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Abstract 

 

Sounds offer a rich source of information about events taking place in our physical and social 

environment. However, outside the domains of speech and music, little is known about whether 

humans can recognize and act upon the intentions of another agent’s actions detected through 

auditory information alone. In this study we assessed whether intention can be inferred from the 

sound an action makes, and in turn, whether this information can be used to prospectively guide 

movement. In two experiments experienced and novice basketball players had to virtually intercept 

an attacker by listening to audio recordings of that player’s movements. In the first experiment 

participants had to move a slider, while in the second one their body, to block the perceived 

passage of the attacker as they would in a real basketball game. Combinations of deceptive and 

non-deceptive movements were used to see if novice and/or experienced listeners could perceive 

the attacker’s intentions through sound alone. We showed that basketball players were able to more 

accurately predict final running direction compared to non-players, particularly in the second 

experiment when the interceptive action was more basketball specific. We suggest that athletes 

present better action anticipation by being able to pick up and use the relevant kinematic features of 

deceptive movement from event-related sounds alone. This result suggests that action intention can 

be perceived through the sound a movement makes and that the ability to determine another 

person’s action intention from the information conveyed through sound is honed through practice. 

 

Keywords: Action anticipation, Event related sound perception, Information Movement guidance, 

Expert/novice differences 
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Although our acoustic environment is structured by the physical and social events in the world 

around us (Gaver, 1993; Rosenblum, 2004; Steenson & Rodger, 2015), research on how we 

perceive and respond to arguably the most salient types of events, namely the actions of others, has 

tended to focus primarily on the visual modality (McAleer & Pollick, 2008). Indeed, outside of the 

domains of music and speech, very little is known about whether people can pick up and act upon 

information about the intentional behaviour of others through the auditory modality alone. The 

‘supramodal theory of the brain’ (Rosenblum, Dias, & Dorsi, 2016), which has its basis in 

ecological psychology and enactive cognitive science (Gibson, 2014; Noë, 2004), argues that as 

long as information relevant to a given task is available to a perceiver, their brain is not constrained 

by the sensory modality through which the event based information is picked up. In other words, if 

a person’s actions structure the patterning of information in both the optic and acoustic arrays, as 

would be the case when walking on a gravel surface, this information may be accurately detected 

through either modality. Importantly, if one sensory modality is unavailable (e.g. vision is 

occluded), then the brain may make use of the same information in another modality (e.g. audition) 

(Rosenblum et al., 2016). Furthermore, these behavioural results are supported by neuronal studies 

that show, in non-human primates and humans, that action based sounds are encoded in the same 

mirror circuits that are activated during the visual recognition of actions and also action execution 

(Kohler, Keysers, Umiltà, Fogassi, Gallese, and Rizzolatti, 2002; Gazzola, Aziz-Zadeh, Keysers, 

2006). Hence, if patterns of movement can specify the intention of an agent visually, and relevant 

correlated information about these patterns of movement is also contained in sound, then it may be 

possible for perceivers to pick up and act solely upon the available information. In this paper, we 

tested the hypothesis that participants will be able to pick up and use the information that specifies 

the future course of action of an attacking player in basketball using sound alone.  

Our ability to perceive the action intention of others and use this information to regulate our own 

movements is crucial to successfully performing many everyday activities such as driving a car, or 

crossing a road.  Previous research has shown that experience of relevant actions, and the action 
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capabilities of the actor, can influence our perception of the world around us (Witt & Riley, 2014). 

Furthermore, other research has also shown that increased levels of practice or experience heighten 

our ability to tune into relevant sensory information that specifies a future course of action (Brault, 

Bideau, Kulpa, & Craig, 2012; Correia, Araújo, Cummins, & Craig, 2012) and enhance the level of 

action representation in the brain (Calvo-Merino, Glaser, Grezes, Passingham, & Haggard, 2005; 

Calvo-Merino, Grezes, Glaser, Passingham, & Haggard, 2006). Through these mechanisms it is 

hypothesised that expert sports players are better able to predict whether a basketball shot will 

result in a basket (Aglioti, Cesari, Romani, & Urgesi, 2008), detect when an attacker is trying to 

use his/her movements to deceive an opponent in rugby (Brault et al., 2012) and to anticipate 

deceptive action in soccer (Tomeo, Cesari, Aglioti, & Urgesi, 2012).  

The neural correlates underpinning some of these abilities have been investigated in studies using 

transcranial magnetic stimulation (TMS). These studies have shown increased activation in 

selective areas of the motor cortex in expert participants but no motor cortex modulation in novice 

participants (Aglioti et al., 2008; Tomeo et al., 2012). As with vision, these types of studies have 

shown that action recognition through sound alone seems to also be modulated by experience 

(Chen, Penhune, & Zatorre, 2008a, 2008b; D'Ausilio, Altenmuller, Olivetti Belardinelli, & Lotze, 

2006; Lahav, Saltzman, & Schlaug, 2007; Zatorre, Chen, & Penhune, 2007). In particular, fMRI 

studies have shown that once novice piano players have learned a musical piece, motor areas are 

activated just by hearing the same piece again, while no activation is found when they hear 

different musical pieces (Lahav et al., 2007). A TMS experiment has supported the importance of 

motor experience by showing a higher motor evoked potential for finger muscles in amateur piano 

players when they listen to a previously rehearsed piano musical piece compared to hearing a non-

rehearsed piece played on a flute (D'Ausilio et al., 2006). An fMRI study also showed greater 

activation in the pre-motor and motor areas of the cortex when expert tennis or basketball players 

listened to sports sounds from their own sport, compared to sounds from a different sport or non-

sporting sounds (Woods, Hernandez, Wagner, & Beilock, 2014). These findings suggest that sound 
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contains relevant information about an action-related event that not only facilitates the re-

enactment of the listened-to action in quite a sophisticated manner (Cesari, Camponogara, Papetti, 

Rocchesso, & Fontana, 2014; Young, Rodger, & Craig, 2013; Young, Sherve, Quinn, & Craig, 

2016) but also allows for the extraction of key dynamic kinematic features. For example, it has 

been shown that by listening to the sound of footsteps when walking, humans are able to pick up 

and use the timing and velocity features of the gait pattern along with the force exerted on the 

ground to produce strides of different lengths (Turchet, Camponogara, & Cesari, 2015; Turchet, 

Serafin, & Cesari, 2013; Young et al., 2013; Young et al., 2016). These examples highlight the 

importance of not only assessing what auditory information is picked up and used by the perceiver, 

but also how the sound is ‘brought into use’ to regulate action (Steenson & Rodger, 2015; 

Rosenblum et al., 2016). In other words these studies highlight the importance of sensory 

information in the guidance of action (Lee, 1998). 

The question of how action-sounds may be perceived in relation to their potential use raises another 

theoretical issue with regards to the action capabilities of the perceiver. Following on from 

Gibson’s concept of ‘affordances’ (Gibson, 1979), structures or events in the environment, which 

support or invite different behaviours, do so in relation to the capacity of the perceiver to act 

successfully upon them. For example, the physical geometry of a stair supports climbing for an 

adult, but not for a toddler whose own physical and coordination capacities are not yet sufficiently 

developed (Cesari, Formenti, & Olivato, 2003). Action-capabilities may be species-specific, 

developmental, or may be determined by the relevant skill level of the perceiver-actor. For 

example, expert soccer goal-keepers were found to be better than novices at detecting and acting 

upon the spin that influence the ball flight path in curved free kicks in soccer (Dessing & Craig, 

2010). Interestingly, this expertise-dependent advantage was not found in a similar ball-curve 

perception only task in which participants simply had to judge, ahead of time, whether a free-kick 

would result in a goal or not (Craig et al., 2009). This suggests that the effects of skill-based action-

capabilities on perception may be more strongly manifested when perception is coupled to action 



ACTION ANTICIPATION THROUGH ITS SOUND ALONE 

 

 

6 

6 

and the task requires participants to act on the perceptual information in a manner appropriate to 

their domain of expertise (Brault et al., 2012; Correia et al., 2012; Dessing & Craig, 2010; Watson 

et al., 2011). This question was explored here by having novice and expert basketball player 

perform a more ecologically-valid action-response task (virtual full-body blocking of a perceived 

attacking player – expertise specific), in addition to a generic perception-action task (moving a 

slider in the perceived direction of the attacking player – non-expertise specific).  Whilst evidence 

has shown that motor resonance through vision allows elite athletes to infer the consequences of a 

motor act (Aglioti et al., 2008), our aim here is to see whether athletes are able to use the 

information embedded in the sound of an action to infer intention and if action-relevant experience 

enhances this ability. With this in mind we compared basketball and non-basketball players’ ability 

to use auditory information to anticipate whether an attacking player was performing deceptive or 

non-deceptive basketball movements in two different experiments. The first study, called the Slider 

Task, required a simple action response where the participant had to slide his/her finger laterally 

along a rail in the direction he/she thought the player was going to pass (i.e. to the left or to the 

right). This experiment did not require the participant to have basketball specific motor abilities but 

was more concerned with the ability to detect the auditory information that would specify final 

running direction. The second experiment, called the Full-body Task, required the participant to 

move his/her whole body in the direction (left or right) in which he/she thought the player was 

going to pass. This second experiment was designed to be more life-like and to re-create an 

expertise context similar to the one that players would normally experience when playing 

basketball. This design allows us to test for expertise effects where the energetic demands (i.e. 

incorporating full body movement) are increased and the specific motor skills developed through 

years of training are required to successfully perform the task. We hypothesize that humans are 

able to anticipate another person’s action intention from only the sound of that action, and the 

perceptual information specifying action intention, along with the resonant action system, allows 

the participants to prospectively guide their movements. We also hypothesize that this ability will 
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be enhanced in people with action-relevant training and experience, namely experienced basketball 

players who will participate in this study. 

 

Method 

 

Participants 

Experiment 1 (Slider Task): The basketball group consisted of 9 participants (7 male, 3 left handed, 

mean age = 22.2 ± 3.08 years) with basketball playing experience. The non-basketball group 

consisted of 14 participants who had no experience playing basketball (6 male, 2 left handed, mean 

age = 27 ± 9.20 years). None of the participants reported any kind of hearing impairment. 

Experiment 2 (Full body Task): The same group of 9 basketball players who took part in 

experiment 1 also took part in experiment 2. Ten out of the 14 non-basketball players who took part 

in the first experiment (6 male, 2 left handed, age 25.8 ± 8.65 years) also took part in experiment 2. 

Basketball players were recruited from the University basketball team. They trained, on average, 6 

hours per week and had been playing basketball for 10.2 years (sd=4.49). The two experiments 

were carried out 48 hours apart. The School of Psychology ethics committee at Queen’s University 

Belfast granted ethical approval for the study.  

 

Materials and Procedure 

Action sound stimuli 

Two binaural microphones (Roland CS 10 EM) were inserted into the acoustic meatus of a dummy 

head. These microphones were used to record the sounds of a basketball player’s movements 

including the bouncing of the ball. The dummy head was positioned on the floor to represent the 

position of a defender. A professional basketball player (32 years of age and 23 years of basketball 

playing experience) (from now on called ‘the attacker’) performed different runs while bouncing a 

basketball as he moved towards the dummy head (Fig. 1). The main idea was to record sounds that 
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were as naturalistic as possible and that represented the perspective of a defending player. The 

sounds for both deceptive and non-deceptive runs were recorded. A deceptive movement was 

classed as a movement to the right or left followed by a sudden switch in the opposite direction to 

pass the defender (making the action more difficult to predict) while a non-deceptive movement 

involved a simple change in direction to pass the defender on the left or right. The attacker started 

15 meters from the dummy head and ran, while bouncing the ball, towards a pre-defined point 

located 1.6 meters from the dummy head (defined by expert basketball players as the optimal 

distance for an attacker to change running direction) (see Fig. 1). The attacker was asked to execute 

four different types of action that would result in four different sound stimuli (right and left are 

considered with respect to the defender): 

1- Non-deceptive R – running straight then moving to pass the defender on his/her right 

2- Non-deceptive L – running straight then moving to pass the defender on his/her left 

3- Deceptive L – running straight moving to the right then abruptly switching to pass the defender 

on his/her left 

4- Deceptive R - running straight moving to the left then abruptly switching to pass the defender on 

his/her right 

 

*** Insert Figure 1 here*** 

 

Capturing the attacker’s movement kinematics  

A total of 41 passive markers were attached to the body of the attacker at key anatomical landmarks 

to capture his movements at 100 Hz using 8 Vicon infrared motion capture cameras. The cameras 

were positioned around the basketball court so that they would capture a rectangular area of 6x4 

meters. The Plug-In gait model was used to analyze the movements of the participant. The Center 

Of Mass (COM) displacement was calculated using the Vicon Nexus software, which allowed us to 

define an effective versus an ineffective deceptive movement by applying a method similar to that 
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used by Brault et al, 2010 (Brault, Bideau, Craig, & Kulpa, 2010). The software also allowed us to 

time-align the recorded sound with the attacker’s movements. 

Based on Brault et al’s (2010) classification we categorized the recorded movements and their 

associated sounds into 3 different levels of deceptive movement: i) high, ii) medium and iii) low. In 

order to decrease any participant expectancy that a deceptive movement was always going to occur, 

sounds relating to 3 non-deceptive movements were also selected to counterbalance the deceptive 

movement trials. Since the attacker performed the ball bouncing with his dominant hand (right), the 

sounds recorded were 3 Non-Deceptive on the Left and 3 Deceptive on the Right with respect to the 

dummy head. To create an equal number of left and right trials, that were identical but varied only 

in direction, the selected sounds from deceptive and non-deceptive movements were inverted 

between the left and right channels. In this way sounds were equal in spectrum and intensity for the 

left and right directions and were not affected by the handedness of the attacker. Sounds were 

reversed using Matlab (Matlab R_2012a) and created with the function “wavwrite”. A total of 60 

trials were presented [(3 deceptive and 3 non-deceptive) X 2 directions (left and right) X 5 

repetitions].  

 

Analysis of the sounds 

Given that the theoretical basis of this work is around information movement guidance (Lee, 1998), 

it is important to understand what kind of information participants could pick up and use to inform 

their decisions about when and how to act (Craig, 2013). To do this the auditory information in the 

soundtracks corresponding to the actions performed by the attacker’s dominant hand (right) were 

analyzed using deep sound analysis. For each soundtrack we analyzed the sound of each bounce by 

considering a time window that started at the peak intensity of one bounce to 10 samples before the 

subsequent one and from which we extracted the Interaural Time Difference (ITD) and the 

Interaural Intensity Difference (ILD), which are recognized as the main cues that specify a sound’s 

position in space (Blauert, 1997). The ITD for each bounce was defined by means of a cross 
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correlation analysis between the two stereo channels, while the ILD was defined by a short time 

average energy analysis, using a time window of 50 frames that corresponded to 113 μs. The 

difference between the Left and Right channels was then computed and the ILD value extracted. 

According to previous research (Schnupp, Nelken, & King, 2011) the minimum ITD and ILD for 

perceiving a sound as lateralized are 10-15 μs and 0.5-0.8 dB respectively, depending on the sound 

frequency; the maximum ITD available from the dummy head, based on the head size, was 663 μs. 

Since the soundtracks included the sounds of footsteps, we extracted the footstep ITDs and ILDs by 

removing the bounce sound for each time window. In order to define whether ITD changed with 

respect to the ILD, we correlated those two variables together. Since ITD and ILD are the most 

important cues to use for sound localization, a high coefficient of correlation between them will 

indicate that the sound can be more easily localized spatially. The analysis of both the bounces and 

footsteps revealed that the ITD for Deceptive movement remained stable (Fig. 2), but changed for 

the Non Deceptive one. On the other hand the analysis revealed that Deceptive movement had a 

clear intensity change (ILD) when the attacker moved to the opposite side when performing the 

deceptive action (Fig. 3).  

 

*****Insert Figures 2 and 3 here ***** 

 

Correlation results showed a high correlation coefficient between ITD and ILD for Non-Deceptive 

sound number 1 (r=0.51, p = 0.05) and 2 (r=0.95, p < 0.001), while no significant correlations were 

found for the Deceptive movements. According to the definition of “Deception”, the attacker’s 

intentions have to be disguised by means of a movement that will cause the defender to perceive the 

incorrect passing direction. This strategy can be appreciated through the sound analysis, where the 

lack of correlation between ITD and ILD in deceptive movements creates a situation where the 

movement intention cannot be well defined. For instance, the analysis of soundtrack number 1, 

showed that both the bounce sound and the footstep sound of this clip contain acoustic information 
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that could lead a listener to perceive the attacker as moving in a direction opposite to the final 

passing direction – that is, a deceptive movement. By taking into account the analysis of the sounds 

produced by the actions together with the kinematics of the attacker’s actions we deduced that the 

most obvious deceptive movement was soundtrack number 1 and the clearest non-deceptive 

movement was soundtrack number 2. 

 

Apparatus and set-up 

In experiment one, the Slider Task, participants had to anticipate the final passing direction from the 

sound of the attacker’s actions by moving their finger to the left or right along a 2-dimensional slide 

rail. In experiment two, the Full Body task, participants had to still anticipate the final passing 

direction from the sound of the attacker’s action but this time they had to move their whole body to 

the left or right to block him. The participants’ movements in both experiments were recorded using 

the Qualisys motion capture system. The pre-recorded sound of the attacker was delivered to the 

participants through an AKG Studio K240 neutral headset. In order to analyze how the sound of 

action influenced the participants’ movement decisions, sound delivery was synchronized with the 

motion capture system (Qualisys Oqus3 Motion Capture cameras) by means of an Arduino board 

and the Matlab Psychotoolbox (Matlab R_2012a). The sound Pressure level was equalized using 

Audacity software with all sounds being delivered with an intensity peak of 65 dB in order to avoid 

a startle reflex (Carlsen, Maslovat, Lam, Chua, & Franks, 2011). In the Slider Task, a Qualisys 

motion capture system with 4 infrared cameras recorded the movement of the tip of the participant’s 

index finger at 200 Hz. A 40 cm rail was fixed near the side of a table, with a ring on a slide 

positioned inside the rail. In the Full-body Task the same motion capture system was used (11 

Qualisys Oqus3 Motion Capture cameras) with 39 reflective markers (Plug-in gait model) being 

placed on key anatomical landmarks of the participant’s body to capture full body movement at a 

frequency of 200 Hz. 
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Procedure 

In the Slider Task, the participants sat on a chair in front of a table with the index finger of the 

dominant hand inside the ring mounted on the rail (Fig. 4A). For each participant the chair was 

adjusted so that the participant sat at a comfortable distance from the table, with their index finger 

aligned with the center of their torso and the rail placed in front of them. In each trial, the 

participant was asked to listen to the audio recordings of the attacker and then move his/her finger 

in the direction where he/she perceived the attacker was going to pass. Participants were 

encouraged to be as accurate as possible and could change their mind. That is to say, they could 

initially move right and then switch to move left. The finger movement was recorded for the 

duration of the sound trial. The trial ended when the sound passed by the side of the participant. 

In the Full-body Task, participants were asked to stand in the center of the calibrated area in a 

typical basketball defensive position (this was demonstrated by the experimenter), and listen to the 

sound of the attacker moving towards them (Fig. 4B). This time the participant was asked to move 

his/her whole body in the direction where he/she perceived the attacker would pass. This task was 

more akin to a real basketball scenario where the participant was moving his/her body to block the 

attacking player. As in experiment 1, the participant could change his/her mind and the whole body 

movement was recorded for the duration of the sound trial.   

For both experiments, movements from a total of 60 trials were collected for the 12 different action 

sounds [(3 deceptive and 3 non-deceptive) X 2 directions (left and right) X 5 repetitions].  

  

***Insert Figure 4 here**** 

 

Results 

Kinematic data analysis 

In light of the previous analysis, data collected for trials using deceptive sound number 1 and non-

deceptive sound number 2 were subsequently analyzed. For the Slider Task, the kinematic signals 
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of each participant’s movements were filtered using a second order Butterworth filter set at 20 Hz. 

The lateral-lateral direction was extracted and the following measures were calculated: i) 

percentage of errors (i.e. participants’ initially moved in the wrong direction), ii) the difference in 

time between movement initiation and the time when the attacker reached the central point (see 

Figure 1), iii) movement duration and iv) peak velocity. We expected basketball players to be more 

accurate in defining the attacker’s final running direction. We also predicted that basketball players 

would move earlier when hearing non-deceptive movements but wait longer when hearing 

deceptive movements (to pick up more information to inform the correct action choice – see 

Dessing & Craig, 2010; Brault et al, 2012).  An in-depth analysis of each variable allowed us to 

draw a clear picture of the anticipatory abilities of both basketball and non-basketball players.  

To clarify, Percentage of errors was determined as the number of times that a participant was 

fooled (i.e. moved initially in the wrong direction). This was calculated by means of a Matlab 

algorithm that defined whether the medio-lateral displacement of the participant was initially in the 

opposite direction with respect to the final running direction of the attacker. For each soundtrack, 

the percentage of times that the participant was fooled was then calculated. Movement initiation 

time was taken relative to the time when the attacker reached the central point (t=0) and was defined 

as the instant after the start of the sound clip when the derivative of the displacement reached 5% of 

its peak value  (Bertucco and Cesari, 2010). This could result in positive or negative values. 

Negative values indicated that the participant moved before the attacker’s foot reached the central 

point and positive values indicated that the participant moved after this point in time. Movement 

duration was calculated as the time from movement initiation to the time when the participant 

reached the final position with final position being defined as the point when the decrease in 

movement velocity reached 5% of its peak value. 

For the Full-body Task, an analysis of the kinematic data was performed using Matlab R_2012a 

software. All the signals were digitally low-pass filtered at 7 Hz, using a second order Butterworth 

filter (O'Connor, Thorpe, O'Malley, & Vaughan, 2007). The Center of Mass displacement in three 
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directions (X, Y and Z) was calculated using the Zatsiorsky formula (Zatsiorsky, Seluyanov, & 

Chugunova, 1990), where the Center of Mass (COM) was derived from 12 defined segments and its 

total displacement computed. The COM signal in the lateral-lateral direction was then considered. 

The same variables identified in the Slider Task were also calculated in the full-body task: 

movement initiation, movement duration, peak velocity, total displacement and percentage of 

errors. 

 

Statistical analysis 

All the variables (movement initiation, movement duration, peak velocity, total displacement and 

percentage of errors) were entered separately into 2 X 2 X 2 mixed ANOVAs, with Group the 

between-subjects factor, and both Movement (deceptive/non-deceptive) and Direction (left/right) as 

within-subjects factors. Post hoc analyses were performed using the Bonferroni correction. When 

Bonferroni corrections were applied, the significance levels of p values were considered 

accordingly.  

 

Slider Task  

For clarity it is important to emphasise that movement direction is with respect to the participant 

(i.e. left is to the participant’s left and right is to the participant’s right). 

Percentage of errors. The ANOVA revealed no significant main effects or interactions in the 

percentage of errors. During the deceptive movements expert basketball players performed an 

average of 44.44% (sd = 9.89%) movements in the wrong initial direction, while Non-Basketball 

players performed 55.33% (sd = 7.66%). This difference between basketball and non-basketball 

players was not found to be significant (p = 0.26). During the Non Deceptive movements 

Basketball players performed on average 1.11% (sd = 2.88% ) of movements in the wrong direction 

while Non-Basketball players performed 4.00% (sd = 2.23%); again this difference was not found 

to be significant (p = 0.67). 
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Movement Initiation. An Analysis of Variance for Movement Initiation showed a significant main 

effect for Group (F (1,19) = 40.43, p < 0.0001, η2 = 0.68) and type of Movement (F(1,19) = 10.73, p 

= 0.004, η2 = 0.15). No other main effects or interactions were found to be significant. Post hoc tests 

revealed a significant earlier movement initiation time for the Basketball player group (-0.22s 

(sd=0.09)) compared to the Non-Basketball player group (0.56s (sd=0.07)) (p < 0.0001), and for 

Non-Deceptive (0.07s (sd=0.05)) compared to Deceptive (0.27s (sd=0.08)) movements (p = 0.004). 

Movement Duration. The analysis of variance of Movement Duration showed no significant main 

effect for Group (p>0.05), but did for type of Movement (F(1,19) = 17.66, p < 0.0001, η2 = 0.21) 

with a significant Movement X Direction (F(1,19) = 4.62, p = 0.04, η2 = 0.04) interaction. The post 

hoc analysis for type of Movement showed a longer movement duration for the Deceptive (0.90s ,sd 

= 0.08s) compared to Non Deceptive movements (0.62s, sd = 0.05s) (p < 0.0001), while the 

interaction showed an asymmetry between left and right Non-Deceptive movements, with longer 

movement durations to the right (0.73s, sd = 0.08s) compared to the left (0.51s, sd = 0.03s) (p = 

0.009). Longer movement durations for Deceptive (0.85s, sd = 0.08s) compared to Non Deceptive 

(0.51s, sd = 0.03s) movements were only found for the Left (p < 0.0001) (Fig. 5). 

 

***Insert Figure 5 here*** 

 

Peak velocity. The ANOVA for Velocity showed a significant main effect for Group (F(1,19) = 

4.37, p = 0.05, η2 = 0.01) and also for Movement (F(1,19) = 14.88, p = 0.001, η2 = 0.22). No other 

main effects or interactions were found. For Group, basketball players moved significantly faster 

(934.34 mm/s, sd = 59.11 mm/s)) than non-basketball players (777.01 mm/s, sd = 46.44 mm/s) (p = 

0.05), while Deceptive movements resulted in faster movements (955.03 mm/s, sd = 47.24 mm/s) 

compared to the Non-Deceptive movements (756.36 mm/s, sd = 44.91 mm/s) (p = .0.001). 

 

Full-body Task 



ACTION ANTICIPATION THROUGH ITS SOUND ALONE 

 

 

16 

16 

Percentage of errors. The ANOVA for the percentage of errors showed a significant main effect for 

Group (F (1,15) = 5.80, p = 0.02, η2 = 0.26), Movement (F (1,15) = 62.16, p < 0.0001, η2 = 0.66) 

and a significant interaction for Group X Movement (F(1,15) = 6.44, p = 0.02, η2 = 0.06). For 

Group a significantly higher percentage of errors were found for the Non-Basketball player group 

(36.91%, sd = 4.64%) compared to the Basketball group (21.35%, sd = 4.68%) (p = 0.02), with a 

significantly higher percentage of errors being found for the Deceptive (53.41%, sd = 5.76 %) 

compared to Non-Deceptive movements (4.00%, sd = 2.79%) (p < 0.0001). The interaction 

Movement X Group showed that the Basketball players had a lower percentage of errors (37.64%, 

sd = 8.15%) compared to the Non-Basketball player group (67.71%, sd = 8.15%) for the deceptive 

movements only (p = 0.01), no differences for the non-deceptive movements were found (p = 

0.999) (Fig. 6).  

 

*** Insert Figure 6 here*** 

 

Movement Initiation. The ANOVA for Movement Initiation showed no significant main effect for 

Group, but did for Movement (F (1,15) = 24.08, p < 0.0001, η2 = 0.11) and Direction (F(1,15) = 

5.32, p = 0.03, η2 = 0.02). We found a significant interaction for Movement X Group (F(1,15) = 

24.08, p < 0.0001, η2 = 0.18 ), Direction X group (F(1,15) = 30.02, p < 0.0001, η2 = 0.16) and 

Movement X Direction X Group (F(1,15) = 27.16, p < 0.0001, η2 = 0.21). No other main effects or 

interactions were found. Post hoc tests for Movement showed an earlier movement initiation time 

for Non-Deceptive (0.43s, sd = 0.06s) compared to Deceptive movements (0.64 s, sd= 0.07s), (p < 

0.0001) while tests for Direction revealed an earlier initiation for movements to the left (0.48 s, sd = 

0.06s) compared to movements to the right (0.59 s, sd = 0.07s) (p < 0.0001). The significant 

interaction found for Movement X Group showed different movement initiation times for Deceptive 

compared to Non-Deceptive movements in basketball players only, with the earliest movement 

initiation being found for Non-Deceptive ones (Non Deceptive 0.22s, sd = 0.09s, Deceptive 0.70s, 
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sd = 0.10s; p < 0.0001). The difference between the two groups emerged only in Non-Deceptive 

movements, where there was an earlier movement initiation time for Basketball players (0.22s, sd = 

0.09s) compared to Non-Basketball players (0.63s, sd = 0.08s) (p = 0.004)  (Fig. 7). The interaction 

Direction X Group showed a significant difference between the Left and Right sides for both 

groups, with an earlier initiation time for the Right (0.53s, sd = 0.09s) compared to the Left (0.68s, 

sd = 0.08s) (p = 0.035) in Non-Basketball players, with the opposite being observed for the 

basketball players (Left 0.284s, sd=0.09s; Right 0.64s, sd = 0.10s; p < 0.0001). The difference 

between groups was only found for the Left side, with an earlier movement initiation time being 

displayed by the Basketball player group (p < 0.0001). 

 

***Insert Figure 7 here*** 

 

The interaction Movement X Direction X Group showed that a different performance strategy was 

adopted by Basketball players for both the left and right directions, where they moved earlier for 

Non-Deceptive (Left -0.06s, sd = 0.10s; Right 0.51s, sd = 0.10s ; p < 0.0001) and later for 

Deceptive movements (Left 0.63s, sd = 0.10s; Right 0.77s, sd = 0.13s; p = 0.02) (Fig. 8A). In 

contrast, the Non-Basketball players behaved differently according to passing direction. They were 

found to start to move earlier when the movement was deceptive (0.47s, sd = 0.10s) compared to 

when the movement was non-deceptive movements (0.88s, sd = 0.09s) when the attacker passed on 

the left hand side  (p = 0.001), while the opposite was found for cases when he passed on the right-

hand side (Deceptive, 0.69s, sd = 0.12s; Non-deceptive, 0.38s, sd = 0.09s, p = 0.006)  (Fig. 8B). 

When considering the performance for each Direction and Movement, Basketball players were 

found to move earlier than Non Basketball players for Non-deceptive movements on the left only (p 

< 0.0001). 

 

***Inert Figure 8 here*** 
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Movement Duration. The ANOVA for Movement Duration showed a significant main effect for 

Group (F (1,15) = 24.08, p < 0.0001, η2 = 0.46) and Direction (F(1,15) = 64.50, p < 0.0001, η2 = 

0.45). We also found a significant interaction for Movement X Group (F(1,15) = 21.05, p < 0.0001, 

η2 = 0.05 ) and Direction X Group (F(1,15) = 8.08, p = 0.01, η2 = 0.14). No other main effects or 

interactions were found. Post hoc tests for Group and Direction showed longer movement durations 

for Non-Basketball players (1.62s, (sd = 0.09)) and movements to the Left (1.63s, sd = 0.09s) 

compared to Basketball players (1.13s, (sd = 0.09)) (p < 0.0001) and movements to the Right 

(1.12s, (sd = 0.04)) (p < 0.0001). The interaction Movement X Group showed longer movement 

durations for Deceptive (1.24s, (sd = 0.11)) compared to Non-Deceptive movements (1.02s, sd = 

0.10s) in Basketball players (p = 0.02), while no differences were found for Non-Basketball players 

(p = 0.17) (Fig. 9A). When comparing the two groups, Basketball players (1.02s, (sd =  0.10)) had 

shorter movement times than Non-Basketball participants (1.68s, sd = 0.09s) for the Non-Deceptive 

movements (p < 0.0001), with both groups moving for the same amount of time for the deceptive 

movement sounds (p = 0.06). The interaction Direction X Group showed that both groups had a 

longer movement duration for the Left compared to the Right-hand side (Basketball Player Left 

1.22s, (sd = 0.13)); Basketball Player Right 1.02s, (sd= 0.06)); p < 0.0001), (Non-Basketball Player 

Left 2.02s, (sd = 0.13); Non-Basketball Player Right 1.22s, (sd = 0.06); p = 0.032), with Basketball 

players having a shorter movement duration compared to Non-Basketball participants for both 

directions (left p = 0.001, right p = 0.05) (Fig. 9B). 

 

***Insert Figure 9 here ***** 

 

Peak Velocity. The ANOVA for peak velocity showed a significant main effect for Group (F(1,19) 

= 7.44, p = 0.01, η2 = 0.33) and Direction (F(1,15) = 7.32, p = 0.01, η2 = 0.15). No other main 

effects or interactions were found. The factor Group showed a higher velocity for the Basketball 
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players (1408.63 mm/s, sd.= 59.94 mm/s)) compared to the Non-Basketball players (1183.71 mm/s, 

sd =   56.52 mm/s) (p = 0.01), while Direction produced a higher peak velocity for the Right 

(1242.64 mm/s, sd. = 43.78 mm/s) compared to the Left (1349.19 mm/s, sd = 47.50 mm/s) (p = 

0.01).  

Due to the gender imbalance between groups we ran a further analysis without considering the 

female sample. Results were, in general, the same as those previously found for all participants 

except for the Slider task where there was no significant Movement X Direction interaction for 

“Movement Duration “ and no Group difference for “Velocity”. 

 

Discussion 

In this study we have shown that it is possible to understand and infer another person’s action 

intention from the information embedded in the sound their actions produce. By listening to the 

sound of the actions of a professional basketball player, defined as “the attacker”, who performed 

deceptive and non-deceptive movements, we were able to assess whether humans can infer action 

intention when only having access to the sound an attacker’s movements made. Secondly, we 

wanted to see if experience of the action context plays a key role in trying to predict action 

intentions of others using sound. To do this we used two perception-action experiments, one 

requiring small, relatively easy lateral movement responses (non-expertise specific) and the other 

requiring full-body responses like those required in a real basketball game (expertise specific).  

In both experiments, we showed that the information embedded in the sound of an action was 

sufficient to accurately inform participants’ movement responses. This supports the ‘supramodal 

brain’ theory (Rosenblum et al., 2016), which states that if information specifying an event is 

available through different sensory channels, then the brain will make use of that information to 

support performance of the current task, regardless of which channel it is detected through. In this 

case, information for the player’s movement direction, which would otherwise be picked up through 

vision, was accurately detected through sound. However, for basketball players we found an earlier 
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movement initiation time, a lower displacement velocity, and a shorter overall movement time in 

non-deceptive compared to deceptive movements which allows us to conclude that experts are 

better able to pick up the auditory information that specifies deception in movement (see analysis of 

sound in the methods section) and use this information to anticipate an attacker’s action intentions.  

Indeed, the sound analysis showed that the ILD and the ITD were differentially correlated and 

distributed for deceptive and non-deceptive movements. The sound of deception was characterized 

by a constant ITD and a change of the ILD only immediately after the sound reached the central 

point. Moreover, for deceptive sounds there was a lack of correlation between the ITD and ILD 

variables. In contrast, for non-deceptive movements there was always a defined ITD and ILD 

predominance on one side (see section 2.4, figures 2 and 3) along with a strong correlation between 

the two. Our results show that basketball players were better at picking up this action specific 

information and using it to anticipate the attacker’s future position more quickly and accurately than 

non-basketball players.  

When considering the Slider task, we found no differences between the two groups for all the 

variables apart from movement initiation and movement velocity. Here we found that the basketball 

players moved earlier and faster than non-basketball players, indicating that our basketball players 

were quicker at picking up relevant sound-based information, allowing them to act in a more 

confident way compared to the non basketball players. It would appear that when the attacker was 

moving in a specific direction, both the sound of the angular trajectory of the ball and his footsteps 

produced a specific sound intensity profile, with associated timing cues, that directly mapped onto 

the kinematic movement features of the action being performed. It is this action specific sound 

information that is then picked up and used by the participant to anticipate the attacker’s final 

running direction. This sound information has to be prospective in nature so the participant can use 

it to act ahead of time to get to the right place at the right time to ‘intercept’ the passing attacker 

(Brault et al., 2012; Lee, 1998).  
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As highlighted in previous studies, it is through the structural and transformational invariants 

present in the sound (Thoret, Aramaki, Kronland-Martinet, Velay, & Ystad, 2014), that participants 

can anticipate the attacker’s movement kinematics (e.g. velocity, trajectory, position). In other 

words, changes in the sound envelope directly map onto the attacker’s action intentions, coupling 

the information to the movement produced. As a result, a participant can use this information to 

guide their movements accordingly. Interestingly, basketball players were able to accurately 

anticipate the attacker’s future running direction after 200 ms when it was non-deceptive. This 

anticipatory skill in basketball players is in line with a basketball study which showed that when 

vision was temporarily occluded basketball players were able to more accurately predict the 

outcome of a basketball shot above chance level, about 213 ms before the ball left the player’s 

hand, compared to novices who could not predict until 71 frames after the ball left the player’s hand 

(Aglioti et al., 2008).  

In this study, we found that the role of expertise in the perception of action through sound became 

more pronounced when participants had to engage in a basketball specific action and coordinate the 

movement of their whole body to intercept the attacker. In this situation, expert basketball players 

were able to more accurately recognize deceptive movements compared to their non-basketball 

counterparts (Fig. 3). Our results showed that basketball participants made movements in the wrong 

direction only 37% of the time in the Full Body Task, compared with 44% when performing the 

Slider task. Our non-basketball participants, on the other hand, performed more movements in the 

wrong direction when doing the Full-body task than when doing the Slider task (67% and 55%, 

respectively). These results, collectively, support the notion that action-capability effects on 

perception are more pronounced when perception and action are coupled and the perceiver can use 

the information to prospectively control action in a manner appropriate to their domain of skill 

(Craig & Watson, 2011; Van der Kamp & Renshaw, 2015). These findings further reinforce the 

need to carefully consider the design of perception based experiments to ensure that the task is 
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ecologically valid and is representative of how perception is used to inform decisions about action 

in everyday life (Brunswik, 2003). 

Being able to accurately pick up an attacker’s action intentions from the sensory information 

available and anticipate final running direction, is a skill that is acquired through a combination of 

visual (Aglioti et al., 2008; Tomeo et al., 2012) and auditory information that is generated whilst 

interacting in a task-specific context (Camponogara, Komeilipoor, & Cesari, 2015). In addition, we 

found that only the basketball players adopted two separate strategies for deceptive and non-

deceptive movements. When confronted with a deceptive movement, basketball players waited 

longer, to pick up more auditory information to be more fully informed of the attacker’s final 

running direction whilst in the non-deceptive movements, they moved as soon as they heard and 

understood the attacker’s intention. As has also been shown in visual studies (Dessing and Craig, 

2010; Brault et al, 2012), experts can read action intention by tuning into information that specifies 

true running direction, namely the displacement of the COM of the attacker. By disentangling the 

honest from the deceptive signals, experts wait that bit longer before they move (Brault et al., 

2012). Interestingly, this time corresponds to 200 ms after the attacker reaches the centre point, 

which underlines the anticipatory nature of the information being used in action guidance. This 

suggests that participants in this experiment had picked up information that specified the attacker’s 

action intentions early on in the event, which facilitated the coordination of their whole body to start 

to move at the right time to successfully intercept the attacking player. This strategy was consistent 

for both directions (left, right) in basketball players (Fig. 8A), whilst not in non-basketball players 

(Fig. 8B) and further confirms how experts can clearly tune into the relevant sound information that 

specifies the differences in the kinematics of deceptive and non-deceptive movements. Movement 

duration results confirmed this approach as being consistent, and showed that only experts adopted 

two different strategies with respect to the two different types of movement they heard (Fig. 9A). 

This, along with a high COM Velocity found in the basketball players confirms that the level of 

sensitivity in action planning is related to the level of experience of the listener (Cesari et al., 2014). 



ACTION ANTICIPATION THROUGH ITS SOUND ALONE 

 

 

23 

23 

The difference in action anticipation between the slider task and the full body task also showed that 

the basketball players’ superior task-relevant experience helps them extract pertinent action 

information in the early stages of the movement (Abernethy & Zawi, 2007). This highlights the 

importance of the unfolding pattern of the attacker’s movements in informing and guiding choices 

about when and how to act in an anticipatory way (Brault et al., 2012).  

It is also interesting to note the unexpected effect that the direction of the attacker had on movement 

initiation times, and in particular in the full-body task that the experts responded faster when the 

player was going to pass on the left than on the right in the non-deceptive trials, but that the novices 

showed the opposite effect (Figure 7). This would suggest that there is a lateral asymmetry in the 

action-capabilities of the participants in this task, and that basketball training and experience may 

reverse this asymmetry. It is possible that if the majority of basketball players are right-handed, then 

the distance between the defender and the ball is smaller when an attacking player passes them on 

the right than when they pass on the left, and so would require less time to initiate movement. It 

seems that if this is the case, then the expert players respond to the sounds in a way that reflects this 

inherent lateral asymmetry in action-time cost, whereas novices do not. This is an interesting 

hypothesis about how skill-based action experience may influence perception-action strategies that 

should be investigated in future studies. 

Although the studies reported here examined behavioral data, we can speculate about the 

underlying neurophysiological processes, which might be involved in the coupling between 

perception of kinematic information and action control. Neurophysiological data has shown that 

neurons in the premotor and parietal cortex are activated during the execution and also the 

observation of a given action (Di Pellegrino, Fadiga, Fogassi, Gallese, & Rizzolatti, 1992; Romani, 

Cesari, Urgesi, Facchini, & Aglioti, 2005). In macaque monkeys, it has been shown that certain 

neurons are activated by both seeing and/or hearing actions, as well as by performing the same 

actions (Kohler et al., 2002). Moreover, neural activation caused by performance and perception of 
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the same action has been found to be greater for familiar compared to unfamiliar actions (Calvo-

Merino et al., 2005). It could be supposed that what was observed in the present studies is 

analogous to the one described in visual studies, that is when people heard the sound of the action, 

cortical areas that would be involved in the execution of the same movement kinematics may be 

activated (Aglioti & Pazzaglia, 2010; Aziz‐ Zadeh, Iacoboni, Zaidel, Wilson, & Mazziotta, 2004; 

Bidet-Caulet, Voisin, Bertrand, & Fonlupt, 2005; Kohler et al., 2002; Lahav et al., 2007; 

Pizzamiglio et al., 2005). This suggests that common populations of neurons can detect the relevant 

kinematic action based information (Cesari et al., 2014; Thoret et al., 2014; Young et al., 2013), 

recognize the action (Rizzolatti & Craighero, 2004) and use this information to predict the actor’s 

intentions (Gallese & Goldman, 1998; Iacoboni, 2009; Iacoboni et al., 2005). In this context, motor 

expertise is crucial for picking up essential movement information (Abernethy & Zawi, 2007) and 

anticipating the player’s action intention (Aglioti et al., 2008; Tomeo et al., 2012). Through 

practice, it is hypothesised that the processing of task-relevant kinematic patterns (observed, heard, 

and/or performed) of the action is enriched and consolidated (Gallese, 2000). In keeping with the 

supramodal brain theory, the kinematic pattern created by the action resonates in the perceiver’s 

own motor system whether the sound is seen or heard (Aglioti & Pazzaglia, 2010, 2011; Cesari et 

al., 2014; Kohler et al., 2002; Lahav et al., 2007; Pizzamiglio et al., 2005; Rizzolatti & Craighero, 

2004). Although this account is consistent with our findings, the actual neural processes supporting 

pick-up and use of information about another person’s action through sound is in need of further 

investigation. 

In conclusion, our study demonstrates that the information in the sound of human action specifies 

the movement kinematics of that action, which in turn supports the perception of the actor’s 

intentions. Moreover, we show that experience itself shapes and refines this perception, allowing 

for the extraction and elaboration of relevant movement based information in the early stages of the 

movement so that the participant can act in an anticipatory way. Experience became more pertinent 
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when participants had to coordinate whole body movement in order to intercept the virtual attacker; 

with skilled players showing that they could use auditory information to guide their action in a 

consistent way. Through these perception/action experiments we have shown that we can infer and 

respond to an actor’s intention by listening to the sound of the action alone. We have shown how 

information embedded in the sound maps onto aspects of the action, and that information can be 

picked up and used more accurately by a group of experts to accurately anticipate the future running 

direction of an attacker. 
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Figure Caption 

 

Figure 1: A schematic representation of the running direction of the attacking basketball player 

during the recording of the sound stimuli. The black footprints represent a deceptive movement to 

the right (initially moving left and then making a sharp change in direction to the right) while the 

blue footprints represent a non-deceptive movement to the left (running straight then making a 

simple direction change to the left). Right and left directions are considered with respect to the 

dummy head for both the sound capture and with respect to the participant in the two experiments. 

 

Figure 2: ITD values for each bounce in each sound from the recordings taken from the attacking 

basketball player running towards the dummy head. The arrow indicates the bounce at which the 

attacker turned left or right after previously running in a straight line (Central Point). 

 

Figure 3: ILD values for each bounce in each of the six sound recordings used in the experiment of 

the attacker running towards the dummy head. The arrow indicates the bounce at which the attacker 

turned left or right after running in a straight line (Central Point). 

 

Figure 4: Representation of the setup of the Slider task (Finger movement) (A) and the Full body 

movement task (B). 

 

Figure 5: Slider task: The mean time taken to move the slider to its final position for each Direction 

(Left/Right) and for each Movement (Deceptive/Non-Deceptive). Error bars represent the standard 

error. The symbol * indicates a level of significance at p < .05, the ** indicates a level of 

significance at p < .001. 
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Figure 6: Full-body task: The percentage of errors for Basketball (black columns) and Non 

Basketball (white columns) players for Deceptive and Non-Deceptive movements. Error bars 

represent the standard error. The symbol * indicates a level of significance at p < .05. 

 

Figure 7: Full-body task, mean time taken to initiate full-body movements for the two groups 

(Basketball and Non-Basketball) in both Movement conditions (deceptive and non-deceptive). Error 

bars indicate the standard error. The symbol * indicates a level of significance at p < .05 the ** 

indicates a level of significance at p < .001. 

 

Figure 8: Full-body task, mean Movement Initiation Times for the Basketball (A) and Non-

Basketball groups (B) during the Deceptive and Non Deceptive movements in both Directions. 

Error bars indicate the standard error. The symbol * indicates a level of significance at p < .05, the 

** indicates a level of significance at p < .001. 

 

Figure 9: Full-body task, mean Movement Durations for each Movement (A) and Direction (B) 

within each group. Error bars indicate the standard error. The symbol * indicates a level of 

significance p < .05, the ** indicates a level of significance at p < .001. 

 

 

 

 




