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Abstract | Sports-related concussions and repetitive subconcussive exposure are increasingly recognized 
as potential dangers to paediatric populations, but much remains unknown about the short-term and long-
term consequences of these events, including potential cognitive impairment and risk of later-life dementia. 
This Expert Consensus Document is the result of a 1‑day meeting convened by Safe Kids Worldwide, the 
Alzheimer’s Drug Discovery Foundation, and the Andrews Institute for Orthopaedics and Sports Medicine. 
The goal is to highlight knowledge gaps and areas of critically needed research in the areas of concussion 
science, dementia, genetics, diagnostic and prognostic biomarkers, neuroimaging, sports injury surveillance, 
and information sharing. For each of these areas, we propose clear and achievable paths to improve the 
understanding, treatment and prevention of youth sports-related concussions.

Carman, A. J. et al. Nat. Rev. Neurol. advance online publication 17 March 2015; doi:10.1038/nrneurol.2015.30

Introduction
In 2009, around 250,000 nonfatal traumatic brain injuries 
(TBIs) were recorded among individuals aged <19 years 
in the USA.1 The Centers for Disease Control and 
Prevention estimate that young people aged 5–18 years 
sustain 65% of all sports-related concussions.2 Despite 
recent advances in diagnostic brain imaging and in our 
understanding of the physics of concussion, long-term 
cognitive outcomes remain poorly understood. As the 
physical, cognitive and emotional consequences of con-
cussion gain wider public attention, our incomplete 
knowledge of how to prevent, diagnose and treat such 
injuries endangers the health of our children in general 
and the health of their brains in particular.

This Expert Consensus Document is the result of a 
1‑day meeting of experts in the fields of paediatric and 
adult TBI, Alzheimer disease (AD) research, genetics, 
epidemiology, bioethics and sports medicine (Box 1), 
which was convened in November 2013 by Safe Kids 
Worldwide, the Alzheimer’s Drug Discovery Foundation 
and the Andrews Institute for Orthopaedics and Sports 
Medicine. Our primary goal is to highlight critical gaps 
in our knowledge of child and adolescent concussion. 
We emphasize areas where research is needed, such as 

development of diagnostic and predictive biomarkers, 
elucidation of genetic risk factors, and prediction of 
short-term and long-term outcomes. In our conclu-
sions, we suggest paths toward improving our under-
standing of the long-term consequences of sports-related 
paediatric concussion.

Current state of knowledge
Concussive TBI in young people
The term ‘concussion’ is often used interchangeably with 
the term ‘mild TBI’ (mTBI), a potentially misleading 
practice considering the possible extent of brain damage 
and potential for chronic neuropsychological dysfunc-
tion following concussion. We should stress, however, 
that most concussions resolve without sequelae. The 
American Congress of Rehabilitative Medicine defines 
mTBI as a Glasgow Coma Scale3 score of 13–15, with 
loss of consciousness for <30 min and post-traumatic 
amnesia lasting <24 h.4

Concussion describes a heterogeneous mixture 
of injury phenotypes that depends on many factors, 
including the magnitude, location and direction of head 
impact. Despite a lack of macroscopic structural find-
ings, concussive brain injury involves primary neur
onal injury caused by linear and rotational shear forces 
that disrupt axonal and membrane function (diffuse 
axonal injury,5 ionic flux and glutamate excitotoxi
city), followed by secondary pathophysiological effects 
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including mitochondrial oxidative stress, disruption of 
cerebral blood flow, compromised blood–brain barrier 
(BBB) integrity, synaptic dysfunction, and neuroinflam-
mation.6,7 Lasting neuropsychological post-concussion 
symptoms (post-concussion syndrome) comprise 
mood disorders (for example, depression), difficulty 
concentrating, and memory problems (Box 2).8

Susceptibility and resilience of young brains
Both physical and physiological components of concus-
sive injury can damage the developing brain, putting 
youths engaged in impact sports at particular risk. The 
necks and torsos of young athletes are weaker than 
those of older individuals and, consequently, less force 
is required to cause brain injury. The developing brain 
might also be particularly vulnerable to axonal damage 
caused by the shearing forces of head trauma, which, in 
youth American football, can exceed linear acceleration 
forces of 100 g.9 However, the average forces sustained 
in youth sports will generally be smaller than at higher 
levels of sport.

Proper synaptic development is critical to cognitive and 
behavioural health.10–15 Processes such as neurogenesis, 
competitive synaptic elimination (‘pruning’), myelin
ation, and axonal and dendritic arborization continue 
from prenatal development throughout the lifespan.14 The 
frontal and temporal lobes are the last areas to mature, 

and humans experience pruning in these regions into 
their early 20s,16 so damage to these still-developing areas 
may have pathophysiological effects on the brain that 
increase the potential for neuropsychological problems 
later in life.17

Axonal myelination continues through adolescence 
into the early 20s, and is susceptible to disruption by 
injury.10,18–22 Early results from the Professional Fighters 
Brain Health Study, a 5‑year longitudinal study of boxers 
and mixed martial arts fighters, who experienced repeti-
tive subconcussive injuries as well as concussions, indi-
cate that earlier age of first exposure to competitive 
boxing correlates with greater loss of caudate volume and 
greater axonal damage in the frontal lobe.23,24

The young brain also has features that contribute to 
its resilience. Increased neuroplasticity in this age group 
has been shown to contribute to better outcomes after 
focal injuries.25 In addition, developing animals display 
a shorter window of glucose metabolic impairment in 
response to repeat TBI than do adult animals.26

Overall, the developing brain shows both vulnerability 
and resilience after TBI. These interwoven factors are 
likely to account for differences in the effects of concus-
sion and repeat mTBI on young versus adult brains. A 
conservative approach to concussion risk and greater 
efforts to investigate these developmental differences 
should be given high priority.

Recovery
Most people—both young and old—recover fully from 
concussions. In children, factors potentially influencing 
recovery include age and history of concussions.27,28 
In one study, approximately 90% of young adult male 
athletes experienced symptomatic recovery within 
21 days.29 However, in an emergency department study 
of patients aged 11–22 years (including all causes of 
concussion, not just sports-related), 15% of the sample 
still exhibited post-concussion symptoms, including 
headache, dizziness, ‘mental fogginess’ and depression, 
90 days after injury.30 Several studies suggest that high 
school American football players are slower to recover 
from concussion than are college31,32 and professional 
players.33 No direct comparisons with adolescents below 
high school age have yet been published, although a 
recent study that included a pre-adolescent age group 
(11–12 years) suggested that post-concussion recovery 
duration may not exhibit a linear relationship with age,30 
as adolescents in this sample took longer to recover than 
did the pre-adolescent children. These findings, taken 
together, imply a unique risk of lengthier recovery in the 
male adolescent age group. Further studies of younger 
children and females would add greatly to our ability 
to assess and mitigate risk across the full paediatric and 
adolescent age span.

Youths who sustained one or more concussions within 
1 year prior to a new concussion reported more-prolonged 
symptoms,30 suggesting a possible ‘window of vulner-
ability’, and placing previously injured youths at higher 
risk of protracted recovery. Adolescents aged 11–18 years 
were nearly 80% more likely to develop post-concussion 

Box 1 | Safe Sports Think Tank

This Expert Consensus Document is the result of ‘Safe Sports Think Tank: 
Exploring the relationship between childhood sports-related concussions and long-
term cognitive outcomes’, a 1‑day meeting of US‑based experts in the fields of 
paediatric and adult traumatic brain injury, Alzheimer disease research, genetics, 
epidemiology, bioethics and sports medicine.
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syndrome after presenting in emergency rooms than 
were children aged 5–10 years; similarly, presentation 
with headache doubled the risk of post-concussion syn-
drome in both children and adolescents.34 Among chil-
dren treated in an emergency room after mTBI, those 
aged >6 years reported higher rates of persistent symp-
toms 3 months post injury than did those aged <6 years.35 
Of course, the ability to acquire accurate information 
about concussion symptoms in children <6 years of age 
may be limited by a lack of self-awareness of symptoms 
and the necessary verbal skills to effectively communicate 
those symptoms. Also, direct comparison of injury sever-
ity is not possible from these reports; in fact, the physi-
cal heterogeneity of various injuries, taken together with 
the individual’s innate capacity to recover from concus-
sion, makes such comparisons highly challenging. ‘Smart 
helmets’ are being used in some speciality research centres 
to standardize the physical force and angular accelera-
tion that accompanies head hits, and the utility of these 
helmets to measure and predict impacts that may result in 
concussion is currently under investigation.36,37

Young people recovering from concussion can experi-
ence important challenges, including altered social and 
academic development,38–40 lower scores on general intel-
ligence tests, and decreased school performance (meas-
ured by grade-point average).39 Lower levels of parental 
education and child academic achievement both cor-
relate with poorer concussion recovery.41 Personality 
traits also play a part; for example, pre-injury anxiety 
is a risk factor for prolonged recovery periods after 
sports-related concussion.42

Young athletes of both sexes are at risk of concus-
sion, but girls report higher concussion rates than 
boys, particularly in high school and college soccer, 
basketball, and baseball or softball.28,43–45 The factors 
that account for these differences remain uncertain, but 
might include quality of protective gear, recognition and 
reporting of concussion symptoms, and neck length 
and neck muscle strength.46 Differences in recovery 
trajectories between males and females are also poorly 
understood. However, one recent study suggested that 
progesterone levels in females influence post-concussion 
recovery.47 Hormonal changes during puberty that con-
tribute to migraine headaches might also contribute to 
sex differences in concussion recovery. Migraine head-
aches are up to fourfold more common in females than 
in males after puberty,48,49 and some evidence suggests 
that migraineurs recover more slowly after concus-
sion.50,51 Research is warranted to further delineate sex 
differences in concussion risk and recovery.

In general, adult concussive brain injury is much 
better understood than its counterpart in children and 
adolescents. Several points are important to note. First, 
concussion has multiple, non-harmonized definitions. 
Second, concussion diagnosis is an imperfect art. Last, in 
the absence of rapid and inexpensive objective diagnostic 
measures, concussion remains a clinical diagnosis that 
is subject to variability—including different thresholds 
for diagnosis across various subspecialities and across 
individual physicians, neuropsychologists and athletic 

trainers—and under-reporting by coaches, parents and 
young athletes. Without validated diagnostics, con-
cussion will remain a nebulous and under-reported 
entity, and the accuracy of incidence estimates will 
continue to be tainted by the differential application of 
inexact criteria.

Subconcussive blows
Repetitive subconcussive trauma can result in structural 
and functional brain changes.52 White matter abnor-
malities detected by diffusion tensor imaging (DTI) have 
been reported in professional soccer players even in the 
absence of any obvious history of concussions. Compared 
with swimmers, male professional soccer players showed 
DTI signal changes suggestive of decreased white matter 
integrity in several brain regions, which might indicate 
loss of axonal myelination, similar to changes seen in 
individuals with mTBI.53 Collegiate ice hockey players 
exhibited similar white matter changes over the course of 
a season.54–57 In addition, repetitive subconcussive head 
impacts in collegiate American football players have 
been linked, in a dose-dependent manner, to deficits in 
BBB integrity, potential loss of white matter integrity, and 
cognitive dysfunction.58

These findings probably reflect some level of risk 
for youths who sustain repetitive subconcussive head 
impacts, although little research has been devoted speci
fically to this topic. A metric to track head impacts—that 
is, a ‘hit count’—has been proposed,59 and could serve 
as one factor to determine cumulative risk exposure. 
One challenge of this approach is to accurately define 
the parameters of a ‘hit’, but improved biosensors show 
some promise in this regard. Similar to a ‘pitch count’ 
in baseball, this concept has also recently been pro-
posed for boxers.24 No evidence is currently available 
to show a causal link between repetitive subconcussive 

Box 2 | Characteristics of concussion

Clinical classification
■■ Glasgow Coma Scale score 13–15
■■ Loss of consciousness <30 min
■■ Post-traumatic amnesia <24 h

Primary brain injuries
■■ Lack of gross structural changes (that is, haemorrhage, 

contusion)
■■ Axonal function disrupted by linear and rotational sheer 

forces
■■ Glutamate release and ionic flux

Potential secondary brain injuries
■■ Disrupted blood–brain barrier function
■■ Neuroinflammation
■■ Mitochondrial oxidative stress
■■ Disrupted cerebral blood flow
■■ Disrupted connectivity networks

Potential neuropsychological outcomes
■■ Executive dysfunction
■■ Attentional dysfunction
■■ Memory problems
■■ Slowed processing speed
■■ Altered mood
■■ Depression
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head impacts in youth and dementia later in life, and 
such metrics could prove invaluable if validated by 
future studies correlating head impacts with subsequent 
neuropsychological dysfunction.

Filling the gaps—concussion risk and recovery
■■ Identify the drivers of age differences in sports-related 

concussion risk. Does age influence the concussion 
recovery trajectory?

■■ Determine drivers of sex differences in sports-
related concussion risk. Does sex influence the con-
cussion recovery trajectory? Are the effects of sex 
age-dependent?

■■ Establish how cumulative subconcussive head blows 
influence short-term and long-term neuropsychological 
dysfunction

Neurodegeneration and cognitive impairment
CTE
In adults, TBI, including concussion,60–62 might increase 
an individual’s risk of developing neurodegenerative 
disease,63,64 including AD and chronic traumatic enceph-
alopathy (CTE), a disease associated exclusively with 
repetitive head trauma.65,66 TBI may also increase the 
risk of developing Parkinson disease (PD),67 although 
the relationship between mTBI and PD risk remains 
uncertain.68 In paediatric populations, particularly young 
athletes, the effects of single or repetitive concussions 
on the risk of later-life neurodegeneration and dementia 
are unknown.

CTE was first described symptomatically in the 
late 1920s as ‘punch-drunk’ dementia in boxers,69 was 
later described as ‘dementia pugilistica’,70 and was first 
described pathologically in 1973.71 Since the identifica-
tion of CTE in a former professional American football 
player in 2005,72 and additional intensive pathological 
studies, this condition has gained widespread public 
attention, and has now been identified in brains of 
former ice hockey, baseball, rugby and soccer players,73 
wrestlers,74 and military veterans.75,76 The prevalence and 
incidence of CTE in amateur and professional athletes 
is still unknown, adding to difficulties in discussing its 
epidemiology and population risks for athletes. Although 
CTE is primarily considered to be a neurodegenerative 
disease that sometimes results from a career of either 
collegiate or professional contact sports, cases of CTE 
have been reported in high school athletes.77 This finding 
suggests that long sporting careers are not required for 
CTE development, and that youth athletes represent an 
at-risk population.

Emerging evidence suggests that clinical CTE symp-
toms can be grouped into two common presentations: 
cognitive and mood–behavioural.78,79 Subjective memory 
complaints such as anterograde amnesia are common, 
as are mood disorders including anxiety or depression,79 
and reduced executive function, which can result in dis-
inhibition and impaired decision-making skills.80 These 
clinical symptoms define disease severity.81

The neurodegenerative pathophysiology of CTE 
is complex, and the neurological sequelae are poorly 

understood. In severe cases, the cerebral cortex and 
medial temporal lobes seem most profoundly affected,81,82 
with pathology characterized by neurofibrillary tangles 
composed of phosphorylated tau79 and, in some cases, 
TAR DNA-binding protein 43 pathology.83 CTE is also 
associated with marked atrophy, notably in the frontal 
cortex and medial temporal lobe, as well as in the mam-
millary bodies, thalamus and hypothalamus.79 Confirmed 
clinical diagnosis of CTE remains autopsy-based.84

CNI
Given the uncertainty over whether the tauopathy 
described in CTE is causative of the clinical phenotype, 
and the fact that most professional and collegiate athletes 
do not develop CTE, it is vital to understand whether 
early exposure to concussion is associated with other 
forms of neurodegeneration and cognitive dysfunction, 
including chronic neurocognitive impairment (CNI). 
Important clinical distinctions exist between CTE and 
CNI,28,51 some of which make direct comparisons dif-
ficult. CTE is an emerging clinical and pathological 
condition that involves progressive deterioration of 
neurological and cognitive function in multiple domains, 
and is diagnosed primarily at autopsy. Conversely, the 
CNI phenotype is not necessarily progressive, and is 
characterized by functional decline from group aver-
ages or baseline functioning established before TBI. 
CNI can be diagnosed clinically through neuropsycho-
logical testing. No causal link between CNI and head 
trauma has yet been confirmed, but a dose-dependent 
risk has consistently been found in professional ath-
letes.28 In addition, almost half of the studies conducted 
in amateur athletes have found an elevated risk of CNI.28 
Whether similar risk associations are present in younger 
populations remains to be determined.

One hypothesis is that CNI represents a prodromal—
but not inevitable—step toward CTE, analogous to the 
relationship between mild cognitive impairment (MCI) 
and AD.85,86 Alternatively, CNI may represent static 
impairment without degeneration. Our current lack of 
understanding of the basic biological underpinnings of 
CNI and CTE underscores the need for more research. 
Increased knowledge of the biology of both conditions, 
as well as early detection of CNI in athletes (in particu-
lar, youth athletes), may drive interventions to stem the 
development of further cognitive impairment, and could 
also aid validation of putative biomarkers. Assessment of 
CNI via tau imaging may help determine the likelihood 
of progression to CTE.

Filling the gaps—CTE and CNI
■■ Identify the molecular initiators and drivers of CTE 
pathology. Are similar drivers present in youths with 
concussion?

■■ Capture the incidence and prevalence of CTE in 
former professional and amateur athletes

■■ Improve early detection of CNI in athletes. Can early 
detection and intervention reduce the frequencies of 
psychiatric disorders, cognitive decline and later-life 
dementia?
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Genetics of concussion and dementia
The field of concussion genetics, especially in paediatric 
populations, is still in its infancy. Although repetitive 
head impacts seem necessary for the development of 
CTE, other factors, including genetics, are likely to have 
an important role, as most concussed athletes do not 
develop CTE.87 The genetic risk factors for CTE prob-
ably overlap with those that influence susceptibility to 
and recovery from concussion, and genetic risk factors 
for AD are providing important clues to the identity of 
these factors.

Apolipoprotein E
The ε4 allele of apolipoprotein E (APOE ε4), the most 
important genetic risk factor for AD identified to date,88 
critically affects the CNS injury response,89 in particu-
lar, amyloid‑β (Aβ) clearance from the brain. The three 
alleles of APOE confer varying degrees of AD risk: 
APOE ε2 reduces the risk, APOE ε3, the most common 
allele, represents baseline risk with which other vari-
ants are compared, and APOE ε4 increases the risk.90,91 
Studies suggest an interaction between APOE ε4 and sex, 
such that APOE ε4-related risk of AD is more promi-
nent in women than in men.92,93 The APOE genotype acts 
synergistically with TBI in increasing the risk of AD,94 
although its hypothesized risk association with CTE as 
an outcome of repetitive mTBI requires more study.95

No consensus has yet been reached on the effects of 
APOE isotype on the outcome of paediatric TBI, but data 
from adults suggest that APOE ε4 negatively influences 
concussion outcomes. Several studies indicate that pos-
session of at least one APOE ε4 allele is associated with 
poorer cognition and lasting neuropsychological impair-
ment after concussion in professional American football 
players,96 boxers95 and other adults,97–100 although other 
studies found no such association.101,102 Some evidence 
points to polymorphisms in both the APOE gene and 
its promoter as contributory factors to concussion risk 
in college athletes.103,104 Another study did not iden-
tify a role for APOE ε4 in concussion risk,105 although 
this allele might increase the risk of dementia follow-
ing midlife or late-life mTBI.106 Drawing conclusions 
from these conflicting studies is difficult, owing to small 
sample sizes and differing methodologies.

In children, little is known about the relationship 
between APOE ε4 and neuropsychological outcomes after 
concussion, and APOE ε4 testing is not routine in paediat-
ric TBI studies. In 2012, Kurowski reviewed the few exist-
ing studies and combined the results of three studies107–109 
that used the Glasgow Outcome Scale.110 In the com-
bined sample (252 children), the risk of poor clinical 
outcomes after 6–12 months was over twofold higher in 
APOE ε4 carriers than in noncarriers (19% versus 9%). 
However, these studies included a broad developmental 
range of children with heterogeneous injuries, and did 
not account for a possible interaction between age and 
genotype. In addition, the interaction between APOE 
and sex has not been studied in the context of concus-
sion. Improved prospective studies are warranted to 
clarify these connections.

Incorporation of genetics into paediatric concussion 
research is fraught with complicated challenges, includ-
ing acquisition of parental consent and informed consent 
for a child, perceived stigmatization of clinical study 
participants, the actionability of the genetic knowledge 
obtained, and potential concerns regarding insurabil-
ity (particularly long-term care insurance). Studies of 
adults who learn of their APOE ε4+ status demonstrate 
that many are willing to make lifestyle modifications, 
including increased exercise and improved medication 
management,111 as well as increased purchases of health 
and long-term care insurance.112,113

Education about new genetic knowledge and corre-
sponding disease risk is essential, as demonstrated by the 
substantial discordance between an individual’s personal 
feelings about the implications of the acquired knowl-
edge and the actual consequences of increased demen-
tia risk.114 The effects of APOE genetic knowledge on 
children, their families and decision-making processes 
regarding participation in impact sports remain unclear. 
The influence of APOE genotype on concussion risk and 
recovery in this age group also needs further elucida-
tion. If future studies find that, for any particular level of 
impact, children with APOE ε4+ status are at greater risk 
of concussion or poor recovery than are their APOE ε4– 
peers, consideration should be given to genetic testing of 
school-age athletes before participation in impact sports.

Careful studies of high school and younger athletes 
are required to fully understand the nuances of genetic 
influences. Future research into youth concussion 
outcomes, including cognitive outcomes and risk of 
dementia, should include APOE genotyping wherever 
possible. New APOE studies should standardize research 
methodologies and reporting measures, including the 
collection of ‘common data elements’, to ensure valid 
comparison across studies.110,115 The APOE genotype 
is not necessarily a non-modifiable risk factor for con-
cussion recovery: therapies being developed for AD 
include drugs that modify the interaction between the 
ApoE4 protein and Aβ, which might also be applicable 
to paediatric concussion.116,117

Other genetic risk factors
The Val66Met polymorphism in the gene encoding 
brain-derived neurotrophic factor has been linked to 
better outcomes after mTBI,118 but worse outcomes after 
focal penetrating brain injury.119 Polymorphisms in genes 
involved in dopaminergic signalling may also help to 
account for the wide range of TBI outcomes.120 In addi-
tion, the Rep1 polymorphism in the promoter region of 
the α‑synuclein gene might increase the risk of PD after 
head injury.121

To advance our understanding of concussion risk 
and management, large, prospective, population-based 
genome-wide association studies (GWAS) and whole-
genome sequencing studies should be conducted to iden-
tify other genetic variants—possibly of low frequency or 
low penetrance—that modify the risk of prolonged recov-
ery, poor cognitive outcomes or dementia.122 Such studies 
will require large-scale data sharing, and must address 
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issues of ethics, privacy, and potential implications for 
insurability and employability.

Filling the gaps—genetic risk factors
■■ Better define the effects of genetic differences on con-

cussion risk and recovery trajectories, with specific 
attention to potential correlations between genetic 
differences and age and sex differences

■■ Explore the genetic contribution to TBI susceptibility 
and risk of post-concussion syndrome

■■ Consider increasing the use of genotyping in paediatric 
concussion research, including clinical trials

■■ Improve comparability and validity of future paediat-
ric concussion research by increasing sample sizes (for 
example, through multisite studies) and standardizing 
study methodologies

Future directions
Diagnostic and prognostic biomarkers
Despite progress in identifying possible cerebrospinal 
fluid (CSF) and blood-based biomarkers that might be 
applied to adult TBI management, no clinically validated 
biomarkers are available for either the adult or the paedi
atric population. Paediatric concussions present with 
even greater clinical variability than do adult concussions; 
therefore, biomarkers have special potential for improv-
ing concussion diagnosis in children. Of note, most TBI 
biomarkers have been studied in the context of moder-
ate to severe TBI, leaving us with obvious gaps in our 
knowledge of mTBI biomarkers, especially in children.

Biomarker development has been critical to the 
advancement of AD therapeutics. CSF-based bio-
markers are already being employed to identify at-risk 
patients and to improve the design of both epidemiologi-
cal studies and clinical trials.123 New PET radioligands, 
such as amyloid-labelling agents (three of which are now 
FDA-approved), can be used both diagnostically and 
to improve neuropathology-based patient stratification 
for clinical trials. Several tau imaging agents are also in 
human trials, and their utility in tauopathies, including 
CTE, is rapidly being established. As with fluid-based bio-
markers, there are currently no neuroimaging biomarkers 
sensitive or specific enough to diagnose concussion 
or CTE in either adults or children. No TBI diagnostic or 
therapeutic agents have yet been approved by the FDA, 
and validation of concussion biomarkers could accel-
erate the development of such agents. Efforts must be 
made, however, to ensure the cost-effectiveness and wide 
availability of clinical biomarker testing. Also, given the 
risks associated with lumbar puncture, ethical concerns 
regarding sampling of CSF from concussed youths for 
biomarker research should be addressed.

Fluid-based biomarkers
Promising findings in adult fluid-based biomarker 
research must be explored in paediatric populations. 
Putative concussion biomarkers have emerged sporadi-
cally in the scientific literature over the past few decades, 
the most prominent being S100 calcium-binding 
protein B (S100B), a nonspecific marker of astrocyte 

activation. The presence of S100B in serum may indicate 
loss of BBB integrity. Elevated serum and CSF levels of 
S100B have been observed in adult boxers after matches, 
and correlate positively with the number and severity of 
head impacts.124,125 Increased serum S100B levels have 
also been observed in concussed professional ice hockey 
players,126 with levels measured 1 h post-concussion pre-
dicting symptomatic recovery time. However, S100B 
levels were also raised after controlled play where no 
concussions occurred, indicating that this marker is not 
injury-specific.126 Indeed, S100B serum levels are elevated 
in adult trauma patients without head injury.127–129 Other 
research suggests that initial post-concussion S100B levels 
are poor predictors of recovery.130

As with all biomarkers, the role of S100B in TBI 
management in children is even less clear,131 with some 
arguing that this marker has little diagnostic or prog-
nostic utility in paediatric populations.132 In a study of 
children with TBI aged ≤15 years, those <5 years or 
>9 years of age had higher serum levels of S100B than 
did those aged 5–9 years.133 S100B may, therefore, be an 
inadequate marker to distinguish between symptomatic 
and asymptomatic children with concussion,133 and the 
utility of S100B in diagnostics and outcome prognosis 
is questionable.134–136

Neuron-specific enolase (NSE) is a marker of neuronal 
injury, but its usefulness as a serum or CSF biomarker 
remains uncertain.133–137 Elevated serum NSE levels have 
been observed after head impacts in boxers,124 but were 
also seen in ice hockey players after a match where no 
concussions occurred.126 Serum NSE levels failed to 
predict recovery time after concussion,126 and might not 
correlate with injury severity in children.133 In children 
aged ≤15 years, serum NSE levels correlate inversely 
with age.133 Once released into the blood, NSE has slow 
elimination kinetics, making it difficult to distinguish 
primary from secondary neuronal injuries on the basis 
of NSE levels.138,139

Neurofilament light chain and glial fibrillary acidic 
protein (GFAP) are CSF neuron-specific and glial-
specific damage markers, respectively, and are both 
elevated in CSF in adult boxers after fights.125,137,140 Little 
is known about either marker in the context of paediat-
ric concussion, but a preliminary study in children and 
young adults suggested that serum GFAP levels within 
72 h after concussion correlate with symptom burden up 
to 1 month post injury.141

The neuron-specific protein UCH‑L1 (ubiquitin 
carboxyl-terminal hydrolase isozyme L1) was first linked 
to neurodegenerative pathology through its involvement 
in PD,142 and its presence in serum was later identified 
as a biomarker for severe TBI.143–145 Serum levels of 
UCH‑L1 may have diagnostic utility in concussion,146 but 
recent evidence suggests a lack of correlation between 
elevated serum levels and subconcussive hits.147 The clin-
ical utility of UCH‑L1 in paediatric populations warrants 
further study.

Perhaps the most promising advances in adult fluid-
based TBI biomarkers concern tau protein. Serum or 
CSF tau levels are thought to indicate axonal damage, as 
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tau normally resides in axons, where it stabilizes micro-
tubules. Serum tau is proteolytically cleaved,148 and in 
patients with AD, levels of cleaved tau in CSF might cor-
relate with cognitive function.149 Tau levels in CSF and 
blood are elevated in boxers after a match, and CSF tau 
levels correlate with the quality and quantity of head 
impacts.125,150 Recent evidence suggests that tau levels are 
elevated in the blood of ice hockey players after concus-
sion, and may be useful in predicting recovery time.126 
Questions remain, however, with several studies report-
ing little or no value of serum cleaved tau for predicting 
post-concussion syndrome or long-term outcomes.130,151 
The potential of tau as a biomarker in children remains 
unclear, with no studies conducted to date. In fact, the 
reliability of serum tau as a biomarker has not yet been 
established for any indication.

The likelihood is that no single biomarker will suffice 
to diagnose paediatric concussion or predict outcomes. 
In addition, few studies have examined the interactions 
between genetic make-up and putative biomarkers. As 
our understanding of the relationships of biomarkers 
to injury severity and to each other increases, devel-
opment of biomarker panels, perhaps incorporating 
inflammatory and oxidative markers,152 should be con-
sidered. Future studies should attempt to further define 
these relationships and establish the clinical value of 
biomarker panels, factoring in commercial cost and 
practical feasibility.

Recent advances in metabolomics, lipidomics and pro-
teomics—in particular, the search for metabolomic and 
lipidomic markers for AD—might inform future research 
into biomarkers for concussion and subconcussive inju-
ries. Several recent studies propose altered metabolite 
and lipid profiles associated with MCI and AD.153–156 
Data from animal models suggest that lipid and metabo
lite changes accompany both acute and chronic post-
concussion periods, and could be useful for predicting 
recovery trajectory,157,158 but these findings have yet to be 
validated in humans. Expanding the biomarker search 
beyond blood and CSF to saliva and urine159 might 
improve the ability to obtain measurements rapidly and 
noninvasively, particularly from children. Sampling of 
CSF from children, particularly when rapid assessment is 
desirable, is largely impractical. Mondello et al. proposed 
a set of useful criteria for evaluating TBI biomarkers that 
should allow more-streamlined development and valida-
tion.137 Any validated biomarker panel must, inevitably, 
be a component of a larger, multimodal diagnostic suite 
that may include structural and functional imaging and 
neuropsychological testing. When designing future bio-
marker studies, the potential for FDA approval should be 
considered, in order to expedite approval for clinical use.

Filling the gaps—fluid-based biomarkers
■■ Clarify the diagnostic and prognostic utility of exist-
ing fluid-based biomarkers, and expand sampling 
beyond CSF and blood

■■ Explore the utility of lipid, metabolite, oxida-
tive and inflammatory biomarkers, with up-front 
consideration of FDA-approval requirements

■■ Explore the feasibility of practical implementa-
tion of rapid biomarker assessment in paediatric 
sports-related brain injuries

■■ Validate potential biomarkers for clinical diagnosis 
and recovery prognosis, and correlate biomarkers 
with cognitive outcomes

Neuroimaging biomarkers
Although concussion remains a clinical diagnosis, neuro
imaging techniques are improving our understanding 
of the structural and functional consequences in adults. 
Neuroimaging in paediatric populations may be limited 
by several factors; for example, measurements of longi-
tudinal changes after concussion are complicated by the 
background of a dynamic, immature brain. No imaging 
techniques have been validated as diagnostic tools for 
concussion, and the correlation between imaging find-
ings and clinically measurable cognitive or behavioural 
functions is variable. Tools such as volumetric imaging, 
DTI and functional MRI (fMRI)—in particular, arterial 
spin labelling—are currently being explored.160,161

Fractional anisotropy (FA), as measured by DTI, allows 
inference of the structural integrity of white matter tracts, 
which are commonly disrupted after TBI. The clinical 
implications of FA change remain controversial, as both 
increased and decreased FA has been observed in con-
cussion studies.162–166 These discrepancies may be due, 
in part, to the considerable spatial heterogeneity in the 
brain areas examined,167 as well as differences in the post-
injury interval. FA may still have prognostic value, with 
evidence suggesting that the direction and magnitude of 
change correlates with clinical outcomes;166,168 however, 
this idea awaits validation in both paediatric and adult 
populations. FA might lack the necessary sensitivity to 
fully appreciate changes in white matter tract integrity 
following brain injury, and measures of diffusivity may 
be more appropriate.169

The DTI field would benefit greatly from the devel-
opment of normative data sets against which to gauge 
observed changes. Pre-game versus post-game and 
season-long studies of young athletes could employ 
serial DTI imaging to establish normative data for a 
particular individual, but the utility of the data when 
pooled is unclear. The scarcity of normative paediatric 
data severely limits the clinical usefulness of neuro
imaging techniques, including DTI. Studies of ‘return-
to-baseline’ neuroimaging after paediatric concussion 
are also needed, as they could greatly improve predic-
tion of recovery. Although automation has increased 
reproducibility, DTI measurements remain sensitive to 
the hardware and software specifics, acquisition param-
eters and analysis software, which limit reproducibility, 
standardization and comparison between centres and 
across studies. Efforts to standardize DTI across imaging 
centres are underway.170

MRI has been particularly successful in mapping 
the brain’s ‘connectome’—the collection of structural 
and functional neural connectivity networks and their 
respective focal nodes—and for studying how concus-
sion affects these networks. Focal or diffuse TBI can 
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disrupt the brain’s functional connectivity, resulting in 
dysfunction of multiple networks including the default 
mode and salience networks, which have been implicated 
in memory, emotion and mood.171 Network dysfunction 
might have a stronger influence on recovery than does 
lesion location,171–173 but the long-term implications 
for brain development and cognitive function remain 
unclear.26,174 Further studies of network connectivity 
dysfunction in children after concussion will be critical 
to improve injury prognostication and management.

Radiotracers for PET imaging have the potential to 
advance the diagnosis and treatment of concussion 
and CTE, but their use in paediatric populations is 
purely investigational at present. Three FDA-approved 
radiolabelled imaging agents are currently available for 
detecting brain amyloid in patients with suspected AD.175 
In adults, some cases of concussion are associated with 
acute Aβ pathology. PET scanning could enable paedi
atric patients to be monitored for the presence and 
persistence of acute post-concussion amyloid, and to 
determine whether scan positivity and negativity predict 
different outcomes.176,177

Other PET imaging agents with potential utility in 
paediatric populations include new tracers that bind 
neurofibrillary tangles composed of tau. Early imaging 
results with 18F‑T807, 18F‑T808 and 18F-THK5105 are 
proving to be useful in confirming the presence of tau
opathy in various clinical situations, including AD.178–180 
In a recent AD study, the magnitude of tau tracer signal 
correlated positively with the stage of disease and severity 
of cognitive impairment.180 A third tau PET tracer, 11C-
PBB3, has been tested in healthy individuals and patients 
with AD, and may be able to detect non-AD conforma-
tions of tau.181 In addition, a recent report contains the 
first description of tauopathy imaging in a living person 
with suspected sports-associated CTE.177 Given the extent 
of chronic tau pathology in concussion, repetitive sub-
concussive injury and CTE, tau tracers may be useful as 
diagnostic and prognostic biomarkers (for example, to 
distinguish CNI from CTE). Studies with these tracers in 
adults with CTE are underway, but their use in paediatric 
populations will depend on future research to determine 
whether tau pathology is present in young patients after 
TBI or concussion.

A PET tracer for the microglial cholesterol transporter 
protein might be useful for imaging of neuroinflamma-
tion associated with TBI.182 New PET ligands to image 
brain microglia, which are being developed with poten-
tial utility in neurodegenerative diseases, may also prove 
useful in concussion and CTE management. Exploration 
of these PET ligands in paediatric populations with con-
cussion and TBI would be informative, but risk–benefit 
analyses must be performed before embarking on studies 
involving radiotracers in this age group. The ultimate 
utility of any PET imaging agent will depend on its diag-
nostic and prognostic value as part of a multimodal panel 
of biomarkers and neuroimaging techniques.

Noninvasive techniques such as transcranial magnetic 
stimulation (TMS) have also uncovered changes in synap-
tic plasticity following TBI and concussion,183 particularly 

in asymptomatic individuals.184–186 Several small TMS 
studies of young athletes in their early 20s with a history 
of concussion suggest imbalances in γ‑aminobutyric 
acid and/or glutamate neurotransmission in the motor 
cortex that are associated with deficits in synaptic long-
term potentiation and depression.184,185,187,188 TMS has also 
revealed that concussion-related impairments in synaptic 
plasticity can impair aspects of motor learning,188 and that 
these deficits are detectable decades after an individual’s 
last concussion.189

Another crucial noninvasive tool for detecting neuro
chemical dysfunction associated with concussion is 
proton magnetic resonance spectroscopy (MRS). Reports 
specifically addressing the use of spectroscopy following 
sports-related concussion suggest various abnormalities 
consistent with neurochemical alterations.190 In younger 
(high school) athletes, increased glutamate and glutamine 
levels were detected by MRS at post-season versus pre-
season evaluation, even in players who had not experi
enced clinically significant concussion during the 
season.191 Such findings suggest that even subconcussive 
head impacts can result in the activation of glutamate 
pathways, implying cellular injury or neuronal death, 
despite the absence of symptoms. Levels of creatinine 
and myoinositol (an organic osmolyte located in astro-
cytes192,193) were also significantly altered in a subset of the 
participants in the aforementioned study.

In a rare longitudinal study utilizing MRS,194 indi-
viduals who sustained a single sports-related concussion 
exhibited significantly reduced levels of N‑acetylaspartate 
(NAA, a marker of neuronal and axonal health, integ-
rity and functioning195) in the brain 3 days after injury. 
Levels were increased at 15 days post injury, and reverted 
to control values at 30 days post injury. By contrast, parti
cipants who sustained a second concussion 10–13 days 
after their initial concussion displayed a prolonged 
reduction in NAA levels, which had not normalized even 
45 days post injury. These results suggest that repeated 
injury within a short time frame increases the likelihood 
of protracted or incomplete recovery.

In addition to the acute and subacute alterations 
detected by MRS, other studies of the long-term effects 
of concussion have disclosed increased myoinositol 
(associated with glial proliferation) and decreased cho
line (associated with membrane turnover195) levels in the 
medial temporal lobe in otherwise healthy former ath-
letes who sustained their last concussion more than three 
decades prior to testing.196 Another recent study exam-
ined a cohort of symptomatic retired National Football 
League players, using an advanced MRS method called 
correlated spectroscopy (COSY), which can measure 
additional metabolites.197 The authors identified increased 
choline and glutamate–glutamine levels (indicative of 
diffuse axonal injury and excitotoxicity, respectively), 
consistent with previous mTBI MRS studies, as well as 
additional cerebral metabolites that were indicative of 
neuroinflammatory changes. These metabolic changes 
may provide insight into mechanisms of injury, such as 
excitotoxicity and/or inflammation, which could underlie 
the reported structural changes.
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Overall, the available data support the use of MRS 
as a research tool to identify altered neurophysiology 
and monitor recovery in adult athletes, even following 
resolution of post-concussive symptoms. At present, 
MRS-detected biochemical alterations may enhance our 
understanding of the underlying pathophysiology, but do 
not yet provide specific diagnostic information. Larger 
cross-sectional, prospective and longitudinal studies are 
needed to determine the sensitivity and prognostic value 
of MRS within the field of sports-related concussion.190 
Because the interpretation of MRS in the immature brain 
requires certain developmental considerations, appropri-
ate comparison samples will be needed for future work in 
children. MRS techniques with greater spectral resolution, 
including COSY, might provide additional biochemical 
specificity.197 Other advances in spatial resolution, such as 
3D chemical shift imaging, may also provide greater speci-
ficity by allowing the investigation of metabolic alterations 
throughout the brain rather than in specific regions of 
interest. Finally, MRS could have a role in measurement 
of treatment effects, such as those induced by transcranial 
direct current stimulation198 and TMS.199

Filling the gaps—neuroimaging biomarkers
■■ Better define the clinical relevance of changes in FA 
and diffusivity DTI measures after concussion

■■ Develop normative DTI data sets for paediatric 
concussion populations

■■ Describe how focal and diffuse brain injuries affect 
connectivity network function in developing brains. 
How do these changes influence symptomatic and 
functional recovery from concussion in children?

■■ Investigate amyloid, tau and inflammatory PET 
imaging in appropriate clinical populations

■■ Encourage the use of standardized imaging acquisi-
tion protocols across centres conducting concussion 
research

■■ Improve our understanding of ‘return-to-baseline’ 
recovery mechanisms and trajectories

■■ Explore the research utility of MRS in paediatric 
patients with concussion

Injury surveillance and data sharing
Surveillance infrastructure
The mechanisms and surveillance infrastructure for 
sports-related injury measurement, reporting, tracking 
and data sharing are insufficient for current needs and 
objectives. Concussion research and clinical efforts are 
hindered by a lack of concussion data across sports and 
playing levels. A 2014 Institute of Medicine report identi-
fied only three national sports injury surveillance systems: 
the National Electronic Injury Surveillance System—All 
Injury Program (NEISS-AIP), the National Collegiate 
Athletic Association Injury Surveillance System (NCAA 
ISS), and the High School Reporting Injury Online 
(RIO™).1 These systems can be supplemented with clini-
cal data (for example, from emergency departments, hos-
pitalized inpatients and sports clinics), but these data are 
biased toward more-severe injuries and patients of higher 
socioeconomic status. Indeed, schools in rural areas or 

communities with lower socioeconomic status often 
have limited access to sports medicine care professionals 
and facilities.

Several emerging programmes may improve sur-
veillance. Regional efforts such as Clinical Outcomes 
Research Education for Athletic Trainers (CORE-AT) 
and national efforts such as the National Athletic Trainers’ 
Association National Athletic Treatment, Injury and 
Outcomes Network (NATA NATION™) attempt to inte-
grate injury tracking with treatment and outcomes data 
at the high school and collegiate levels. However, none of 
these systems specifically capture injuries to younger ath-
letes, those participating in non-school sponsored sports, 
or those at schools without athletic trainers. Sports injury 
databases also rarely account for demographic factors 
including socioeconomic status, race or ethnicity, and 
health-care coverage.

Currently, no effective mechanisms exist to consistently 
and inexpensively link various surveillance data sets, or 
to follow up individual athletes across sports, tracking 
systems or the age continuum. There is a considerable need 
for a system that tracks individual athletes through their 
playing careers and beyond. Each individual should be 
tracked for several decades to establish if, when and how 
a given burden of TBI evolves into CTE, and to assess all 
the possible negative health outcomes associated with con-
cussion. Such a system would also provide more-accurate 
descriptions of concussion history and exposure to risk 
factors, and could capture both short-term and long-term 
outcomes, including measures of physical and mental 
health, academic and career success, quality of life and 
social connectivity, and evolving socioeconomic status.

Such efforts are challenged by a variety of issues, includ-
ing a lack of mandatory reporting of concussion at any 
level. Mandatory concussion reporting, funding for sur-
veillance efforts, and provision of training to data report-
ers (for example, coaches and athletic trainers) would 
greatly improve epidemiological research. However, 
mandatory reporting will not provide meaningful results 
without validated, consensus definitions for concussions, 
and development of a universal data repository and a 
global unique identifier (GUID) system. Data sets from 
standardized surveillance efforts could then be linked, 
thereby improving data sharing for research and clinical 
care. Coupling of surveillance data with standardized col-
lection, storage and curation infrastructures for biobank-
ing of tissue and fluid samples could dramatically improve 
injury and outcomes research.200 These efforts might be 
catalyzed by funding from public–private partnerships, 
and made actionable by setting realistic short-term and 
long-term goals to create a multi-year plan. However, in 
the USA at least, such efforts are currently hampered by 
misunderstanding of Health Insurance Portability and 
Accountability Act (HIPAA) regulations and general 
concerns for athlete confidentiality.

Computerized neurocognitive testing
Wider use of computerized neurocognitive testing 
(CNT) for athletes could improve concussion surveil-
lance, as well as diagnosis and management. However, 
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several important challenges must be overcome before 
CNT becomes routine. These challenges include a lack of 
standardized administration protocols, the potential for 
technological errors arising from different computer hard-
ware, limits in the types of cognitive functions assessed, 
and a lack of qualified test administrators and data inter-
preters.201 Despite these shortcomings, however, CNT is 
already used by approximately 40% of US high schools 
that employ athletic trainers.202 Though not affordable 
for all schools, CNT could enhance ground-level data 
collection and aid risk-exposure estimation and post-
concussion recovery tracking, as well as increasing the 
quality of data reported to sports injury surveillance net-
works. CNT may be also useful in evaluating and tracking 
post-concussion cognitive improvement or decline, and 
could have utility in predicting outcomes.203,204 Whether 
CNT data collected in the school setting will reach the 
validation and reproducibility standards achieved by CNT 
conducted by a clinical research team remains to be seen. 
Importantly, CNT needs standardization and guidelines 
for determining ‘return to play’ and ‘return to learn’ for 
athletes who show recovery in one domain but are still 
symptomatic in others. More research is required on 
the utility of CNT, both in the clinic and for concussion 
surveillance and management of youth athletes.

Filling the gaps—data collection and sharing
■■ Institute mandatory, standardized concussion 
reporting at all levels of youth sports

■■ Develop mechanisms to link existing surveillance 
data sets and improve capacity for long-term tracking 
across sport, school and age

■■ Develop a GUID system that can track players across 
data collection systems, yet is inexpensive, feasible 
and acceptable to those with HIPAA and/or athlete 
confidentiality concerns

■■ Expand demographic data collection in existing sur-
veillance systems to include factors such as race and 
ethnicity, and socioeconomic status

■■ Increase use of validated concussion assessment tools 
in middle and high school athletic programmes

■■ Increase use of CNT as a research tool

Accelerating research progress
Short-term studies
In several critical areas, incomplete knowledge hampers 
meaningful advances in the field of paediatric concussion. 
At the molecular and cellular levels, research that focuses 
on axonal damage after concussion and repetitive sub-
concussive injury is urgently needed to elucidate changes 
in axonal trafficking and repair, and to better define the 
role of transient Aβ accumulation as a potential driver 
of downstream and/or future pathology. Concussion 
researchers may need to identify more-suitable animal 
models to study molecular pathology, including tau and 
its contribution to post-concussion and CTE pathologies, 
as the structure and organization of the brain differs dra-
matically in rodents and humans. Without a clearer under-
standing of how TBI changes the young, still-developing 
brain, and what pathological events happen in the weeks, 

months and years following injury, we are left to speculate 
about the underlying biological bases of such changes.

Head impact data collection and risk assessment in 
youth sports might be improved through use of sensor 
technologies that record linear and rotational forces. 
Such commercially available devices, if validated, could 
determine levels of cumulative head impact forces during 
games and across seasons of play, and the findings could 
be linked to neuroimaging data and functional outcome 
assessments. Combined with ‘hit-count’ metrics, sensor 
data may improve knowledge of short-term and long-term 
neuropsychological outcomes of repetitive subconcussive 
impacts. Our knowledge of CTE might be improved by 
understanding baseline rates in the general population, 
in injured athletes, among uninjured athletes matched 
by sport and playing positions, and in ‘control’ athletes 
in low-risk sports. Improved knowledge of risk exposures 
could lead to prevention efforts, including practice and 
competition rule changes.

Longitudinal studies
A decades-long, prospective, longitudinal study, follow-
ing youth athletes through their sporting careers and 
beyond, would provide more-definitive knowledge of 
cumulative head impacts and risks of long-term neuro
psychological dysfunction and dementia. Such a study 
is underway in NCAA alumni, who were first studied in 
2003 and were re-assessed in 2013.29,205 Studies in other 
populations, especially if NIH-funded, would prob-
ably begin with a 5‑year study that could be renewed in 
further 5‑year increments. Public–private partnerships 
are likely to be required to secure enough funding to 
involve multiple study centres. The NCAA has provided 
partial sponsorship for the 10-year re-assessment of over 
100 athletes, but further funding from the NIH, the US 
Department of Defense (DoD), and private philanthropic 
sources will be required to extend the range of assess-
ment from neuropsychology, through MRI, to molecular 
imaging for amyloid, tau and/or inflammation.

Ideally, the longitudinal study design should combine 
epidemiological and interventional trial methodolo-
gies and utilize multiple control groups, including non-
contact athletes and uninjured impact sport athletes. A 
longitudinal study would also shed light on the role of 
cognitive reserve. A precedent for such studies has been 
established by the late-life dementia research commu-
nity, using NIH funds and public–private partnerships 
involving pharmaceutical companies and foundations. 
For such studies to be successful, additional surveillance 
systems and data repositories must first be established. 
Efforts would be accelerated if athletes participating in 
impact sports had universal access to athletic trainers, 
who could act as reliable data reporters while promoting 
safety and providing basic care. In addition, any longitu-
dinal studies must include postmortem analyses to better 
understand the influence of childhood and young-adult 
concussions on the development of neurodegenerative 
pathology and dementia in later life.

‘Return-to-play’ guidelines are currently hampered by 
a lack of rigorous epidemiological evidence, and could be 
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greatly improved by long-term safety data from longitu-
dinal studies.206 Longitudinal research could also include 
studies to determine whether those athletes who fail to 
follow guidelines experience any negative health effects, 
such as lingering symptoms or altered risk of incurring 
a second concussion.

The infrastructure for a long-term prospective study 
might be created through the formation of a research 
consortium modelled after the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI). ADNI has set stand-
ards for data collection, dissemination agreements, testing 
methodologies, and biomarker collection and analysis. 
A version of ADNI currently underway with participa-
tion of the DoD (ADNI-DoD) is focused on blast-related 
TBI research in military populations.207 In May 2014, in 
addition to the NCAA Concussion Study, the NCAA 
and the DoD announced the launch of the largest pro-
spective sports-related concussion study to date, which 
will monitor approximately 37,000 NCAA athletes over 
3 years. One can envision how this study’s infrastructure 
may eventually be extended to study younger athletes 
over an extended longitudinal range.

Drug repurposing and drug discovery
Many gaps remain in our knowledge of the biology of 
TBI, which limit our ability to develop effective drugs. 
These gaps must be filled if we are to tackle the under-
lying disease pathology and move beyond treating the 
symptoms. However, much can be accomplished while 
research into fundamental TBI biology continues.

Drug repurposing involves testing of existing FDA-
approved drugs for new indications, and can reduce 
expense and shorten the path for drug approval. Current 
repurposing trials include methylphenidate for pain 
and mental fatigue,208 the dopamine receptor agonist 
bromocriptine for working memory,209 and the anti-
depressant sertraline for mood and anxiety, the most 
frequent neuropsychological complications that influ-
ence long-term outcomes after concussion.210 Larger 
randomized clinical trials should be conducted before 
these drugs can be introduced into clinical practice for 

these new indications. In addition, the recent failure 
of the PROTECT phase III trial of progesterone to 
improve outcomes after acute TBI211 may serve as 
a reminder of the need for more research to better 
understand the fundamental biology underlying TBI. 
Although many drug repurposing efforts are designed 
primarily to address concussion symptoms, the drugs 
may also influence injury pathology and progression. 
Research on established drugs can also lead to new drug 
discovery efforts and, potentially, new preventive or 
management therapeutics.

New drugs are urgently needed for TBI and concussions 
that do not resolve. Drug discovery efforts in the areas of 
neuroprotection and anti-inflammation are especially 
relevant because of their potential cross-applicability to 
neurodegenerative diseases such as AD. Similarly, drugs 
currently in development for other neurodegenerative 
diseases might be repositioned for testing in patients with 
TBI or nonresolving concussion symptoms.

Conclusions
As is often the case in medical research, recent advances 
in concussion research raise as many questions as they 
answer. Evidence exists for long-term neuropsychologi-
cal dysfunction and later-life dementia after concussions 
or repetitive subconcussive head impacts, and more 
work is needed to better understand the implications 
and outcomes of youth participation in impact sports. 
As outlined in this Expert Consensus Document, there is 
a path forward, but achieving the goals outlined here will 
require public and private sector cooperation. While rec-
ommendations can be improved with increased knowl-
edge, the available evidence can still inform individual 
decision-making when considering youth sport partici-
pation, as well as practice policies and competition rules. 
With an ageing population and a looming epidemic of 
dementia, we must learn more about potential early-life 
risk factors, including sports-related concussion. The 
choices made by parents, coaches, school boards and 
children will be better informed when the critical gaps 
in scientific knowledge of concussion are filled.
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