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The carbon balance of peatlands is predicted to shift from a sink to a source this century. 96 

However, peatland ecosystems are still omitted from the main Earth System Models used 97 

for future climate change projections and they are not considered in Integrated 98 

Assessment Models used in impact and mitigation studies. Using evidence synthesized 99 

from the literature and an expert elicitation, we define and quantify the leading drivers of 100 

change that have impacted peatland carbon stocks during the Holocene and predict their 101 

effect during this century and the far future. We also identify uncertainties and knowledge 102 

gaps among the scientific community and provide insight towards better integration of 103 

peatlands into modeling frameworks. Given the importance of peatlands’ contribution to 104 

the global carbon cycle, this study shows that peatland science is a critical research area 105 

and that we still have a long way to go to fully understand the peatland-carbon-climate 106 

nexus.  107 

 108 

Peatlands are often regarded as stable systems, with limited influence on annual carbon (C) 109 

cycling dynamics at the global scale. To some extent, this is true: their net C exchange with the 110 

atmosphere (a sink of ~0.14 Gt yr-1)1 is equivalent to ~ 1% of human fossil fuel emissions, or 3-111 

10% of the current net sink of natural terrestrial ecosystems2. However, and despite only 112 

occupying 3% of the global land area3, peatlands contain about 25% (600 GtC) of the global soil 113 

C stock4, equivalent to twice the amount in the world’s forests5. This large and dense C store is 114 

the result of the slow process of belowground peat accumulation under saturated conditions that 115 

has been taking place over millennia, particularly following the Last Glacial Maximum (LGM), as 116 

peatlands spread across northern ice-free landscapes4. Given their ability to sequester C over 117 

long periods of time, peatlands acted as a cooling mechanism for Earth’s climate throughout most 118 

of the Holocene6-7. Should these old peat C stores rejoin today’s active C cycle, they would create 119 

a positive feedback on warming. However, the fate of the global peat-C store remains disputed, 120 

mainly because of uncertainties that pertain to permafrost dynamics in the high latitudes as well 121 

as land-use and land-cover changes (LULCC) in the boreal, temperate, and tropical regions8.  122 

 123 
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Peatland C stocks and fluxes have yet to be incorporated into Earth System Models (ESMs), 124 

though they are beginning to be implemented in global terrestrial models9-10. As these models are 125 

moving towards the integration of permafrost dynamics, LULCC, and other disturbances such as 126 

fire, the absence of peatland C dynamics could lead to many problems in the next generation of 127 

models (Figure 1a). For example, the omission of organic-rich soils was a key contributor to the 128 

inaccurate estimates of organic soil mass, heterotrophic respiration, and methane (CH4) 129 

emissions in recent Climate Model Intercomparison Project (CMIP5) simulations11. Likewise, the 130 

successful integration of permafrost dynamics into land surface models necessitates the inclusion 131 

of peatlands, as the latter occupy approximately 10% of the northern permafrost area and 132 

account for at least 20% of the permafrost C stocks12, of which a sizable fraction is susceptible to 133 

wildfire13. LULCC scenarios must also account for temperate and tropical peatland degradation to 134 

derive better estimates of C fluxes14 and associated impacts on radiative forcing15. The inclusion 135 

of peatlands in ESMs should help address the complexity of the interacting, cross-scale drivers of 136 

change that control peat-C dynamics and quantify their contribution to a positive C cycle feedback 137 

now and in the future. 138 

 139 

Peatland conversion and restoration are also not considered in Integrated Assessment Models 140 

(IAMs), although there is growing anthropogenic pressure on peatland ecosystems worldwide16-17. 141 

Atmospheric carbon dioxide (CO2) emissions associated with degraded peatlands account for 5-142 

10% (0.5-1 GtC) of the global annual anthropogenic CO2 emissions18-19, despite their small 143 

geographic footprint (Figure 1b). While the preservation of pristine peat deposits would be ideal, 144 

the restoration of degraded sites, particularly through rewetting, could prevent additional CO2 145 

release to the atmosphere and reduce the risk of peat fires20-21. Even if restoration leads to C 146 

neutrality (i.e., sites stop losing C but do not start gaining it), their global greenhouse gas (GHG) 147 

saving potential would be similar to the most optimistic sequestration potential from biochar and 148 

cover cropping from all agricultural soils combined19,22. As IAMs move towards the integration of 149 

nature-based climate solutions to limit global temperature rise, peatland restoration and 150 

conservation are poised to gain in importance in those models, as well as in the international 151 
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political arena23. In turn, the socio-economic scenarios developed in IAMs could help inform the 152 

role of management interventions on future peatland use and guide policy options to best inform 153 

the implementation of GHG emission control strategies for decision makers. Ultimately, these 154 

model outputs will help predict the effect of peatland management on the global C cycle.  155 

   156 

[ insert Figure 1 here; if possible, we would like this figure to be “2-column-wide” ] 157 

 158 

Here, we review the main agents of change of peatland C stocks and fluxes, including drivers that 159 

can induce rapid peatland C losses (peat fire, land-use change, and permafrost thaw) and 160 

gradual drivers that can lead to rapid, nonlinear responses in peatland ecosystems (temperature 161 

increases, water table drawdowns, sea-level rise, and nutrient addition) (Figure 2). We use an 162 

expert elicitation to assess the perceived importance of these agents of change on C stocks, 163 

asking one question: “What is the relative role of each agent of change for shifting the peatland C 164 

balance in the past, present, and future?” Estimates are based on responses from 44 peat 165 

experts (see SI for details). Four time periods are studied: post-LGM (21,000 yr BP – 1750 CE), 166 

Anthropocene (1750-2020 CE), rest of this century (2020-2100 CE), and far future (2100-2300 167 

CE). The confidence and expertise levels are tallied for each of the experts’ responses (Tables 168 

S6 to S9; Figure S2), along with the sources that guided their estimates (Appendix 4). Arithmetic 169 

means and 80% central ranges (10th to 90th percentiles) are presented in the text and in Figure 3; 170 

other measures of central tendencies can be found in Tables S4 and S5. While central values 171 

provide order-of-magnitude estimates that may be useful to the reader, the strength of this 172 

elicitation is in its ability to identify where experts agree and disagree, and to recognize ranges of 173 

responses across experts. Thus, the elicitation findings can inform how integrating peatlands into 174 

modeling frameworks such as ESMs and IAMs could advance peatland process understanding 175 

and further test hypotheses that emerge from different schools of thought.  176 

 177 

[ insert Figure 2 here; if possible, we would like this figure to be “3-column-wide”  ] 178 

 179 
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 180 

Drivers of Peatland Carbon Stocks since the Last Glacial Maximum 181 

During the post-LGM time period, experts consider temperature the most important long-term 182 

driver of peat accumulation in extra-tropical peatlands (arithmetic mean = 524 (10th – 90th 183 

percentiles = 60 to 890) GtC; Figure 3). A positive moisture balance is deemed a necessary 184 

condition for peatland development, maintenance, and C preservation (238 (10 to 570) GtC). 185 

Several respondents comment that it is difficult, if not impossible, to separate the respective role 186 

of these two agents of change (Appendix 3). This exemplifies the need to integrate peatlands in 187 

ESMs, as cross-scale interactions between agents of change on peatland C dynamics could be 188 

further evaluated. Permafrost is also thought to be of importance due to its capacity to inhibit peat 189 

decay in northern high-latitude peatlands (218 (-14 to +531) GtC). That said, experts note that 190 

permafrost also likely contributes to slower C accumulation rates (when compared to non-191 

permafrost sites); permafrost also possibly contributes to peat erosion in regions where wind-192 

drifted snow and ice crystals can abrade dry peat surfaces24. The large range of values for 193 

permafrost (Figure S1) stems from the fact that some respondents attribute the entire permafrost 194 

peatland C pool to the presence of permafrost itself, while others attribute the C pool mainly to 195 

temperature and moisture, with permafrost aggradation playing the secondary role of protecting C 196 

stocks. In the tropics, experts suggest that long-term peat C sequestration is mainly driven by 197 

moisture availability (268 (24 to 360) GtC), with wetter conditions slowing down peat 198 

decomposition. Temperature and sea-level are identified as secondary agents promoting peat 199 

formation and growth (43 (0 to 128) GtC and 7 GtC (-13 to +52), respectively). Estimates for the 200 

net role of sea-level on tropical C stocks is near zero because some of the rapid C accumulation 201 

rates following sea-level rise in certain regions are counterbalanced by C losses due to 202 

continental shelf flooding and associated peat erosion or burial in other regions25 (Figure 3). 203 

 204 

These results are largely corroborated by the literature review. On the basis of extensive paleo 205 

records, we know that peatlands have spread across vast landscapes following the LGM4. As 206 

long as sufficient moisture conditions are maintained, warmer and longer growing seasons can 207 
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contribute to increases in plant productivity and peat burial in many extra-tropical regions26-28, but 208 

to enhanced decomposition and carbon loss in the tropics29-30, where growing season length and 209 

temperature are not limiting factors for photosynthesis1,31. Indeed, water saturation is a key 210 

control on oxygen availability in peat and on plant community composition, and thus an important 211 

determinant for CO2 and CH4 emissions and on net ecosystem C balance in both intact and 212 

drained peatlands32-34. Soil moisture excess is a necessary condition for long-term peat 213 

development; surface wetness must remain sufficient to minimize aerobic respiration losses and 214 

provide conditions inhibiting the activity of phenol oxidase35. In the tropical and mid-latitude 215 

regions, water table depth is recognized as the main agent driving long-term peat accumulation36-216 
38. At the regional scale, the literature review tells us that sea-level rise may either lead to net C 217 

losses39 or net C gains40. For example, sea-level decline in the tropics41 and land uplift following 218 

deglaciation in the north42 contributed to peat expansion over the past 5000 years. Conversely, in 219 

the (sub-) tropics, sea-level rise can drive groundwater levels up regionally, which allows coastal 220 

peatlands to expand and accrete at greater rates43-44. This process, which took place during the 221 

previous interglacial25 and other past warm climates, is likely to be most pronounced in the large 222 

coastal peatlands of the (sub-)tropics. While tectonic subsidence can lead to vast accumulations 223 

of lignite over millions of years45-46, its conjunction with rapid sea-level rise, rapid subsidence, or 224 

peat surface collapse due to water abstraction or LUC can lead to peatland loss47-48. In general, 225 

sea-level rise has been suggested to be a threat for coastal peatlands49-50, as these systems 226 

have limited capacity to move inland because of topography or human development.  227 

 228 

[ insert Figure 3 here; if possible, we would like this figure to be “2-column-wide”  ] 229 

 230 

 231 

Drivers of Peatland Carbon Stocks during the Anthropocene 232 

During the Anthropocene, short-term peat C losses across the northern high latitudes are linked 233 

to LUC (-7 (-23 to 0) GtC) and fire (-3 (-8 to 0) GtC) by the experts (Figure 3). As for permafrost 234 

dynamics, small C gains (2 (0 to 10) GtC) are suggested, though many experts warn that large 235 
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and rapid losses of old C have only recently begun and are expected to increase in the future 236 

(Appendix 3). Peat drainage for agriculture, forestry, industrial-scale peat extraction, and grazing 237 

were identified as the main sources of anthropogenic pressure on these peatlands (Figure 3). 238 

While peat C lost to human activity must have been considerable during the pre-Industrial time 239 

and the start of the Industrial era across Europe, historical reports are too few to provide a 240 

reliable estimate18. In this case, LULCC simulations from IAMs could reduce this uncertainty, or 241 

provide several scenarios. The C loss to fire is attributed to an increase in both natural and 242 

anthropogenic burning. Similarly, the main suggested causes of peat C losses in the tropics are 243 

LUC (-8 (-14 to -2) GtC) and fire (-4 (-10 to 0) GtC). Despite these losses, the trend suggests that 244 

northern high-latitude peatlands have persisted as C sinks throughout the Anthropocene. Experts 245 

primarily attribute the net C gain across the northern high latitudes to faster accumulation rates 246 

induced by longer and warmer growing conditions from climate warming (16 (0 to 38) GtC). An 247 

increase in moisture from greater precipitation is suggested as an additional agent leading to C 248 

gain in the Arctic, though several experts mention C losses due to drought across the boreal and 249 

mid-latitude regions; an overall increase of 11 (-1 to +31) GtC from moisture is suggested by the 250 

survey respondents. Lastly, nitrogen (N) deposition and other atmospheric pollution are thought 251 

to have a negligible impact (<1 (-1 to +1) GtC) on the peatland C sink capacity worldwide.   252 

 253 

The importance of permafrost and fire seen in the expert elicitation are reflected in the main 254 

findings from the literature review. For instance, across the northern high-latitude regions, 255 

increasing air temperatures and winter precipitation have been linked to a >50% reduction in 256 

palsa or peat plateau area since the late 1950s51-53, although this is variable by region54. In 257 

general, thermokarst landforms such as ponds or collapse-scar wetlands with saturated soils form 258 

when ice-rich peat thaws and collapses. These mainly anaerobic environments are characterized 259 

by high CH4 emissions55-57; mass-balance accounting for C stocks indicates as much as 25-60% 260 

of “old” permafrost C is lost in the years to decades following thaw58-60. Over time, increased C 261 

sequestration and renewed peat accumulation occurs in drained thermokarst lake basins61-62 and 262 

collapse-scar wetlands, but it can take decades to centuries and sometimes millennia for 263 
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collapse-scar wetlands to transition from having a positive (warming) to a negative (cooling) net 264 

radiative forcing59,63. Moreover, the combustion of peat layers has led to direct losses of plant and 265 

peat C (Figure 3). Fire-derived emissions can be substantial, exceeding biological emissions from 266 

peat decomposition in some years64. The highest emissions are observed from drained tropical 267 

peatlands in extreme dry years such as the 1997 El Niño (810-2570 TgC yr-1)65 and the 2015 fire 268 

season (380 Tg C yr-1)66 in Indonesia. However, as a result of drainage, peat fires are even 269 

observed in wet years67. Although peat C losses from northern peat fires are smaller (e.g., 5 TgC 270 

yr-1 from Alaskan wetlands)68, there is a need to consider wildfires in permafrost thaw dynamics 271 

due to their effects on soil temperature regime69. Peatland surface drying, both as a result of 272 

droughts and human activity, has been shown to increase the frequency and extent of peat 273 

fires13,70, which could lead to deeper burns and hindered recovery71 as well as peat water 274 

repellency72. In terms of LUC, it is well accepted that widespread peatland conversion, drainage, 275 

and mining across the temperate and tropical regions has led to large C losses73-76, in addition to 276 

immediate ecosystem damage and land subsidence47,77. While most peatland management 277 

practices result in decreased CH4 emissions due to drainage32, peatland inundation or rewetting 278 

can lead to episodic CH4 releases78-79. Lastly, the structure and function of peatlands are now 279 

threatened by increased N availability and atmospheric phosphorus (P) deposition80 from 280 

anthropogenic emissions81. For example, Sphagnum moss cover dies off after a few years of 281 

sustained N loading82-84; changes in climate can exacerbate these negative effects85. Changes in 282 

microbial communities and litter quality associated with N deposition can also contribute to 283 

increased decomposition86-87 by lowering the peatland surface88 and causing a rise in the water 284 

table and CH4 emission89. Conversely, a study reported C gain with modest N deposition in a 285 

Swedish peatland, driven by a greater increase in plant production than in decomposition90, 286 

illustrating differences, and perhaps a threshold response, in C balance response to N deposition.  287 

 288 

Quantification of Future Peatland Stocks  289 

During the rest of this century (2020 – 2100 CE) and the far future (2100 – 2300 CE), experts 290 

expect the C loss mechanisms presented above to be amplified (Figure 3). In the northern high 291 
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latitudes, while C gains are still linked to shifts in temperature and precipitation (17 (-16 to +47) 292 

and 3 (-37 to +32) GtC, respectively), C losses to fire are expected (-7 (-10 to 0) GtC). Many 293 

respondents suggest that better fire management could mitigate this. These losses are predicted 294 

to be accompanied by additional ones from permafrost degradation (-30 (-102 to +12) GtC), sea-295 

level rise that would inundate coastal peatlands (-3 (-9 to +1) GtC), and LUC (-14 (-38 to +3) 296 

GtC). The latter, and primarily drainage for agriculture, is expected to cause significant peatland 297 

C losses, though many experts expect the rate to slow with increasing conservation and 298 

restoration efforts. Regional drought-induced C losses are also suggested for the mid-latitude 299 

regions. In the tropics, experts generally agree that every agent of change will negatively impact 300 

C stocks. Net peat C losses are predicted due to warmer temperatures (-22 (-14 to +4) GtC; 301 

mean skewed outside 10th – 90th percentile range by an outlier), fires (-23 (-54 to -2) GtC), 302 

negative moisture balance (-9 (-31 to +3) GtC), and sea-level rise (-3 (-5 to 0) GtC). Of particular 303 

importance is the evolution of the El Niño Southern Oscillation, as El Niño droughts may lead to 304 

substantial C losses to the atmosphere. LUC (-13 (-44 to +3) GtC) is also predicted to play a key 305 

role in the future, as it could lead to the drainage of large peat basins, such as the Amazon and 306 

Congo.  307 

 308 

Experts’ confidence in their predictions declines for the far future (Tables S6 and S7; Figure S2), 309 

in part due to the lack of models capable of simulating the effect of agents of change on peatland 310 

C stocks, but also because policy and land management decisions will influence the future of 311 

peatlands. This is an area where the integration of peatlands into IAMs would allow the 312 

generation of pertinent scenarios to help inform the science, as well as policy options and land 313 

management decisions. A growing world population may put additional pressure on peatlands, as 314 

farming becomes possible at higher latitudes, and further deforestation may occur in the tropics, 315 

but the need to conserve peat resources may eventually outweigh these pressures. In this case, 316 

the adoption of policies designed to protect peatlands would greatly limit C losses. Likewise, the 317 

pricing of C could change the way peatlands are perceived, valued, and managed. These 318 

diverging opinions are all included in our assessment (Appendix 3), but explicit IAM simulations 319 
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would allow exploration of different policies and socio-economic scenarios. Noteworthy is that 320 

extra-tropical peatlands could play an important role, second only to the oceans, in reducing the 321 

global atmospheric CO2 concentration if cumulative anthropogenic emissions are kept below 322 

1000 GtC91-92. Mitigation is therefore highly important in counterbalancing the climate impact of 323 

peatland C loss93.  324 

 325 

 326 

Insights from the Expert Elicitation and their Limits  327 

Expert assessment is critical to inform decisions that require judgements that go beyond 328 

established knowledge and model simulations94. For this reason, expert opinion is often used in 329 

environmental assessments either as a means to assess confidence levels or rank potential 330 

outputs7, or as data points that offer estimates that could not be provided otherwise95,96. This 331 

expert assessment also highlights key knowledge gaps and uncertainties such as, for example, 332 

the impact of permafrost aggradation and degradation on the future peatland C balance (see SI 333 

and Figure S1). Our dataset reflects two main schools of thought that are anchored in conflicting 334 

evidence from the literature: (1) rapid C loss from deep peats and a slow recovery of the 335 

peatlands following permafrost thaw59-60, and (2) net C gain from rapidly recovering plant 336 

production due to warm and moist conditions following thaw1,28. Overall, results from the expert 337 

elicitation can be used to help prioritize which ecosystem mechanisms and properties should be 338 

integrated into ESMs; in turn, those model outputs will help constrain the peat-carbon-climate 339 

feedback and inform future data collection strategies. 340 

 341 

Our results indicate low to medium confidence in future C flux estimates. Confidence levels are 342 

highest for the post-LGM and Anthropocene time periods, in part reflecting the majority of paleo 343 

researchers in the survey respondents, but also because of compounding uncertainties pertaining 344 

to future levels of GHG emissions from the energy and land systems, patterns of land-use 345 

change, etc., which are affected by social, economic, political, and policy drivers (Appendix 3). 346 

The overall confidence levels for the post-LGM and Anthropocene is medium (a value of 3 on a 347 
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scale of 1 to 5); even highly self-rated experts (4-5) give low to medium confidence to some of 348 

their answers, which could suggest great uncertainty based on current literature (Tables S6 and 349 

S7, Figures S2, S3). For the rest of this century and the far future, confidence drops to low (a 350 

value of 2), likely reflecting the low confidence in our projection of human-based decisions (Figure 351 

S2, Appendix 3). Areas of research for which expertise is lowest include LUC, N deposition, and 352 

atmospheric pollution (Tables S8 and S9, Figure S2), which may have contributed to some of the 353 

low confidence levels mentioned above. Here again, results from the expert elicitation provide a 354 

unique opportunity to generate pertinent socio-economic scenarios that will help inform our 355 

science, policy options, and land management decisions. 356 

 357 

While this present assessment may be used as a bridge towards policy –decisions need to be 358 

made even when uncertainty is high and confidence is low – we are not interested in offering 359 

“consensus statements” on peatland C storage. Rather, our intent is to contribute a novel 360 

perspective that identifies the central tendencies, communicates uncertainties, and highlights 361 

contradictions to improve peat-C process understanding and press the community to add organic 362 

soils and peatland plant functional types in ESMs and IAMs (see SI for further discussion). 363 

Overall, results from the expert elicitation can help prioritize which ecosystem mechanisms and 364 

properties should be integrated into ESMs; in turn, those model outputs will help constrain the 365 

peat-carbon-climate feedback, inform future data collection strategies, and advance 366 

understanding by further testing different hypotheses. As such, the inclusion of peatland process 367 

understanding in models, and particularly better attribution of the role of each agent of change on 368 

peatland C dynamics, would help increase confidence in C flux predictions. Modeling efforts that 369 

include peatland dynamics would improve ESM and IAM outputs and benefit the peatland and 370 

climate research communities, in a positive feedback loop. 371 

 372 
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Figure Captions 835 
 836 
Figure 1: Integrating peatland knowledge in climate change modeling frameworks. A conceptual 837 
structure of (a) an Earth System Model (ESM), and (b) an Integrated Assessment Model (IAM). 838 
The ESM emphasizes peatland carbon, energy, water, and nutrient pools and exchanges with the 839 
atmosphere, aquatic/freshwater systems, and the world’s oceans. The IAM focuses on the 840 
importance of considering peatlands in policy options and land management decisions, as these 841 
carbon-rich ecosystems can significantly contribute to GHG emission reduction strategies. Grey 842 
arrows represent fluxes with important contribution from peatlands; white arrows represent non-843 
peatland fluxes; ES: ecosystem services; GDP: gross domestic product; GHG: greenhouse gas. 844 
 845 
Figure 2: The main agents of change impacting the global peatland carbon balance globally. 846 
Using an expert elicitation combined with a literature review, the importance of each agent in the 847 
past, present, and future is semi-quantitatively assessed in this study. Infographic created by 848 
Patrick Campbell. For a high-resolution image without text details and a brief review of each 849 
agent of change, see Appendix 5. 850 
 851 
Figure 3: Expert assessment of the global peatland carbon balance over time. Changes in carbon 852 
stocks are shown for the extra-tropical northern region (blue) and the (sub-)tropical region 853 
(yellow) for the post-LGM (21,000 BP – 1750 CE), Anthropocene (1750 – 2020 CE), Near Future 854 
/ Rest of this Century (2020 – 2100 CE), and Far Future (2100 – 2300 CE). Agents of change: 855 
temperature (T), moisture (M), sea-level (SL), fire (F), land use (LU), permafrost (P), nitrogen 856 
deposition (N), atmospheric pollution (AP). Columns: arithmetic means; error bars: 80% central 857 
range. Positive values represent carbon sinks to the atmosphere. Individual survey responses are 858 
shown in Figure S1. 859 
 860 


