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Abstract—Fault tolerance is of increasing importance for modern robots. The ability to detect and tolerate
failures enables robots to effectively cope with internal failures and continue performing assigned tasks
without the need for immediate human intervention. To monitor fault tolerance actions performed by
lower level routines and to provide higher level information about a robot’s recovery capabilities, we
present an expert system and critic which together form a novel and intelligent fault tolerance framework
integrating fault detection and tolerance routines with dynamic fault tree analysis.

A higher level, operating system inspired critic layer provides a buffer between robot fault tolerant
operations and the user. The expert system gives the framework the modularity and flexibility to quickly
convert between a variety of robot structures and tasks. It also provides a standard interface to the fault
detection and tolerance software and a more intelligent means of monitoring the progress of failure and
recovery throughout the robot system. The expert system further allows for prioritization of tasks so that
recovery can take precedence over less pressing goals. Fault trees are used as a standard database to reveal
the components essential to fault detection and tolerance within a system and detail the interconnection
between failures in the system. The trees are also used quantitatively to provide a dynamic estimate of
the probability of failure of the entire system or various subsystems.
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1. INTRODUCTION

There is much ongoing interest in deployment of robots in remote and hazardous environ-
ments. Applications include hazardous waste management and clean-up [1] and space-based
operations [2,3]. In these spheres of operation, the use of humans to perform tasks is limited to
short periods of time, and the work is often dangerous as well as difficult. The inherent problems
in having humans perform tasks safely in these environments make robots an attractive, if not
mandatory, alternative. However, the remoteness of such environments, the safety-critical tasks
required, and the difficulty of repairing the robots after failure, make fault tolerance and reliability
more critical issues than in conventional applications [4]. Recently, there has been a surge of interest
in robot fault tolerance, and the subject has been investigated from a number of points of view.
Ongoing work includes analysis of redundant systems [5-10], modular software environments
[11-14], fault tolerant control environments [15,16], error recovery 17,18}, and fauit detection
[19-22).

To protect the robot from human error, we turned to operating system structures and developed
a critic level for our framework [14]. The critic monitors the user’s interaction with the robot and
searches for any commands, obstacles or failure situations which might endanger the robot’s
mission. In earlier work, we developed and verified algorithms which successfully detect and
tolerate sensor and motor failures in a specific robot system [21,23]. To apply these algorithms to
a wider variety of robots, we proposed an expert system based supervisor which performs robotic
fault tolerance using a standardized representation of the robot’s fault structure and modularized
detection and recovery actions applicable to common robot components [24]. The advantage of
our approach is that, through the expert system, different methods for fault detection and tolerance,
such as those described in the works listed above, may be conveniently and efficiently integrated,
allowing the robot system to benefit from the best available approaches.

tAuthor for correspondence.
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In this paper, we discuss how the expert system manipulates fault trees [25,26] in order to
dynamically respond to detected failures in the robot system. In fault trees, the possible failure
events for the system are connected by basic logic symbols to produce a flow chart of failures [26].
Some failure analysis programs use digraphs [27,28] to represent the failure interconnections.
Digraphs are, however, easily transformed into fault trees for which there exist a wide variety of
research efforts [4,23,25,29].

In the following section, a new robot fault tolerance framework is described focusing on the
expert system and the fault tree database within the expert system. A discussion of quantitative
failure probabilities maintained by the system follows in Section 3. The novel use of fault trees as
a dynamic database for reconfiguration and repair, together with examples, is detailed in Section
4. Issues of fault tolerant user interfacing and a discussion of the resulting critic shell follow in
Section 5. Section 6 contains conclusions and discussion.

2. FAULT TOLERANCE FRAMEWORK

In order to separate the various functions of the overall robotic system and to better monitor
the interactions of the subsystems, we use models from the design of computer operating systems.
Figure 1 shows the high level interactions among the various layers of the control architecture,
incorporating an expert system framework.

2.1. Operating system architecture

Operating system software [30] allows for the scheduling and control of tasks desired by the user.
The operating system presents a well-defined interface to the user and spares the user from having
to know the particular details of the current configuration and underlying implementation. The user
communicates with a shell which is wrapped around a kernel. This analogy implies that the shell
protects the kernel and analyzes and translates random user commands. In Fig. 1, the user
communicates commands to the critic/protocol conformance shell which validates the user

Operator

Critic / Protocol Conformance Shell

Expert System Framework

Fig. 1. Fault tolerant robotic operating system.
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Fig. 2. Expert system supervisor within fault tolerance framework.

commands and passes low-level information to the expert system framework shown in greater
detail in Fig. 2. As part of this standardization, the user and operating system agree on a
language with a set of recognized commands. The commands are further defined in a specific
protocol or standard. The designers of the system attempt to guarantee that the particular
implementation will conform to the agreed upon protocol. Recently, there has been some work at
Sandia National Labs to develop a robot-independent programming language [31]. In the following
sections, we describe the fault tolerance framework and its capabilities in more detail, concentrating
on the expert system and its fault tree database. The overlying critic shell is further detailed in
Section 5.

2.2. Expert system kernel framework

The expert system kernel is initially divided into three layers [14,21]; a continuous servo layer,
an interface monitor layer, and a discrete supervisor layer. The servo layer consists of the normal
robot controller and the robot. The interface layer contains the motion planner and provides fault
detection and some basic fault tolerance for the system. The supervisor layer provides higher level
fault tolerance and general action commands for the robot.

Figure 2 highlights the position of the expert system as supervisor in the fault tolerance intelligent
control framework discussed in [14,21]. The expert system prunes failed components or branches
from a database of fault trees as failures are reported from the detection routines in the interface
layer. The system immediately notifies the operator of failures in the robot during on-line
operations so the operator may monitor the fault tolerance capabilities of the system and suggest
alternative recovery actions. The expert system also suggests recovery actions based on the
structure of the robot fault trees. The nodes in the tree then have an associated detection
or recovery action module [21,32] depending on the type of component or event. By
maneuvering around the trees, the expert system quickly performs fault tolerant recovery actions
for a specific robot structure as a sequence of these smaller, generic actions. The user modifies the
existing robot design or switches in another robot structure by manipulating the facts defining the
fault trees in the database. Common components and systems are described in easily integrated
libraries.

The expert system also recomputes the probability of failure of the robot system as failures occur.
The probabilities are used by the operator to monitor the degradation of the system and to note
when critical components have failed (see Section 3). A robot system responds quickly to internal
failures, endangering the robot and its working environment. A user may not have time to respond
to the failure, especially in systems with long communication delays such as in space-based robots.

CAEE 20/5—E
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The robot must take the initiative to cope with failures immediately until the user can verify the
recovery action, suggest alternatives, or repair the component. The prioritization capabilities of the
expert system are therefore utilized so that lower priority probability computations are treated as
background processes which occur after more pressing recovery or tolerance actions have been
completed.

We have implemented the fault tree database and supervisor in CLIPS (‘C’ Language Integrated
Production System) [33], a NASA-developed expert system software package. This system provides
an intelligent and flexible framework which easily accommodates fault detection and fault tolerance
routines for many structurally diverse robots. Fault tree traversing schemes provide rules for the
expert system supervisor layer. The expert system organizes the detection and tolerance algorithms
into modular procedures and can be easily embedded within other programs to allow for future
expansions.

2.3. Fault tree database

Fault trees contain details of the manipulator hardware, the control computer hardware and
software. An operator initializes the fault tree database with facts defining the structure of a
predetermined fault tree for the robot. We have developed detailed fault trees for our eight joint
research robot at Rice [26], and for a manipulator of the PUMA geometry. For this paper, we focus
on a simple four-link planar robot (Fig. 3) with dual sensors (for example, encoder/tachometer,
double encoder, etc.) and a direct drive motor per joint. This structure provides a simple example
of analytical [21,32] and kinematic redundancy with which the expert system can detect and tolerate
component failures.

In the fault tree (Fig. 4) for the robot, we have concentrated on the critical functional
components; the manipulator sensors and actuators. The failure events have been given a basic
letter encoding to simplify the database facts. Event A is the failure of the entire robot, the top
event. Failure events B, C, D, and E represent faitures of the joints of the robot. Note that the
suppressed trees under events D and E look much the same as the subtrees under B and C. The
basic component failures u through z represent failures of sensors (v, w, x, z) or motors (u, y), the
critical components in the joint subsystems. The OR-gate connecting u and F means that either
event u or F occurring will cause B to occur, where the AND-gate connecting v and w indicates
that both v and w must occur to invoke F.

Jnt 3
Enc 3a
Enc 3b
Jnt 2
Enc 2a

Enc 2b

Fig. 3. Four-link robot example.
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Fig. 4. Expert system fact initialization example.
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While the robot is operational, the expert system supervisor maintains the database model of
the trees, pruning branches as failures occur based on the rules for failure propagation through
AND- and OR-gates. As failures spawn additional failures due to the robot structure, subsequent
failures are automatically asserted by the expert system propagation rules, thus initiating a recursive
propagation of failure events up through the trees.

When a sensor or motor failure is detected by the interface layer [21), a failure fact is asserted
in the expert system. This fact consolidates with all structural facts containing as input the failed
component to activate a specific failure propagation rule. If the component is an input to an
OR-gate, the failure propagates through the gate and fails the output, thus pruning the OR-gate
from the tree by modifying the gate status to ‘failed’.

Because AND-gates in a tree represent some form of functional redundancy in the robot [21],
AND-gate facts have an associated ‘fail-with’ field (see Fig. 4) which informs the system of how
many input failures will fail the AND-gate. If an input to an AND-gate fails and the ‘fail-with’
field of the gate is greater than one, then this level still has redundancy and only the failed input
is pruned from the tree. The gate now fails with one less failure than before and has one less input.
When the AND-gate fact reveals that the gate will fail with one failure, the gate is essentially an
OR-gate and a failure of any remaining input will fail the output of the gate.

Facts associated with a pruned component or branch are not actually removed from the database
but are simply modified to prevent certain rule activations. This allows the original tree to be easily
rebuilt by the expert system when components are repaired/replaced. Asserting the ‘failed’ status
only upwards in the tree from a failed component allows the expert system to continue monitoring
the siblings of the faulty component (i.e. other inputs to the gate). For example, when component
u fails in the tree of Fig. 4, the failure propagates through the OR-gate and fails B as well. Suppose
that while u is down, component v fails. The expert system is able to handle the new failure
appropriately for the AND-gate beneath F, which is still considered alive although it no longer
contributes to system failure because node B has already failed. If u is now repaired and reinstated
into the database, the failure of v is still known to the expert system. If the entire subtree under
B had been ‘pruned’ as well when u originally failed, the failure of v would not have been correctly
recorded at its onset.

The operator has the option to signal an abort at any time if it is deemed that the assigned task
has been compromised. The expert system will use suggestions made by the operator or information
learned by traversing the database to develop new tolerance strategies based on the existing
structure of the robot. Alternate sensors or unburdened external sensors (such as cameras) of which
the interface layer is originally unaware, can be switched into the detection set to monitor a joint
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for failures when the known or basic set of sensors: has failed. Increasing the redundancy of the
motors or sensors as in [8] and [10] would provide a wider range of survivor choices for the system.

2.4. Future enhancements

The expert system tasks can be gracefully expanded or updated to draw in other work in the
rapidly growing field of robotic fault tolerance [6,8,10,13,18]. The expert system can utilize
programs, such as those described in [6,18], to monitor the reachable workspace of the robot
throughout its operation. When failures occur and a joint is shut down, the workspace shrinks due
to the immobility of the failed joint. The expert system will compute the changes to the reachable
workspace [18] and decide if the target position is still reachable by the robot. If the robot can no
longer reach its assigned goal, the supervisor signals an abort and waits for further instructions
from the operator.

The supervisor provides the operator with information on possible causes of failures by
traversing the appropriate subtrees in the database to accumulate a list of components which may
have caused a given failure. An operator can then use the list to direct and speed up future
inspections and repairs. When pruning the trees of failed components, the system also searches for
indications that a component is likely to fail because it is linked either structurally or functionally
to a previously failed component. For example, when one half of a dual motor fails, the surviving
half picks up the burden of the failed half’s workload [8,10], increasing its chances of failing. Also,
if a certain type of sensor has failed due to operating conditions, other sensors of that type may
also fail in the near future. Advanced detection routines use such warnings to be more alert to the
possibility of failures in these components while monitoring the system.

3. PROBABILITY OF FAILURE

The expert system maintains the probability of failure for each node within the tree. The operator
initializes only the basic components (leaves) in the tree with appropriate probability facts. The
expert system then initializes the probabilities for inner nodes of the tree by combining the basic
component probabilities through the gates in the tree structure.

As detailed in [4,25], the probability of a component failure can be calculated from a failure rate
for the component [29]. Given a constant failure rate A and using the exponential distribution, the
probability of failure at time ¢ is [4]:

p)=1—e*
the reliability of the component in the system is given by
R(t)=1-p(t)=¢e*,
and the mean time to failure (MTTF) is given as
MTTF = 1/4.

If the failure rate is small, the probability of failure is often approximated as it [25]. The expert
system models component decay by using time-dependent probabilities [25]. A small update routine
monitors the system time and modifies the basic probability facts during the life of the robot.

Various methods can be used to determine the failure rate A. For example, in [34], the average
failure rate A, for a D.C. motor is estimated as

Aw =[(t%/a3) + (1/aw)]

failures per 10°h, where ¢ is the operating time period for which 4, is the average failure rate, a,
is the bearing characteristic life, and a,, is the winding characteristic life of the device. Both a and
a, depend on the ambient temperature for the device, with expressions given in [34]. For an ambient
temperature of 20°C, an operating period of 100 h, the data in [34] gives a failure rate of 6.3 x 10-7
failures per hour.

Also in [34], the average failure rate A, for a resolver is given as

A, = Ay TsyTg



Expert system framework 427

failures per 10°h, where 4, is the base failure rate (exponentially related to ambient temperature),
g is a factor related to the device size, my is related to the number of brushes, and =, is an
environmental factor. For a small resolver with four brushes and the same ambient temperature
as the motor above in a (possibly mobile) ground-based environment, the failure rate 4, is found
from data in [34] to be 1.6 x 10~ failures per hour.

In the following, we assume that failure rates have been found, and work with the failure
probabilities in the system. Within the fault trees, these failure probabilities are combined through
the logic gates using simple multiplication and addition [25]. The probability of failure for the
output event of an AND-gate is the product of all the input probabilities and a conservative
estimate of the output event probability for an OR-gate is the sum of the input probabilities.

Figure 5 shows two stages of the process for the subtree under component B in Fig. 4. In Fig.
5(a), a failure has occurred in motor u and the failure propagates to the top level following the
rules described earlier. Failed components and events are shown with a grey background and failed
gates and paths are shown with dashed lines. In Fig. 5(b), sensor v has failed (and u has not failed)
and the modified probabilities propagate through the tree as shown. When a component fails, the
expert system initiates the changes in the system probabilities that are affected by the failed node.
The failed component is matched with all structure facts containing the component as input and
new facts are asserted which detail the type of gate, the output event, and the inputs. These new
facts activate probability-propagation rules which recompute the probability of the output event
by recursively multiplying or adding (depending on the gate type) [25] the probabilities of the
inputs.

Currently, the branch-in factor (number of inputs) of the gates in the trees is relatively small so
that each recomputation step is not too expensive time-wise. An alternative method if the branch-in
factor is high for a robot’s fault trees is to divide (for AND-gates) or subtract (for OR-gates) the
old value of the probability for the modified input and then multiply or add in the new value. This
method limits the computation at each level to a single divide/multiply or subtract/add combination
but requires additional memory space to save the old probabilities for each node in the tree. There
is thus a tradeoff in time vs space which must be considered.

A quantitative analysis provides a measure of the overall chance of a complete failure for each
robot system. The structure provided by the fault trees organizes the probabilities appropriately
for the robot system and provides a simple map of how the events relate to each other. Using the
trees, robots of a significantly different origin and structure are easily compared for fault tolerance
and survivability. Static analysis of failure probabilities and their propagation through the fault
trees allows the robot designer to focus on the components which are more likely to fail in the robot
and which are thus more central to the monitoring software and fault detection routines.

a) b)

B 3.0e-4

1.0e-8 2.0e-4 F |1.0e-4

1.0e-4 1.0e-4

Fig. 5. Example of probability propagation in fault trees.
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By dynamically modifying the probabilities as failures occur, the expert system alerts the robot
operator of any large changes in failure probabilities (several orders of magnitude) which may
indicate a loss of redundancy or a loss of a component vital for the current task. The dynamic
probability analysis will also be useful in directing which joint or component to use for a given
task by promoting the use of those systems which are less likely to fail. The robot would then mimic
optimal configurations [6,7] so as not to put undue stress on systems which are injured or ‘sore’.

Fig. 6. Example failure of an encoder at joint_0.

4. DYNAMIC FAULT TREES AND FAULT TOLERANCE

We use fault trees in a dynamic mode to see the effects of component or sub-system failure as
the system is operating. The expert system is a key component here, providing the robot system
with a structured, easily modifiable knowledge base to cope with failures on-line and also providing

% I File ” Execution II Browse ” Windows I

Xclips - NASA/JSC Software Technology Branch

I(load fault2.clg)

%tsl :lttﬁtt***ﬁ *.*t*i'*

CLIPS> (reset)
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Fig. 7. CLIPS example: initial status.
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CLIPS> (reset)
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ES: time = 0.10
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prob oncOb 0.0001)
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£-221 prob F 0.0001

£-227 prob B 0.0002)

£-237 prob A 2.000600060002¢-16)

Fig. 8. CLIPS example: failure asserted.

a link with the system operator. Qur expert system is configured with fault trees for both the
four-link and PUMA arms. For the purposes of illustration, we consider the simpler case of the
four-link planar robot example here (see Fig. 3).

With all components functioning, the probability of failure of the robot, represented by the top
node A, is 1.0004 x 10~'¢. Figure 6 shows the fault tree annotated with the probabilities which the
expert system tracks for the robot. In this example, an encoder at joint_0 has failed. The interface
detection layer routines detect the failure and automatically reconfigure to rely solely on the
surviving sensor. The interface alerts the supervisor that the failure has occurred. As the interface
was able to tolerate the failure, the expert system simply propagates the failure and the changing
probabilities through the tree. If the interface had been unaware of the alternate sensor or if there
were no obvious alternate sensor, the expert system would search the database for other possibly
external options [24]. Because of the sensor redundancy at the joint, the failure probability of the
top node A increases only slightly after the failure (a factor of two as opposed to orders of
magnitude).

Figures 7-9 show the progression of this example using the X-windows interface for CLIPS. The
upper window in each figure is the general interactive window through which the user can direct
and monitor the expert system. The lower window lists the facts currently in the database. Not
all of the facts are listed in these figures so as to highlight the changes as the robot status is updated.

Figure 7 shows the initial status of the robot before the failure has occurred. The robot’s tree
structure is loaded in from a file and initialized with the first reset and run commands. The ‘prob’
facts in the fact window show the initial probabilities for the first joint branch and all of the upper
nodes in the system. Note that the probability of the top node A is the last probability fact in the
list (fact £-210 in the figure). The fact containing the direction to fail encoder Oa at time 0.1 is also
shown.

In Fig. 8, time 0.1 is reached causing the instigation of the failure. The expert system finds the
tree structure (fact f-216) containing encOa and prunes the encoder by making it ‘encOa-FAILED’.
Since the branch containing enc0Oa is an AND-gate and the remaining sensor is still alive, the failure
does not propagate any further up the tree. Several probabilities, however, do change up the tree
and are shown at the bottom of the fact list in Fig. 8. The failure probability at the top level is
now 2.0006 x 10~'¢ (fact f-237). In the top window of Fig. 8, the expert system alerts the operator
of the failure, noting the time and the fact that the robot was able to tolerate the failure.

The user might now wish to explore alternative replacement strategies for the failed encoder at
joint_0 by considering replacing it with a more reliable unit with failure probability p = 1.0 x 10~¢.
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The effect of this replacement strategy is shown in Fig. 9. The branch containing the encoder is
modified again to reflect the repair and the fact that the branch now has increased redundancy (see
the ‘fail with’ field in fact f-242 vs fact f-216 in Fig. 8). The probabilities are again changed and
the operator notes that, while the replacement encoder is 100 times more reliable, the relative
improvement in overall system reliability is quite small (A =1.0003 x 10~'® vs the original
A = 1.0004 x 107'%). This is due to the redundant sensor configuration of the joint. The user might
therefore opt not to replace the failed encoder with this possibly more expensive unit. In any case,
the expert system is able to deal with both off-line design analysis and real repairs to the on-line
system.

5. CRITIC/PROTOCOL CONFORMANCE SHELL

In this section, we develop and formalize the protection capabilities of the shell for our example
robot application. Computer operating systems provide various levels of user privilege and enforce
the concept of a ‘Super User’ and a ‘Normal User’. The shell understands that certain commands
are potentially dangerous to the integrity of the system and are therefore privileged and can only
be executed by the more knowledgeable ‘Super User’. In our fault tolerant robot application, we
develop a shell which contains a ‘critic’. Following fault tolerance reconfiguration, this critic checks
for conformance to the original plan provided by the user. The critic also checks for unavoidable
obstacles and will halt the robot to protect it from imminent damage. Only the super user can
override the critic and force it to continue.

The shell, shown in Fig. 1, is composed of two Finite State Machines, the User/Executive FSM
and the Critic FSM. The User/Executive FSM handles the interaction with the user and initializes
subordinate FSMs. The Critic FSM is responsible for providing protection and privilege services
in our proposed intelligent control architecture [14].

5.1. User |Executive interaction FSM

The top level FSM describes the user interaction with the robot (Fig. 10). The robot waits in
the executive idle state, EX_Idle, for input on the command queue from the operator in the form
of the user plan. A robot independent command language, containing commands such as MOVE,
APPROACH, OPEN_GRIPPER, CLOSE_GRIPPER, DEPART, MOVE_HOME, and STOP, as
described in [31}, would be recognized. The executive main loop takes a command from the queue
and, when ready to run, enables the critic FSM. If the critic FSM reports successful completion,

@ l ‘ mFibl; ll Exocutio‘n JI Browse - II » l

Xclips - NASA/JSC Software Technology Branch

(load f-ultZ.clg)

“sl :'.’"'ﬂﬁ'.' *fﬁ’.‘t."

CLIPS> (reset)

CLIPS> (run)

CLIPS> (assert {(failure enc0a 0.1))
CLIPS> (rum)

: time = 0.10

ES: AND gate still tolerant for failure of encOa.
CLIPS> gaul;rt (repaired encOa 1.0e-6))

run

prob encOb 0.0001)
prob motor(0 0.0001)
prob G le-08)

prob C 0.00010001)
prob H 1le-08)

prob D 0.00010001)
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F-ARD (out F) (fail-with 2) (gate-stat ALIVE) (in enc0a encOb))
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prob A 1.00030103030103

Fig. 9. CLIPS example: component repaired.
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Prefix key for initiation:

SU_ Super User

U_  Normal User
EX_ System Executive
CR_ Critic S
S_  Supervisor CIrvo
I_  Interface

L Expert Systom Framework |

Fig. 10. Top level state diagram for full system showing User/Executive interaction.

then the next command is taken from the job queue until a STOP or done command appears in
the queue. The executive then returns to EX_Idle.

When the executive starts the critic FSM with the EX_CR_Start signal, a number of actions
occur at different levels to initiate control of the servo level robot. The hierarchy is displayed in
Fig. 10. The state transition diagrams in Figs 10 and 11 show in greater detail the interaction among
the subordinate finite state machines. Only the most important start, done, and failure signals are
shown in Fig. 10.

The Supervisor and Interface FSMs and the servo level robot are discussed in detail in [21] and
constitute the expert system kernel framework discussed in Section 2.2. Each sub-FSM has a lot
of activity associated with it. Each Interface FSM (of which there is one per joint) monitors its
joint for failures, performs basic fault tolerance of single and multiple component failures, and
alerts the supervisor to changes in the robot status. The Supervisor (expert system) FSM performs
more long term analyses of the system, searches for higher level or less obvious tolerance options,
and maintains the tree database.

If a problem occurs in the robot which cannot be resolved with the expert system framework
tolerance capabilities, the critic FSM will output a halt signal, CR_Halt. This protection
mechanism will stop the robot and require user intervention. A ‘Super User’ may override the
warning and cause the robot to resume a possibly dangerous task. A ‘Normal User’ may not
override the critic and the task will abort. Additional levels of privilege could be added to such
a system.

5.2. Critic FSM

The concept of a critic that will make judgments and recommendations to the user has been used
in a number of automated systems. For example, systems exist for the analysis and criticism of
text and VLSI circuit designs [35]. In Fig. 11, our robot fault tolerance critic is described as a finite
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state machine. The critic is initialized with the user plan by the executive FSM each time a new
task is begun. The critic is responsible for the safety of the robot system and monitors the user’s
plan and the intelligent robot kernel.

After initialization, when the executive sends a start signal, EX_CR_Start, the critic moves from
the ideal state, CR_Idle, and initializes the expert system supervisor FSM to carry out the next
command in the user plan. Obstacle checking [12] is then performed by the critic until the supervisor
indicates that the command is complete through S_Done or that a workspace reducing failure has
occurred through S_ShutDowniMtr or the critic discovers an obstacle avoidance problem. If the
obstacle checking routine reports an unsolvable problem to the critic, then the critic issues the
CR_Halt signal and moves to the ERROR-HALT state. The override or abort options are as
described in the above section on the user interface.

In response to the supervisor signal S_ShutDowniMtr, the critic initiates a process to recompute
[18] the area reachable by the end effector with the robot in its current state using failure status
information from the expert system database (see Section 2.4). If the robot can no longer reach
its assigned goal, the critic signals an abort and alerts the user. The critic then waits in the
ERROR-HALT state for direction from the user or super user.

The process of checking to see if the fault reconfigured robot can still complete its plan could
be approached as a conformance testing problem [36]. The user plan was developed with a model
of the robot which contained a specific number of sensors and joints. When faults cause joints to
be lost, the reduced robot is viewed as a subset of the original robot. Test sequences can be
developed to determine if the reduced robot conforms to the original robot specification with
respect to the user’s original plan.

6. CONCLUSIONS AND DISCUSSION

This paper introduces a new approach for integrating fault detection and fault tolerance in
robotics. The operating system-inspired critic discussed above provides a buffer between robot fault

S_Abort | S_ShutDowniMtr

EX_CR_Start/
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Reconfiguration
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CR_Halt

CR_idle/
CR_Done

New
—_— Work
SU_Override Space
Calc

EX_CR_Start m’

CR_Halt

SU_Override

Check for
Conformance
to Plan

Conform
Fig. 11. State diagram for critic.
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tolerant operations and the user by filtering user commands and ensuring that no damage is done
to the robot or the environment unless it is verified. Through the use of an expert system, different
strategies for failure mode analysis, fault detection, tolerance, reconfiguration, and repair can be
linked into one framework. The key to the approach is the integration of fault trees into the expert
system.

Fault trees are used statically to reveal the structural and functional redundancy of the system
and to help develop the fault detection and tolerance algorithms for a specific robot system. When
embedded in the expert system, the trees can be used to evaluate and re-design potential robots
for fault tolerance at the design stage. The importance of adding redundant components, such as
those discussed in [6-10], can be evaluated.

In addition, the expert system supervisor uses the fault trees dynamically as a database of
run-time fault detection and recovery data which reveals functional replacements for faulty
components and indicates possible causes or effects of failures. The fault trees within the database
keep track of available fault tolerance built into the robot [6,7,9] (such as the redundant actuator
modules of {8] and [10]). The expert system also maintains dynamic failure probabilities for the
system as an indication of system weak spots.

A variety of fault detection routines (such as those suggested by [19-22], etc.) run in parallel and
interact with the expert system at the interface level. Following detection of a failure, the interface
level routines attempt to handle the failure using alternate components. If the interface level cannot
find a way to tolerate the failure, or if an inappropriate command is given, the expert system
invokes higher level routines for reconfiguration and recovery, such as in [6,7,16-18]. Since the
expert system is based on the ‘C’ language, it is easily expandable to incorporate a variety of
detection and tolerance schemes. It can also be easily integrated into an overall modular robot
control architecture [11-14].

The critic and expert system framework described by this paper provides a novel implementation
for a protected, flexible, intelligent, and modularly expandable fault tolerance framework for
robotics. A version of the expert system package has been integrated with the IGRIP graphics
environment and the Sandia robot control architecture, and is currently running at Sandia National
Laboratories. We have also integrated the system with various fault detection algorithms in a
simulation testbed at Rice, and, in future work, will move the code into a hardware testbed.
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