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Expert Finding for Question Answering via
Graph Regularized Matrix Completion

Zhou Zhao, Lijun Zhang, Xiaofei He and Wilfred Ng

Abstract—Expert finding for question answering is a challenging problem in Community-based Question Answering (CQA)

systems, arising in many real applications such as question routing and identification of best answers. In order to provide high-

quality experts, many existing approaches learn the user model from their past question-answering activities in CQA systems.

However, the past activities of users in most CQA systems are rather few, and thus the user model may not be well inferred

in practice. In this paper, we consider the problem of expert finding from the viewpoint of missing value estimation. We then

employ users’ social networks for inferring user model, and thus improve the performance of expert finding in CQA systems.

In addition, we develop a novel graph-regularized matrix completion algorithm for inferring the user model. We further develop

two efficient iterative procedures, GRMC-EGM and GRMC-AGM, to solve the optimization problem. GRMC-EGM utilizes the

Extended Gradient Method (EGM), while GRMC-AGM applies the Accelerated proximal Gradient search Method (AGM), for the

optimization. We evaluate our methods on the well-known question answering system Quora, and the popular social network

Twitter. Our empirical study shows the effectiveness of the proposed algorithms in comparison to the state-of-the-art expert

finding algorithms.

Index Terms—expert finding, community-based question answering, graph regularized matrix completion.

✦

1 INTRODUCTION

The benefits of Community-based Question Answering

(CQA) system have been well-recognized today. We have

witnessed the popular CQA systems such as Yahoo An-

swer [1], Stack Overflow [2] and Quora [3]. Expert finding

is an essential problem in CQA systems, which arises in

many real applications such as question routing [42] and

identification of best answers [5]. The central problem of

expert finding is to choose the right users for answering

the questions, which has attracted considerable attention

recently in [5], [13], [41], [42], [48], [54], [53].

The process of the existing work [5], [54], [53], [13],

[41], [42], [48] for the problem of expert finding in CQA

systems can be divided into two steps: First, we build

the user model from the past question-answering activities

of the users, where the quality of the question-answering

activities is voted by the CQA community via thumb-

ups/downs. Second, we predict the performance of users

for answering the new questions based on inferred user

model, and then choose the users with highly predicted

performance for answering the questions. Two most popular

approaches for the problem of expert finding in CQA sys-

tems are authority-oriented algorithms and topic-oriented
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algorithms. The authority-oriented algorithms [5], [54],

[53] construct the user-to-user graph based on ask-answer

relations of the users, and then predict the performance for

answering new questions based on user authority model.

The topic-oriented algorithms [13], [41], [42], [48] are

based on latent topic modeling techniques. They aim to

fit a probabilistic model to the question-answering activities

including both question content and the rating of users, and

then use the latent user model to make further predictions.

Unlike previous studies, we consider the problem of ex-

pert finding from the viewpoint of missing value estimation.

Given a rating matrix indicating the quality of users on

answering existing questions, we want to choose the right

experts for answering the new questions. Since the rating

for users on answering some questions are unknown (i.e.

missing values in the rating matrix), we want to predict the

missing values in the rating matrix first, and then choose

the users with highly predicted values for answering the

new questions.

On the other hand, although existing expert finding

methods have achieved promising performance, most of

them have to obtain sufficient amount of past activities

for inferring user model in order to provide high-quality

experts. However, the past activities in most CQA system

are rather few, and thus the user model may not be well

inferred in practice. Fortunately, with the prevalence of

online social networks today, it is not difficult to find the

relation of CQA users, such as their connections in various

online social networks (e.g., Facebook, Twitter, etc.). For

example, we observe that more than one third of the users in

Quora have a twitter account. A social relation between two

users provides a strong evidence for them to have common

preference or interest [22], [25], [55]. Thus, we strike for
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Fig. 1. Expert Finding in Community-based Question Answering System

integrating both user-to-user social relations and question-

answering activities seamlessly into a common framework

for tackling the problem of expert finding in CQA systems.

In this paper, we propose a new approach for the

problem of expert finding in CQA system, which utilizes

the online social relation of users, via graph regularized

matrix completion. The rating matrix between questions

and users keeps the quality of users on answering the

questions. We consider that the content of the questions

is the side information of the rating matrix. We choose

the right experts for answering the questions by predicting

the ratings of users on answering these questions. That is,

we aim to complete the missing values for these questions

in the rating matrix. We also employ the social relation

of CQA users to regularize the completion of the rating

matrix. If two users have strong connection in the social

network, they may qualify for answering similar questions.

We also develop two iterative procedures to solve the

optimization problem. We illustrate the proposed expert

finding algorithm in CQA System in Figure 1. When new

questions come, our algorithm chooses the experts with

highly predicted ratings for answering the questions and

stores these question-answering activities into databases.

It is worthwhile to highlight several aspects of the

proposed approach here:

1. We formulate the problem of expert finding in

CQA systems from the viewpoint of missing value

estimation. We predict the unknown values in the

rating matrix via matrix completion, and choose

the users with the highest predicted values for

answering the new questions.

2. We integrate both the social relation of users

and their past question-answering activities into

one common framework for the problem of ex-

pert finding. We then propose the graph regular-

ized matrix completion method for estimating the

missing values in the rating matrix with social

relation of users.

3. We represent the questions by bag of words,

which has been shown to be successful in many

question answering applications [12], [49], [52].

The user model is considered as a linear function

which evaluates the qualification of the user for

answering some question. That is, given a ques-

tion, the expertise functions can predict the ratings

for all users on answering this question.

The rest of the paper is organized as follows: Section 2

surveys the related work. We introduce the background

and the problem of expert finding in Section 3. Next, we

present the problem of expert finding from the viewpoint of

graph regularized matrix completion in Section 4. We then

provide a extended gradient method (GRMC-EGM) and

an accelerated proximal gradient search method (GRMC-

AGM) for solving the optimization problem in Section 5. A

variety of experimental results are presented in Section 6.

Finally, we provide some concluding remarks and sugges-

tions for future work in Section 7.

2 RELATED WORK

In this section, we briefly review some related work on

expert finding and matrix completion.

2.1 Expert Finding

The existing work for the problem of expert finding

can be categorized into two groups: the authority-oriented

approach (cf. [5], [18], [23], [45], [53], [54]), and the topic-

oriented approaches (cf. [11], [13], [14], [24], [28], [35],

[41], [42], [48], [40], [27], [47], [10]).

The authority-oriented expert finding methods are based

on link analysis for the ask-answer relation between users

in the rating matrix. Thus, the user authority is ranked

based on conventional web page ranking algorithms and

their variations. For example, Bouguessa et al. [5] choose

the experts to answer the questions based on the number of

best answers provided by users, which is an In-degree-based

method. Jurczyk et al. [18] construct the user-to-user graph

from the past question-answering activities and employ

a HITS [19] based method to rank the user authority.

Zhu et al. [53], [54] measure the category relevance of

questions and rank user authority in extended category

link graph. Sung et al. [37] infer the expertise of new

users by propagating the expertise of old users through

common used words. Although authority-oriented expert

finding methods can find the authoritative users, a new

question might not match the the expertise of the global

experts.

The topic-oriented expert finding methods are based

on latent topic modeling techniques for the content of

the questions. Deng et al. [11], Mimno et al. [28] and

Hashemi et al. [14] develop latent user model for the

problem of expert finding in DBLP bibliography. Guo et

al. [13] and Zhou et al. [48] introduce the topic sensitive

probabilistic approach to build the latent user model. Qu et

al. [32] adopts PLSA model for analyzing the latent topic of

questions to choose the right experts. Liu et al. [24] propose

a probabilistic language model to predict the best answerer

of the questions. Fatemeh et al. [35] build the model of

users based on the topic modeling techniques. Xu et al. [41]

propose a probabilistic dual role model by considering the
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asker role and answerer role of users. Weng et al. [40]

choose the topic-sensitive influential users by leveraging

topic models for answering the questions. McCallum et

al. [27] devise an Author-Recipient-Topic model to take

into account the topic distribution in the content posted

by authors. Liu et al. [42] devise the CQArank model

that estimates both the latent topic of questions and the

user model. Zhao et al. [47] employ the topic models

that generates the experts and the topic of the questions

simultaneously. Chen et al. [10] model the expertise of the

users based on the rating of the comments in community

question answering system.

Unlike the previous studies, we formulate the problem

of expert finding from the viewpoint of missing value

estimation, which can be solved via matrix completion. We

also employ the social relationship of users to improve the

performance of missing value estimation.

2.2 Matrix Completion

The matrix completion techniques have been applied in

many areas such as computer vision [30] and collaborative

filtering [36], which is the process of adding missing

entries to an incomplete matrix. Specifically, given the

incomplete data matrix Y ∈ Rm×n with low rank, the

matrix completion problem is given by

minX rank(X)

s.t. Yij = Xij , (i, j) ∈ Ω, (1)

where X ∈ Rm×n and Ω is the set of the observed entries.

Unfortunately, the above rank minimization problem is NP-

hard in general due to the nonconvexity and discontinuous

nature of the rank function. Theoretical studies [34] show

that the nuclear norm, i.e., the sum of singular values of

a matrix, is the tightest convex lower bound of the rank

function of matrices. Therefore, a widely used approach

is to apply the nuclear norm as a convex surrogate of the

nonconvex matrix rank function [26]:

minX ∥X∥∗
s.t. Yij = Xij , (i, j) ∈ Ω, (2)

where ∥X∥∗ =
∑min(m,n)

i=1 δi(X) is the nuclear norm and

δi(X) is the i-th largest singular value of X. The existing

approaches [8], [33], [7], [9], [6], [17], [43], [44] based on

nuclear norm heuristic have provided theoretical guarantees

and achieved excellent empirical performance. Currently,

some efficient methods such as GreB [51], DCA [50], rank-

one matrix pursuit algorithm [39] and conditional gradient

method [15], [46] are proposed for matrix completion.

However, our objective function is different from the objec-

tive function of matric completion and these methods may

not be suitable for our problem.

3 THE PROBLEM OF EXPERT FINDING WITH

SOCIAL RELATIONSHIP

In this section, we first introduce some notations used

in our subsequent discussion, which are the data matrix

TABLE 1
SUMMARY OF NOTATION

Notation Notation Description

Q a data matrix of questions

X an expertise matrix of users

Y an observed rating matrix

W a similarity matrix of users

L a laplacian matrix of users

D a diagonal matrix of users

Ω a set of existing ratings

IΩ an indicator matrix for observed ratings

F1, . . . ,Fn sets of following users

fx(q) = qTx an expertise function

λ1 a social regularization term

λ2 a nuclear norm regularization term

of questions Q, the data matrix of users X, the similarity

matrix of users W and the observed rating matrix Y. We

then present the problem of expert finding in CQA systems

from the viewpoint of missing value estimation.

We represent the questions in CQA systems using bag-

of-words model. Each question qi is denoted by a d-

dimensional word vector. We then denote the collection of

questions by Q = [q1, . . . ,qm] ∈ Rd×m where m is the

total number of the questions.

We denote the collection of users in CQA systems by

X = [x1, . . . ,xn] ∈ Rd×n where n is the total number of

the users. The xj is a d-dimensional vector for modeling

the expertise of j-th users on word feature. The terms in

xj indicate the strengths and weakness of the j-th user on

word feature of the questions. For example, consider that

the i-th users is good at answering the questions containing

the k-th word “algorithm”, but is not good at answering the

question with the l-th word “security”. We then consider

that the weight of the k-th word is higher than the l-th

word in vector xj . That is, xj,k > xj,l.

We now propose a set of expertise functions for modeling

the expertise of users in CQA systems. In this work, we use

linear expertise functions for predicting the quality of users

on answering the question, which is given by fx(q) = qTx.

We observe that many of the CQA users also have

connections on some online social networks. We then utilize

the social relation of users to further improve our method.

We can see that there exists two types of connections in

different social networks, which are directed and undirected

connections. The first type of connections is called social

following (e.g., in Twitter), and the second type is called

social friendship (e.g., in Facebook). We can integrate both

types of the connections in our method.

We denote the similarity between users by W ∈ Rn×n.

Now, we introduce the inference for the similarity matrix

of users based on social friendship and social following,

which is also used in [22], [25], [55]. First, consider that

the connection between the i-th user and the j-th user is

social friendship. The similarity Wij = 1 when the i-th

user and the j-th user are friends, otherwise, Wij = 0.

Then, consider that the connection between the i-th user

and the j-th user is social following. Let Fi be the set

of following users of the i-th user. We use the Jaccard

Distance to model the similarity between the i-th user and
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j-th user, which is Wij =
|Fi

∩
Fj |

|Fi

∪
Fj |

. Fi

∩

Fj is the set

of two users’ common followings and Fi

∪

Fj is the set

of two users’ total followings. We note that the similarity

value in W is within the range [0, 1].
We denote the quality of all users on answering the

questions by the rating matrix Y ∈ Rm×n. The value in

the rating matrix Y is voted by CQA community, which

indicates the community’s long term review for the quality

of users on answering the questions. We notice that there

are a number of missing values in Y. Let Ω be the set of

existing ratings in Y. The value Yij is observed if rating

(i, j) ∈ Ω exists in CQA systems.

We consider that the data matrix of questions Q ∈ Rd×m

is the side information of Y ∈ Rm×n. Therefore, the

missing values in Y can be predicted by using the expertise

function fX(Q) = QTX.

Using the notations above, we define the problem of

expert finding in CQA systems as follows. Given the data

matrix of questions Q, the rating matrix of users Y and the

similarity matrix of users W, we aim to learn a expertise

function fx for each user x and complete the missing values

in Y. The best users qualifying for answering the question

q are then selected according to fx(q).

4 EXPERT FINDING VIA GRAPH REGULAR-
IZED MATRIX COMPLETION

We first present the problem of expert finding from

the viewpoint of missing value estimation, which can be

solved by matrix completion. Then, we integrate the user-

to-user social relationship to improve the quality of missing

value estimation and propose a graph regularized matrix

completion method for the problem.

4.1 Basic Objective Function

In this subsection, we propose a basic objective func-

tion for completing the missing values based on the past

question-answering activities of users in CQA systems.

Note that, the expertise of different users may be correlated.

For example, two users with similar knowledge background

are likely to be good at answering similar questions.

Therefore, it is natural to assume that the expertise matrix

X is of low rank. Consequently, we cast the problem

of expert finding into the optimization problem of matrix

completion [8], given by

min
X
∥X∥∗ (3)

s.t. Yij = fxj
(qi) = qT

i xj , ∀(i, j) ∈ Ω

where ∥ · ∥∗ stands for the trace (nuclear) norm of the data

matrix for users X and Y is the rating matrix. By requiring

Yij = fxj
(qi), we expect that the learned expertise function

fxj
(q) can accurately estimate the qualification of user xj

for answering question q.

Unlike the standard algorithm for matrix completion

that requires solving an optimization problem involved the

rating matrix Y of n×m, the optimization problem given

in Problem (3) only deals with the expertise matrix of users

X with n×d. Therefore it can be solved significantly more

efficiently since d≪ m.

We also notice that the values in the rating matrix Y are

noisy: first, humans may have bias on voting the quality of

the answers; second, some answers are newly posted and

it is difficult for them to receive a number of votes in a

short time. However, the hard constraint in Problem (3) is

not robust to the noise in Y.

To overcome this limitation, we introduce the following

optimization problem, given by

minX ∥IΩ ⊗ (Y − fX(Q))∥2F + η∥X∥∗ (4)

where ∥ · ∥2F denotes the Frobenius norm, and ⊗ represents

the Hadamard element-wise product. IΩ is an indicator

matrix with ones for the observed ratings between questions

and users, and zeros for the missing values. We keep

∥X∥∗ as the regularization terms in order to avoid the

overfitting problem. The regularization coefficient η is

employed to balance the weight between the data penalty

term ∥IΩ ⊗ (Y − fX(Q))∥2F and the regularization term

∥X∥∗, which is usually set empirically.

4.2 Composite Objective Function

In this section, we present a composite objective function

for estimating the missing value based on both the past

question-answering activities of users in CQA systems and

the social relation of users. The social relation between

two users provides a strong evidence for them to have

common bias [22], [25], [55]. Thus, we consider the social

relation between users as a new regularization term for the

optimization problem in Problem (4).

Consider the similarity matrix of users W which is

inferred from social networks. Let D be the diagonal matrix

with Dii =
∑

j Wij , and L = D−W be the Laplacian

matrix. Based on the property of social relation, it is natural

to require the similar users in the matrix W have similarity

performance on question-answering activities. Thus, the

new regularization on the data matrix of users X using the

similarity matrix W can be achieved by minimizing [4]:

1

2

m
∑

k=1

n
∑

i,j=1

Wij(fxi
(qk)− fxj

(qk))
2

=
1

2

∑

k





∑

i,j

Wij(q
T
k xi − qT

k xj)
2





=
∑

k





∑

i

qT
k xi(

∑

j

Wij)x
T
i qk −

∑

i,j

qT
k xiWijx

T
j qk





=
∑

k





∑

i

qT
k xiDiix

T
i qk −

∑

i,j

qT
k xiWijx

T
j qk





=
∑

k

qT
k (XDXT −XWXT )qk

=
∑

k

qT
kXLXTqk

= tr
(

QTXLXTQ
)

. (5)
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We then obtain the following optimization problem on

the expertise matrix of users X

min
X

∥X∥∗ + λtr(QTXLXTQ) (6)

s.t. Yij = fxj
(qi) = qT

i xj , ∀(i, j) ∈ Ω

where trace tr(·) represents the graph regularization for

the expertise matrix of users X, and λ ≥ 0 is a tradeoff

parameter.

Note that there is one fundamental difference between

our formulation and the standard formulation of manifold

regularization [4]. In our formulation X is the variable,

whereas in the standard formulation Q is the variable.

Similarly, to tackle the problem of noisy values in the

rating matrix Y, we introduce the following optimization

problem, given by

minX ∥IΩ ⊗ (Y − fX(Q))∥2F + λ1tr
(

QTXLXTQ
)

+λ2∥X∥∗ (7)

where λ1 ≥ 0 and λ2 ≥ 0 are tradeoff parameters.

5 THE OPTIMIZATION

In this section, we design two simple but effective

optimization methods to solve Problem (7).

We first have a brief discussion on the property of the

composite objective function in Problem (7). We observe

that this objective function falls into the general category

composite optimization, which can be solved by Nesterov’s

gradient descent method [29]. Convex composite optimiza-

tion refers to the convex optimization problem with the

objective function formed as a sum of two terms: one is

a smooth function, and another is a simple general convex

function with known structure [29].

Let function g(X) = ∥IΩ ⊗ (Y − fX(Q))∥2F +
λ1tr

(

QTXLXTQ
)

, which is the smooth part in our

objective function, and λ2∥X∥∗ is the non-smooth part.

Therefore, the optimization Problem (7) is also given by

minX h(X) = g(X) + λ2∥X∥∗. (8)

Since the trace norm term ∥X∥∗ in Problem (8) is non-

smooth, a natural approach for solving this problem is

Nesterov’s gradient descent method which needs to evaluate

the gradient of the smooth part. Thus, in order to solve the

convex composition optimization Problem (8), we need to

evaluate the gradient of g(X) below.

Let ej ∈ {0, 1}n be the j-th united vector. The gradient

of g(X) is given by

∇g(X) =
∑

(i,j)∈Ω

2(qT
i xj − Yij)qie

T
j + 2λ1QQTXL, (9)

where can be verified in [31].

We then introduce a very useful tool, that is, the singular

value shrinkage operator [6].

Definition 1: (Singular Value Shrinkage Operator) Con-

sider the singular value decomposition (SVD) of a matrix

X ∈ Rm×n of rank r,

X = UΣVT ,Σ = diag({δi}1≤i≤r). (10)

Define the singular value shrinkage operator Dτ as follows:

Dλ(X) = UDλ(Σ)VT (11)

and

Dλ(Σ) = diag({max{0, δi − λ}}). (12)

Using the singular value shrinkage operator above, we

have the following useful theorem for composite objective

function below:

Theorem 1: ([6]) For each λ ≥ 0 and C ∈ Rm×n, we

have

Dλ(C) = argmin
X

1

2
∥X−C∥2F + λ∥X∥∗. (13)

We can see that the singular value shrinkage operator of

the matrix C is the solution to the composite optimization

Problem (13).

Therefore, we solve Problem (8) based on the property of

composite optimization function and singular value shrink-

age operator. We choose the variant of Nesterov’s gradient

descent method in [17], which is explicitly designed for

trace norm minimization. We present the extend gradient

method (EGM) and accelerated gradient method (AG-

M) [17] for our objective function with graph regularized

nuclear norm in the following sections, respectively.

5.1 The Optimization Using GRMC-EGM

In this section, we present an extended gradient method

to solve the graph regularized matrix completion Problem

(8), denoted by GRMC-EGM.

The optimization Problem (8) (minX h(X)) can also be

reformulated under the framework of proximal regulariza-

tion [38] and can be solved iteratively, given by

X = argmin
X

Gρk
(X,Xk−1), (14)

where

Gρk
(X,Xk−1) = g(Xk−1) +

ρk

2
∥X−Xk−1∥2F

+ tr
(

(X−Xk−1)
T∇g(Xk−1)

)

+ λ2∥X∥∗ (15)

and ρk is a positive scalar.

Given the initial setting X0, ρ0 and γ, Problem (14) can

be solved via the following two steps alternatively.

Computing Xk: Fix ρk−1, and minimize

Gρk−1
(X,Xk−1) for Xk

Ignoring constant terms, Gρk−1
(X,Xk−1) can be rewrit-

ten as

Gρk−1
(X,Xk−1)

=
ρk−1

2

∥

∥

∥

∥

X−
(

Xk−1 −
1

ρk−1
∇g(Xk−1)

)∥

∥

∥

∥

2

F

+ λ2∥X∥∗
(16)

We notice that Equation 16 can fall into the general

composite objective function in Theorem 1. We consider
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Algorithm 1 The optimization using GRMC-EGM

Input: Y, L, Q and tolerance ε

Initialize: ρ0, γ and X0

1: repeat

2: STEP 1. Update Xk as

3: Xk = D λ2

ρk−1

(

Xk−1 − 1
ρk−1

∇g(Xk−1)
)

4: STEP 2. Update ρk as

5: ρ̂← ρk−1

6: while h(Xk) > Gρ̂ (Xk,Xk−1) do

7: ρ̂ = γρ̂

8: ρk ← ρ̂

9: until ∥Xk −Xk−1∥F < ε

that matrix C = Xk−1 − 1
ρk−1

∇g(Xk−1). Thus, we can

obtain the closed form solution of the above Problem (14)

by Theorem 1 as follows:

Xk = D λ2

ρk−1

(

Xk−1 −
1

ρk−1
∇g(Xk−1)

)

(17)

Computing ρk: We then compute the step size 1
ρk

properly such that convergence rate of our method can be

O( 1
k
). We first introduce the following useful theorem to

learn the convergence rate:

Theorem 2: ([6]) Let X∗ = argminX h(X) and ρ be

the smoothing parameter. Then for any k ≥ 1, we have

h(Xk)− h(X∗) ≤ γρ∥X0 −W∗∥2F
2k

(18)

if we can find an appropriate value for ρ at each iteration

such that the condition

h(Xk) ≤ Gρ(Xk,Xk−1) (19)

is satisfied.

Fix Xk−1, we compute the value of ρk with multiplier

γ to satisfy the condition in Theorem 2 at each iteration,

given by

ρ̂← ρk−1, and ρ̂ = γρ̂ (20)

and Gρ(Xk,Xk−1) is then update by Equation 15.

The whole procedure of GRMC-EGM is summarized in

Algorithm 1. The main computation cost of GRMC-EGM

in each iteration is the computation of SVD in STEP 1. The

additional cost in STEP 2 is much smaller. For large scale

problems, we can adopt some existing techniques [21] to

accelerate the computation of SVD and make Algorithm 1

more efficient. Furthermore, the convergence of Algorith-

m 1 for Problem (14) is O( 1
k
), which is guaranteed by the

EGM [17].

5.2 The Optimization Using GRMC-AGM

In this section, we introduce an accelerated gradient

method for solving the regularized graph matrix completion

Problem (8), given by GRMC-AGM.

Algorithm 2 The optimization using GRMC-AGM

Input: Z, L, Q and tolerance ε

Initialize: ρ0, γ and X0

1: repeat

2: STEP 1. Update Xk as

3: Xk = D λ2

ρk−1

(

Zk−1 − 1
ρk−1

∇g(Zk−1)
)

4: STEP 2. Update αk as

5: αk =
1+
√

1+4α2

k−1

2
6: STEP 3. Update Zk as

7: Zk = Xk−1 +
αk−1−1

αk
(Xk −Xk−1)

8: STEP 4. Update ρk as

9: ρ̂← ρk−1

10: while h(Zk) > Gρ̂(Zk,Zk−1) do

11: ρ̂ = γρ̂

12: ρk ← ρ̂

13: until ∥Xk −Xk−1∥F < ε

Firstly, we introduce a new variable Z. GRMC-AGM

method constructs an approximation of h(X) at a given

point Z as

Gρ(X,Z) = g(Z) +
ρk

2
∥X− Z∥2F

+ tr
(

(X− Z)T∇g(Z)
)

+ λ2∥X∥∗ (21)

Then, GRMC-AGM method solves the optimization Prob-

lem (8) by iteratively updating X, Z, and ρ.

Computing Xk: In the kth iteration, we update Xk as

the unique minimizer of Gρk−1
(X,Zk−1):

Xk = argmin
X

Gρk−1
(X,Zk−1)

=
ρk−1

2

∥

∥

∥

∥

X−
(

Zk−1 −
1

ρk−1
∇g(Zk−1)

)∥

∥

∥

∥

2

F

+ λ2∥X∥∗ (22)

Similarly, we consider that the matrix C = Zk−1 −
1

ρk−1

∇g(Xk−1). Then, we can obtain the closed form

solution of the above Problem (22) by Theorem 1 as

follows:

Xk = D λ2

ρk−1

(

Zk−1 −
1

ρk−1
∇g(Zk−1)

)

(23)

Computing Zk: Then, Zk is updated in the same way

as [17]:

αk =
1 +

√

1 + 4α2
k−1

2
, (24)

Zk = Xk−1 +
αk−1 − 1

αk

(Xk −Xk−1) (25)

We summarize the main procedure for solving problem 8

by AGM in Algorithm 2. Compared with GRMC-EGM,

Algorithm 2 has a convergence rate of O( 1
k2 ), which

is guaranteed by the convergence property of the AGM

method [17].
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TABLE 2
SUMMARY OF DATASETS

Data
Quora Twitter

Question Type # Questions # Users # Answers Rating Ratio Average Ratings # Edges #Edge Ratio

D1 What 176,114 37,408 387,822 5.89×10−5 5.5743 36,602 2.62×10−5

D2 Who 12,387 13,325 27,368 0.0002 5.2192 9,242 5.21×10−5

D3 Why 38,414 23,369 73,687 8.21×10−5 6.7333 13,188 2.41×10−5

D4 When 7,101 7,252 12,011 0.0002 3.562 4,562 8.67×10−5

D5 Where 12,261 12,628 21,779 0.0001 2.382 7,926 4.97×10−5

D6 Which 15,521 17,913 35,519 0.0001 3.991 11,688 3.64×10−5

D7 How 69,563 35,520 122,659 4.96×10−5 4.5794 21,542 1.71×10−5

D8 General Question 101,685 43,943 189,165 4.23×10−5 4.0799 25,416 1.32×10−5

6 EXPERIMENTAL RESULTS

In this section, we conduct several experiments on the

question-answering platform, Quora, and the social net-

work, Twitter to show the effectiveness of our proposed

approaches (GRMC-GEM and GRMC-AGM) for the prob-

lem of expert finding in CQA systems. The experiments

are conducted by using Matlab, tested on machines with

Linux OS Intel(R) Core(TM2) Quad CPU 2.66Hz, and

32GB RAM.

6.1 Data Preparation

We collect the data from a popular question answering

system, Quora, where questions are posted and answered

by its community users. Quora was launched to the public

in June, 2010 and has become very successful in just a few

years. We crawled the questions posted between September

2012 and August 2013. We also crawled all the users

who answered these questions. In total, we collect 444,138

questions, 95,915 users and 887,771 answers.

We first classify the collected questions into eight cat-

egories based on head word feature such as “what”,

“who” and “is/are”. The head word feature is widely used

for question classification in [16], [20]. We access the

performance of our methods on different categories of

questions. We remove the questions which have no or only

one answer.

We next collect the rating for users on answering the

questions through thumbs-up/down. The summary of the

collected thumbs-up/down value with their counts is shown

in Figure 2. We observe that the thumbs-up/down count

distribution is a power-law distribution with means most

thumbs-up/down are relatively small, which are between 0

and 100. We thus normalize the value of thumbs-up/down

to the range of [0, 100].

We then sort the collected questions based on their posted

timestamp. We use the second quartile of the questions

(first 50%) as training data and consider the third quartile

of the questions (second 50%) for testing. So training and

testing data do not have overlap. This validation process is

also used in [42]. We observe that more than one third of

the users in Quora have Twitter account. We first extract

the Twitter account of the Quora users, then crawl their

following relationship from Twitter graph. We then build

the similarity matrix of users based on their following

−20 0 20 40 60 80 100
10

0

10
1

10
2

10
3

10
4

10
5

10
6

Thumbs−up/down Value

T
h
u
m

b
s
−

u
p
/d

o
w

n
 C

o
u
n
t

Fig. 2. Summary of Thumbs-up/down Value

relation in Twitter. The summary of the collected dataset

can be found in Table 2.

6.2 Evaluation Criteria

We evaluate the performance of our proposed methods

based on four popular evaluation criteria for the problem of

expert finding in CQA systems, i.e. Mean Reciprocal Rank

(MRR) [53], [54], [23], normalized Discounted Cumulative

Gain (nDCG) [42], [23], Precision@1 [53], [54], [13] and

Accuracy [48], [41].

For ground truth, we consider all the answerers for each

question as the target user set, and their received thumbs-

up/down as the ground truth rating scores. The experts for

the questions tend to get more thumbs-up [42]. Note that

our task is not to predict the exact thumbs-up/down value

of each user but rank them in terms of thumbs-up/down

value.

Given the testing question set Q, we introduce the four

evaluation criteria below.

MRR. We denote by r
q
best the rank of the best answerer

for question q by an algorithm. MRR measures the ranking

quality for the best answerer by an algorithm. The MRR

measure is given by

MRR =
1

|Q|
∑

q∈Q

1

r
q
best

.
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TABLE 3
EXPERIMENTAL RESULTS ON MRR (THE best SCORE IN bold)

MRR D1 D2 D3 D4 D5 D6 D7 D8

AuthorityRank 0.5524 0.5582 0.6032 0.5935 0.5734 0.5569 0.5852 0.5863

ExpertsRank 0.5445 0.5575 0.588 0.5772 0.5552 0.5383 0.5761 0.5774

TSPM 0.5715 0.5629 0.6023 0.6155 0.5953 0.5688 0.6099 0.5918

DRM 0.6055 0.6017 0.6315 0.6363 0.6246 0.596 0.6487 0.6404

CRAR 0.6107 0.6257 0.6596 0.664 0.6227 0.6057 0.6457 0.646

GRMC-EGN 0.6554 0.6455 0.6767 0.6722 0.6663 0.6315 0.6150 0.6797

GRMC-AGM 0.6687 0.6659 0.6786 0.7067 0.6722 0.6317 0.6770 0.6723

TABLE 4
EXPERIMENTAL RESULTS ON NDCG (THE best SCORE IN bold)

nDCG D1 D2 D3 D4 D5 D6 D7 D8

AuthorityRank 0.8627 0.8529 0.8634 0.8853 0.8804 0.8601 0.8695 0.8726

ExpertsRank 0.8592 0.8487 0.8556 0.8782 0.8769 0.8575 0.8645 0.8649

TSPM 0.8528 0.8318 0.8523 0.8857 0.883 0.823 0.8598 0.8734

DRM 0.8616 0.8543 0.8689 0.8902 0.8888 0.8513 0.8848 0.8798

CRAR 0.8811 0.8524 0.8756 0.9088 0.8942 0.8736 0.8861 0.8876

GRMC-EGN 0.9117 0.8913 0.8890 0.9127 0.9292 0.8848 0.9138 0.9283

GRMC-AGM 0.9289 0.9084 0.8936 0.9369 0.9474 0.9153 0.9263 0.9658

where |Q| is the number of testing questions used.

nDCG. We denote by Rq the ranking order of all the

users for question q by an algorithm. R
q
i is user who is

ranked on the i-th position by an algorithm. |Rq| is the

number of ranked users for question q. We consider that

the relevance between question q and user j is indicated

by thumbs-up/down value Yqj .

The Discounted Cumulative Gain (DCG) for the ranked

users of question q is given by

DCG = YqR
q
1

+

|Rq
i
|

∑

i=2

YqR
q
i

log2 i
,

and the normalized Discounted Cumulative Gain is given

by

nDCG =
DCG

IDCG
,

where IDCG is the DCG of ideal ordering. We report the

average nDCG for all datasets.

Precision@1. We use Precision@1 to measure the rank-

ing quality of the best answerer, given by

Precision@1 =
|{q ∈ Q|rqbest = 1}|

|Q| .

In other words, Precision@1 computes the average number

of times that the best answerer is ranked on top by an

algorithm.

Accu. We employ Accu to access the ranking quality of

the best answerer. The Accu measure is normalized by the

number of answerers for a question, which is given by

Accu =
1

|Q|
∑

q∈Q

|Rq| − r
q
best

|Rq| − 1
,

where Accu = 1 (best) means that the best answerer

returned by an algorithm always ranks on top while Accu

= 0 means the opposite.

In summary, MRR, Precision@1 and Accu are different

measures for the ranking quality of the best answerer by

an algorithm. nDCG is the measure for the ranking quality

of all answerers by an algorithm.

6.3 Performance Evaluations and Comparisons

We compare our proposed method with other five popular

expert finding algorithms in CQA systems as follows:

• ExpertsRank algorithm [45]: This ExpertsRank algo-

rithm uses question ask-answer relation to construct

the graph of users, and then finds the experts with

link structure analysis based on PageRank algorithm.

• AuthorityRank algorithm [5]: The AuthorityRank al-

gorithm computes user authority based on the num-

ber of provided best answers, which is an in-degree

method.

• TSPM algorithm [13]: The TSPM algorithm is a topic-

sensitive probabilistic method for expert finding in

CQA systems, which fits a LDA-based probabilistic

model to the question-answering activities.

• DRM algorithm [41]: The DRM algorithm is also a

topic-sensitive probabilistic method for expert finding

in CQA, systems which fits a PLSA-based probabilis-

tic model to the question-answering activities.

• CRAR algorithm [54]: The CRAR algorithm ranks

user authority based on link analysis based on both

target question category and its relevant categories for

expert finding using topic model.

Table 3, 4, 6 and 5 show the evaluation results on MRR,

nDCG, Precision@1 and Accu, respectively. The evaluation

were conducted with different categories of the questions

from D1 to D8. For each dataset, we report the performance

of all methods in the tables.
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TABLE 5
EXPERIMENTAL RESULTS ON ACCU (THE best SCORE IN bold)

ACCU D1 D2 D3 D4 D5 D6 D7 D8

AuthorityRank 0.4397 0.4512 0.4584 0.4179 0.4113 0.442 0.4296 0.4448

ExpertsRank 0.4316 0.4437 0.4488 0.3993 0.3982 0.423 0.423 0.4374

TSPM 0.4445 0.4489 0.4485 0.4287 0.4195 0.4378 0.4383 0.4365

DRM 0.4416 0.4434 0.4408 0.4097 0.4003 0.433 0.4292 0.4393

CRAR 0.4855 0.5029 0.4996 0.4696 0.4411 0.4733 0.4729 0.4869

GRMC-EGN 0.5733 0.533 0.5607 0.5634 0.5165 0.5327 0.5618 0.5983

GRMC-AGM 0.6301 0.5357 0.6624 0.6064 0.5836 0.5785 0.5988 0.5892

TABLE 6
EXPERIMENTAL RESULTS ON AVERAGE PRECISION@1 (THE best SCORE IN bold)

Precision@1 D1 D2 D3 D4 D5 D6 D7 D8

AuthorityRank 0.3112 0.3282 0.3702 0.3521 0.3263 0.3158 0.341 0.3376

ExpertsRank 0.3009 0.3276 0.352 0.3367 0.3042 0.2992 0.3324 0.3336

TSPM 0.3082 0.3448 0.3757 0.3525 0.3239 0.3212 0.3468 0.3375

DRM 0.3217 0.3141 0.3433 0.3442 0.3235 0.3152 0.3612 0.3535

CRAR 0.3368 0.3673 0.3896 0.4263 0.3441 0.3356 0.3663 0.3715

GRMC-EGN 0.399 0.3688 0.394 0.4175 0.392 0.3818 0.4166 0.4266

GRMC-AGM 0.4345 0.3715 0.4 0.4615 0.4177 0.3964 0.4328 0.442
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Fig. 4. The convergence of GRMC-EGM and GRMC-AGM

The AuthorityRank and ExpertsRank methods are based

on link analysis of users while TSPM and DRM methods

are based on probabilistic model. The CRAR method is

based on both link analysis of users and probabilistic model.

These experiments reveal a number of interesting points:

• The topic-oriented methods, both TSPM and DRM,

outperform the AuthorityRank and ExpertsRank meth-

ods, which suggests the effectiveness of the latent user

model for the problem of expert finding.

• The CRAR method achieves better performance of

other baseline methods. This suggests that the link

analysis of users can also improve the performance

of expert finding.

• In all the cases, our GRMC-EGM and GRMC-AGM

methods achieve the best performance. This shows that

leveraging the power of both the social network of

users and the viewpoint of missing value estimation

can further improve the performance of expert finding.

In our approaches, there is an essential parameter, that

is, the graph regularization parameter λ1. When the value

of λ1 becomes small, our problem can be considered as

the original problem of matrix completion, which is only

based on the past question-answering activities. We vary

parameter λ1 to investigate the benefits of our methods from

the idea of graph regularized matrix completion for missing

value estimation based on social network of users. We vary

the value of parameter λ1 from 10−4 to 104 and show the

evaluation results in Figures 3(a), 3(b), 3(c) and 3(d).

We notice that the CRAR method consistently outper-

forms other methods in most of the datasets. Thus, we

mainly compare our methods with CRAR method on data

D1 by varying parameter λ1. The performance trend of our

methods by varying parameter λ1 is similar on other data

sets.

As we can see, the performance of both GRMC-EGM

nd GRMC-AGM methods is very stable with respect to

the parameter λ1. Both GRMC-EGM and GRMC-AGM

methods almost achieve consistently good performance

when λ1 varies from 10−2 to 104 in Figures 3(a), 3(b), 3(c)

and 3(d).

As we have described, both GRMC-EGM and GRMC-

AGM use the social network of users to capture the local

geometric structure of the user model. The success of graph

regularized matrix completion for expert finding relies

on the assumption that two neighboring users share the

similar user model. When the parameter λ1 is small, the

formulation of graph regularized matrix completion can be

considered as matrix completion for expert finding without

graph of users. We observe that the performance of both

GRMC-EGM and GRMC-AGM is relatively low, which

is similar to the performance of DRM (based on PLSA

model). This is the reason why the performance of both

GRMC-EGM and GRMC-AGM methods increases as λ1

increases, as shown in Figures 3(a), 3(b), 3(c) and 3(d).

6.4 Convergence Study

The updating rules for minimizing the objective function

of both GRMC-EGM and GRMC-AGM methods are essen-

tially iterative. Here we investigate how both GRMC-EGM

and GRMC-AGM methods converge.

Figures 4(a) and 4(b) show the convergence curves of

GRMC-EGM and GRMC-AGM methods on data D1, re-

spectively. The y-axis is the value of the objective function

and x-axis denotes the iteration number. We can observe

that method GRMC-AGM converges much faster than

method GRMC-EGM.

7 CONCLUSIONS

We formulated the problem of expert finding from a new

perspective of missing value estimation. We presented a

novel method called graph regularized matrix completion
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for estimating missing values in the rating matrix for

the problem of expert finding. We consider that the user

model is the expertise function which can be learned from

the rating matrix and past question-answering activities.

Furthermore, our approach integrates both the social re-

lation of users and their past question-answering activities

seamlessly into a common framework for the problem of

expert finding in CQA systems. In this way, our approach

can further improve the estimation for the missing values

in the rating matrix for finding the experts. We devise

two simple but efficient iterative methods, i.e., GRMC-

EGM and GRMC-AGM to solve the optimization problem

for graph regularized matrix completion, respectively. We

conduct several experiments on the data collected from the

famous question-answering system, Quora. The experimen-

tal results demonstrate the advantage of the GRMC-based

algorithms with five state-of-the-art expert finding methods.

In the future, we will explore the kernel expertise function

as the user model for the problem of expert finding.
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