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Computed tomography (CT) of the head is used worldwide to

diagnose neurologic emergencies. However, expertise is required to

interpret these scans, and even highly trained experts may miss

subtle life-threatening findings. For head CT, a unique challenge is

to identify, with perfect or near-perfect sensitivity and very high

specificity, often small subtle abnormalities on a multislice cross-

sectional (three-dimensional [3D]) imaging modality that is charac-

terized by poor soft tissue contrast, low signal-to-noise using

current low radiation-dose protocols, and a high incidence of arti-

facts. We trained a fully convolutional neural network with 4,396

head CT scans performed at the University of California at San

Francisco and affiliated hospitals and compared the algorithm’s per-

formance to that of 4 American Board of Radiology (ABR) certified

radiologists on an independent test set of 200 randomly selected

head CT scans. Our algorithm demonstrated the highest accuracy to

date for this clinical application, with a receiver operating character-

istic (ROC) area under the curve (AUC) of 0.991 ± 0.006 for identifi-

cation of examinations positive for acute intracranial hemorrhage,

and also exceeded the performance of 2 of 4 radiologists. We dem-

onstrate an end-to-end network that performs joint classification and

segmentation with examination-level classification comparable to ex-

perts, in addition to robust localization of abnormalities, including

some that are missed by radiologists, both of which are critically

important elements for this application.

intracranial hemorrhage | head computed tomography | radiology | deep

learning

Head computed tomography (CT) is used worldwide to di-
agnose neurologic emergencies, such as acute traumatic

brain injury (TBI), stroke, and aneurysmal hemorrhage. Evalu-
ation for acute intracranial hemorrhage plays a decisive role in
the clinical management of these conditions. It is critical for
deciding on the need and approach for emergent surgical in-
tervention. It is also essential for allowing the safe administration
of thrombolytic therapy in acute ischemic stroke. Since “time is
brain,” increased speed and reduced error in these clinical set-
tings would constitute life-saving innovations.
Advances in computer vision techniques, such as deep learning,

have demonstrated tremendous potential for extracting clinically
important information from medical images. Examples include
grading of diabetic retinopathy on retinal fundus photographs (1),
detection of metastases in histologic sections of lymph nodes (2),
and classification of images of skin cancer (3), with accuracies
comparable to or, in some cases, exceeding that of experts. In
contrast to these applications, many radiological imaging studies,
such as CT and magnetic resonance imaging (MRI), are “cross-
sectional,” or three-dimensional (3D), in nature and thus com-
prised of volumetric stacks of images rather than single images.
The 3D nature of such examinations presents an extra challenge.
An additional unusual challenge regarding head CT is the need to
identify, with perfect or near-perfect sensitivity, often tiny subtle
abnormalities occupying ∼100 pixels on noisy, low-contrast images
in a large 3D volume that comprises >106 pixels. Finally, although

perfect sensitivity at examination-level classification is the most
crucial goal, concurrent localization of abnormalities on head CT
is also important since physicians will always need to personally
visualize and confirm the locations of abnormalities on a head CT
examination, in order to judge the need and approach for surgical
intervention.
Using a strong pixel-level supervision approach and a relatively

small training dataset, we demonstrate an end-to-end network that
performs joint classification and segmentation. It demonstrates
the highest classification accuracy to date, compared to other deep
learning approaches (4–8), and also concurrently localizes these
abnormalities. We demonstrate that it identifies many abnormal-
ities missed by experts. In addition, we demonstrate promising
results for multiclass hemorrhage segmentation, while preserving
accurate detection at the examination level.

Results

Main Results. Fig. 1 shows that our system patch-based fully
convolutional neural network (PatchFCN) performance exceeded
that of 2 of 4 American Board of Radiology (ABR)-certified
radiologists, with a receiver operating characteristic (ROC) with
area under the curve (AUC) of 0.991 ± 0.006 for identification of
acute intracranial hemorrhage, referenced to the gold-standard
consensus interpretation of 2 ABR-certified neuroradiologists
with a Certificate of Added Qualification (CAQ) in neuroradiol-
ogy. In addition, PatchFCN achieved 100% sensitivity at specificity

Significance

Computed tomography (CT) of the head is the workhorse med-

ical imaging modality used worldwide to diagnose neurologic

emergencies. However, these gray scale images are limited

by low signal-to-noise, poor contrast, and a high incidence of

image artifacts. A unique challenge is to identify tiny subtle ab-

normalities in a large 3D volumewith near-perfect sensitivity. We

used a single-stage, end-to-end, fully convolutional neural net-

work to achieve accuracy levels comparable to that of highly

trained radiologists, including both identification and localiza-

tion of abnormalities that are missed by radiologists.

Author contributions: W.K., C.H., P.M., J.M., and E.L.Y. designed research, performed

research, contributed new reagents/analytic tools, analyzed data, and wrote the paper.

Reviewers: J.W.T., University of Tennessee Health Science Center; and A.Z., University

of Oxford.

Competing interest statement: E.L.Y. and P.M. are named inventors on US Patent and

Trademark Office No. 62/269, 778, “Interpretation and Quantification of Emergency Fea-

tures on Head Computed Tomography” filed by the Regents of the University of Califor-

nia. W.K., C.H., P.M., J.M., and E.L.Y. are named inventors on a provisional patent

application titled “Expert-Level Detection of Acute Intracranial Hemorrhage on Head

CT scans” filed by the University of California Regents.

This open access article is distributed under Creative Commons Attribution License 4.0

(CC BY).

1To whom correspondence may be addressed. Email: malik@eecs.berkeley.edu or esther.

yuh@ucsf.edu.

First published October 21, 2019.

www.pnas.org/cgi/doi/10.1073/pnas.1908021116 PNAS | November 5, 2019 | vol. 116 | no. 45 | 22737–22745

M
E
D
IC
A
L
S
C
IE
N
C
E
S

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1908021116&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:malik@eecs.berkeley.edu
mailto:esther.yuh@ucsf.edu
mailto:esther.yuh@ucsf.edu
https://www.pnas.org/cgi/doi/10.1073/pnas.1908021116


levels approaching 90%, making this a suitable screening tool with
an acceptably low proportion of false positives. Fig. 2 A–L shows
examples of PatchFCN localization of acute intracranial hemor-
rhage in acute aneurysm rupture, hemorrhagic stroke, subacute
traumatic brain injury, and acute traumatic brain injury. Of note,
Fig. 2 J–L shows an isodense subdural hemorrhage and demon-
strates that the PatchFCN algorithm cannot rely solely on hyper-
density relative to brain in order to identify acute hemorrhage, but
must also use other more subtle features, as do experienced ra-
diologists. Fig. 3 A–O demonstrates all positive cases in the 200-
examination test set that were missed by at least 2 of 4 radiologists.
It is interesting to consider what types of errors are made as one

moves along the algorithm’s ROC curve (Fig. 1) toward sensitiv-
ities <1.00. At the next discrete operating point, sensitivity 0.96 and
specificity 0.98, the single case “missed” by the algorithm is shown
in Fig. 4 A–C. In this case, small areas of faint hyperdensity are
present on a background of abnormally hypodense white matter.
We hypothesize that the algorithm’s certainty for this case was
borderline because this case resembles several negative cases in the
training data that demonstrated faint calcifications within areas of
remote infarct. The difference is that such cases of remote infarct
demonstrate brain volume loss in the areas of calcification while
the case in Fig. 4 A–C does not. This is a subtle distinction that
requires a trained human eye or, presumably, in the case of com-
puter algorithms, a large number of cases to “teach” the algorithm
to make this distinction. Fig. 4 D–K shows the 4 false-positive cases
at sensitivity 0.96 and specificity 0.98. One of the 4 cases (Fig. 4 F

and G) contains subdural hemorrhage but was designated as
“negative” in the gold-standard consensus review since the finding
appeared to be chronic rather than acute. The other 3 false-
positive cases (Fig. 4 D, E, and H–K) demonstrate mostly tiny
peripheral false-positive pixels due to a cupping artifact or to a
nonlinear partial volume artifact that is common at the level of the
skull base (9).
To confirm reproducibility of results, we conducted 4-fold

cross-validation experiments. We randomly split the University
of California at San Francisco (UCSF)-4.4K training data into 4
subsets. For each of 4 experiments, 3 of 4 of the subsets were
used for training and 1 of 4 was held out as a test set. The 4
resulting ROC curves demonstrated AUC values of 0.978 ±

0.003, which were unsurprisingly lower than the AUC of 0.991
based on training on the full UCSF-4.4K set. However, the small
SD of 0.003 demonstrates reproducibility of results. Regarding
localization accuracy, the algorithm achieved an average Dice
coefficient of 0.75 on the 4-fold cross-validation experiments.

Multiclass Exploratory Study. Fig. 5 shows examples of multiclass
segmentation by the algorithm and by a neuroradiologist. Table 1
shows that PatchFCN achieves competitive examination-level
multiclass detection, while maintaining the strong 2-class re-
sults on 4-fold cross-validation. The results are reported as
mean ± 1 SD. We note that the examination-level prediction of
each class (including the combined class) is made independently
at the output layer so their results do not depend on each other.

Discussion

We report a deep learning algorithm with accuracy comparable
to that of radiologists for the evaluation of acute intracranial
hemorrhage on head CT. We show that deep learning can ac-
curately identify diverse and very subtle cases of a major class of
pathology on this “workhorse” medical imaging modality. Head
CT interpretation is regarded as a core skill in radiology training
problems, and the performance bar for this application is ac-
cordingly high, with the most skilled readers demonstrating
sensitivity/specificity between 0.95 and 1.00.
In this study, we demonstrate, to our knowledge, the highest

accuracy levels to date for this application by using a PatchFCN
with strong supervision and a relatively small training dataset,
compared to prior work relying on weaker supervision using
examination- or image-level labels (4–7) or Mask R-CNN (8).
We show that FCN with pixel-level supervision is well-suited to
this application, in which poorly marginated abnormalities of
widely varying sizes and morphologies, such as hemorrhage, need
to be both detected and localized. Our approach is fundamen-
tally different from Mask R-CNN (10), which first detects an
object and delineates its location using a bounding box and then
carries out a pixelwise segmentation within the box. Since hem-
orrhage is fluid (“stuff,” e.g., water, sky, grass) (11) and takes on
highly variable morphologies often without well-defined bound-
aries separating discrete objects (“things,” e.g., cup, car), se-
mantic segmentation is a simple elegant approach, without the
requirements of object detection and region processing associ-
ated with Mask R-CNN.
In addition, motivated by the clinical need to identify and

localize, in most cases, a very sparse foreground (e.g., examples
of hemorrhage in Fig. 3) with high sensitivity, we found the best
performance with a PatchFCN that was informed by just the
“right” amount of local information (12). Specifically, limitation
of the network evaluation of each two-dimensional (2D) image
on any single pass to a subset or “patch” of the 2D image for
modeling x–y axes context consistently outperformed evaluation
of the entire 2D image on pixel and examination level (12). A
reason for this may be that deeper models with a massive number
of free parameters may overfit to less relevant distant in-
formation in large input images in the setting of a limited dataset

Fig. 1. Receiver operating characteristic (ROC) for the deep learning model

to predict the presence of acute intracranial hemorrhage on 200 head CT

examinations. The algorithm achieved an area under the curve (AUC) of

0.991 ± 0.006 referenced to the gold standard (consensus interpretation of 2

ABR-certified neuroradiologists with a CAQ in neuroradiology). Algorithm

performance exceeded that of 2 of 4 American Board of Radiology (ABR)-

certified radiologists with attending-level experience ranging from 4 to 16 y.

In addition, PatchFCN achieved 100% sensitivity at specificity levels approaching

90%, making this a suitable screening tool for radiologists based on an accept-

ably low proportion of false positives. The 2 numbers in each color box are

the x coordinate (1-specificity) and y coordinate (sensitivity) for that radiolo-

gist’s performance. The salmon-colored circle shows (sensitivity 1.00, specificity

0.87) the highest specificity operating point with perfect sensitivity.
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size. Similarly, we found, for the current application and dataset
size, that a network informed by 3 consecutive images (image
under evaluation and “flanking” images immediately superior
and inferior) was as accurate for pixel and examination-level
classification as a network that employed 5 or more consecu-
tive images, sparing the need for learning even more context with
3D-FCN and avoiding the problem of overfitting to too large a
context (12). 3D-FCN takes in the entire 3D volume and was

demonstrated to achieve accuracy levels exceeding that of human
experts for classification of OCT examinations (13). For the cur-
rent application, in which a single small localized area of <100
pixels on a single image may represent the sole abnormality in a
3D volumetric stack comprising ∼30 images and >106 pixels, we
found that the theoretical advantage of taking in more global
context was outweighed by the advantages of 1) forcing the net-
work to consider an intermediate amount of spatial context, both

Fig. 2. Patch-based fully convolutional neural network (PatchFCN) segmentation of acute intracranial hemorrhage. (A–C) Subarachnoid hemorrhage (SAH)

due to aneurysm rupture. (D–F) Acute intracerebral hemorrhage. (G–I) Traumatic SAH (missed by 1 of 4 radiologists) and (J–L), isodense subdural hematoma

(SDH). (J–L) Acute SDH in the setting of coagulopathy versus subacuted SDH at 2 to several days after injury. The arrows in J indicate the border between the

SDH and adjacent brain. Because isodense subdural hematomas are not brighter than the adjacent brain parenchyma, radiologists identify these by rec-

ognizing the absence of sulci and gyri within the isodense collection. In J–L, the SDH is detected despite its isodensity to gray matter, showing that the deep

learning algorithm does not rely solely on hyperdensity but also uses other features to identify hemorrhage. (A, D, G, and J) Original images. (B, E, H, and K)

Original images with red shading of pixel-level probabilities >0.5 (on a scale of 0 to 1) for hemorrhage, as determined by the PatchFCN; pixels with prob-

ability <0.5 were unaltered from the original images. (C, F, I, and L) Neuroradiologist’s segmentation of hemorrhage using green outline.

Kuo et al. PNAS | November 5, 2019 | vol. 116 | no. 45 | 22739
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in-plane and in the craniocaudal direction, and 2) larger batch
diversity to stabilize training through the use of batch normaliza-
tion in deep networks (12).
To address the need for both accurate examination-level classi-

fication and concurrent localization of abnormalities, we used a
single-stage network for joint segmentation and examination-level
classification, which enjoys the advantages of 1) only 1 network for

both segmentation and examination classification instead of 2 at
both training and test time, and 2) significant feature sharing be-
tween segmentation and classification networks. In general, it is
beneficial to share the representation between correlated tasks,
which saves computation and also serves as an effective regulari-
zation method (14). Fig. 6 summarizes our hemorrhage detection
system architecture.

Fig. 3. Five cases judged negative by at least 2 of 4 radiologists, but positive for acute hemorrhage by both the algorithm and the gold standard. (A–C) Small left

temporal subarachnoid hemorrhage (SAH), (D–F) small right posterior frontal and parafalcine subdural hematomas (SDH), (G–I) small right frontal SDH, and (J–L) small

right temporal epidural hematoma and left posterior temporal contusion were each called negative by 2 of 4 radiologists. (M–O) Called negative by all 4 radiologists

but contained a right parietal SDH identified by both the algorithm and by the gold standard. (A, D, G, J, and M) Original images. (B, E, H, K, and N) Algorithmic

delineation of hemorrhage with pixel-level probabilities >0.5 colored in red. (C, F, I, L, and O) Neuroradiologist segmentation of hemorrhage using a green outline.

The boxed areas are magnified views of small areas of hemorrhage. Arrows indicate the borders of small or subtle hemorrhages.
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Further work needs to address the need to maintain high ac-
curacy in the face of data domain shifts across a larger cross-
section of CT scanner protocols and hardware at different in-
stitutions. Although our dataset includes the 2 largest CT vendors,
different institutions use different technical parameters. Algorithm
performance needs to be robust to variations in these parameters.
Regarding further improvement in algorithm accuracy, additional
training data labeled by multiple expert readers and employing
more use of ensembles to mitigate random effects, such as random
initialization of model weights and random sampling of minibatches,
may also slightly enhance accuracy.
The 5 cases judged negative by at least 2 of 4 radiologists, but

positive by both the algorithm at sensitivity of 1.0 and the gold
standard, admittedly contained very tiny intracranial hemor-
rhages that are more likely to be stable than to result in signif-
icant morbidity or mortality. However, expansion of hemorrhage
on any individual case is variable and unpredictable, and it is
important to operate at high sensitivities since many patients are
taking aspirin or other antiplatelet agents or anticoagulants or
may be administered fibrinolytics in the setting of acute stroke.
Missed hemorrhages in such cases could have devastating ad-
verse outcomes. Also, aneurysmal subarachnoid bleeding may
initially present as tiny “sentinel” hemorrhages that can later
have life-threatening consequences when an aneurysm ruptures.
In summary, we demonstrate a deep learning algorithm for

detection and localization of acute intracranial hemorrhage on

head CT, based on a strong supervision approach and a relatively
small training dataset. We show performance that is comparable
to highly trained experts. Beyond the key clinical tasks of clas-
sification of head CT examinations as positive or negative for
abnormalities, PatchFCN will be useful for deriving quantitative
biomarkers from CT and other radiological examinations. Ru-
dimentary size measurements for intracranial hemorrhage al-
ready play a role in practice guidelines for the management of
acute hemorrhagic stroke (ABC/2 method for quantifying in-
tracerebral hematoma) (15, 16), acute aneurysmal subarachnoid
hemorrhage (Fisher grade) (17), and acute TBI (Marshall and
Rotterdam scores, and criteria for performing decompressive
hemicraniectomy) (18-20). However, even these coarse mea-
surements are subjective and can be time-consuming to obtain
(21). Improved quantitative information has not been explored
due to the impracticality of obtaining these measurements, par-
ticularly for poorly marginated, ill-defined abnormalities, such as
subarachnoid and multifocal intracranial hemorrhage, that are
present on many CT exams. The ability to identify, localize, and
quantify features is likely to provide more granular data for re-
search into therapies, prognosis, risk stratification, best treat-
ment practices, and the cost-effectiveness of imaging tests.

Materials and Methods
Deep Learning Algorithm

Network architecture. We designed a fully convolutional neural network (FCN)

called PatchFCN (12). It is an FCN with modifications selected after exploration

Fig. 4. Examples of algorithm “near misses.” As one moves along the algorithm’s ROC curve to sensitivities <1.00, the next discrete operating point occurs at

(sensitivity 0.96, specificity 0.98). (A–C) Initial case “missed” by the algorithm as one moves along the algorithm’s ROC curve from sensitivity 1.00 to the next

discrete operating point at sensitivity 0.96. Small areas of faint hyperdensity are present on a background of abnormally hypodense white matter. Original

images (A), computer algorithm delineation of pixel-level probabilities >0.4 shown in red (B), and neuroradiologist segmentation of hemorrhage using a

green outline (C). We hypothesize that the algorithm’s certainty for this case was borderline because this case resembles negative cases in the training data

that demonstrated faint mineralization, resembling hemorrhage, within areas of remote brain infarction. (D–K) Four false-positive cases at (sensitivity 0.96,

specificity 0.98). In F and G, the algorithm demarcates an area of true intracranial hemorrhage. However, it was designated as a chronic, rather than acute,

subdural hematoma in the gold-standard consensus review. D, E, J, and K show tiny areas of false-positive areas of hemorrhage delineated by the algorithm

on only 1 or 2 images of these examinations. H and I show peripheral areas of false-positive hemorrhage due to streak artifact and nonlinear partial volume

artifact (9) that are common at the level of the skull base.
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Fig. 5. Examples of multiclass segmentation by the algorithm and by an expert. (A–C) Small left holohemispheric subdural hematoma (SDH, green) and

adjacent contusion (purple). (D–F) Small right frontal and posterior parafalcine SDH and anterior interhemispheric fissure SAH (red). (G–I) Small bilateral

tentorial and left frontotemporal SDH (green) and subjacent contusions (purple) and SAH (red), in addition to shear injury in the left cerebral peduncle

(purple). (J–L) Small parafalcine SDH (green) with surrounding SAH (red). (M–O) Several small right frontal areas of SDH (green) with subjacent contusion

(purple) and SAH (red). (P–R) Small left tentorial and left anterior temporal SDH (green) and right cerebellopontine angle SAH (red). (A, D, G, J, M, and P)

Original images. (B, E, H, K, N, and Q) Algorithmic delineation of hemorrhage with pixel-level probabilities >0.5 colored in red (SAH), green (SDH), and contusion/

shear injury (purple). (C, F, I, L, O, and R) Neuroradiologist segmentation of hemorrhage.
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of several architectures during the algorithm development phase: 1) To account

for context in the craniocaudal direction, it uses 3 input channels consisting of

the “flanking” images immediately superior and inferior to the image under

evaluation, in order to simulate radiologists’ practice of adjudicating tiny

hemorrhages by using contextual information in slices adjacent to the image of

interest; 2) to model x–y axes context, the network evaluation on any single

pass is limited to a subset or “patch” of the image, which forces the network to

make decisions based on more informative local image information; and 3) to

detach the patch prediction from the noisier pixel predictions and to increase

patch prediction accuracy, it includes a patch classification branch. The entire

system is shown in Fig. 6.

Data preprocessing. The skull and face were removed from CT images using a

series of image processing techniques, including thresholding, to identify

skull and facial bones, followed by a series of close, open, and fill operations

to retain only the intracranial structures. This enhanced privacy of the data as

individuals could, in theory, be identified through surface rendering of facial

soft tissue pixels present in the original data. It also makes the problem easier

for the network as it only needs to model the intracranial structures.

Implementation details. The network backbone architecture was Dilated

ResNet 38 (22), and all hyperparameters were developed on the UCSF-4.4K

training set described below. We optimized cross-entropy loss with sto-

chastic gradient descent (SGD) and a momentum of 0.99. The learning rate

was decreased by 0.1 every 160 epochs. To control class imbalance between

positive and negative cases in the training dataset, we sampled 30% of the

patches from positive images in each training minibatch and up-weighted

the positive pixel loss by a factor of 3. As the multiclass experiments were

exploratory in nature, they were performed without any balancing across

positive class types. At training time, the backbone and the pixel prediction

branch (1 up-convolution layer) were trained at an initial learning rate of

10−3 for 400 epochs. Both of these were then fixed, and the patch classifi-

cation branch (conv + batchnorm + ReLu + conv layers) was trained for 40

epochs. Finally the entire model was jointly fine-tuned for 30 epochs at a

learning rate of 5 × 10−5. At inference time, adjacent patches were sampled

at two-thirds overlap with each other. The pixel predictions in each patch

were mapped to image space and averaged to yield the final prediction. The

stack classification score was taken as the maximum patch classification score

in the stack. The model evaluates each stack within 1 s on average.

Multiclass architecture. We conducted an exploratory study on the multiclass

prediction of hemorrhage types at the pixel and examination levels. The

model output layers are redesigned for the tasks as follows: 1) The pixel

classifier has N + 1, instead of 2, output channels, where N is the number of

hemorrhage classes. 2) The stack classification branch has 2(N + 1) outputs

for the N hemorrhage classes and the combined positive class. This design is

motivated by the observation that the classes are mutually exclusive at the

pixel level (i.e., each pixel is a member of only 1 class, or subtype, of hem-

orrhage) but not at the examination level (i.e., each examination can con-

tain multiple classes of hemorrhage).

Datasets

Training dataset. All patient data used in this study were collected retro-

spectively and deidentified, with no need for additional patient contact.

Based on US regulation 45 CFR 46.116(d) and the US Food & Drug Admin-

istration (FDA) at https://www.fda.gov/media/106587/download, this study

satisfied recommended conditions for ethically acceptable waiver of consent

due to 1) minimal risk to patients, 2) no adverse effect on the welfare of

patients, and 3) the impracticality of contacting very large numbers of

subjects for a retrospective study. The study protocol was approved by the

UCSF Committee on Human Research.

To develop the algorithm, we used a training set composed of 4,396 head

CT scans performed at UCSF and affiliated hospitals (Table 1). This dataset

(UCSF-4.4K) consists of 1,131 examinations positive for intracranial hemor-

rhage and 3,265 negative examinations. The training dataset had a wide

spectrum of sizes and types of hemorrhage, as well as of imaging artifacts,

and was collected from 4 different CT scanners from 2 major CT vendors (GE

Healthcare and Siemens Healthineers) from 2010 to 2017. Each examination

consisted of a 3D stack of 27 to 38 transverse 2D images through the head

acquired on 64-detector row CT scanners. Pixelwise labels for acute in-

tracranial hemorrhage were verified by 2 ABR-certified radiologists with a

CAQ in neuroradiology.

Test dataset. To validate the algorithm, we collected a separate test set of 200

head CT scans performed at the same hospitals in November to December

2017. Table 2 shows the distribution of positive and negative cases across

machine types, for both the training and test sets. Although CT scans from

GE scanners were characterized by a higher proportion of positive cases than

were CT scans from Siemens scanners in the training dataset, the reverse was

true for cases in the test set. If the algorithm “cheated” to predict the

presence or absence of hemorrhage by using image features to recognize

the CT manufacturer that produced the image, this would have had a ten-

dency to degrade rather than enhance the algorithm’s performance on the

test set. This obviated the possibility that the strong performance of the

algorithm could be attributable to subtle differences in the images based on

CT manufacturer alone, rather than the presence or absence of hemorrhage.

In formulating the test set, we aimed for an overall 10% to 15% positive

rate for acute intracranial hemorrhage that approaches the positive head CT

Table 1. Examination-level multiclass hemorrhage detection

Class 1 2 3 4 Combined

Hemorrhage types SDH EDH Contusion, ICH, TAI SAH, IVH All types

AUC of ROC 0.954 ± 0.010 0.940 ± 0.016 0.934 ± 0.007 0.956 ± 0.006 0.982 ± 0.004

EDH, epidural hematoma; ICH, intracerebral hematoma; IVH, intraventricular hemorrhage; SAH, subarachnoid

hemorrhage; SDH, subdural hematoma; TAI, traumatic axonal injury.

Fig. 6. System diagram. Given a head CT stack, we evaluated each frame using a sliding window at inference time. The results were aggregated by averaging

at the pixel level (Top Right image) where the green shows the prediction and red shows the ground truth annotation. Each frame stacked with its top and

bottom neighbors was evaluated by the DRN-38 backbone. Along the top pathway, we applied deconvolution to the top-level features to decode the

pixelwise prediction. Along the bottom pathway, we applied 2 convolutions, followed by global average pooling to obtain patchwise classification (Bottom

Right image). The stack-level score is given by the maximum patch-level score within the stack.
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rate in many busy acute-care hospitals. We also wished to evaluate the al-

gorithm on the initial head CT examination only and to exclude follow-up

head CT examinations performed during the same hospitalization follow-

ing neurosurgical interventions, such as hemicraniectomy or craniotomy. We

also aimed to include within the test set a substantial number of positive

examinations that would include a diverse spectrum of possible intracranial

hemorrhage patterns, while maintaining an overall low positive head CT rate

that would simulate observed rates in current clinical practice. We needed to

control the overall test set size, such that each adjudicating radiologist could

interpret the entire set of 200 head CT examinations within a total of

5 d when working at an average clinical pace. Finally, we wished to minimize

selection bias in the process of selecting cases for the test set. To accomplish

these goals for the test set, we used the following approach. The exami-

nations were identified from the Radiology Information System (RIS) Struc-

tured Query Language (SQL) database. Using the RIS, we randomly selected

150 head CT examinations ordered from November to December 2018 that

excluded reference to a prior craniectomy or craniotomy and for which no

prior or follow-up head CT examinationwas found for that patient during the

same hospitalization. We also randomly selected 50 head CT examinations

with no reference to prior craniectomy or craniotomy and no prior head CT

examination during the same hospitalization, but with at least 1 follow-up

head CT scan performed during the same hospitalization. Since most CT

scans with no follow-up CT scan during the same hospitalization are negative

for an acute intracranial abnormality, while many (but not all) CT scans with

at least 1 follow-up CT scan performed during the same hospitalization

contain a significant acute intracranial finding, we estimated that this

strategy would yield an overall 10% to 15% proportion of positive head CT

examinations for acute intracranial hemorrhage, while avoiding the need to

view the actual images. Using this approach, the actual test set of 200 ex-

aminations contained 25 positive and 175 negative examinations for acute

intracranial hemorrhage, for an overall 12.5% positive rate that approxi-

mates the observed positive head CT rate in many hospitals. The skull

stripping algorithm failed on one head CT examination, which was replaced

by another examination from the same time period using the same approach.

The test set did contain a larger proportion of Siemens CT examinations

compared to the CT vendor distribution in the UCSF-4.4K training dataset,

owing to the larger number of head CT examinations performed on Siemens

CT scanners as part of the acute head CT workflow in place at Zuckerberg San

Francisco General Hospital and Trauma Center (ZSFG) during the November

to December 2017 time period.

Multiclass data. To explore the potential of PatchFCN in multiclass setting, we

collected an expanded set of multiclass hemorrhage data that comprises

4,766 scans from GE and Siemens scanners. Each pixel was labeled according

to the hemorrhage types shown in Table 3. The pixel and examination ratios

of each hemorrhage type indicate the proportion of positive pixels/exami-

nations for each type of hemorrhage within the multiclass dataset. Note that

positive-class pixels are extremely rare compared to negative pixels. The

scarcity of foreground pixels in conjunction with low-contrast noisy images

makes both pixel and examination-level prediction challenging.

Data availability. The data used to train and test the machine learning models

are administered by the University of California (California Code Regs. title.

22 Section 70751). The dataset in its entirety is not currently publicly avail-

able, but a subset may be available for research, subject to approval of the

University of California.

Code availability. The deep learning algorithms were developed in PyTorch

based on a publicly available codebase on Github: https://github.com/fyu/drn.

Although the full code used for experiments described here is not currently

publicly available, the description of the network architecture in Materials

and Methods contains all details needed to reproduce the results. We can

provide our source code upon request, subject to approval by the University

of California.

Evaluation of Deep Learning Algorithm Performance and Comparison to Radiologists

Evaluation of model performance. To evaluate model performance, the deep

learning algorithm was executed exactly once on the test set of 200 CT ex-

aminations, with no adjustment of hyperparameters that had been selected

during the algorithm development phase. This excluded the possibility of any

overfitting to the test data so that the reported performance should match

the model’s true performance very well. For each scan in the test dataset

consisting of 200 CT examinations, the algorithm indicates both pixel-level

and examination-level probabilities (continuous from 0 to 1) for the pres-

ence of intracranial hemorrhage. Although some patients underwent 2 or

more head CT examinations during the same hospitalization, it was ensured

that each patient appeared at most once in either the training set or the test

set, but not in both.

We calculated the receiver operating characteristic (ROC) for the deep

learning algorithm to identify the presence of acute intracranial hemorrhage

on each CT examination, compared to the “gold standard.” The gold standard

for interpretation of all 200 CT scans in the test set as positive or negative for

acute intracranial hemorrhage consisted of a careful consensus interpretation

by 2 ABR-certified neuroradiologists with a CAQ in neuroradiology, one with

15 y and the other with 10 y of attending-level experience in interpretation of

head CT examinations.

Comparison to radiologists. Four ABR-certified practicing radiologists each

reviewed the 200 CT examinations in the test set. One radiologist had 2 y of

subspecialty fellowship training and a CAQ in neuroradiology, with 15 y of

attending neuroradiologist experience. The others had 4, 10, and 16 y of ex-

perience in private and/or academic general radiology practice, including in-

terpretation of head CT. Radiologists were asked to indicate whether each scan

was more likely positive or more likely negative for acute intracranial hemor-

rhage, a binary decision, in contrast to the continuous probability for hemor-

rhage provided for each examination by the algorithm. Radiologists’ time to

evaluate each scan was not limited. Radiologists were instructed to interpret all

CT scans carefully, using conventions, such as the duration of time spent on

each scan, and level of care in interpreting each scan, that would be consistent

with US standard-of-care clinical practice. Radiologists were able to return to

prior CT scans and to modify their interpretations of examinations they had

seen earlier in the dataset. Radiologists were not aware of the overall ratio of

positive to negative CT examinations. We calculated the sensitivity and speci-

ficity of each radiologist to detect whether or not there was acute intracranial

hemorrhage on each CT examination, compared to the gold standard.
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