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Expert Elicitation for Reliable
System Design1

Tim Bedford, John Quigley and Lesley Walls

Abstract. This paper reviews the role of expert judgement to support reli-
ability assessments within the systems engineering design process. Generic
design processes are described to give the context and a discussion is given
about the nature of the reliability assessments required in the different sys-
tems engineering phases. It is argued that, as far as meeting reliability re-
quirements is concerned, the whole design process is more akin to a statisti-
cal control process than to a straightforward statistical problem of assessing
an unknown distribution. This leads to features of the expert judgement prob-
lem in the design context which are substantially different from those seen,
for example, in risk assessment. In particular, the role of experts in problem
structuring and in developing failure mitigation options is much more promi-
nent, and there is a need to take into account the reliability potential for fu-
ture mitigation measures downstream in the system life cycle. An overview
is given of the stakeholders typically involved in large scale systems engi-
neering design projects, and this is used to argue the need for methods that
expose potential judgemental biases in order to generate analyses that can be
said to provide rational consensus about uncertainties. Finally, a number of
key points are developed with the aim of moving toward a framework that
provides a holistic method for tracking reliability assessment through the de-
sign process.
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1. INTRODUCTION

Statistics is considered one of the major contributors
to the development of reliability engineering as a tech-
nical discipline [131]. Recent reviews of the role of sta-
tistics within reliability engineering [12, 82, 92, 102]
underline the continued need for statistical science to
help engineers assess sources of uncertainty, design
sound data collection systems, and develop models for
combining data and quantifying uncertainty. However
it is also recognized that the role of statistical science
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within the engineering process needs to broaden to ac-
commodate the additional complexities of the techno-
logical systems as well as the operational contexts. One
particular challenge is the need to structure and inte-
grate statistical modeling within the systems engineer-
ing process to support decision-making aimed at ob-
taining a sufficient and cost effective state of knowl-
edge about future system reliability. This implies that
judgemental, as well as objective, data should be col-
lected responsibly and used formally.

This paper aims to survey and review the use of sub-
jective expert judgement methods to assess reliability
in the design process. We have deliberately chosen to
interpret the scope of these terms in a relatively broad
fashion. Thus “expert judgement” refers to any struc-
tured method of acquiring knowledge from experts;
“reliability” covers the broader issues of reliability,
availability and maintainability (RAM); and the “de-
sign process” is considered to include within its scope
a consideration of how the system is to be manufac-
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tured, how users will interact with it and how it will
be maintained. More specifically, since reliability mea-
sures are usually expressed in probabilistic terms, we
consider the use of expert judgement to structure prob-
abilistic models and to quantify uncertainties in the de-
velopment of a reliable design.

The standard definition of reliability, “the ability of
a system to perform a required function under stated
conditions for a stated period of time” [70], naturally
translates into a probability measure. While empirical
reliability can only be properly assessed after a sys-
tem is in use, there is a need to forecast reliability dur-
ing the design process to support analysis aimed at im-
proving reliability. Davis [33] supported the definition
found in [23] that “reliability is failure mode avoid-
ance.” We are sympathetic to this view since identi-
fying and mitigating influential critical failure modes
will cause reliability to improve. However, we also be-
lieve that probabilistic models have an important role
to play in supporting design decisions since they allow
data integration and assist prioritization.

Reliability is a recognized element of systems en-
gineering and systems design. However, it is worth
recognizing from the outset how difficult it is to talk
about the reliability of a system. In part the diffi-
culty has to do with ambiguity of any reliability met-
ric. In modern systems engineering the practice of re-
quirements setting should, if carried out well, result
in a coherent set of reliability requirements expressed
in terms of well-defined RAM metrics. Hence good
engineering-management practice should ensure that
there is little ambiguity in the expression of reliability
requirements. More difficult though is the uncertainty
around the circumstances under which those require-
ments are to be met. The reliability of a system is ul-
timately determined by a combination of factors. Sim-
plistically, we may think of the reliability of a specific
system as being determined by the detailed design re-
liability as modulated by induced unreliabilities com-
ing from the manufacturing process, from the users,
from maintenance and from modifications. Simplisti-
cally, detailed design reliability gives the maximum po-
tential reliability which manufacturing errors, poor us-
age and poor maintenance will typically reduce, while
changes or modifications introduced as a result of ex-
perience with the equipment will improve the reliabil-
ity, that is

overall reliability = designed reliability

− production unreliability

− usage unreliability

− maintenance unreliability

+ changes reliability.

More compactly, we could write a chosen reliability
measure r as

r = r(d,p,u,m, c),

where d,p,u,m and c represent the choices made for
design, production, usage, maintenance and changes.
Inasmuch as systems engineering is about making
trade-offs between different aspects of the system, the
major focus for expert judgement techniques in support
of reliability has to be to explore the behavior of, and
even quantify, the above conceptual function in some
way.

The existing expert judgement literature is a starting
point for elicitation problems in engineering design,
but it needs to be extended to cope with the unique
problems encountered. This is one of the motivations
for the present paper. In discussing the ways in which
expert judgement methods are adopted to assess uncer-
tainties in the design process we shall consider both
the academic and foundational aspects as well as the
typical business context so that we can gain an under-
standing of why simpler methods are not replaced in
practice by better founded methods.

The paper is structured as follows. After describing
the systems engineering life cycle phases, we exam-
ine the role of the stakeholders within key markets and
their influence on reliability modeling intentions. Sum-
maries of the existing literature in elicitation are woven
into a discussion of the issues that arise during model
structuring, instantiation and updating across the sys-
tems engineering process. We conclude by suggesting
areas in need of further research.

2. SYSTEMS ENGINEERING AND
DESIGN PHASES

Systems engineering is described in the NASA Sys-
tems Engineering Handbook [132] as

. . . a robust approach to the design, creation,
and operation of systems. In simple terms,
the approach consists of identification and
quantification of system goals, creation of
alternative system design concepts, perfor-
mance of design trades, selection and im-
plementation of the best design, verifica-
tion that the design is properly built and
integrated, and post-implementation assess-
ment of how well the system meets (or met)
the goals.
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Reliability is regarded as an important specialism
that supplies expertise to the systems engineering
process [14, 15]. However, the nature of reliability
knowledge and the demands placed on its practitioners
changes considerably through the systems engineer-
ing process. It is therefore useful to consider the main
stages in the design process.

2.1 Life Cycle Phases

The phases described here, based on the most recent
international standards [69], are generic, but descrip-
tions of design phases vary in the literature [14].

• Concept and definition. Requirements definition is
the generation of technical design constraints on the
system. Some of these will be derived from infor-
mation about user demands or expected user wishes,
while others will be there to ensure feasibility of
the design. Trade-off studies are carried out in order
to achieve cost-effectiveness and feasibility. Finally,
initial life cycle costing studies will be made.

• Design and development. The system architecture is
specified in detail, hard- and software will be built,
tested and refined, leading where necessary to ad-
justments of the specification. Verification and vali-
dation of subsystem integration is carried out: veri-
fication ensures that subsystems interfaces conform
to design specifications and validation ensures that
the integrated systems fulfill their intended function.
Maintainability analysis will be carried out and end
of life disposal will be considered.

• Manufacturing and installation. Hardware will be
produced and software will be replicated. There is an
emphasis on process control, although further prod-
uct verification and validation will take place. Field
trials may be used as a final check on system perfor-
mance.

• Operation and maintenance. The system in use
should be monitored for performance. Maintenance
also provides clues as to system performance and
can be adjusted where necessary.

• Disposal. Depending on the regulatory context, the
system may be destroyed, dumped or dismantled. In-
creasingly there is pressure from regulatory authori-
ties for reuse of equipment subsystems, so this stage
is by no means the end for the system components.

Figure 1 illustrates the relationships between the dif-
ferent systems engineering phases. Prior to operation,
reliability estimates forecast true performance and will
encompass the uncertainties in future decisions. As
system-specific observations are collated during devel-
opment and manufacture, some uncertainties should
be resolved and reflected in revised estimates. This is
shown schematically in Figure 2.

Feedback loops exist both within and between pha-
ses, reflecting the analogy with a control system.
Figures 3–6 show more detailed activities with each
flow chart capturing the cyclic nature of the process to
refine the system design based on assessment against
reliability requirements. Information from subsequent
phases should be fed back to earlier phases with a view
to modifying the current design, if required, but also to
inform processes and procedures that will impact later
generations. However, feeding data backward is only
possible when the systems engineering phases overlap.
Hence much of the data being fed back is judgemen-
tal in nature. We shall return to these flow charts later
when we discuss issues relating to the role of elicita-
tion.

2.2 Stakeholders in System Design

As mentioned above, these phases are generic and
hence relevant to the markets for consumer, industrial
and military systems. However, there may be differ-
ences in the nature of reliability knowledge and mod-
eling within each market, and we explore this fur-
ther through consideration of the key stakeholders with
interests in following the reliability assessment of a
new system, namely requirements specification team,
design team, component manufacturer, lead manufac-
turer, sellers, regulators, end users, general public,
maintainers and disposers/recyclers.

FIG. 1. Systems engineering phases.
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FIG. 2. Decreasing uncertainty in future system reliability.

These parties can be classed within one of four
groups: client, manufacturer, regulator and public.
These stakeholders can, and often do, take different
viewpoints about the reliability of the system and about
the relevance of data. For example, Table 1 captures
the respective roles of the groups and aims to illus-
trate two key points. First, that different stakeholders
may have different modeling intentions with, for exam-
ple, manufacturers using models to measure reliability
to support decisions about accommodation of failure
modes and improvement activities, while clients may
use models to support negotiation with manufacturers.
Second, that during such negotiations different stake-
holders may be using the same data to support different
sides of a decision. This latter situation mirrors a sim-
ilar situation in probabilistic risk assessment and in-
deed areas where different parties are asked to adopt a
common view of uncertainties. This was Cooke’s mo-
tivation for the notion of “rational consensus” [27]. See
also the extensive literature on risk communication and
public perceptions, for example, [54, 127, 128, 133,
136].

3. ELICITATION IN RISK AND RELIABILITY

Subjective expert judgement has a very important
role to play in assessing uncertainties in the design
process, with many of the stakeholders identified above
contributing their expertise. However, the emphasis is
somewhat different from the role that expert judgement

has in other areas—most notably in probabilistic risk
assessment (PRA). Much of the modern academic lit-
erature on expert judgement has emerged from the need
for structured subjective assessments in PRA. The key
issues that emerge from this literature are reviewed.

3.1 Roles within Elicitation

In principle there are three distinct roles:

• Decision-maker: This person is the problem owner,
who is responsible for signing off on a decision and
wishes to be informed about relevant uncertainties
by appropriate experts.

• Expert: This person is identified as a domain expert
and contributes his or her own assessment on the
events of interest.

• Analyst: This person is responsible for identifying
experts and events of interest, and writing the assess-
ment and combination schemes.

It should be noted that [17] also distinguishes the role
of advisor-expert who essentially plays a role some-
where between the above players, by supporting, for
example, the selection of experts and elicitation ques-
tions. The distinction between roles is valuable because
some schemes do not recognize the different roles of
these players. Bayesian schemes in particular often
merge the role of expert and analyst by requiring that
the analyst play the role of meta expert, by providing
a prior that the expert data will subsequently update
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FIG. 3. Concept and definition flow chart.

and/or by providing the likelihood function for the ex-
pert data.

A distinction between the three roles defined above
would seem to be important, for example, in public sec-
tor decision-making where there is a need for trans-
parency. Even in the private sector there is a benefit
to be gained from transparency and a clear division of
roles. However, it clearly also imposes a cost burden,
for example, due to the degree of specialism involved,
and may therefore be less appropriate in some contexts.

3.2 Probability Elicitation Methods and Processes

Research in experimental psychology has demon-
strated that accurate subjective probabilities are un-
obtainable by simply asking someone to provide a
probability number; therefore an elicitation process is
required [75, 103, 104]. Much of the research in elic-
itation is concerned with minimizing bias, which can
result from a variety of causes. Four standard forms
of bias are: motivational, which concerns the situation
where the expert has an interest in a particular value
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FIG. 4. Detailed design and development flow chart.

for the parameter being assessed; cognitive, which can
result from incoherently basing an assessment on a
number of calculations; anchoring, which exists when
assessments are derived by an expert from adjusting
previous assessments; and availability, which concerns
assigning higher likelihoods to events that are linked to
more memorable historical events.

Clemen and Winkler [24] gave an overview of the
state of the art with particular emphasis on risk analy-
sis applications. O’Hagan and co-workers wrote a se-

ries of papers which probably encompass the most re-
cent generally applicable work on elicitation [53, 72,
113–115]. An overview of the uses of expert judge-
ment in engineering applications was given by Ayyub
[7], although this work covers also aspects of fuzzy
representations (about which the reader can find a re-
view by Cooke [29] of a previous book by Ayyub and
a reply by the author). Fitting closely to the theme of
this paper is the work of Booker and McNamara [17],
which presented a very nice description of the process
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FIG. 5. Manufacturing and installation flow chart.

of determining problems for expert judgement, select-
ing experts and the problems caused by possible bi-
ases. Cooke [27] gave an historical account of elicita-
tion and also provided a number of different models
for the combination of expert probability assessments,
including the classical method which has been quite
successful in PRA applications; see [76] for a list of
applications.

Expert judgement methods that draw on PRA are rel-
evant to work on engineering design problems but are

limited in two important ways. First, in the engineering
design process there is a greater need to have experts
define the problem structure, so the qualitative phase
of model building is relatively more important than it
has historically been for PRA decision support. See, for
example, Walls and Quigley [146], who proposed an
elicitation process to support reliability growth model-
ing. Second, there is a big difference in the way that
events can be described: PRA elicitation is generally
for very precisely defined events, while in engineering
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FIG. 6. Operation and maintenance flow chart.

TABLE 1
Stakeholder uses of reliability assessment

Manufacturer Client Regulator and Public

Acceptance of requirements Specification of requirements
Design of reliability program Acceptance of reliability program
Proof of meeting targets Assurance of meeting targets Safety case
Planned maintenance specification Spares ordering
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design problems it is much more difficult to describe
events precisely because of extra uncertainty caused
by the effect of future decision-making that surrounds
the system and its use. In both cases there will always
be unspecified states of the world for which the expert
has to “fold in” his uncertainty. However, the degree
of influence of future decision-making in the reliabil-
ity engineering context is such that it becomes useful
to model this explicitly in order to support the design
process.

These concepts are represented in the flow charts
shown in Figures 3–6. For example, in the concept and
definition phase we distinguish between the elicitation
of the qualitative failure modes and the quantitative
reliability estimates. Furthermore, sensitivity analysis
represents the exploration of future uncertainties us-
ing engineering judgements as inputs. In subsequent
phases, previous judgements will be revisited and re-
vised in light of observations from analysis and test
tasks.

3.3 Modeling Uncertainty in Design

While systems engineers may well think in the
holistic framework outlined in Section 2 and captured
within the flow charts in Figures 3–6, the statisti-
cal modeling generally applied is usually focussed on
tightly defined and highly specific issues within life cy-
cle phases. The support that these tools give engineers
is therefore fairly constrained.

Uncertainty is fundamental to systems modeling and
is worthy of further comment. Various authors have
given overviews of different “types” of uncertainty.
The classification given in [10] discusses aleatory and
epistemic uncertainty, and suggests that the important
distinction between them is model-dependent, as epis-
temic uncertainties are uncertainties that we wish to
capture and adjust within a model through learning,
whereas aleatory uncertainties are not adjusted within
a model. The uncertainty in an abstract parameter or in
a model type can be given an interpretation, according
to [10], only in terms of the uncertainty it induces in
observable outcomes. The above types of uncertainty
can be quantified by subjective probability. By con-
trast, [10] mentions ambiguity (which is best resolved
by careful definition during qualitative problem struc-
turing rather than mathematical modeling) and voli-
tional uncertainty (an individual’s own uncertainty in
his own actions), which cannot be measured by the
tools of subjective probability, although it can be as-
sessed by an independent observer.

In the context of engineering design it seems use-
ful to define another kind of uncertainty—that of toler-
ance uncertainty. This represents the variation expected
in a parameter across the design envelope. For exam-
ple, one might be interested in the failure rate (assumed
constant) associated with a piece of equipment. Since
that failure rate will depend on various design, con-
struction, environmental and usage factors assumed in
the definition of the design envelope, we can write it
as λ(e), where e represents chosen factors.

Assuming that e is constrained to lie in a design en-
velope E, the tolerance uncertainty associated with λ

and E is the interval[
min
e∈E

λ(e),max
e∈E

λ(e)

]
.

It does not always make sense to place a probability
distribution on E. This is because some variables are
subject to choices made by the designer, the manufac-
turer, the user or the maintainer. (At the simplest level
this could be a mandatory rule to the user to avoid cer-
tain conditions that are known to induce failure.)

System engineering places great emphasis on mak-
ing trade-offs between different aspects of the sys-
tem—cost, functionality, reliability and so forth. From
a reliability point of view, one of the principal ways
in which this trade is carried out is by changing the
design (which may have cost and/or functionality im-
plications), by specifying changes to the design enve-
lope (i.e., restricting the way in which the system can
be used), by specifying changes to the maintenance
regime or by making changes and modifications to the
system. Since many of these implementations occur af-
ter the design process has been (notionally) completed,
to make the trade-off in the best way possible it is nec-
essary to know how much the tolerance uncertainty can
be controlled by changes made later.

4. ELICITATION WITHIN (RELIABILITY)
MODELING PHASES

Reliability models, as is the case with many other
model classes, are developed and applied through three
modeling phases. These phases can occur at any point
within the systems engineering process, depending on
the question at hand. The conceptual phase is one of
model structuring in which a qualitative form is given
to the model. That is followed by an initial quantifi-
cation stage and then by a revision stage in which in-
creasing quantities of real system data can be utilized.
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In all three modeling phases there is a role for expert
judgement. In the first, the primary role is in model se-
lection and initial qualitative specification. In the sec-
ond, expert judgement has the key task of providing the
initial quantitative estimates. In the final phase, expert
judgement plays an important role in interpreting the
relevance of available data.

We discuss below the roles that expert judgement
plays in these modeling phases, but first we discuss
frameworks described in the literature that aim to
stretch across both modeling and systems engineering
phases.

4.1 Meta Modeling Frameworks

The programs PREDICT (Performance and Relia-
bility Evaluation with Diverse Information Combina-
tion and Tracking) [83, 84] and REMM (Reliability
Enhancement Methodology and Modelling) [148] are
two modeling frameworks used to estimate reliability
throughout the systems engineering phases. Both mod-
els begin with a problem structuring stage, which con-
sists of eliciting a graphical representation of the rela-
tionships between relevant engineering concerns or po-
tential failure modes and the reliability experienced by
the system. These graphs form the structure of the sto-
chastic model; this essentially represents a meta model
within which standard probability models can be in-
tegrated. The stochastic model is populated with ei-
ther expert judgement or relevant historical data. Thus
these approaches provide one unified decision sup-
port framework throughout the system design and de-
velopment, supporting sensitivity analysis as well as
credible intervals of the uncertainty in the reliability.
Furthermore, as system-specific data become available
through analysis and test, the model parameters can be
updated.

Such frameworks rely on expert judgement for the
reliability assessment at a system level and aim to over-
come the limitations of traditional approaches, which
according to [62] and [73] tend to provide overly op-
timistic estimates of reliability due to their failure to
account for major sources of early failures such as de-
sign defects, process flaws and human error.

We move now to a discussion of the three modeling
stages.

4.2 Qualitative Model Structuring

We distinguish between four types of structuring ac-
tivity that play a role within the design and devel-
opment phases: capturing and defining requirements,
eliciting failure modes, selecting model formulations
and robust design.

4.2.1 Requirements capture and concept definition.
Reliability requirements drive the modeling process as
shown in Figure 3 because they inform targets against
which reliability estimates will be compared. Reliabil-
ity requirements are expressed in a fairly standard form
in most engineering design projects. O’Connor [111]
provided guidelines of what should and should not be
included. Since reliability requirements can drive sig-
nificant costs, they should be motivated and ideally de-
rived from user demands about the system function-
ality and from an understanding of what the current
technology levels can support. However, such a deriva-
tion requires many assumptions about the pattern of
use and the environment in which that will take place.

While it is acknowledged by designers of hardware
systems that the customer’s requirements of the item
are of paramount importance [71, 111], there are few
recent published articles compared with requirements
setting for software systems [108]. In our experience
with hardware systems it seems that systematic mod-
eling is not performed in the derivation of require-
ments, and historical precedent (i.e., the requirements
that were set for the last version) is used as an alterna-
tive.

A focus of research within the software community
has been the elicitation, analysis and management of
system requirements. Two dominant, but complemen-
tary, methods for analysis are goal oriented [35] and
use case analysis [2]. The former is concerned with
eliciting system constraints, while the latter is con-
cerned with eliciting system behavior [151]. Processes
have been proposed to support creative thinking about
requirements [98] and capture stakeholder views [32,
39]. Comprehensive rigorous processes for require-
ments definition have been suggested, for example, in
[158] and [6].

A further approach of value in reliability is QFD
[130, 139], which provides a broad-brush, semiquanti-
tative assessment of the relationship between those fac-
tors that can be controlled by engineering design and
those characteristics valued by users.

A study of requirements changes throughout a proj-
ect is given in [97]. The problem of so-called re-
quirements creep can be endemic, and modeling the
development of requirements throughout a project is
not easy. Within the context of software development
Stallinger and Grünbacher [137] explored modeling
this with system dynamics; see also [63–66].

4.2.2 Eliciting failure modes. Qualitative reliability
modeling is routinely conducted during concept design
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to elicit and structure the failure modes that are likely
to drive the (un)reliability. Methods used include fail-
ure mode and effects analysis (FMEA) [20], which ob-
tain an understanding of the ways in which different
types of failure can occur, while hazard analysis [85],
top-level event tree (ETA) and fault tree (FTA) analy-
ses [4] can give an indication of how the system func-
tions. These types of analysis are prospective and can
be extended in later stages when more information is
known about the system. In contrast, root cause analy-
sis [38] provides a process for retrospective forensic
analysis of observed events to identify the drivers so
that lessons learnt can inform use and maintenance of
the operational system; however, such data can also in-
form design modifications to a new generation.

Elicitation of subjective judgement plays a pivotal
role in such qualitative analysis with all methods us-
ing some semistructured process to gather and organize
data. For example, FMEA aims to develop a model of
the causes, modes and effects of failures as they impact
the system through different levels of indenture. Con-
ceptually, FMEA aims to populate an exhaustive sam-
ple space of potential events that could impact reliabil-
ity from a design or process perspective. The approach
to elicitation is to frame questions either in terms of
functionality, architecture or process and systemati-
cally think through each level in a bottom-up (i.e., from
parts to system) manner. In contrast, FTA assumes a
top-down approach to elicitation. Critical events, or so-
called top events, are defined in terms of departures
from requirements. For any system there may be one
or more top events. For each, a tree is constructed by
drilling down the sequence of events that could cause
or exacerbate a failure. Fault trees can accommodate
failures with more than one cause, while FMEA can-
not. Hazard analysis represents a structured elicitation
of potential operational hazards to a system during in-
stallation, production and decommissioning using a set
of prescribed keywords to manage the content analysis.

The principles of the aforementioned approaches as-
pire to be systematic; however, there has been criticism
of their reported implementation. The FMEA has been
criticized within the aerospace industry [100] because
it has been implemented too late in the product devel-
opment process and in a manner that does not allow in-
formation to be fed back to inform the product design.
White [153] criticized the general approach to use of
the suite of standard methods, claiming the manner of
their use is reductionist, and proposed that a systems
approach that exploits multiple partial views and ex-
plores the problem environment would result in richer
information.

It is not known how valid these criticisms are for all
industries. There is evidence that these methods are be-
ing used effectively to influence system design of, for
example, space systems [52], but there is undoubtedly a
lack of reporting in the literature by manufacturers and
there is no known scientific survey of the effectiveness
and efficiency of their application. Anecdotal evidence
suggests that there are industry effects, for example,
consumer products that embrace elicitation of failure
modes as part of their quality processes [33, 119] while
others largely remain accountants of failure modes.

Recent research related to these qualitative meth-
ods has been dominated by two avenues: (1) automa-
tion of knowledge capture and representation [93] and
(2) quantitative prioritization rules [21] and computa-
tional algorithms [5, 43]. An exception has been the
work described in [17, 62, 83, 84, 147, 148] which
developed elicitation processes that embrace a sys-
tems approach and the scientific principles of struc-
tured judgement [27] fundamental to sound data col-
lection. They aim to elicit the core concerns held by
all relevant stakeholders during early design through
a sequence of semistructured interviews using simple
mapping [41]. Discussions are triggered by focussing
on the changes between generations of systems designs
in terms of technology, process and use. The maps de-
veloped capture the reasoning trail that links to formal
records within a defined failure taxonomy [50] that can
be revisited and updated as the design evolves. This ap-
proach is captured within Figures 3–6 through the ini-
tial activity to elicit failure modes in early design and
subsequent elicitation exercises in later phases.

4.2.3 Selecting and structuring models. Surpris-
ingly little has been written about the qualitative struc-
turing process for reliability models. At a practitioner
level, guidance on the selection of tools to match mod-
eling objectives exists within international and com-
pany standards. At a more abstract level, the principles
of requisite modeling can be applied [120, 121, 123].

The standard systems reliability models are all based
essentially on cause and effect, and include FTA, ETA,
reliability block diagrams (RBD) and (semi) Markov
modeling [16, 126]. These methods provide subtly dif-
ferent, but related, representations of the system. Typ-
ically used in a hierarchical way, they can be used at
different levels of system indenture, enabling the re-
liability engineer to fill in more detail, as it becomes
known. Keller and Modarres [81] provided details of
their early history. See also [31, 99, 143].
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There is often a perception that there exist “correct”
models which can be found by the application of ap-
propriate quality control. However, there are important
choices to be made about the model scope. How deep
(or detailed) should the model be? What failure events
should be considered? Which environments, or failure
scenarios, should be considered? These questions are
the subject of expert judgement, albeit usually unstruc-
tured.

Graphical based methods such as FTA and RBD are
popular during design because they provide useful rep-
resentations of the system, linking probabilistic assess-
ments with physical structure and functionality. How-
ever, the frameworks are not without shortcomings and
recent research has proposed the use of Bayesian belief
networks (BBN) as a more flexible substitute [134].
The BBNs can be constructed to directly map onto
potential engineering decisions [11]; they can be con-
structed to capture temporal effects [18]; they can
capture common cause failure modes [140]; they can
capture anticipated changes in reliability due to manu-
facturing and operational demands [152]; and, finally,
BBNs can be used to facilitate decision-making sub-
ject to multiple criteria [47]. This is important during
concept design when the strengths and weaknesses of
design options are traded off. Several case studies de-
scribe the application of BBNs to reliability model-
ing of complex systems. See, for example, [19, 46,
107, 159]. Leishman and McNamara [94] described
an ethnographic approach to qualitatively structuring
a reliability model. Such an approach makes use of in-
depth interviews with relevant participants. The data
acquired through the interviewing processes are struc-
tured via Bayesian networks; see also [155].

4.2.4 Robust design. The stress–strength relation-
ship is core to reliability engineering. Conventional
modelling, as discussed above, provides estimates of
whether the system design possesses the strength to
meet the nominal stresses within the specified oper-
ational environment. However, there can be consider-
able uncertainty about the actual stresses encountered
in operation and, hence, analysis to examine the robust-
ness of the design to variation in stresses is important.

The concept of robust design [116] is fundamental
to the quality movement and encompasses the work on
experimental design and analysis. Condra [25], among
others, defines reliability as “quality through time” and
advocates the importance of statistical experimental
design in reliability improvement. There are limited
reports of its use in practical reliability engineering,

although see, for example, [33] for its use within the
automotive industry. Perhaps this is not too surprising
since the ability to replicate repeated trials is most fea-
sible for those systems which will be mass produced.
Others have discounted the influence of experimental
design on traditional reliability testing because of the
identifiability problems given the small amount of data
relative to control parameters [79]. The increasing role
of simulated experiments may remove such physical
constraints.

Elicitation is required to support not only design of
experiments, but also specification of standard reliabil-
ity tests, such as growth development tests and pro-
duction acceptance tests. Again there is little reported
about how this can and should be achieved. Exceptions
are Condra [25] and Davis [33], who share insight into
the identification of the failure modes that influence
the choice of response variable and the semistructured
methods used to identify the explanatory variables and
their experimental settings.

Methods for elicitation of stakeholder judgements
abound in the quality literature. A useful summary
is given in [78], which summarizes 100 methods by
purpose, when to use, how to use and benefits, and
provides an example. The methods are classified into:
management methods, analytical methods, idea gener-
ation, data collection, analysis and display. While the
scope is comprehensive, all tools are treated as inde-
pendent entities.

A recent special issue of the journal Quality and Re-
liability Engineering International (April 2005) pro-
vided some interesting reviews of the role of six sigma
in the 21st century and the key interaction between
the softer and harder aspects of statistical modeling
within industry. Hahn [60] emphasized the key goal
of designing products with long life and high reliabil-
ity, and identified the need to include reliability mod-
eling within the six sigma toolkit. The use of six sigma
through the life cycle of an automated decision support
system is discussed in [117], again highlighting the
synergies with systems engineering, although broad-
ening the issues beyond the engineering to include
service processes. Anderson-Cook, Patterson and Ho-
erl [3] described graduate training with special empha-
sis on the role of structured problem solving within a
program that aims to develop the facilitation skills of
statisticians within a project life cycle.

Experiments, tests and statistical quality control are
encompassed by the generic term “task” used in Fig-
ures 3–5. We propose that their value should be as-
sessed during reliability planning and the data from
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their implementation should be used to revise model-
ing estimates, which we shall discuss further later.

4.3 Initial Quantification

Most of the key probabilistic models used in reliabil-
ity are quantified through mixtures of expert judgement
and generic, or other, surrogate data.

4.3.1 Reliability models. Before discussing the var-
ious techniques used for quantification, we give a brief
overview of some of the models used, arranged accord-
ing to the systems engineering phases. Note, however,
that there is no rigid restriction of models to the phases
we have associated them with, as preliminary studies
are frequently carried out in earlier phases and detailed
later. For example, decisions about production, mainte-
nance and operational support will tend to be made in
development using information about the failure modes
elicited in design. In turn, tasks included in the reliabil-
ity plan and used to revise estimates after implementa-
tion include the engineering analysis and test methods
discussed below.

Design and development. Concept design is charac-
terized by the need to make trade-off decisions: cost
against functionality, weight against strength and so
on. In principle reliability requirements should play a
part in these trade-offs too, with model predictions be-
ing inputs to the game. However, although there is a
wide literature on reliability optimization (see [91] for
a survey), this literature generally makes the assump-
tion that the system structure and the reliability char-
acteristics of parts are quite well defined. This is not
usually the case within early design: hence, the diffi-
culties of predicting future reliability quantitatively are
such that reliability tends not to play a major role in the
trade-off discussion [14].

In addition to the systems reliability models listed in
Section 4.2.3 and widely used in practice, many prob-
ability models have been reported in the literature. For
example, Singpurwalla [135] provided a taxonomy of
stochastic models that are useful for reliability mod-
eling in dynamic environments. This is important be-
cause not only are there uncertainties in the operational
stresses under given conditions, but there can be an-
ticipated variation on the demand patterns. Renewal
processes are commonly used [8], although other peo-
ple adapt FTA to capture a dynamic environment [1].

Physical failure modeling is used extensively within
simulation during detailed design and development.
Mathewson et al. [101] provided a review of simula-
tion tools used within the design process for predictive

inference as well as for supporting optimal design deci-
sions. The majority of these models make extensive use
of component level physical models which are adjusted
by empirical data for calibration. The main criticism of
these models is limited focus of one failure mechanism
per model [13].

Engineering testing remains a staple part of reliabil-
ity programs, but growth testing is now more preva-
lent than demonstration testing. Many tests will be con-
ducted under accelerated conditions (see [109, 110] for
a bibliography of accelerated test plans) and they gen-
erate few observations. Consequently, research in this
field is dominated by Bayesian approaches; see [44, 58,
77, 124, 125]. A notable exception is modeling with
covariates [40].

Within civil engineering, expert judgement is now
commonly used to incorporate assessments of uncer-
tainties into design decision-making. In this area much
of the design decision-making is in the context of the
management and upgrading of existing assets. See [34]
for a discussion of a performance-based asset man-
agement system for flood defenses which is driven
by expert judgements. The Dutch are going through a
process of reevaluating their risk criteria for dikes, and
much of the technical preparatory work has involved
the use of expert judgement to assess uncertainties in
the physical models of dike failure [30, 145]. Similarly,
expert judgement has been used to quantify physical
models that describe the behavior of buildings [36].

Manufacture and installation. There are a few
unique systems where active design continues into
manufacturing—mainly in space systems and civil en-
gineering structures. However, for most systems, the
emphasis in the manufacturing phase is on produc-
tion quality control. For mass production, established
methods of statistical process control can be used for
the key failure modes elicited during design and devel-
opment. Systems with a low volume of assembly and
many manual processes may rely on product screening
[67]. For such systems, which include aerospace and
military systems, early production models can also be
used in prerelease testing to give either the manufac-
turer or the client confidence in the reliability of the
product. The design and analysis of these trials possess
the same data challenges as reliability demonstration
tests earlier in development.

Operation and maintenance. Several authors have
acknowledged the role of expert judgement within
maintenance modeling, notably, Lu, Wang and Christer
[96], who combined subjective judgement about pre-
ventive maintenance with failure records to support de-
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lay time modeling of plants, and Kunttu and Korte-
lainen [90], who presented a case study using expert
judgement within a Poisson model to support mainte-
nance decisions. van Noortwijk et al. [142] proposed
a maintenance optimization model and used a linear
pool to combine expert opinion to assess the lifetime
distribution. See also [149] for a review of subjective
estimation in maintenance modeling.

Murthy, Solem and Roren [106] provided a com-
prehensive review of warranty modeling, and Kleyner
and Sandborn [86] provided a warranty model based
on Weibull and exponential models where the parame-
ters are estimated by data using stochastic simulation to
overcome mathematical intractability. Ward and Chris-
ter [150] acknowledged the need for expert assess-
ment for warranty modeling. Examples of Bayesian ap-
proaches include [68, 122, 138].

Real-time condition monitoring is an important tool
in maintenance decision-making. When modeled, a
degradation signal can be used to estimate residual life.
The data obtained through measuring aspects of the
degradation process of each of the system’s compo-
nents can be used as concomitant variables in a pro-
portional hazards model [144]. Alternative approaches
include [87], which uses a Markov chain to capture
the degradation process. The usefulness of engineering
judgement for interpreting such data is evident and, as
such, Bayesian methods potentially play an important
role in this part of the cycle (see, e.g., [55]).

A variety of problems are associated with civil en-
gineering structures during the operations phase. As-
sessments of the times required to evacuate a dike ring
are made in [9], while the time required to safely close
the movable barriers in a dike ring structure is mod-
eled in [141]. Degradation process modeling is very
important, particularly where inspection or condition
monitoring may be costly, such as with sewers [88], or
where the underlying processes are difficult to predict,
such as with coastal erosion [61].

4.3.2 Expert judgement collection. All of the above
models require instantiation. Typically they are quan-
tified through expert judgement using a similar set of
techniques that we now discuss.

The initial quantification of reliability models is, in
practice, frequently an unstructured search through his-
torical systems data and generic data bases to find “ball
park” parameter estimates.

A variety of problems are encountered here:

• The combination of opinions of different experts.

• The transformation of combined data into assess-
ments of parameters within a model.

• The combination of expert and generic system data.

4.3.3 Expert combination. When more than one ex-
pert is contributing assessments about a quantity of in-
terest, then the analyst has the problem of combining
them in some way. There are, broadly, two approaches
to this. The first is to pool the data—generally through
the use of a linear pool. The second is to regard the ex-
pert assessments as observations and use a Bayesian
model to combine them. An even simpler and older
method is that of paired comparisons (see the discus-
sion in [27]).

Pooling. Key issues of consideration with pooling
schemes concern choosing which properties to pre-
serve as we switch between the individual experts and
the aggregated pooled expert. For example, assess-
ments which are statistically independent for individ-
uals are not necessarily independent for the pooled ex-
pert and updating the pooled expert through Bayes’
theorem does not necessarily provide the same distri-
bution as aggregating all the updated individual distri-
butions (see, e.g., [56] or [45]).

We refer to Cooke [27] for a discussion of the differ-
ent types of pooling, but note that he argued strongly
for a linear pooling of expert distributions. Each expert
is assigned a weight which is used to form a weighted
combination of expert distributions. The weight should
not be interpreted as a probability, as one cannot as-
sociate the experts with a collection of exclusive and
exhaustive events. The choice of weight is difficult
to justify. While a common pragmatic approach is to
use equal weightings of experts (see the description of
NUREG 1150 given in [80]), Cooke has argued that
performance-based weighting is more effective and
better meets important underlying principles including
empirical control. For more details see [10, 27], and for
a moment-based approach see [156].

Bayesian combination. The main difference in phi-
losophy between pooling and Bayesian combination is
that the latter treats expert assessments as if they are
observations. Hence there has to be a specification of
the likelihood function of the expert data. This feature,
which raises serious problems for the analyst, is most
clearly visible in the multivariate normal model used
by Mosleh and Apostolakis [105]. Here the expert as-
sessment is modeled as being equal to the “true” value
of the parameter of interest, plus a normally distrib-
uted error, which is considered to be independent of
the true value. In principle, the analyst then has to spec-
ify the multivariate distribution of expert errors: means
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(which can be interpreted as expert biases), variances
(which can be interpreted as degree of certainty) and
covariances (which reflect the degree of correlation of
the group of experts). While these are all quantities
of some interest in assessing expert opinions, it is not
clear on what basis the analyst can assess them without
being in a superior position of expertise to that of the
experts.

There are now many other Bayesian methods avail-
able, especially techniques that incorporate Bayesian
networks, which have essentially the same requirement
that the analyst develop a likelihood function for expert
data. See [24] for a discussion of a variety of such mod-
els. The difficulty of structuring such a model depends
of course on the details of the model and the context in
which it is used. For example, see [129], which takes
assessments of numbers of failures to assess parame-
ters of a nonhomogeneous Poisson process, and [57],
which discusses the possible advantages of a Bayes lin-
ear framework.

4.3.4 Transformation to parameters and families of
distributions. Both theoreticians and practitioners can
easily forget that many of our favorite model para-
meters, such as failure rate, are not actually observ-
able quantities at all, but are simply parameters of a
model that we want to use to make predictions about
the future. It has been strongly argued on foundational
grounds (e.g., the discussion in Chapter 2 of [10]) that
we can only ask for probability assessments on observ-
able quantities. Hence there is a need to infer from
those assessments which probability distributions on
model parameters are consistent. This approach was
developed by Cooke [28]; more algorithms and under-
lying theory are given in [89].

Taking a more standard Bayesian perspective,
Percy [118] discussed the indirect assessment of hy-
perprior parameters through the direct assessment of
quantiles of observables whose distribution is a prior
predictive of the unknown Bayesian model. Gutierrez-
Pulido, Aguirre-Torres and Christen [59] took a simi-
lar line, considering both moments and quantiles of the
time to failure for a system as sources of information
from which prior distributions can be fitted. Such meth-
ods could also be applicable to other Bayesian contexts
where prior distributions on lifetime distribution para-
meters are to be assessed, for example, in Bayesian
accelerated or proportional hazards life modeling [22].

In the absence of an assumed class of conditional
models it becomes much more difficult to assess a fam-
ily of conditional distributions: in the context of de-
cision support, it is necessary to consider families of

distributions indexed by the decision variables. When
the decision space is small and discrete, repeated elic-
itation can be used, but in the case of a continuous
family this becomes more difficult. We are not aware
of much work in this area, but it is worth mentioning
work by Cooke and Jager, who expressed the proba-
bility of an event in terms of system parameters in a
Taylor series [26]. A study by Willems et al. [154]
used graphical methods to elicit conditional quantiles
from experts. In the context of human reliability analy-
sis, proportional hazards type models have been used
in which the parameters are assessed purely through
various judgemental techniques, such as paired com-
parison or multicriteria decision analysis. See [42] in
particular and the discussion in [10] for other exam-
ples.

4.3.5 The combination of expert and historical data.
Heritage data for historical systems provide insights
into the observed reliability of related systems. See,
for example, Figure 3, which highlights the selection
of historical data to inform the base reliability of the
new system.

Historical data may be obtained from generic data
bases or company-specific event data bases. Generic
reliability data are usually based on operating data
drawn from a variety of sources and mixed together.
Many generic databases exist; usually they are sector-
specific. To adapt such generic information to a system-
specific setting, reliability data bases have traditionally
used environmental loading factors, such as the Mili-
tary Handbook 217 [37] (hereafter Mil-Hdbk-217).

Mil-Hdbk-217 expresses failure rates for compo-
nents using so-called “π” factors, which are multipli-
cation factors that depend on environmental or usage
factors. To determine the appropriate failure rate, the
analyst simply has to find the correct component de-
scription, identify the appropriate environmental or us-
age factors and then multiply the base failure rate by
the π factors given in the table. These numbers are
given to a very high degree of accuracy and are an at-
tempt to represent the dependence of reliability on at
least some parameters. Unfortunately, because they do
not represent the dependence on all the parameters, the
accuracy given is misleading. By contrast, the IEEE-
500 data base and others based on similar principles,
such as OREDA and EIREDA, specify much about
the system and its operating conditions, but explicitly
present the remaining variability in the failure rates.
Fragola [50] called these resources “third generation
databases.”
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Many reliability “predictions” made in practical ap-
plications seem to be based on an adaptation of generic
data through expert opinion, rather than from a (pos-
sibly Bayesian-based) fusion of the two forms of data.
For example, in practice it is common to adjust generic
data to make it system-specific—typically through the
use of failure rate multiplication factors—but the meth-
ods employed are not generally supported by clear and
transparent expert judgement protocols or models.

A nice example of failure rate adjustment is given
by Fragola and McFadden’s study of failure rates for
space station units [51], where experts gather and com-
bine different generic data estimates. While no clear
statistical model is used to justify this, it is worth
noting that the outputs of the process are ranges of
failure rates. The third generation databases described
above all provide ranges of failure rates—often de-
scribed using a log-normal distribution on the failure
rate parameter. About the point estimates given to great
precision in Mil-Hdbk-217 data, Fragola [50] wrote,
“. . . failure rates came to be looked upon as fixed mea-
sures of specific equipment, not measures of a spec-
trum of equipment types.” However, he suggested also
that Mil-Hdbk-217 data are perfectly usable, as long as
they are used in conjunction with uncertainty bands to
capture this extra variation.

One of the underlying reasons for the overstated
accuracy of Mil-Hdbk-217 is that it reflects a large
amount of testing; this is worth reflecting on further,
because it has more general implications for the rela-
tionship of old to new system data, and for the way
data changes through the systems engineering process.
Old data will often be a poor representation of prior
information because they do not take into account the
changes made to the system, usage and environment.
Although the usual asymptotic convergence properties
hold when updating with the new system data, this is
of little practical significance because the amount of
new system experience needed for convergence is not
available. Hence the speed at which the posteriors will
adjust to the “correct” failure rate will be affected by
the degree of certainty we had built up for the previ-
ous system: The more data we had for the previous
system, the more slowly the posterior will converge to
the correct new failure rate. A more appropriate way
to model the new system reliability is to try to model
the change expected to the old system reliability, and
this is something that can only be assessed through ex-
pert judgement. Often the uncertainty about the effect
of the change will dominate the information from the
old prior.

The REMM model [148] explicitly attempts to
model such effects by considering failure modes in the
new and existing systems and subjective assessments
about the way the design changes will affect them.
A higher level approach using Bayes linear methods
(based on moments rather than probabilities) was dis-
cussed in [57], where expert assessment of the change
to MTBF (mean time before failure) is proposed.

Using historical data from company-specific data
bases can give rise to similar issues already mentioned
for generic data. Although data for the previous sys-
tems manufactured by the company have the potential
to relate operating experience directly to earlier design
decisions, hence supporting interpretation and selec-
tion of base events input to the reliability model for the
new system, there are also industry-specific challenges,
for example, censoring at the expiry of the warranty pe-
riod for consumer products [33].

The common problem with using old system data,
whatever their source, can be expressed succinctly us-
ing the notation for system reliability used earlier,

r = r(d,p,u,m, c).

Suppose the old system data correspond to slightly dif-
ferent design, production, usage and maintenance pat-
terns. Then the “old” reliability will be

r = r(do,po,uo,mo, co).

The uncertainty ranges given in the third generation
data bases may be seen as an attempt to represent credi-
ble ranges by changing these parameters within a given
envelope. It is finally worth remarking that it is essen-
tial for the future utility of these data bases that they
maintain the ranges inherent in each equipment class.
Hence it would be wrong to start updating the data
bases with system-specific data using a straightforward
application of Bayes’ theorem, as this will reduce the
variance artificially.

4.4 Revised Quantification with
System-Specific Data

Because data are realized from tasks implemented
in design, development and manufacture, the initial re-
liability estimate can be revised as captured in Fig-
ures 3–6. We discuss the two options for revision of
estimates: Bayesian updating and reelicitation.

As noted above, badly calibrated prior distributions
and poorly specified stochastic models compromise
Bayesian inference. The quality of inference obtained
through Bayesian updating is contingent on both the
prior distribution to capture epistemic uncertainty and
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the choice of model to capture the aleatory uncertainty.
The latter of these acts like a lens in which the data
are viewed, so even if a meaningful prior distribu-
tion is elicited, the posterior distribution may be mis-
leading because this lens may filter out observations
that would sensibly inform the inference if the choice
of model were different. As such, differences in reel-
icited prior distributions compared with posterior dis-
tributions may be due to the filtering rather than inco-
herency expert(s) or may be due to a mixture of both.

The systems engineering process is longitudinal and
hence offers the opportunity, not only to update prior
distributions through Bayes’ theorem, but also to reel-
icit from a common set of experts. This offers the
opportunity to validate the choice of model, as well
as to assess the calibration of the prior distributions.
Furthermore, a learning environment can be created by
appropriately feeding results back to the experts and
supporting them in improving their ability to specify
uncertainty in terms of probability.

As discussed earlier, the quality of subjective prob-
abilities from experts depends on both the elicita-
tion methods and the experts’ experience. If an ex-
pert lacks experience, prior distributions will be un-
informative or misleading, regardless of the elicitation
method. Equally, poorly designed elicitation processes
may degrade the quality of information provided from
experts. Fischhoff [49] proposed the following four
necessary conditions to support improving judgement
skills: (1) Abundant practice with a set of reason-
ably homogeneous tasks; (2) clear-cut criterion events
for outcome feedback; (3) task-specific reinforcement;
(4) explicit admission of the need for learning. There
is extensive evidence that these criteria are often not
achieved in practice [157, 48].

Feedback is crucial for calibrating the expert and
should be event-specific [157, 48, 49]. In other words,
the feedback must be given with respect to assigning
probabilities to particular events and not to the ability
of the expert to assign probabilities to any situation.
To increase the effectiveness of feedback in terms of
learning, conditions that influence the event should re-
cur as often as possible [49, 74]. Therefore the factors
on which the measure is conditioned should be as few
and as general as possible.

5. DISCUSSION AND REFLECTIONS ON
FUTURE DIRECTIONS

We have attempted to give an overview of expert
judgement applications within the field of reliability

assessment during systems design. In doing so, a num-
ber of key points have arisen which we now revisit to
summarize and discuss further.

We have suggested that the whole systems engineer-
ing design process is akin to a control problem. The
control feedback loops are, however, driven largely not
through revisiting decisions in the light of newly ac-
quired system data, but through the use of expert judge-
ments which assess the likely outcome of different sys-
tem design decisions. Of course, in the wider context
of new generations of systems, there are also feedback
loops through the use of relevant data that reduce un-
certainty not only on the system’s own physical and
engineering properties, but also on the manner of user
interaction. It is also worth mentioning that require-
ments are frequently revised in light of experience with
previous generations of systems, and there is surely a
role for statisticians in influencing the setting of such
targets. In fact, with the increasing use of sensors that
are able to record all sorts of aspects of system per-
formance, environment and use, the opportunities for
statistical modeling of these aspects are greater than
ever.

Given that systems engineering stresses the impor-
tance of making trade-off decisions, we remarked that
the reliability information required to support such de-
cisions is—expressed abstractly—the dependence of
the reliability metric

r = r(d,p,u,m, c)

in terms of d,p,u,m and c, the choices made for
design, production, usage, maintenance and changes.
While defining such a function precisely would be im-
practical, we feel that this at least provides a concep-
tual model for the direction statisticians should be tak-
ing. Reliability optimization models, reliability growth
models and other such models are all techniques used
to provide partial approximations to this function.

The fact that some decisions are made later in the de-
sign process means that models are sometimes used in
ways that are uncomfortable to statisticians and math-
ematicians: For example, the use of a constant failure
rate lifetime model (exponential distribution) for com-
putations early in the process and the later use of in-
creasing failure rate models for the same system to help
determine maintenance intervals may seem contradic-
tory, but if the first model was applied with the knowl-
edge that the maintenance intervals would be fixed post
hoc to ensure that the failure rate is roughly constant,
then there is no problem. This is a small illustration of
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the way the flexibility endowed by future decisions can
ensure appropriateness of modeling tools post hoc.

Many of the elicitation techniques applied within en-
gineering design have crossed over from the proba-
bilistic risk analysis area. Despite the many similar-
ities with this area, there are a few key differences.
One is that many uncertainties will be affected in some
way by future design decisions, so an understanding
of dependence on design parameters is critical. An-
other critical aspect is that the design process is one
of learning for the engineers. Hence the designers’ in-
sights change throughout the process and there is thus
a need for problem and model structuring techniques
to be applied: the qualitative structuring of statistical
models has to be tied closely to the design development
process.

Two reliability modeling frameworks have been de-
scribed that try to extend the scope of reliability tech-
niques from “small world” problems to provide guid-
ance over a wider range of problems. We noted also,
however, that a holistic “whole life modeling” ap-
proach would need to be attractive to the different
stakeholders associated to the system and that there
is a need to provide a rational consensus across these
parties about the uncertainties faced. Techniques devel-
oped in the PRA setting may be adaptable to this situ-
ation, and integration with usual systems engineering
approaches appears to be natural.

This brings us to some observations on the founda-
tional aspects of reliability modeling in this area, be-
cause on the one hand, the methods are largely sub-
jective, but on the other hand, there is a recognition
of the limitations of Bayesian techniques. One such
limitation is the need to establish rational consensus
(as noted above) to break down the sometimes adver-
sarial relationship encountered between stakeholders.
Another is that the nature of learning in engineering de-
sign is that new modeling needs are continually emerg-
ing and model structures—with corresponding likeli-
hood functions—need to be adjusted to match.

Engineering design is an area of great interest for
statisticians, but involvement in this area requires some
changes in mindset. Reliability is one of the many re-
quirements that the designer is trying to juggle. Hence
supporting the design process has to be done by giv-
ing insights into what is feasible. All decisions can be
modulated later in the process as long as there is a fea-
sible set of solutions: failure of the design process oc-
curs when decisions taken earlier imply that the set of
feasible solutions is empty. Historically, many reliabil-
ity techniques have been applied too little or too late in

the design process to inform it properly and some prac-
titioners, such as O’Connor [112], have been critical of
statistical reliability work, seeing it as a numbers game,
but the increased use of expert judgement combined
with more rapid information distribution through in-
formation technology systems gives real opportunities
to “raise the game” as far as the impact of reliability is
concerned. We have identified a whole set of problems
in which there is scope for statisticians and operations
researchers to play a role in developing new elicitation
methods and modeling tools within the systems engi-
neering design process. Surely, as we get more deeply
involved in such areas, the insights into uncertainty
elicitation will provide benefits for other application
areas too. Although we would not go as far as Lind-
ley’s colleague in claiming “there are no problems left
in statistics except the assessment of probability” [95],
it is undeniably the case that expert judgement meth-
ods dramatically increase the scope for statistical work
in engineering design problems and that work in that
area provides us with a new range of contexts within
which new elicitation methods can be developed.
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