
Expert-Level Diagnosis of Nonpigmented Skin Cancer
by Combined Convolutional Neural Networks
Philipp Tschandl, MD, PhD; Cliff Rosendahl, PhD; Bengu Nisa Akay, MD; Giuseppe Argenziano, MD, PhD;
Andreas Blum, MD; Ralph P. Braun, MD, PhD; Horacio Cabo, MD, PhD; Jean-Yves Gourhant, MD;
Jürgen Kreusch, MD, PhD; Aimilios Lallas, MD; Jan Lapins, MD, PhD; Ashfaq Marghoob, MD;
Scott Menzies, MBBS, PhD; Nina Maria Neuber, MD; John Paoli, MD, PhD; Harold S. Rabinovitz, MD;
Christoph Rinner, PhD; Alon Scope, MD; H. Peter Soyer, MD; Christoph Sinz, MD; Luc Thomas, MD, PhD;
Iris Zalaudek, MD; Harald Kittler, MD

IMPORTANCE Convolutional neural networks (CNNs) achieve expert-level accuracy in the
diagnosis of pigmented melanocytic lesions. However, the most common types of skin cancer
are nonpigmented and nonmelanocytic, and are more difficult to diagnose.

OBJECTIVE To compare the accuracy of a CNN-based classifier with that of physicians with
different levels of experience.

DESIGN, SETTING, AND PARTICIPANTS A CNN-based classification model was trained on 7895
dermoscopic and 5829 close-up images of lesions excised at a primary skin cancer clinic
between January 1, 2008, and July 13, 2017, for a combined evaluation of both imaging
methods. The combined CNN (cCNN) was tested on a set of 2072 unknown cases and
compared with results from 95 human raters who were medical personnel, including 62
board-certified dermatologists, with different experience in dermoscopy.

MAIN OUTCOMES AND MEASURES The proportions of correct specific diagnoses and the
accuracy to differentiate between benign and malignant lesions measured as an area under
the receiver operating characteristic curve served as main outcome measures.

RESULTS Among 95 human raters (51.6% female; mean age, 43.4 years; 95% CI, 41.0-45.7
years), the participants were divided into 3 groups (according to years of experience with
dermoscopy): beginner raters (<3 years), intermediate raters (3-10 years), or expert raters
(>10 years). The area under the receiver operating characteristic curve of the trained cCNN
was higher than human ratings (0.742; 95% CI, 0.729-0.755 vs 0.695; 95% CI, 0.676-0.713;
P < .001). The specificity was fixed at the mean level of human raters (51.3%), and therefore
the sensitivity of the cCNN (80.5%; 95% CI, 79.0%-82.1%) was higher than that of human
raters (77.6%; 95% CI, 74.7%-80.5%). The cCNN achieved a higher percentage of correct
specific diagnoses compared with human raters (37.6%; 95% CI, 36.6%-38.4% vs 33.5%;
95% CI, 31.5%-35.6%; P = .001) but not compared with experts (37.3%; 95% CI,
35.7%-38.8% vs 40.0%; 95% CI, 37.0%-43.0%; P = .18).

CONCLUSIONS AND RELEVANCE Neural networks are able to classify dermoscopic and
close-up images of nonpigmented lesions as accurately as human experts in an experimental
setting.
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I n comparison with inspection with the unaided eye, der-
moscopy (dermatoscopy1) improves the accuracy of the
diagnosis of pigmented skin lesions.2 The improvement

of dermoscopy is most evident for small and inconspicuous
melanomas3 and for pigmented basal cell carcinoma.4

Because dermoscopic criteria are more specific and the
number of differential diagnoses is significantly lower, pig-
mented skin lesions are easier to diagnose than nonpig-
mented lesions. The most common types of skin cancers,
however, are usually nonpigmented. A previous study
showed that dermoscopy also improves the accuracy of the
diagnosis of nonpigmented lesions, although the improve-
ment was less pronounced than for pigmented lesions.5 The
proportion of correct diagnoses by expert raters increased
from 41.3% with the unaided eye to 52.7% with dermos-
copy. The improvement of nonexperts was less pronounced.

Artificial neural networks have been used for automated
classification of skin lesions for many years6-8 and have also
been tested prospectively.9 In comparison with the neural
networks that were used before 2012,7,10 current convolu-
tional neural networks (CNNs) consist of convolutional fil-
ters, which are able to detect low-level structures such as
colors, contrasts, and edges. These filters allow the CNNs to
be trained “end-to-end,” which means that they need only
raw image data as input without any preprocessing, such as
segmentation or handcrafted feature extraction. Unlike
classical artificial neural networks, which have neurons that
are fully connected to all neurons at the next layer, CNNs
use reusable filters that dramatically simplify the network
connections, which makes them more suitable for image
classification tasks. After Krizhevsky et al11 demonstrated in
2012 that CNNs can be trained on 1.2 million images12 to
classify 1000 categories with high accuracy, CNNs were
increasingly applied to medical images. Convolutional neu-
ral networks have shown expert-level performance in the
classification of skin diseases on clinical images13,14 and in
the classification of pigmented lesions on dermoscopic
images.15-18 Other research groups have combined clinical
and dermoscopic image analysis19,20 or integrated patient
metadata21,22 to improve the performance of CNNs on pig-
mented lesions.

The differentiation of melanoma from benign pig-
mented lesions is a simple binary classification problem.
Performing a differential diagnosis of nonpigmented
lesions, however, is a more complex, multiclass classifica-
tion problem14,15,19 that includes a range of different diag-
nostic categories, such as benign and malignant neoplasms,
cysts, and inflammatory diseases. Automated classifiers
have been applied successfully to clinical images to diag-
nose nonpigmented skin cancer,23 and CNNs trained on
clinical images have recently shown promising results when
compared with physicians’ diagnoses.13,14 Because the per-
formance of CNNs on dermoscopic images of nonpigmented
skin lesions is still unknown, we trained and tested a CNN
on a large set of nonpigmented lesions with a wide range of
diagnoses and compared the results with the accuracy of
human raters with different levels of experience, including
62 board-certified dermatologists.

Methods

Image Data Sets
The 7895 dermoscopic and 5829 close-up images of the
training set originated from a consecutive sample of lesions
photographed and excised by one of us (C.R.) at a primary
skin cancer clinic in Queensland, Australia, between Janu-
ary 1, 2008, and July 13, 2017. The 340 dermoscopic and 635
close-up images of the validation set were extracted from
educational slides and are part of a convenience sample of
lesions photographed and excised in the practice of one of
us (H.S.R). Dermoscopic images and clinical close-up images
were taken with different cameras and dermatoscopes at
different resolutions in polarizing or nonpolarizing mode.
Pathologic diagnoses were merged to correspond to the cat-
egories used in the study by Sinz et al.5 Use of the images is
based on ethics review board protocols EK 1081/2015 (Medi-
cal University of Vienna) and 2015000162 (University of
Queensland). Rater data from the survey were collected in a
deidentified fashion; therefore written consent was not
required by the ethics review board of the Medical Univer-
sity of Vienna.

We included cases that fulfilled the following criteria: (1)
lack of pigment, (2) availability of at least 1 clinical close-up
image or 1 dermatoscopic image, and (3) availability of an
unequivocal histopathologic report. We excluded mucosal
cases, cases with missing or equivocal histopathologic
reports, cases with low image quality, and cases of diagnos-
tic categories with fewer than 10 examples in the training
set. All images were reviewed manually by 2 of us (H.K. and
C.S.) and were included only if they conformed to the
imaging standards published previously.24 Close-up images
were taken with a spacer attached to a digital single-lens
reflex camera removing all incident light and standardizing
distance and field of view. The diagnostic categories used
for training were the following: actinic keratoses and
intraepithelial carcinoma (also known as Bowen disease),
basal cell carcinoma (all subtypes), benign keratosis-like
lesions (including solar lentigo, seborrheic keratosis, and
lichen planus–like keratosis), dermatofibroma, melanoma,
invasive squamous cell carcinoma and keratoacanthoma,
benign sebaceous neoplasms, and benign hair follicle
tumors. The Table shows the frequencies of diagnoses in

Key Points
Question Can a neural network classify nonpigmented skin
lesions as accurately as human experts?

Findings In this study, a combined convolutional neural network
that received dermoscopic and close-up images as inputs achieved
a diagnostic accuracy on par with human experts and
outperformed beginner raters and intermediate raters.

Meaning In an experimental setting, a combined convolutional
neural network can outperform human raters, but the lack of
accuracy for rare diseases limits its application in clinical
practice.
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the training and validation set. The test set images of 2072
dermoscopic and clinical close-up images originated from
multiple sources, including the Medical University of
Vienna, the image database from C.R., and a convenience
sample of rare diagnoses. The specific composition of the
test set has already been described in greater detail by Sinz
et al.5 The list of diagnoses of the test set is available in
eTable 1 in the Supplement.

Neural Network Diagnoses
The output of our trained neural networks represents prob-
ability values between 0 and 1 for every diagnostic category.
We combined the outputs of 2 CNNs (eAppendix in the
Supplement), one trained with dermoscopic images and the
other with clinical close-ups, by extreme gradient boosting
(XGBoost25) of the combined probabilities. This combined
model is referred to as cCNN. For specific diagnoses, we
used the highest combined class probability and summed
the probabilities of malignant and benign categories to
generate receiver operating characteristic curves. In the
validation set, we fixed the specificity at the level of the
average human rater (51.3%), which corresponded to a com-
bined malignant class probability of 0.2 (eFigure in the
Supplement).

Human Ratings
The specifics of the rater study have been described in detail
by Sinz et al.5 In a web-based study of 95 human raters (51.6%
female; mean age, 43.4 years; 95% CI, 41.0-45.7 years), par-
ticipants were divided into 3 groups (according to years of ex-
perience with dermoscopy): beginner raters (<3 years), inter-
mediate raters (3-10 years), or expert raters (>10 years). Data
on the formal education of the rates are shown in eTable 2 in
the Supplement. All participants rated 50 cases drawn ran-
domly from the entire test set of 2072 nonpigmented lesions.
The random sample was stratified according to diagnostic
category to prevent overrepresentation of common diagno-
ses. The raters were asked to differentiate between benign
and malignant lesions, to make a specific diagnosis, and to
suggest therapeutic management. The clinical close-up
image was always shown before the dermatoscopic image,
and the final evaluation was based on the combination of
both imaging modalities.

Statistical Analysis
Statistical calculations and visualizations were performed
with R Statistics.26 The 50 randomly drawn ratings of each
rater were compared with the cCNN output for the same 50
cases in a pairwise fashion using paired t tests. Receiver
operating characteristic curves were calculated by pooling
all rating sets to allow comparability with results from the
human raters. The receiver operating characteristic curves
and the area under the curves (AUC) were calculated using
pROC,27 and a comparison of receiver operating characteris-
tic curves was performed using the methods of DeLong
et al.28 The primary end point for the analyses was differ-
ence in AUC to detect skin cancer between the CNN and
human raters. All reported P values were from 2-sided tests
and are corrected for multiple testing with the Benjamini-
Hochberg method29 and are considered statistically signifi-
cant at a corrected value of P < .05.

Results
CNN Training and Validation
For the validation set, an InceptionV3 architecture30

achieved the highest accuracy rates for dermoscopic
images, and a ResNet50 network31 had the highest accuracy
for clinical close-ups. With regard to the detection of skin
cancer, the AUC of the CNN was significantly higher with
dermoscopy than with clinical close-ups (0.725; 95% CI,
0.711-0.725 vs 0.683; 95% CI, 0.668-0.683; P < .001).
Regarding specific diagnoses, the dermoscopic CNN was
better at diagnosing malignant cases, and the close-up CNN
was better at diagnosing benign cases (eTable 3 in the
Supplement). Integration of both methods using extreme
gradient boosting achieved significantly higher accuracy
than dermoscopy alone (AUC, 0.742; 95% CI, 0.729-0.755;
P < .001). The rate of correct specific diagnoses was highest
in the combined ratings (cCNN, 37.6% vs close-up CNN,
31.1%; P < .001; and dermoscopic CNN, 36.3%; P = .005).

Comparison of Human Raters With cCNN
With regard to the detection of skin cancer, the mean AUC of
human raters (0.695; 95% CI, 0.676-0.713) was significantly
lower than the mean AUC of the cCNN (0.742; 95% CI, 0.729-

Table. Summary of Diagnoses in Training and Validation Data Sets

Data Set

Total
No. of
Images

Images, No. (%)

AKIEC Angioma BCC BKL DF Mel Nevus SCC Seb-Ben Trich-Ben

Training

Dermoscopy 7895 1892 (24.0) 26 (0.3) 3855 (48.8) 891 (11.3) 56 (0.7) 58 (0.7) 119 (1.5) 957 (12.1) 18 (0.2) 23 (0.3)

Close-up 5829 1379 (23.7) 16 (0.3) 2832 (48.6) 668 (11.5) 31 (0.5) 37 (0.6) 104 (1.8) 762 (13.1) 0 0

Validation

Dermoscopy 340 8 (2.4) 4 (1.2) 165 (48.5) 41 (12.1) 6 (1.8) 15 (4.4) 7 (2.1) 88 (25.9) 3 (0.9) 3 (0.9)

Close-up 635 16 (2.5) 7 (1.1) 321 (50.6) 80 (12.6) 7 (1.1) 25 (3.9) 10 (1.6) 169 (26.6) 0 0

Abbreviations: AKIEC, actinic keratoses and intraepithelial carcinoma (also known as Bowen disease); BCC, basal cell carcinoma, all subtypes; BKL, benign
keratosis–like lesions including solar lentigo, seborrheic keratosis, and lichen planus–like keratosis; DF, dermatofibroma; Mel, melanoma; SCC, invasive squamous cell
carcinoma and keratoacanthoma; Seb-Ben, benign sebaceous neoplasms; Trich-Ben, benign hair follicle tumors.
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0.755; P < .001) (Figure 1A). Comparing subgroups (Figure 1B),
we found that the CNN had a higher AUC than did beginner
raters (0.749; 95% CI, 0.727-0.771 vs 0.655; 95% CI, 0.626-
0.684; P < .001) or the intermediate raters (0.735; 95% CI,
0.710-0.760; vs 0.690; 95% CI, 0.657-0.722; P = .02), but not
higher than the experts (0.733; 95% CI, 0.702-0.765 vs 0.741;
95% CI, 0.719-0.763; P = .62).

Although sensitivity was 77.6% (95% CI, 74.7%-80.5%)
and specificity was 51.3% (95% CI, 48.4%-54.3%) for human
raters, the values for the cCNN were higher but not signifi-
cantly different (sensitivity, 80.5%; 95% CI, 79.0%-82.1%;
P = .12; specificity, 53.5%; 95% CI, 51.7%-55.3%; P = .298).
Except for a significantly higher sensitivity of the neural
network compared with beginner raters (81.9%; 95% CI,
79.2%-84.6%; vs 72.3%; 95% CI, 66.7%-77.9%; P = .003),
there were no significant differences with other subgroups
of human raters. Regarding the rare, but important, class of
primary amelanotic melanoma, the cCNN achieved a sensi-
tivity of 52.3% (95% CI, 47.2%-57.4%) when diagnosing
malignancy, which was lower than the sensitivity reached
by beginner raters (59.8%; 95% CI, 50.6%-68.5%), interme-
diate raters (67.8%; 95% CI, 58.5%-75.9%), and expert raters
(78.5%; 95% CI, 70.7%-84.7%).

The cCNN, combining analysis of dermoscopy images
and clinical close-ups, achieved a higher frequency of correct
specific diagnoses (37.6%; 95% CI, 36.6%-38.4%) than did
human raters (33.5%; 95% CI, 31.5%-35.6%; P = .001). This
difference was significant for beginner raters and intermedi-
ate raters but not expert raters (37.3%; 95% CI, 35.7%-38.8%
vs 40.0%; 95% CI, 37.0%-43.0%; P = .18) (Figure 2). With
regard to specific diagnoses, the difference between cCNN
and human raters was higher when only malignant lesions
were considered (55.5%; 95% CI, 54.0%-57.1% vs 44.9%; 95%
CI, 42.2%-47.7%; P < .001). When the analysis was limited to
benign cases, human raters were significantly better (fre-
quency of correct specific diagnoses: 23.4%; 95% CI, 20.8%-
25.9% vs 18.1%; 95% CI, 16.8%-19.3%; P = .001). Confusion
matrices (Figure 3) demonstrate that the cCNN performs bet-
ter on common malignant classes (actinic keratoses and

Figure 2. Percentages of Correct Specific Diagnoses of Corresponding
Reading Sets of the Combined Convolutional Neural Network (cCNN)
and Dermatologists Grouped by Experience
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Figure 1. Comparison of Skin Cancer Detection on Digital Images Between Human Readers and a Neural Network–Based Classifier
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intraepithelial carcinoma [Bowen disease], basal cell carci-
noma, and invasive squamous cell carcinoma and keratoac-
anthoma) but performs poorly on benign classes such as
angiomas, dermatofibromas, nevi, or clear cell acanthomas
(Figure 4), which were underrepresented or absent in the
training data.

Discussion
We showed that a cCNN is able to classify nonpigmented le-
sions as accurately as expert raters and with a higher accu-
racy than less-experienced raters. Because we used dermo-
scopic images and clinical close-ups to train the network, our
results also demonstrate that a combination of the 2 imaging

modalities achieves better results than either modality alone.
In this regard, we confirmed the importance of adding the der-
moscopic images to the clinical examination and the impor-
tance of considering the clinical close-up images in addition
to the dermoscopic images and not to rely on the dermo-
scopic images alone.32 The 2 methods complement each other.
The CNN analyzing close-up images was more accurate for be-
nign lesions, whereas the CNN analyzing the corresponding
dermoscopic images was more accurate for malignant cases
(eTable 3 in the Supplement).

Our experimental setting was artificial and deviated from
clinical practice in many ways. It was restricted to pure mor-
phologic characteristics, and we did not include important
metadata such as age, anatomic site, and history of the le-
sions. These data will usually be readily available to the treat-

Figure 3. Confusion Matrices of Specific Diagnoses
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Figure 4. Example Images

CCA correctly diagnosed by human raters
but incorrectly diagnosed by cCNN

A Intraepithelial carcinoma (Bowen disease) correctly specified
by both the cCNN and all human raters

B

A, A clear cell acanthoma (CCA)
correctly diagnosed by all human
raters, but interpreted as a benign
keratosis-like lesion by the combined
convolutional neural network
(cCNN). Since the class CCA was not
present in the training data set it is
impossible for the fixed classifier to
ever make that diagnosis. B, An
actinic keratosis and intraepithelial
carcinoma (also known as Bowen
disease) correctly specified by both
the cCNN and all human raters.
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ing physician and will affect diagnosis and management. In this
regard, we see the strength of CNN-based classifiers not so
much in providing management decisions33 but rather in pro-
viding a list of accurate differential diagnoses, which may serve
as input for other systems that have outputs, such as decision
trees, that are more readily interpretable by humans.

Our data also suffer from verification bias, as only patho-
logically verified cases were selected. This selection leads to
overrepresentation of malignant cases and an unequal class
distribution in the test set, which does not reflect clinical re-
ality. Dermatopathologic verification, however, is necessary
because the clinical and dermoscopic diagnosis of nonpig-
mented lesions is prone to error, and we think that the advan-
tage of an accurate criterion-standard diagnosis outweighs the
disadvantage of verification bias.

The performance of the cCNN was not uniform across
classes. It outperformed human raters in common malignant
classes such as basal cell carcinoma, actinic keratoses or
Bowen disease, and squamous cell carcinoma or keratoacan-
thoma but did not reach the accuracy of human raters in rare
malignant nonpigmented lesions such as amelanotic mela-
noma and benign nonpigmented lesions. This is a conse-
quence of the relatively low frequency of these disease catego-
ries in the training set. Although this, to our knowledge, is the
largest data set of nonpigmented dermoscopic images, it still
counts as a small data set in the realm of machine learning with
CNNs. During a professional life, a typical human expert rater
has been exposed to a significant number of exemplars, even
for rare diagnoses, either through textbooks, e-learning, lec-
tures, or clinical practice.

The rare but important class of amelanotic melanoma is
difficult to diagnose even for experts. Usually no harm is
done if amelanotic melanomas are mistaken for other malig-
nant neoplasms or if, in the judgement of the physician, the
probability of a malignant neoplasm is high enough to war-
rant biopsy or excision. Dermatoscopy is more accurate
when classifying amelanotic melanoma as malignant rather
than melanoma.34 Assuming that, if the diagnosis of the
cCNN is a malignant neoplasm, the lesion will be biopsied or
excised, the cCNN achieved a sensitivity for amelanotic
melanoma of 52.3% (95% CI, 47.2%-57.4%), which was
lower than the average sensitivity of human raters of 69.3%
(95% CI, 64.5%-73.8%). We hypothesize that, in addition to
underrepresentation of amelanotic melanomas in the train-
ing data, visual diagnostic clues such as polymorphous ves-
sels are too subtle to be learned from just a few cases.
Unless larger image collections become available, other
diagnostic devices such as reflectance confocal microscopy
or automated diagnostic systems that do not depend on
morphologic characteristics (eg, tapestripping,35 electrical

impedance spectroscopy,36 or Raman spectroscopy)37 may
be of more help in these cases.

Limitations
The lower accuracy of the presented cCNN compared with
other recent publications on automated classification of skin
lesions16,18 may be explained in 2 ways. One is that our test
set included more than 51 distinct classes, of which most did
not have enough examples to be integrated into the training
phase. Having larger dermoscopy data sets in the future, in
the scale of the number of clinical images that were available
to Han et al,14 may partly resolve this shortcoming. Second,
the features of nonpigmented lesions are less specific than
those of pigmented lesions, which is mirrored by the rela-
tively low accuracy of human expert raters. Although our
cCNN outperformed human raters in some aspects, it is cur-
rently not fit for clinical application. The metrics applied to
measure diagnostic accuracy, such as sensitivity, specificity,
and area under receiver operating characteristic curves, may
not accurately reflect the performance of a classifier for
medical purposes in all settings. Accurate diagnoses of com-
mon diseases such as basal cell carcinoma and actinic kerato-
ses, which are usually not life threatening if left untreated,
must be contrasted with missing potentially life-threatening
diseases such as amelanotic melanomas. Although metrics
exist that take into account the potential loss of life-years and
apply penalties to misdiagnoses of more aggressive diseases,
these metrics are currently not well established in the field of
machine learning.

Conclusions
Despite limitations, we demonstrated that CNNs can per-
form at a human level on the binary classification of pig-
mented lesions and on multiclass tasks on more challenging
nonpigmented lesions. The potential of CNNs to solve more
sophisticated classification tasks in dermatology has been
demonstrated before13,14 but not on dermoscopic images of
nonpigmented lesions. We also confirm that, similar to
human raters, CNNs perform better with dermoscopic
images than with clinical close-ups alone. Future efforts
should be targeted at the availability of larger numbers of
dermoscopic images and clinical close-ups of rare malignant
lesions but also of common benign nonpigmented lesions
that are usually not biopsied or excised for diagnostic rea-
sons. The results of our study suggest that, if more exem-
plars of these disease categories were available, it should be
possible to train CNNs to diagnose these categories more
efficiently.

ARTICLE INFORMATION

Accepted for Publication: September 21, 2018.

Published Online: November 28, 2018.
doi:10.1001/jamadermatol.2018.4378

Author Affiliations: School of Computing Science,
Simon Fraser University, Burnaby, British Columbia,
Canada (Tschandl); Vienna Dermatologic Imaging

Research Group, Department of Dermatology,
Medical University of Vienna, Vienna, Austria
(Tschandl, Neuber, Sinz, Kittler); School of
Medicine, The University of Queensland, Brisbane,
Queensland, Australia (Rosendahl); School of
Medicine, Tehran University of Medical Sciences,
Tehran, Iran (Rosendahl); Department of
Dermatology, Ankara University Faculty of

Medicine, Ankara, Turkey (Akay); Dermatology
Unit, University of Campania, Naples, Italy
(Argenziano); Public, Private and Teaching Practice
of Dermatology, Konstanz, Germany (Blum);
Department of Dermatology, University Hospital
Zürich, Zürich, Switzerland (Braun); Department of
Dermatology, Instituto de Investigaciones Médicas
ALanari, University of Buenos Aires, Buenos Aires,

Expert-Level Diagnosis of Nonpigmented Skin Cancer by Combined Convolutional Neural Networks Original Investigation Research

jamadermatology.com (Reprinted) JAMA Dermatology January 2019 Volume 155, Number 1 63

© 2018 American Medical Association. All rights reserved.

Downloaded From: https://jamanetwork.com/ on 08/27/2022

https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamadermatol.2018.4378&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamadermatol.2018.4378
http://www.jamadermatology.com/?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamadermatol.2018.4378


Argentina (Cabo); Centre de Dermatologie,
Nemours, France (Gourhant); private practice,
Lübeck, Germany (Kreusch); First Department of
Dermatology, Aristotle University, Thessaloniki,
Greece (Lallas); Department of Dermatology,
Karolinska University Hospital and Karolinska
Institutet, Stockholm, Sweden (Lapins);
Dermatology Service, Memorial Sloan Kettering
Cancer Center, Hauppauge, New York (Marghoob);
Sydney Melanoma Diagnostic Centre and Discipline
of Dermatology, University of Sydney, Sydney,
Australia (Menzies); Department of Dermatology,
Institute of Clinical Sciences, Sahlgrenska Academy,
University of Gothenburg, Gothenburg, Sweden
(Paoli); Skin and Cancer Associates, Plantation,
Florida (Rabinovitz); Center for Medical Statistics,
Informatics and Intelligent Systems, Medical
University of Vienna, Vienna, Austria (Rinner);
Medical Screening Institute, Chaim Sheba Medical
Center, Sackler School of Medicine, Tel Aviv
University, Tel Aviv, Israel (Scope); Dermatology
Research Centre, The University of Queensland,
The University of Queensland Diamantina Institute,
Brisbane, Australia (Soyer); Department of
Dermatology, Centre Hospitalier Lyon Sud, Lyon 1
University, Lyons Cancer Research Center, Lyon,
France (Thomas); Dermatology Clinic, Maggiore
Hospital, University of Trieste, Trieste, Italy
(Zalaudek).

Author Contributions: Drs Tschandl and Kittler had
full access to all the data in the study and take
responsibility for the integrity of the data and the
accuracy of the data analysis.
Concept and design: Tschandl, Neuber, Soyer,
Kittler.
Acquisition, analysis, or interpretation of data:
Tschandl, Rosendahl, Akay, Argenziano, Blum,
Braun, Cabo, Gourhant, Kreusch, Lallas, Lapins,
Marghoob, Menzies, Neuber, Paoli, Rabinoviz,
Rinner, Scope, Sinz, Thomas, Zalaudek, Kittler.
Drafting of the manuscript: Tschandl, Kittler.
Critical revision of the manuscript for important
intellectual content: All authors.
Statistical analysis: Tschandl.
Obtained funding: Kittler.
Administrative, technical, or material support: Akay,
Kreusch, Lapins, Neuber, Rinner, Zalaudek, Kittler.
Supervision: Cabo, Paoli, Kittler.

Conflict of Interest Disclosures: Dr Tschandl
reported receiving an unrestricted grant from
MetaOptima Technology Inc for conducting a 1-year
postdoctoral fellowship at Simon Fraser University,
Burnaby, British Columbia, Canada.

Additional Contributions: We thank all the raters
who participated in online assessment of skin
lesions, without whom this study would not have
been possible.

REFERENCES

1. Kittler H, Marghoob AA, Argenziano G, et al.
Standardization of terminology in
dermoscopy/dermatoscopy: results of the third
consensus conference of the International Society
of Dermoscopy. J Am Acad Dermatol. 2016;74(6):
1093-1106. doi:10.1016/j.jaad.2015.12.038

2. Argenziano G, Cerroni L, Zalaudek I, et al.
Accuracy in melanoma detection: a 10-year
multicenter survey. J Am Acad Dermatol. 2012;67
(1):54-59. doi:10.1016/j.jaad.2011.07.019

3. Rosendahl C, Cameron A, Bulinska A, Williamson
R, Kittler H. Dermatoscopy of a minute melanoma.

Australas J Dermatol. 2011;52(1):76-78. doi:10.1111/j.
1440-0960.2010.00725.x

4. Rosendahl C, Tschandl P, Cameron A, Kittler H.
Diagnostic accuracy of dermatoscopy for
melanocytic and nonmelanocytic pigmented
lesions. J Am Acad Dermatol. 2011;64(6):1068-1073.
doi:10.1016/j.jaad.2010.03.039

5. Sinz C, Tschandl P, Rosendahl C, et al. Accuracy
of dermatoscopy for the diagnosis of
nonpigmented cancers of the skin. J Am Acad
Dermatol. 2017;77(6):1100-1109. doi:10.1016/j.jaad.
2017.07.022

6. Binder M, Steiner A, Schwarz M, Knollmayer S,
Wolff K, Pehamberger H. Application of an artificial
neural network in epiluminescence microscopy
pattern analysis of pigmented skin lesions: a pilot
study. Br J Dermatol. 1994;130(4):460-465. doi:10.
1111/j.1365-2133.1994.tb03378.x

7. Rubegni P, Cevenini G, Burroni M, et al.
Automated diagnosis of pigmented skin lesions. Int
J Cancer. 2002;101(6):576-580. doi:10.1002/ijc.
10620

8. Menzies SW, Bischof L, Talbot H, et al. The
performance of SolarScan: an automated
dermoscopy image analysis instrument for the
diagnosis of primary melanoma [published
correction appears in Arch Dermatol.
2006;142(5):558]. Arch Dermatol. 2005;141(11):
1388-1396. doi:10.1001/archderm.141.11.1388

9. Dreiseitl S, Binder M, Vinterbo S, Kittler H.
Applying a decision support system in clinical
practice: results from melanoma diagnosis. AMIA
Annu Symp Proc. 2007;191-195.

10. Binder M, Kittler H, Dreiseitl S, Ganster H, Wolff
K, Pehamberger H. Computer-aided epiluminescence
microscopy of pigmented skin lesions: the value of
clinical data for the classification process. Melanoma
Res. 2000;10(6):556-561. doi:10.1097/
00008390-200012000-00007

11. Krizhevsky A, Sutskever I, Hinton GE. ImageNet
classification with deep convolutional neural
networks. In: Pereira F, Burges CJC, Bottou L,
Weinberger KQ, eds. Advances in Neural
Information Processing Systems. Vol. 25. Red Hook,
NY: Curran Associates Inc; 2012:1097-1105.

12. Russakovsky O, Deng J, Su H, et al. ImageNet
large scale visual recognition challenge. Int J
Comput Vis. 2015;115(3):211-252. doi:10.1007/
s11263-015-0816-y

13. Esteva A, Kuprel B, Novoa RA, et al.
Dermatologist-level classification of skin cancer
with deep neural networks. Nature. 2017;542
(7639):115-118. doi:10.1038/nature21056

14. Han SS, Kim MS, Lim W, Park GH, Park I, Chang
SE. Classification of the clinical images for benign
and malignant cutaneous tumors using a deep
learning algorithm. J Invest Dermatol. 2018;138(7):
1529-1538. doi:10.1016/j.jid.2018.01.028

15. Tschandl P, Kittler H, Argenziano G. A
pretrained neural network shows similar diagnostic
accuracy to medical students in categorizing
dermatoscopic images after comparable training
conditions. Br J Dermatol. 2017;177(3):867-869.
doi:10.1111/bjd.15695

16. Marchetti MA, Codella NCF, Dusza SW, et al;
International Skin Imaging Collaboration. Results of
the 2016 International Skin Imaging Collaboration
International Symposium on Biomedical Imaging
challenge: comparison of the accuracy of computer

algorithms to dermatologists for the diagnosis of
melanoma from dermoscopic images. J Am Acad
Dermatol. 2018;78(2):270-277.e1. doi:10.1016/j.jaad.
2017.08.016

17. Yu C, Yang S, Kim W, et al. Acral melanoma
detection using a convolutional neural network for
dermoscopy images. PLoS One. 2018;13(3):e0193321.
doi:10.1371/journal.pone.0193321

18. Haenssle HA, Fink C, Schneiderbauer R, et al;
Reader study level-I and level-II Groups. Man
against machine: diagnostic performance of a deep
learning convolutional neural network for
dermoscopic melanoma recognition in comparison
to 58 dermatologists. Ann Oncol. 2018;29(8):1836-
1842. doi:10.1093/annonc/mdy166

19. Ge Z, Demyanov S, Chakravorty R, Bowling A,
Garnavi R. Skin disease recognition using deep
saliency features and multimodal learning of
dermoscopy and clinical images. In: Descoteaux M,
Maier-Hein L, Franz J, et al, eds. Medical Image
Computing and Computer-Assisted
Intervention—MICCAI 2017. Cham, Switzerland:
Springer International Publishing; 2017:250-258. doi:
10.1007/978-3-319-66179-7_29

20. Yap J, Yolland W, Tschandl P. Multimodal skin
lesion classification using deep learning. Exp
Dermatol. 2018;27(11):1261-1267. doi:10.1111/exd.13777

21. Kharazmi P, Kalia S, Lui H, Wang ZJ, Lee TK. A
feature fusion system for basal cell carcinoma
detection through data-driven feature learning and
patient profile. Skin Res Technol. 2018;24(2):256-264.
doi:10.1111/srt.12422

22. Kawahara J, Daneshvar S, Argenziano G,
Hamarneh G. 7-Point checklist and skin lesion
classification using multi-task multi-modal neural
nets [published online April 9, 2018]. IEEE J Biomed
Health Inform. doi:10.1109/JBHI.2018.2824327

23. Ballerini L, Fisher RB, Aldridge B, Rees J. A color
and texture based hierarchical K-NN approach to
the classification of non-melanoma skin lesions. In:
Celebi ME, Schaefer G, eds. Color Medical Image
Analysis. Dordrecht, the Netherlands: Springer; 2013:
63-86. doi:10.1007/978-94-007-5389-1_4

24. Finnane A, Curiel-Lewandrowski C, Wimberley
G, et al; International Society of Digital Imaging of
the Skin (ISDIS) for the International Skin Imaging
Collaboration (ISIC). Proposed technical guidelines
for the acquisition of clinical images of skin-related
conditions. JAMA Dermatol. 2017;153(5):453-457.
doi:10.1001/jamadermatol.2016.6214

25. Chen T, Guestrin C. XGBoost: a scalable tree
boosting system. arXiv [csLG] 2016.
https://arxiv.org/abs/1603.02754. Accessed
October 17, 2018.

26. R Core Team. R: a language and environment
for statistical computing. https://www.R-project.
org/. 2017. Accessed October 17, 2018.

27. Robin X, Turck N, Hainard A, et al. pROC: an
open-source package for R and S+ to analyze and
compare ROC curves. BMC Bioinformatics. 2011;12:
77. doi:10.1186/1471-2105-12-77

28. DeLong ER, DeLong DM, Clarke-Pearson DL.
Comparing the areas under two or more correlated
receiver operating characteristic curves:
a nonparametric approach. Biometrics. 1988;44(3):
837-845. doi:10.2307/2531595

29. Benjamini Y, Hochberg Y. Controlling the false
discovery rate: a practical and powerful approach to

Research Original Investigation Expert-Level Diagnosis of Nonpigmented Skin Cancer by Combined Convolutional Neural Networks

64 JAMA Dermatology January 2019 Volume 155, Number 1 (Reprinted) jamadermatology.com

© 2018 American Medical Association. All rights reserved.

Downloaded From: https://jamanetwork.com/ on 08/27/2022

https://dx.doi.org/10.1016/j.jaad.2015.12.038
https://dx.doi.org/10.1016/j.jaad.2011.07.019
https://dx.doi.org/10.1111/j.1440-0960.2010.00725.x
https://dx.doi.org/10.1111/j.1440-0960.2010.00725.x
https://dx.doi.org/10.1016/j.jaad.2010.03.039
https://dx.doi.org/10.1016/j.jaad.2017.07.022
https://dx.doi.org/10.1016/j.jaad.2017.07.022
https://dx.doi.org/10.1111/j.1365-2133.1994.tb03378.x
https://dx.doi.org/10.1111/j.1365-2133.1994.tb03378.x
https://dx.doi.org/10.1002/ijc.10620
https://dx.doi.org/10.1002/ijc.10620
https://jama.jamanetwork.com/article.aspx?doi=10.1001/archderm.141.11.1388&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamadermatol.2018.4378
https://www.ncbi.nlm.nih.gov/pubmed/18693824
https://www.ncbi.nlm.nih.gov/pubmed/18693824
https://dx.doi.org/10.1097/00008390-200012000-00007
https://dx.doi.org/10.1097/00008390-200012000-00007
https://dx.doi.org/10.1007/s11263-015-0816-y
https://dx.doi.org/10.1007/s11263-015-0816-y
https://dx.doi.org/10.1038/nature21056
https://dx.doi.org/10.1016/j.jid.2018.01.028
https://dx.doi.org/10.1111/bjd.15695
https://dx.doi.org/10.1016/j.jaad.2017.08.016
https://dx.doi.org/10.1016/j.jaad.2017.08.016
https://dx.doi.org/10.1371/journal.pone.0193321
https://dx.doi.org/10.1093/annonc/mdy166
https://dx.doi.org/10.1007/978-3-319-66179-7_29
https://dx.doi.org/10.1111/exd.13777
https://dx.doi.org/10.1111/srt.12422
https://dx.doi.org/10.1109/JBHI.2018.2824327
https://dx.doi.org/10.1007/978-94-007-5389-1_4
https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamadermatol.2016.6214&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamadermatol.2018.4378
https://arxiv.org/abs/1603.02754
https://www.R-project.org/
https://www.R-project.org/
https://dx.doi.org/10.1186/1471-2105-12-77
https://dx.doi.org/10.2307/2531595
http://www.jamadermatology.com/?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamadermatol.2018.4378


multiple testing. J R Stat Soc Series B Stat Methodol.
1995;57(1):289-300.

30. Szegedy C, Vanhoucke V, Ioffe S, Shlens J,
Wojna Z. Rethinking the Inception architecture for
computer Vision. 2016 IEEE Conference on
Computer Vision and Pattern Recognition; 2016;
Las Vegas, Nevada:2818-2826.

31. He K, Xiangyu Z, Shaoqing R, Jian S. Deep
residual learning for image recognition. arXiv [Cs]
2015. http://arxiv.org/abs/1512.03385. Accessed
October 17, 2018.

32. Carli P, de Giorgi V, Chiarugi A, et al. Addition of
dermoscopy to conventional naked-eye

examination in melanoma screening: a randomized
study. J Am Acad Dermatol. 2004;50(5):683-689.
doi:10.1016/j.jaad.2003.09.009

33. Cook DA, Sherbino J, Durning SJ. Management
reasoning: beyond the diagnosis. JAMA. 2018;319
(22):2267-2268. doi:10.1001/jama.2018.4385

34. Menzies SW, Kreusch J, Byth K, et al.
Dermoscopic evaluation of amelanotic and
hypomelanotic melanoma. Arch Dermatol. 2008;
144(9):1120-1127. doi:10.1001/archderm.144.9.1120

35. Wachsman W, Morhenn V, Palmer T, et al.
Noninvasive genomic detection of melanoma. Br J

Dermatol. 2011;164(4):797-806. doi:10.1111/j.1365-
2133.2011.10239.x

36. Malvehy J, Hauschild A, Curiel-Lewandrowski
C, et al. Clinical performance of the Nevisense
system in cutaneous melanoma detection: an
international, multicentre, prospective and blinded
clinical trial on efficacy and safety. Br J Dermatol.
2014;171(5):1099-1107. doi:10.1111/bjd.13121

37. Lui H, Zhao J, McLean D, Zeng H. Real-time
Raman spectroscopy for in vivo skin cancer
diagnosis. Cancer Res. 2012;72(10):2491-2500. doi:
10.1158/0008-5472.CAN-11-4061

Expert-Level Diagnosis of Nonpigmented Skin Cancer by Combined Convolutional Neural Networks Original Investigation Research

jamadermatology.com (Reprinted) JAMA Dermatology January 2019 Volume 155, Number 1 65

© 2018 American Medical Association. All rights reserved.

Downloaded From: https://jamanetwork.com/ on 08/27/2022

http://arxiv.org/abs/1512.03385
https://dx.doi.org/10.1016/j.jaad.2003.09.009
https://jama.jamanetwork.com/article.aspx?doi=10.1001/jama.2018.4385&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamadermatol.2018.4378
https://jama.jamanetwork.com/article.aspx?doi=10.1001/archderm.144.9.1120&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamadermatol.2018.4378
https://dx.doi.org/10.1111/j.1365-2133.2011.10239.x
https://dx.doi.org/10.1111/j.1365-2133.2011.10239.x
https://dx.doi.org/10.1111/bjd.13121
https://dx.doi.org/10.1158/0008-5472.CAN-11-4061
http://www.jamadermatology.com/?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamadermatol.2018.4378

