different methods. When node A sends a message

to B and B responds, A measures the round-trip time of

the message to compute the range. The second method

is for a node A to broadcast a range-request message to

which all nodes in communication range respond at specific

intervals thereafter. Using the round-trip times, ranges to

all responding nodes are computed. The third method is to

use onboard synchronized clocks and for nodes to ping at

specified intervals. Listening nodes then compute the range

based on the difference in the expected arrival time and the

actual arrival time.

Using this range information we are able to self-localize

the static network using a 3D distributed localization al-

gorithm based on work by Moore et al. [9]. This makes

deployment extremely easy, the nodes can just be thrown

overboard. The network localization information can also be

transmitted to the mobile node to allow efficient localization

and tracking of the mobile node within the network.

Our network also allows multiple mobile nodes to be lo-

calized concurrently within the network. This is not possible

in an LBL network. Unlike LBL networks we do not obtain

range measurements simultaneously (or nearly so) as the

bidirectional communication prevents this. Thus, we must

compensate for the non-simultaneous ranges algorithmically.

Additionally, our network is scalable to many nodes, whereas

traditional LBL systems typically have just 4 beacons. This

allows us to cover kilometer-scale areas despite the sub-

kilometer range of our acoustic communication.

2) AMOUR: Autonomous Modular Optical Underwater

Robot (AMOUR), Figure 2 , is an AUV developed at

MIT. It has on-board computation, storage, batteries, and

acoustic and optical communication. Its key performance

specifications are: mass (11 kg), length 43.3 cm, diameter

15.3 cm, maximum forward thrust 70 N, maximum linear

speed 1 m/s, maximum rotation speed 360 deg/s, and en-

Fig. 2. AMOUR in Moorea with sensors in the background.

Fig. 3. Deploying Starbug in Moorea.

durance 10 hours using lithium polymer battery. It has

four external thrusters with a maximum power of 150 W
and a maximum static thrust of 35 N each. Two thrusters

act vertically and two thrusters act horizontally to provide

forward-backward propulsion and yaw control. The bottom

cap of the robot has a cone shaped cavity, designed for

maximum mechanical reliability in docking and for optical

communication.

3) Starbug: Starbug, Figure 3, is a hybrid AUV developed

at CSIRO[10]. It has a powerful onboard vision system. Its

key performance specifications are: mass 26 kg, length 1.2 m
(folding to 0.8 m for transport), maximum forward thrust

20 N, maximum speed 1.5 m/s, and maximum endurance of

3.5 hours (8 km at 0.7 m/s) with current lead-acid battery

technology. The vehicle is fully actuated with six thrusters

providing forward, lateral and vertical translations as well

as yaw, roll and pitch rotations. The vehicle’s drag and

thrust characteristics were empirically determined leading

to a simple still-water hydrodynamic model. Differences

between the predicted vehicle motion based on actual control

inputs and the instantaneous motion estimate from the vision

system, allow the magnitude and direction of the water

current to be estimated.



Starbug has two stereo vision heads: one looking down-

ward for sea-floor altitude and speed estimation as well as

mapping, and the other looking forward for obstacle avoid-

ance. All cameras have firewire interface, with 640 × 480
pixel resolution in raw Bayer mode. Each stereo pair has

a baseline of 70 mm which allows an effective distance

resolution in the range 0.2 to 1.7 m. In addition to the

vision sensors, the vehicle has a magnetic compass, custom

built IMU (see [10] for details), pressure sensor (2.5 mm
resolution), a PC/104 1.6GHz Pentium-M processor stack

running Timesys Linux, and a tail-mounted GPS which is

used when surfaced.

By comparison, and by design, AMOUR is inexpensive

and does not have an inertial measurement unit (IMU) or

powerful computer. Instead it relies on the range measure-

ments to the sensor nodes to determine its trajectory through

the water. One of the design goals of Starbug has been

to create a perceptually powerful robot using vision and

low-end inertial sensing. The following experiments have

been designed to compare and contrast the robots’ ability to

localize in water using these two very different approaches.

Both robots have the acoustic and optical communication

capabilities of the static sensor nodes, which is accomplished

by connecting each robot to a sensor node using a robot-

specific communication protocol.

B. Experimental Site

During June 2006 we traveled to the University of Cal-

ifornia Berkeley Richard B. Gump South Pacific Research

Station1 to run field experiments with AMOUR, Starbug and

the acoustic sensor nodes. The Gump station is located in the

South Pacific on the island of Moorea, near Tahiti in French

Polynesia.

We performed experiments in the inner reef waters off the

coast of Moorea, north west of Cook’s Bay. The area we used

was a hundred meter squared area with an average depth of

four meters.

C. Experimental Methodology

The sensor nodes and the robots were deployed manually

from a boat. The sensor nodes were anchored with dive

weights of about 3kg. The location of the nodes was marked

using red floats. The nodes self-localized and for ground

truth the location of each node was recorded using GPS at

deployment.

One node was attached beneath Starbug’s hull and suitably

ballasted to allow the robot to dive. The node has a large

cross sectional area which adds significant drag, and the

additional height must be taken into account when setting

the terrain following altitude.

One of the static nodes was connected by a serial data

tether to a laptop computer on the boat allowing the status

of the system to be monitored. The node on Starbug was

connected via a serial data link to the onboard computer.

Every two seconds the node obtained range measurements to

1http://moorea.berkeley.edu/index.html

some of the nodes in the network, and the result was logged,

along with other navigation and system status information,

to the onboard hard disk.

D. Location by Acoustic Tracking

In previous work, [11], we developed a theoretical foun-

dation for a passive tracking and localization algorithm. This

previous work introduces the algorithm, presents correctness

and complexity analyses, and simulation results. Building

a real sensor-network system that implements this algo-

rithm onto a distributed underwater sensor network subject

to localization errors and communication uncertainty is a

significant challenge. The contribution of this paper includes

the engineering of a distributed version of the tracking and

localization algorithm that runs on a physical underwater sen-

sor network and extensive experimentation with this system.

The rest of the section summarizes the algorithm in [11],

discusses the challenges with creating a physical system that

is based on this algorithm, and presents experimental data

from the resulting implementation.

There are a number of challenges associated with acoustic

localization underwater. The acoustic channel is very narrow

and low bandwidth. We are only able to communicate at

300 b/s. Thus, our localization algorithm must use a minimal

amount of transmitted data. Due to the limits of the acoustic

channel we are also only able to obtain non-simultaneous

range measurements between nodes every couple of seconds.

Therefore, our algorithm also has to deal with the potentially

large motion of the robot between range measurements.

Our approach is based on a field of statically fixed nodes

that communicate within a limited distance and are capable

of estimating ranges to neighbors. A mobile node moves

through this field, passively obtaining non-simultaneous

ranges to nearby fixed nodes and listens to broadcasts from

the static nodes. Based on this information, and an upper

bound on the speed of the mobile node, our algorithm

recovers an estimate of the path traversed. As additional mea-

surements are obtained, this new information is propagated

backwards to refine previous location estimates, allowing

accurate estimation of the current location as well as previous

states.

The algorithm takes a geometric approach and handles

large motions of the robot between the non-simultaneous

range measurements. Each range measurement forms an

annulus/circle which represents the current location of the

robot. As the robot moves through the water the annulus

is expanded to account for the possible motion. Intersecting

these regions produces a location estimate. We prove in [11]

that the regions found are optimal localization regions–that

is, the smallest regions that must contain the mobile node.

Algorithm 1 shows the pseudocode for the acoustic local-

ization algorithm. In practice it is run online by omitting the

outer loop (lines 4-6 and 11) and executing the inner loop

whenever a new region/measurement is obtained.

The first step in Algorithm 1 (line 3), is to initialize the

first intersection region to be the first region. Then we iterate

through each successive region.



Algorithm 1 Localization Algorithm

1: procedure LOCALIZE(A1 · · ·At)

2: s← max speed

3: I1 = A1 ⊲ Initialize the first intersection region

4: for k = 2 to t do

5: △t← k − (k − 1)
6: Ik =Grow(Ik−1, s△t) ∩Ak ⊲ Create the new

intersection region

7: for j = k − 1 to 1 do ⊲ Propagate

measurements back

8: △t← j − (j − 1)
9: Ij =Grow(Ij+1, s△t) ∩Aj

10: end for

11: end for

12: end procedure

The new region is intersected with the previous intersec-

tion region grown to account for any motion (line 6). Finally,

the information gained from the new region is propagated

back by successively intersecting each optimal region grown

backwards with the previous region, as shown in line 9. For

more details and analysis see [11].

1) Experimental Results: The sensor nodes automatically

localized themselves using a distributed static node localiza-

tion algorithm we developed based on work by Moore et

al. [9]. We used Starbug’s tail mounted GPS to provide

us with ground-truth data and a sensor node to collect the

acoustic ranging information.

The experimental setup closely resembled the theoretical

and simulation setup in all but a few aspects. In the theo-

retical work we assumed we knew the location of the static

nodes exactly. In the experimental setup we had to determine

the location using the static localization algorithm which

could introduce errors into the calculation. Additionally, our

proofs of optimality assumed that the range measurement

± the error always contained the true measurement. In our

previous work we showed in simulation that violating this

assumption did not greatly impact the performance of the

algorithm. These experiments confirm that this is true given

our real world data which contains outliers. We also used a

limited back propagation time, as discussed in our previous

work, to achieve constant runtime per update.

The result of running the localization algorithm on the data

we collected is compared to the GPS track in Figure 4. This

shows that the algorithm performed well. The mean error

was 0.6 m and the maximum error was 2.75 m. This is well

within the noise bounds associated with the GPS.

Additional experiments were performed with four sensor

nodes localizing and tracking the AMOUR robot at Lake

Otsego in New York State during September, 2006. Figure 5

shows the data collected during a 15 minute run of the

passive location algorithm over an 80×80 meter area of the

lake that is 20 meters deep. The nodes were deployed to float

between 3 and 5 meters below the water surface. The nodes

were localized using our distributed localization algorithm.

Amour moved autonomously across this area on the surface

Fig. 4. The GPS data compared to the recovered path. The blue stars
indicate the location of the static nodes, the black line is the GPS path and
the red line is the recovered path.

Fig. 5. Results from a 15 minute experiment with Amour in a lake. The
red dashed line corresponds to the path traveled by Amour as recorded by
a GPS unit. The blue solid like corresponds to the location path computed
from ranges. The location of the sensor nodes is marked by *.

of the water. It collected both GPS and range information as

it moved. We commanded the robot to move using its entire

speed range during this experiment. The mean location error

for Amour was 2.5 meters (which is within the noise of the

GPS).

E. Location by Vision

Starbug was designed for coral reef environments which

feature rich terrain, relatively clear shallow waters and suffi-

cient natural lighting for which vision is a very well suited.

The fundamental building block of our visual odometry

system is the Harris feature detector which was chosen

for its speed and satisfactory temporal stability for outdoor

applications. Only features that are matched both in stereo

(spatially) for height reconstruction, and temporally for mo-

tion reconstruction are considered for odometry estimation.

Typically, this means that between ten and fifty strong

features are tracked at each sample time.



For stereo matching, the correspondences between features

in the left and right images are found. The similarity be-

tween the regions surrounding each corner is computed (left

to right) using the normalized cross correlation similarity

measure (ZNCC), and validation (right to left matching) is

also implemented. Approximate epipolar constraints are used

to prune the search space and only the strongest corners

are evaluated. For each match the feature location is refined

with sub-pixel interpolation and then corrected using the lens

distortion model — we choose this order since the low-power

processor does not have the cycles to undistort the original

image.

The tracking of features temporally between image frames

is similar to the spatial stereo matching as discussed above

but without the epipolar constraint. Motion matching is

currently constrained by search space pruning, whereby

feature matching is performed within a disc of specified

radius about the image location predicted by motion at the

previous time step (a constant velocity motion model). Our

temporal feature tracking only has a one frame memory

which reduces problems due to appearance change over time.

A sophisticated multi-frame tracker such as KLT would be

advantageous but is beyond the capability of our processor.

Differential image motion (du,dv) is then calculated in both

the u and v directions on a per feature basis.

A 3-way match is a point in the current left image which

is matched to a point in the right image and also the previous

left image. Standard stereo reconstruction methods are then

used to estimate a feature’s three-dimensional position.

Since it cannot be assumed that a flat ground plane exists

(as in [3]), the motion of the vehicle is predicted using an

iterative least median squares method developed to estimate

a six degree of freedom pose vector which best describes the

translation and rotation of a set of 3D reconstructed points

from the previous to the current frame. We formulate the

problem as one of optimization to find at time k a vehicle

rotation and translation vector (xk) which best explains the

observed visual motion and stereo reconstruction as shown

in Fig. 6.

Fig. 6. Odometry optimization scheme.

The differential motion vectors are then integrated over

time to obtain the overall vehicle motion position vector at

time tf such that

xtf
=

tf∑

k=0

THk
dxk (1)

The Pentium-M processor currently updates odometry at

10 Hz. More details are provided in [4].

Fig. 7. Comparison of demanded robot path (red) and estimated path
(blue).

Figure 7 shows the demanded and estimated actual path

of the Starbug robot during one of the Moorea trials, and

several features deserve discussion. The robot is traveling

clockwise around the circuit and on the left hand edge is

moving into a very strong current. The vehicle’s control

strategy is based on pure-pursuit of a target whose position

is moved at constant speed by the vehicle’s mission planner.

However, due to the strong water current at the test location,

the maximum thrust was insufficient to match speed with

the pursuit target. Hence, at the end of that path segment,

the vehicle was almost 5m behind the target position. It then

cut the corner on the next leg to catch the pursuit target,

and performed very well when traveling with the current on

this final segment. Along the bottom edge Starbug’s visual

odometry system is very effectively rejecting the sideways

thrust due to the water current.

F. Comparison

In previous work it has been difficult to ground truth the

visual odometry system since it requires close proximity

to the sea floor, whereas GPS requires operation at the

surface. In Figure 8 we compare the paths estimated by visual

odometry and acoustic localization. The visual odometer has

a cumulative error of just less than 5m error at the end of

the 100 m transect or 5% of along track distance. Growth in

error with distance traveled is expected with any odometry

system.

Figure 9 shows more details about the operation of the

visual odometry system. The first trace is the depth as

measured by the pressure sensor, the second trace is the



Fig. 8. Comparison of acoustic estimated path (red) and vision estimated
path (blue).

Fig. 9. Comparison of demanded robot path (blue) and vision estimated
path (red).

vision-based altitude estimation. The points that drop to

zero altitude indicate when there are insufficient features

for a reliable position estimate. In this situation the motion

estimate is taken to be the same as the previous time step.

The third trace is the magnitude of the estimated water

current based on the difference between how the robot is

trying to move based on the commanded thrusts and its

internal hydrodynamic model, compared to the vision system

estimate. This may be overestimated as the drag coefficient

of the robot did not take into account the fact we had a large

acoustic node strapped to the bottom of the robot. The final

trace is the number of 3-way matches detected by the vision

system and is an indication of seafloor texture.

III. CONCLUSIONS

Knowing the position and distance a AUV has moved is

critical to effective operation, but reliable localization and

navigation within highly unstructured underwater environ-

ments is a difficult task. In this paper we compare, for the

first time, two quite different underwater localization meth-

ods: acoustic localization and visual odometry. Our acoustic

localization system is able to self calibrate the location of

its static nodes, and then provide location information to

the underwater vehicle. The localization accuracy is better

than 2.5 m and comparable with GPS. The dead reckoned

location, from visual odometry, shows a performance of 5%

of along track error compared to the acoustic localization

system. Our experiments were conducted in lake and ocean

environments.
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