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Abstract

The relationship between expert teachers' classroom behavior and their subject matter'

knowledge is an area of research that has not been examined extensively. To begin that

study, one topic, fraction knowledge, 4.s explored in depth as it occurred in ifirteal
AM,

teaching settings. Fractions are one of the more difficult topics in elementary arithmetic;

much of this difficulty is attributable to the complex relationships among the meanings-

and representstioi s 'f fractions and basic arithmetic operations. Despite these. difficulties

associated with fractions, many teachers, are quite proficient :at teaching children to

perform operations with fractions. We. examined expert teachers' knowledge by using

extensive protocols to ,investigate the con4ent and organization of teachers' knowledge of

fractions. These cerotocols involved interviews, card sorting tasks, and transcriptions of

)videotaped lessons. Semantic networks that reflected their knowledge of fractions were .

,-

developed for individual teachers. Comparisons of these semantic networks showed that

there were wide disparities among the knowledge of expert teachers. Some teachers

displayed relatively rich conceptual knowledge of fractions while others relied upon

precise knowledge of algorithms. Implications of these knowledge differences are

discussed.
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Expertise in M4thematics Instruction: Subject Matter Knowledge

This paper explores the organiiation and content of subject matter knowledge used by

expert arithmetic teachers. Teaching can be considered a cognitive skill and, as such, it

is amenable to analyils, in ways similar to other cognitive skills (Leinhardt & preen°, in

preparation). The expertise involved in the cognitive aspects of teaching can be seen as

emerging from two core-areas of knowledge: lesson structure and subject matter. Lesson
sa,

structure knowledge includes the skills needed to plan and run a lesson smoothly, to pass-

easily from one segment to another, and to explain material clearly. Subject matter

knowledge includes conceptual understanding, the particular algorithmic operations, the

connection betWeen different algorithmic procedures, the-subset of the number. system,

being drawn uponL understanding of classes of student-4 errors and currieulum
-

presentation. Subject matter knowledge selves to support lesson structure and acts as a

resource in the selection of examples, formulation of explanations, etc. Subject matter

knowledge also constrains lesson structure in that the content of the lesson' strongly

influences how it is to be taught. The skills associated with lesson structure and subject

matter knowledge are obviously intertwined. However, while it is unlikely that a teacher

could be devoid of competence in one area and still be an expert, there seem to be cases

in which teachers with similar outcomes or success levels have quite a different balance

of skills. The objective of this, work is to explore the nature, level, and utilization of

subject matter knowledge among a, set of expert teachers. It is compatible with a second

line of research on lesson structure knowledge (Leinhardt, 1083b; Leinhardt & Greeno,,in

preparation).



Theoretical Fr rk

This research explores the dimentions, org

matter knowledge in one particular area, fractio,

t
and content of teacher's subject

Dcused on fractions because of

Its importance In fourth grade mathematics. There, veral significant algorithms to

be taught in fourth grade: equivalent fractions. raising fractions to a specific

denominator, reducing fractions, adding and suracting with ilig* and unlike

denominators, mixed numbers, and converting mixt.' .y mbers to fractions and back

again. Fractions are difficult to teach and to learn beca e they have several different

conceptual meanings; a part of a regional whole, a portion of a discrete set of objects, a

measurement point on a number line, or one number divided by another. They are

difficult also because two numbers are used to represent a single quantity and because'

different number names can represent the same quantity. There is considerable miltlence

that children, even those who perform traditional tasks well, have quite primitive notions

of the underlying concepts of fractions (Wachsmuth, Behr & Post, 1983).

While algoripmic competency of ,teachers is generally assumed (although observation

indicates even this to be limited), the ability to represent the elements of an algorithni

.a communicable way as with blocks 9pr pictlres and then connect the procedur

representation together is not assumed, nor is It frequently observed. (Resnick, 1982;

Champagne & Rogalska-Saz, 1984). Given the importance cif. early mathematics

instruction, it is surprising that so little research has addressed the issue of the type and

level of subject matter skill used and required by teachers. With few Iltxceptions

(Coleman's vocabulary test, for example) research in the subject matter knowledge (level,

organization, and understanding) of teachers has been alluded to but not studied

(Evertson, Emmer, & Brophy, 1980; Pigge, Gibney, & Ginther, 1980). This is true both



in process product research and in research in the cognitive process of teachers. The

research reported here begins that study.

- The content of the teacher's lesson is seen as the product of a cognitive system that

represents knowledge In both declarative and procedural forms (Anderson, 1983).

Declarative knowledge consists primarily of the facts that are known about a particular

domain while procedural knowledge represents the algorithms and heuristics that operate

on those facts. For example, basic multiplication facts. can be stored in declarative form

to be used procedurally'when used to raise fractions to a common denominator. A
4,.

common method for representing declarative knowledge .1s in the form of semantic

networks (Woods, 1975). A semantic network is a node-link structufe in which concepts

are represented as nodes -that are linked together according to a defined set of

relatisynships. A commoOmethod for representing 14,4eaural knowledge is through the

use of i)roduction. rules /hat specify actions and the conditions under which those actions.

willbe rformed (Anderson, 1983). . r.

. .

ss ,

To review, the overal' cognitive system of a /6acher is base' upon at least two
. -, ,.

organized knowledge .bases. One consists of .general ,teaching skills and strategies, the

other con is of specific information necessary for the content presentation. This second

,body of information has as resources the text. material, teacher's manuals, and elements

of experience that identify what's hard to teach. It afso includes algorithmic competence

and, at some level, implicit understanding of nqW procedures work, as well as the goal's,

subgoals and constraints of the 'tasks being taught (Greeno, Riley SZ Gelman, 1084;

Resnick, 1982). This second aspect is considered the knowledge component of expertise

(Lesgold , 1983; Glaser, 1983).

I.
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Recent work in cognitive psychology has explored' the significance of content

knowledge in expert performance. (Chi, Glaser, & Rees, 1982; Glaser, 1983; Greeno,

1978; Lesgold, 1983; Voss, Greene, Post, & Penner, 1983). Initial work in the field of

expert performance attempted to analyze the structural or procedural aspects of

performance devoid content knowledge, but as research extends deeper into areas that

rely on broad substantive knowledge (such as physics, political science, geography),

exploration of the content knowledge must be undertaken as well.'This trend toward the

analAis of domain-specific knowledge has also been useful in the deVelopknent of expert

systems in the realm of artificial intelligence. Some of the more notable cases involve

advances in medical diagnosis (Pop le, 1981; Shoit liffe, 1978), and intelligent corniuter

assisted instruction (Sleeman & Brown, 1983). By doing a detailed analysts of subject

matter of fractions on the part of expert teachers, we hope to understand how that

knowledgl is used in effective teaching.

Relation -of Subject Matter Knowledge to, Lesson Structure

Arithmetic lessons are not homogeneous, continuous streams of action lasting for forty

,,, 1minutes. Most good lessons contain several segMents or structures (Good, c.irouws &
. ;.

\Ebmeier, 1983; Leinhardt, 1983b). Each of these segments can be analyzed by

considering the system of goal, and subgolls that mediate the selection. of, particillar

actions.. These systems of goals and actions can be. represented by planning nets (Van

Lehn & Brown, 1980). Plans are constructed in response .to the breed to achieve certain

4
goals (ptefik, 1981; Hayes-Roth & Hayes-Roth, -1979). One pf the Most salient action

segments in the teaching of arithmetic is the presentatiop oflaterial. Presentations are
. . .

the activity segment most closely identified with 'teaching.' Other segments are guided

practice, monitored practice, drill, tutoring, etc. It is in the context of presentation that

7



teachers introduce new concepts, present new algorithms, review learned material, and,

offer explanations. It is also in the context of a presentation that teachers must draw

most heavily on their subject matter knowledge.

In order to see how subject matter knowledgeis used, brief'descriptions of a portion of

the theoretical -planning net will be proilded. Presentation of algorithms is analyzed in

terms of four goals: definitions presented, algorithm presented, algorithm learned, and

algorithm understood. Figure 1 lays the planning net for the second goal, presenting-

the algorithm. The planning net contains both the goals (hexagons) and the actions

(rectangles) involved in presenting an algorithm. The relationships among actions and

goals are captured by labeled links. Consequence links show the actions that, when

completed, Will achieve a given goal. Goali that are linked to actions by pre-requisite

links must be satisfied before.that action can be executed. For example, a- pre-requisite of

demonstrating an algorithm is identification of the steps. in ,that algorithm. Goals that

are coArenuisites of actions must remain true throirghout the. execution Of the action; for

example, maintaining student Attention. planning.nets can also include post-requisites,

goals that are linked to actions which become true upon the completion of the action,
.

and tests for iterative actions (Greeno, Riley, Gelman; 1984; Newell & Simon, 1973;

Sacerdoti, 1977).

In Figure 1, the. goal of having the algorithm presented is the consequence of three

actions: stating the algorithm, demonstrating. the algorithm, and identifying the

conditions for use. These three actions require subject matter knowledge for their

content selection as well as for the remaining actions and goals. Thus, in order to know

which algorithm to state and which demonstration Lb use, the subject matter knowledge



--

must be- activated. As can be seen from the figure, however, the nature of that

---'1Thskwledge. remains unsi...)esgiecl. The purpose of presenting the planning net Is to

contextualize the subject matter knowledge, which is the focus of this paper. .

Insert Figure 1 here

Data Source and Analysis

Four expert mathematics teachers and four novices who taught at the fourth grade

level were selected.' These teachers were a subsample of a "set of twelire expert teachers

and fOur novices who participated in a three-year study of expertise (Leinfiazdt, 4983a,

1983b, 1983c). The expert, teachers were selected because of the unusual and consistent

growth scores of their students in mathematics over a five year period. The novices were

stuclient teachers in their last year of a teacher training program. The subgroup of four

expert teachers were chosen from the set of twelve beta se taught at similar grade

levels. Two of the experts seemjed to have high knowledge of sublect matter; one had

moderate knowledge, and one had low knowledge. The'.four novices had moderate to

low subject matter knowledge. In the first two years of the study ext9ive data were

collected on these teachers: they were observed for approximately 3 months each .year;

diey were videotaped for 10 hours; they were interviewed on several topics, including the

taped lessons,..planning and evaluating their lessons, and fraction knowledge. They were

also given card sort tasks on math topics. Transcription of the resultant protocols

became one data base while transcriptions of videotapes and observatidns of their in-class

1 Some of the'teachers were male; however, In order to preserve ano mIty, we descrlbe'allIndIvIduals
:as female.

9\\
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I
performance became another.

The analyses were of tw9 types. First, the fraction interview and athematics cardI

sorts were analyzed to determine any consistent patterns o knowloige and

understanding as well as confusion and misunderstanding. Second', three of the teachers,

two high knowledge and one middle knowledge teacher, were examined mere closely.

Videotapes of these -three teachers each teaching a lesson on reducing fractions that

lasted one or two periods were examined in detail. The teachers taught .the lessons in the

same progression (spontaneously) and had completed prior lessons in similar sequences.

They used the same pages of text and very similar examples. We were trying to

establish the differences in content used

performance was superficially similar,

subitantially different.

and communicated by those teachers whose

but whose knowledge organization was

r-Th
We analyzed the declarative knowledge base: by building semantic network

representations o7 the text material alone and representations for eacli.of the- teachers.

These- semantic nets are quite powerful . tools for demonstrating similarities and

differences among knowledge bases. The information in a given semantic net was based

on videotapes of lessons and the parallel. stimulated recalls, with interviews and card sort

data use to confirm the presence of a particular concept or relationship. While this type

of non - statistical but formalAanalysis of qualitative data for a small number of cases is

new to educational research, it has become a. confirmable methodology for psychology

(Ericsson & Simon, 1980).

Since the formalism of semantic networks is relatively new to educational research, it .



will be helpful to discuss their applisation in somewhat more detail. 'A semantic network

is a node-link structure that contains two types Of knowledge: concepts and relations

among those concepts. Concepts are represented as nodes while the relationships among

those concepts are represented as labels on the links. The informationerepresented in the

nodes depends upon the particular dOmain, and the number of nodes is a function of

both the domain and. the level of analysis. A relatively simple domain that is analyzed

at a high level will have$a small number of nodes while a complex domain analyzed at a
V

finer leyel of detail will have a large number of nodes. The number of links is also a

function ortlle domain and the level.of analysis so that a'detalled semantic network of a

complex domain will tend to have a large number of links. A major constraint placed on

the development of a semantic network has to do with the labels and direction of the

links. While link labels tend to vary somewhat across domains, there is a fairly well
. r

specified set of frequently used labels. One of the'inost commoi) link labels is has-p7op

which designates one node as being the propeity of another node. The-direction of the

arrow specifies which node is the exemjilir :and which is the property. For example, a

node representing the concept bird could have has-prop' links to the concepts of

feathers and flies. (Note, of 'course, that neither of these concepts are properties of all
.

( birds but that they are properties of most birds). Another common label is is a which

designates a node as being an instantiation of a higher-level concept. For example, the
. .

nodes representing concepts for eagle and crow would have is a links to the higher level

concept of bird. Other common link labels are has-part, subset, and is-part. Several of

these link, labels describe inverse relationships and jt is often the case that only one

relationship is shown explicitly.

There are two basic uses of semantic networks - in cognitive science research. One
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common use of semantic networks is the construction of hypothetical knowledge bases

used to develop" hypotheses abbut thenowledge that is sufficient to perform a particular

task. A second use of semantic networks is to develop models of the limb lem-solver's

knowledge base. In this type of research,. the information in the semantic network is

based upon the information that IS obtained from verbal protocols taken during the

problem-solving activity. The use of semantic nets in the current analysis is essentially a

combination of these two uses. First, a semantic network was developed that represents

th basic fraction knowledge contained in the text. Secondly, semantic networks were
A

deve ped from transcribed videotapes (and additional material) of the corresponding

lessons as presented by different. teachers. These semantic networks . represent a

combination of a core of fraction knowledge plus the information thatcthe teacher

discussed explicitly during the lesson presentation.
I.

Results
. ,

Overview

The outcome of the card sorts and fraction knowledge interviews cOnfirmed our

impression that In spite of_high levels of student success for all teachers, two teachers

had exceptionally high math knowledge, one had- middle-level knowledge, and one had

barely sufficient math knowledge. -Novices had generally low knowledge, but there were

some stirprises.
.

The math sort data indicated that there 'were natural breaks betWeen those experti

with high versus low math knowledge as well as between the experts and novices.

Briefly, using both diagramatic trees and sorts we observed the following differences: a)
ti

High knOwledge experts sorted 45 math topic cards into approximately 10 categories and

ordered the topics by difficulty to teach or perform. They also grouped addition and

12



subtraction together and then ordered problems through to decimals. b) Novices made

) , .

. .did not know. Also the less knowledgeable individuals, wh4n discussing equivalent
,

categories for every one or two problems and noted little differentiation in- difficulty.

They nIsO indicated almoSt no internal connections.

With respect to teachfrig fractions, similar distinctions appeared in the tapes and

interviews. For example, although all teachers taught equivalent fractions, ,when queried

about the equivalence of 3/7 to 243/567, the less knowledgeable teachers tended to get

81 as a factor and then to say either that the fiactions were not equivalent or that they

fractions, did not mention that to raise or lower a fraction you multiply or divide by a

fractional eemivalent7of one (in this case 81/81), nor when interviewed did they seem to

realize. it was true. In contrast, the two teachers who had greater math skills

immediately saw the equivalence and reported it. 'Both of these teachers when they were

teaching noted the fact that equivaielice-occurrei because the original fraction was being

multiplied by one.

Interviews 8

Table 1 summarizes twelve items from the fraction interview. Most of the teachers and

novices tended to answer a subset of eight items in a reasonable way, with some

exceptions as noted in the table (darkened lines point out discrepancies). Four of the

items seemed to discriminate between groups of teachers in an interesting way. In

defining a fraction, seven of the- teachers referred to equal parts of a whole, thus

retaining the notion of equal segments and their relationship to the whole. One teacher

defined a fraction as the points between zero and one or zero and any other whole

number, including the whole numbers. This teacher was the only one who consistently

used the number line as a frame for the lessons ana the only one who saw fractions as

4

13
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having a measurement property.

Perhaps the most telling item was one which followed an item that asked for a

definition of equivalent., All teachers defined equivalent correctly, emphasizing the

regional equality. The next question was are 3/7 and 243/567 equivalent?" The

example is, in some sense, "illegal" because it takes a simple construct and pushes it out

of the normally observed range. The two high and one middle knowledge expert saw

very quickly that 81 was a common factor and that the fractions were therefore

equivalent. That is, they found 81 and recognized its significance. Our lower knowledge
ar

expert and two novices found 81; but they did not know what to do with it and

eventually said that the fractions were not equivalent. As Ms. Lawn said,
No, wait, let's see. Well, I'm saying that because you can divide 3 into 253

and 7 into 587, ahm, huh, not necessarily because you cannot, as they are, 3
and 7 don't both go into these numbers evenly (that is that 7 doesn't go into
243) . . . Okay, no, I'm Just figuring, it's 81 over 81, if you divide it out that
way . . . Isn't that funny, I teach, I'm teaching that Aand understanding it when
I'm teaching it. Yeah it does, no, they aren't equivalent because you can't
divide them by the same number. Like, I would have to divide 567 in order to
see if thiy were equivalent and it isn't. Let's see 21 . . . no, they aren't. Can

tell me?"

This level of confusion was present for two other teachers, one expert and one novice.

One other novice refused the item, and one (Ms. Benny) got it by reasoning, 243

divided by 3 equals 81 times seven equals 567," but she did not explicitly mention that

81 was common 4, factor. Thus, among the teachers there is a clear break in

understanding, where the rule can be successfully stated by some but not applied by

them in extreme cases.

A third item of interest involved the concept of unit. The teachers were asked to draw

pictures representing 3/4, 5/5, and 5/4, which all but one did successfully. They were

14
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also asked to indicate the unit for each of these (4/4, 5/5, 4I4, respectively). Everyone

correctly answered the first two, but our high, and middle/knowledge experts x,-,d one

novice (Ms. Benny) were the only ones who recognized one as the unit base of 5/4; two

low knowledge teachets said that the five segments (numerator)'were the unit; and one

teacher, our low knowledge evert, said that: the unit was two wholes. The concept of

unit is important to fractions because it allows one to move back and forth from discrete
,

to continuous models without losing the important relations. For example, 5/8 is not

equivalent to 5/4, but the same number of pieces are involved in both num ators and

denominators if one is referring to two rectangles each divided into four segments. If the

unit is blurred from one to two, the fraction meaning can be as well. One of our novices

first said that the five-fourths item was impossible to draw. She then drew five circles,

divided each one into fourths, and shaded one-fourth of each of the five circles (5/20).

This represents direct verbal translation of the problem from five-fourths to five one-

fourths.

The fourth item that produced unexpected results was designed to determine the

teachers' understanding of ratio in relation to fractions. We chose the ratio problem for

two reasons: a) ratio is taught in fifth grade and these were fourth grade teachers who

might have students ready to move ahead; and b) ratio uses the notation of fractions but
o

not the operations. The item first asked how ratios were similar to or different from

fractions. Then, the teachers were shown a figure and asked to spify what fraction

was shaded, and the ratio of unspaded to shaded. Essentially, ratio represents the

numeric relation .between two things (part/whole, part/part, speed/distance, etc.). Ratios

are not numbers on the number' line and can undergo mathematical operations only
,j

under particular circumstance However, ratios can be expressed using fraction-like

15'
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notations and can include either the part/whole concepts in fractions or the part/part ,

concepts. Not one of our teachers indicated that they knew any of this. All either said

that a fraction and ratio were identical or similar, or said that they did not know. One

novice, Ms. Mark, said ratios showed relations. When shown an item that had dots

arranged in a ratio of 2 to 4, she expressed the ratio correctly. However., when asked for

an equivalent ratio, she could only repeat her 1/3 fraction answer. One teacher gave an

incorrect response of 2 to 1; the other six were able to state the ratio as 2 to 4.

Presepted'Lessons

'Given the apparent disparity between the ability to express an algorithm and the

knowledge underlying that . algorithm (understanding), we decided to focus on , the

representation of subject matter knowledge as presented in classroom lessons by three

experts who had adequate subject matter knowledge.. We selected' the one or two lesson

sequences on reducing fractions. The lessons were examined by constructing semantic

nets that describe the content of the subje-ct matter presentation. In the following

discussion, we present the core material shared by all presentations; then we examine the

textboyjc presentation; and finally -we present-an analysis of the three expert teachers. In

describing the teachers, we start with a brief summary of the lesson flow and then

present the semantic net for the subject matter presentation.

Core. Figure 2 displays the semantic net for the core of knowledge involved in

reducing fractions. By core' we mean the concepts that are shared among the three

expert teachers and the text. This core is based on the concept fraction. A fraction is

a number and has the parts numerator and denominator. A fraction also has the

property that it can have different representations. By representations we mean Nil

a fraction can be represented or modeled in a non-numeric system. One of the critical
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concepts of the core is that equivalence .is a relation between two fractions. A

judgement of equivalence can be made when each of two fractions is an input to

that relation. The concepts repre4nted in Ibis core or nucleus can be connected to other

concepts and it is these additional concepts and relations that distinguish the teachers

from each other as well as from the-text.

Insert Figure 2 here - Core

Text. In addition to the core of fraction information, the text includes information

about alternate representations for fractions as well as information about the/

relationships between fractions and the operations of multiplication and divisiOn.

Insert Figure 3 here - Text

The semantic network shown in Figure 3 describes the .information contained in the

esentations for fractions. The most commonofdtext and includes three altern

these representations involves the concept of a region and appears in the lower right

side of the network. The text explicitly states that a regional representation has the

property of shape, which Can be among other things a rectangle dr a. circle. The

critical relationship that is not explicitly discussed in the text is the fact that a region is

a unit whole (shown by a dotted line). The other concepts and relationships shown for
4

the region representation are explicitly stated in the text. The basic notion represented

in the upper portion of the region representation is that a unit whole can be divided

-17
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into two parts, one shaded and the other unshaded. Through a procemapping,
, .. '4

the number of units represented in the shaded part of the region is shown to

correspond to the numerator of a fraction while the total number of units

corresponds to the den6minator of a fraction. As long as the size of the units is kept

equal, units can be added (by drawing lines) or removed (by erasing lines) and 'the

fractions represented by the number of shaded units to the total number of units will

remain equivalent.

An alternate form of representation discussed in the 'text is the number-line. The

number-line and its relationship to equivalent fractions is not covered extensively in the

text. Most of the information regarding number-line representations is provided by

a sidgle diagram with very little supporting discussion. This minimal coverage is

evidenced by the small number of nodes connected to the concept of the number-line.

The primary relationships are that a number-line ?as the property of points that are

labeled by fractions. The text also introduces the notion that there can be several

different number-lines, each of which has'the property of a family. The fact that this

particular has-prop link is dashed represents the fact that the text did not explicitly

mention the concept of a family. This 'concept was adopted from one of the teachers

who explicitly uses the term (see' discussion of Konrad for details). The expression of

equivalence is accomplished by 'lining up" a group of number-lines in a vertical

array. If the number-lines have ,equal sized units, it is possible to show how 1/2 on the

2 number-line is equivalent to (lines up with) 2/4 on the 4's number-line.

The thiid form of representation discussed in the text is discrete objects. Like the

concept of a region, Me, discrete objects representation is implicitly linked to the

18
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concept of the a unit whole (unit set-1). This set is further divided into two subsets of

objects, unit set-2 and unit set-3. Tk%members of unit set-2 are defined as having a

particular property, prop-1 (e.g., bottles). The members of unit set-3 also have this

proper t also have an additional distinguishing property represented by prop-2

(e.g., full of liquid). IIConstructing the value of a fraction, the quantity associated with

kthe ntimber of members of unit set -3 orresponds to the numerator and the quantity

associated with the number pf members of uni t-1 corresponds to the denominator.
(

The connection between discrete objects and the unit sets4 not explicitly discussed In

text. Unlike its discussion of region representation, the xt does not provide
-description of how the discrete object representation can be used to discuss

equivalent ,fractions. Rather, the discrete objects representation used only to

show that the fractional part of unit set-1 has-prop prop-2 (e.g., 3/6 of the b ttles are

full).

In addition to the alternate representations, the text provides general descriptions of

how /he multiplication and division operators can be used to generate equivalent

fractions. The basic concepts associated with these operators are redncing to lower

terms, and equivalence. As shown in the upper portion of Figure 3,, there is a relatively

close relationship among the multiplication and division operators and the concepts of

reducing and equivalence. The main poiiits expressed in the text are that equivalent

fractions can be generated by either multiplying or dividing the numerator and

denominator of an existing fraction by the same number. This is represented by the

the relationships among the inputs" and output of the the operators and the

equivalence relation. Basically, both the numerator and the denominator of a

fraction A can be multiplied or divided by B and the result will be an equivalent
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fraction A'. Division is explicitly mentioned to have the property of reducing and
v -hence creating a fraction in lower terms. Furthermore, division has the property.of

being restricted, in that both the numerator and denciminator of A must .b.e evenly

divisible by B. Multiplication, however, has no restrictions on the numbers that may

be used in the operation.

The text's description of the general concepts and operations involve-din equivalent

fractions includes most of the critical relationship' What the text f3frls.to provide is any

explicit description of how these concepts and operations are to be applied in a problem

solving situation. The only w1).y to acquire this knowledge from the book, would be

through the process of induction in which 'the student acquires an understanding of the./
proper rules and concepts while working through the problems. Although induction is a

powerful learning mechanism that can lead to the acquisititm of correct concepts and

rules, it is also a relatively inefficient use of cognitive resources and can result in the

acquisition of misconceptions and incorrect rules.

4.

The omission of this critical' information from the text was not an oversight but was an

intentional decision. Rather than providing the students with a lengthy discussion or the
-

various algorithms and heuristics that can be applied when generating equivalent

fractions, the text is designed to provide a general framework that can then be

elaborated on by individual teachers. In the course of the lesson, teachers can introduce

whatever algorithms and heuristics they feel are appropriate. In the following sections,

we discuss how different teachers handle the task of teaching the concepts and

oia7tions for reducing fractions.



19

Konrad. Konrad presented her lesson during an eleven-minute presentation on

day one and a seven-minute follow-up on day two. The presentation (which was followed

by guided practice and individual practice) contained six segments. First Konrad

reviewed the fact that A/A equaled one and that any fraction in which the numerator

and denominator were the same equaled one. Secondly, she reviewed the fact that any

number (in ding a fraction), when multiplied by one yields that same' number (or

fraction). Kobrad connected segments one and tWo by noting that such multiplication

produces equivalent fractions.

The third segment was the beginning of the new material. I Fad noted that whole

numbers divided by one yielded the same number and thqn said fr ctions divided by one

or a fractional name for one returned the same number or frac tion. S he demonstrated

this by dividing 3/6 by 3/3 and noted that the answer yiel4d an equivalent fractioii

pair, 1/2 and 3/6. This was supported by a pictorial representation. Two equal-sized

rectangles Were drawn, one divided and shaded to show 3/6, the other to show one -half;

)and students were invited to compare them. -This' Was a minor mistake in that the idea

of the operation would be more easiry conveyed with one drawing rather than two.

The -fourth segment was complex. In this segment Kon,rad showed.that while one can

multiply by any fractional name for one (any of the numberline families) and get an

equivalent fraction, dividing by fractibnal names for one is restricted. The fifth segment

continued tile divisional discussion and presented the notion of iterative division as a

precursor to lowest terms. The final segment labeled the processreducing to lov..cst

term:;. The second lesson reviewed examples and added hints for knowing when reducing

had been completed.

21
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Insert Figure 4 here - Konrad - generic

The semantic network shown in Figure 4. was developed from the information

, contained in Konrad's class 'presentation and interviews. KOnrad uses two of the

alternate representations presented in 'the text, the region and the number-line.

The region representationshowzon the right, side of Figure 4 differs froni the text in

that Konrad uses two unit Wholes rather than one. Each unit whole, however, is

essentially the same as the one described In the text. The demonstration provided in the

text shovied that as long as the,parts of a' unit whole remained equal in size, the

addition or deletion of interior lines would not affect the overall relationship between the

shaded part and the unit whole. Konrad, on the other hand, uses two entirely

separate region representations (rectangles) to demonstrate the same basic point.:

Given two rectangles of equal size with equally sized shaded subparts; the addition or

deletion of interior lines to either rectangle produces a different fractional

representation, but does not change the equivalence of those fractions. However, as

shown in Figure, 4, the student has to make the inference of equivalence of area between

the two rectangles.

The other representation used by Konrad is the number-line. Here too, the

ne vork depicting this concept differs from the text. Konrad goes to great lengths to

show how a set of number-line families, each defined according to the value -of a.

whole number, can be used to represent the equivalence of two fractions. Konrad's

operation for achieving this is similar to that described in the text. That is, vertically
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aligned number-lines can be used to show how the fraction 2/4 in thtt w4" family is

equivalent to 3/8 in the 86 family. In addition to elaborating on the description

offered by the text, Konrad uses the set of number-lines to introduce the concepts of

proper and improper fractions and the concept of he identity element or the

'fractional name for one' that exists in each number-line Family.

I

The..identity element is the key to Konkad's method of teaching the concept of

eqilvalence. We elaborate this lnWlgure 4 which shows the basic information that

Konrad uses to describe the relationship between the identity element and equivalent

fractions. The prima& things to focus on are the relationships among the inputs to \

multiplication and the concepts of the identity elemeit and fraction. These

relationships show that multiplication of a fraction by the identity . element will

always yield an equiValent fraction regardless of the value of the fraction or the

value of numerator and denominator of the identity element. For example, 2/4 -

multiplied by 4/4, 5/5, or 300/300 will each yield as equivalent fraction.

Insert Figure 5 hpre Konrad multiplication /equivalence

Figure 5 shows the another step in Konrad's lesson, that is, the division of a whole

numbei, by the identity element. The primary points of focus in this figure are the

relationships among division inputs. One of the inputs to division is implicit}

specified as the dividend while the other input, the identity element is implicitly

specified as the divisor. These relationships are Implicit' because Konrad does not use

these terms but emphasizes the point that A is divided la B. Notice that the inputs to
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equivalence are numbers but they are not identified as fractions. Instead, A is

defined as a whole number which satisfies the restriction that is placed on the

division of fractions.
_

Insert Figure 6 here - Konrad division/equixalence

tt

Figure 6 shows the final step of Konrad's lesson in which division by the identity

element is applied to a fraction. This is represented by the reintroduction of the is ,c1

relationship between number and fraction. Recall that this link is absent from the

prior Figures 4 and 5. Once this relationship is restored, 'however, there is a Change in

the way in which the restriction on division can be satisfied. In order to satisfy this

restriction both the numerator. and denominator of A must be evenly divi ible

by the numbers in B. If this cdnstraint is met, then, division has the properly o

reducing the'original fraction to lower terms.

fInsert Figure 7 he,re - Koitrad.division/reducing

=11.11.1.=

It should be apparent from the number and density of the semantic networys

describing Konrad's lesson that she is providing the students with a rich body of

conceptual information.. On the other hand, at no point in time does she provide the

student's with an explicit description of -an algorithm for reducing fractions to lower

terms. On the surface, it would appear that Konrad's lesson places a demand upon the

students to induce the proper rules that will lead to problem solutions. In some ways

fa
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this is true, but it is Important to note that, as opposed to the text, much of the.

. information in Konrad's lesson can bt; viewed as providing implicit rules for applying the

multiplication and division operators. In the case of multiplication, for example, the use

of the idettity element will always lead to an equivalent fraction. What is missing is a
a

discussion of ho* to select the particular identity element that will lead to the desired'

fraction. In the case of division, Konrad uses the implicit notion, of restrictions to guide

the selection of a proper identity element. Adherence to these restrictions will lead to an

equivalent fraction, but again not necessarily the,desired one. In the subsequent lesson,

Konrad offers a number of 'hints about the choice of identity 'elements as well as some

'hints' about when a fraction cannot be further reduced.

These hints take the form of heuristics that guide the process of reducing fractions to

lower terms. .A heuristic oan be thought of as a 'rule of thumb' that will usually but

not, always lead to a problem solution. An algorithm, on the other hand, defines a

specific set of operations that, if correctly applied, will always lead to a solution..- The

obvious difficulty with algorithms is that they are of little use in situations where they .

cannot be applied. While heuristics may not always lead to a correct solution, they can,
3

be applied to a broader range of problems. It is not clear when or how these tto'

problem solving methods should be taught; but it is desk that the process of teaching

heuristics is different than that for teaching algorithms. .This' dine ce can be seen by
:,. \. , -

comparing Konrad's lesson rith the lesson§ of the following twa- teachers whO teach

explicit algorithms.
O

Wall. Ms. Wall gave her lesson during a single eight-minute pr eisZtation. Like

Konrad, she also had six segments In her) presentation. However, she stfrted with the,

25



segment that had ended Konrad's lessonnamely, labeling the process as reducing

fractions to lower terms. In the second segment, Wall drew a rectangle, marked off 3/6

and erased the thirds -lines to °reduce° it to 1/2. She then asked the glass how 3/6 got to

1/2, eliciting the third lesson segmentthe operation of division. The fourth segment

skipped to the notion cif equivatent(ing) fractions by multiplication and -Its oppeeite,

'reducing fractions by division. The fifth segment was the crux of the lesion. The
7

algorithm was presented as follows: a) determine whether the numerator .is:-a fadtor .of

the denominator; if so, divide and stop; b) if not; list the numerator's' factors, starting

with the largest and test until a common factor is found for both numerator and

denominator and divide by It. Finally, Wail worked through several problems. The

presentation was very clean and sparse; responses from students were those the lesson

required,. and the algorithm got taught.' Little time Iwas devoted to conceptual
,

development.
4 .

Figure 8 shows a semantic network representing the conceptual information that Wall

includes in her lesson on equivalent fractions. The core information is essentiallytthd

same as Konrad's, but there is no link showing that equivalence is a relation. Another

thing to note ij that. reducing and equivalence are represented as the output of

division and multiplication, respectively. In addition, these two concepts are treated

as opposite-g, in that red,cing has the property of making smaller while equivalence

has the property of,making larger.

Insert Figure 8 here - Wall - generic
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The other major part of this semantic network is the region representation shown

on the right hand side of Figure 8. This portion of the structure is similar to that

provided in the text. The primary differenee is that Wall uses the operation of erasing

lines to represent the process of reducing rather than the relationship of equivalence.

The major part of Wall's lesson is captured in heraery detailed presentation of an
O

algorithm for reducing fractions. This procedure is explicitly taught and is very efficient.

Figure (1.shows the procedure in%, flow chart which r ds from top to bottom. Given the

objective of reducing a fraction, examine the numerator and see if it is a factor of the

denominator; if it is, divide both the numerator and th\ denominator by the numerator

and the new fraction is in lowest terms. It the numerator is not a tailor of the

denominator, then list all factors of the numerator, select the largest and test to see if it
7

is also a factor of the denominator. Keep going down the list of factors and when the

largest common one is found, divide by it; then the fraction will be in lowest terms. In

contrast to Konrad's procedure, this is non-iterative and requires no checks for

reducibility.

Insert Figure 9 here - Wall - algorithm

There are some apparent differences between Wall's.clesson and the information

provided by the book. Wall focuses on a single form of representation and does not

attempt to provide the students with a detailed understanding of the various concepts

surrounding equivalent .fractions. Rather, she provides a relatively sparse- conceptual

framework and a very efficient algorithm for ieduchig fractions to lowest terms. Wall's-
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lesson also involves some erroneous information that could eventually cause confusion on

the part of the students. The most obvious of these errors is the relationship between

reducing fractions and 'making smaller' or taking\away.

Yoda. Ms. Yoda gave two lessons on reducing fractions--one lasted two and one half

minutes; the other, ten and one-half. The combined presentations consisted of a total of

seven segments. She started by centering the notion of equivalent fractions, saying the

class had been using multiplication and now they wou:d use division. The second

segment reviewed the "cloud" notion from the text, and the lesson ended. The next day,

the first segment (third in' sequence) reviewed, the labels of reducing and equivalence.

The next two segments were discussions of odd and even numbers. In particular, she

reviewed the fact that even numbers have the property of always being reducible by two

and possibly iteratively. Yoda's sixth segment introduced the label of lowest terms and

the idea of needing to find the largest common factor. When that factor is found (just

how is not specified), division by it produces a fractioi in lowest terms. Yoda then

worked several examples without further explanation.

Figure 10 shows a semantic net representing the conceptual information in Yoda's

lesson plan. As with tile previous semantic nets, Yoda's lesson involves a relatively

explicit description of the 'core' information. In addition to this, she discusses the

oddnotion that numbers can nave the'properties even or oau and that fractions can be

made larger via multiplication and smaller via division. Like Wall, Yoda discusses

the fact that reducing has the property of making smaller. The concept of making

larger, however__Is_only-seen-as a property of multiplication and there is no direct link

between making larger and equivalence. Themajority of Yoda's lesson involves the
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description of an algorithm that the students can use to reduce fractions. This algorithm

is shown in Figure 11.

Insert Figure 10.,here - Yoda - generic

The algorithm taught by Yoda is neithef as succinct, nor as reliable as that taught by

Wall. In addition, during the course of teaching the algorithrh, Yoda makes several

critical errors. In teaching her reducing algorithm, Yoda attempts to teach a simple

reduction method and then build on this until she presents a complete algorithm. She

begins with an algorithm that is relatively simple but applies ,gnly to certain types of

problems.

Insert Figure 11 here - Algprithm 1

orziewito

Figure 11 shows the baste algorithm Yoda presents. The initial steps involve writing

the fraction, putting division signs next to the numerator and denominator, putting

"littltaloudse next to the division signs, and writing an equal sign to the right of the

little clouds." These initial steps are all designed to provide a format for working on

the problem. The "little clouds! are used by Yoda to designate where the reducing

numbers are to be written and to prevent the child from losing track of the original

problem. The ,first critical step involves testing whether or not the numerator and

denominator are even. This test is not valid for all reduction problems but since the first

example 'Yoda chooses involves even numbers in both the numerator and denominator
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she is able to proceed with the problem. The next steps involve writing a 62° in each of

the little clouds, dividing the numerator and denominator by "2" and then writing the

results to the right of the equal sign. In order to determine if the original fraction has

been reduced to lowest terms, it is necessary to test the result of the division. At this
a.

point in her presentation, Yoda changes the test from determining if the numerator and

denominator are even, to determining if there is a number that will go evenly into both.

This is shown in the flow chart by the dashed line connec4ing to two test diamonds. If

there is no number that will go evenly into the numerator and denominator the fraction

has been reduced to lowest terms and the procedure is finished. Since the example Yoda

chose was in lowest terms following the first division, there was no opportunity to discuss

what another divisor would be.

At this point, Yoda selected a new problem that was considerably more difficult than

the firsts In fact, this problem could not be solved by following the steps in Figure 11.

The steps to solve this new problem are shown in Figure 12.

Insert Figure 12 here - Algorithm 2

The first step involves 'finding the biggest number that goes into the numerator and

denominator.' Presumably, Yoda intended this step to be a generalization of the test

shown in the initial flow chart. Unfortunately, there was no explicit mention made

about the relationship between the first and second problems. The next step shown in

Figure 12 is 'think what two numbers multiplied equal the numerator.° The essential

aspect of this step is factoring the numerator but again there is no explicit mention of
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this process. One selects the largest number that goes into both numerator and

denominator evenly and writes it in the 'little clouds.' Then that number is divided

into both the numerator and denominator, and the answer is written to the right of the

equal sign. The next step is to determine if the fraction has been reduced to lowest

terms. This is accomplished by seeing if the fraction is even or odd. If the fraction is

even then it is necessary to repeat the process. If the fraction is odd, an additi n p

is involved to determine if there is a number that goes evenly into both the numerator

and denominator. If such a number exists, then it is necessary to repeat. If no such

number exists, the fraction is in lowest terms and the procedure stops. One additional

thing to note about this algorithm is that Yoda simply states that if the fraction is no; in

lowest terms, it is necessary to 'go further without specifying exactly what that entails.

Yoda's lesson lacks both a detailed conceptual framework and an efficient algorithm.

Like Wall, Yoda's presentation of equivalent fractions involves a misconception about

the relationship between reducing RA °making smaller.' However, both Yoda and Wall

support the demanding (demanding in the sense of cognitive load) algorithmic string with

effective use of external memory devicesin Yoda's case the clouds' and in Wail's, the

bracketed factor list.

Summary and Conclusions

Summary.
. -

We examined a group of expert teachers and novices. Expert teachers had shown

similarly high levels of student growth over time while novices were beginning teachers.

Among this set we noticed considerable variability in their knowledge of fundamental

fractions concepts. The differences between novices and experts were consistent with

other research on expertise (Chi, Glaser & Reese, 1982; Larkin, 1983) namely, experts

. p.
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had more elaborate and deeper categories while novices had more horizontal separate

category systems for problems. However, among the experts there were differences in

levels of subject matter knowledge. We selected three experts who all seemed quite

similar in their knowledge of fractions and in their lessOn coverage. In-depth analysis of

the explanation behavior, however, revealed substantial differences in the details of their

presentations to students. Specifically, there was considerable difference in the level 'of

conceptual information presented as well as differences in the degree to which procedural

algorithmic information was presented. Secondly, teachers had decidely different

emphases in their presentationsthey entered the topics differently. Konrad approached

the topic of reducing fractions through the identity element, while Yoda and Wall

approached it via the contrast with finding equivalent fractions. Finally, we noticed

differential representation'systems: numberline, regional, and numerical.

There are several general issues that emerge from these analyses with respect to

student learning and teacher competence. One issue is the fact that textbooks and

teachers often provide. incomplete descriptions of the concepts and relationships in a

domain. In general, the less complete the student's knowledge base, the greater the'

likelihood that the student will generate incorrect inferences, develop misconceptions,

and produce inaccurate problem situations (Resnick, 1980). Specifically, with respe'ct to

equivalence, eq 'valence can be maintained by either reducing or raising a fraction. The
..

book and the teachers, however, Locus on the maintenance of equivalence by raising a

fraction by multiplication and fail to note the symmetry of multiplication and division.

In no case was the interrelationship of these concepts made explicit. In fact, one teacher

explicitly mentioned that equivalence and reducing' are opposites.

32



31

A second related area has to do with the mapping between the numerical

representation of frac lions and the alternative representations. A striking example

involves the mapping between equivalence of numbers and regions. The fraction, 2/4, is

often represented by a rectangle divided into four parts with two of those parts shaded.

In order to show how 2/4 is equivalent to 4/8 with numbers, 2/4 is Multiplied by 2/2.

The comparable action in the rectangle is to bisect the existent, figure with a single line

to create eight total parts, four of which are now shaded. In order to understand this

comparison, several intuitive points must be considered. First, multiplication by 2/2 is

equivalent to drawing a single line. Secondly, and potentially more confusing, drawing a

line is actually a division process and yet this is somehow equivalent to multiplication by

2/2. Mathematically, these relationships are quite precise, but on the rational level, the
:`

mapping is not at all straightforward. An additional problem arises in children's

conceptions of fractions; they often confuse the concepts of larger and smaller when

dealing with fractions; For example, some children judge 1/8 to bp larger than 1/4

becau§e 8 is larger than 4. This type oL....conception can further hinder an

understanding of equivalence.

A major objective in current efforts to improve mathematics competency in children is
I-

to improve the reasoning and understanding of conceptual aspects as opposed to simple

skill development. Until recently, however, we have had no systematic way to identify

----tt-eCOT1115011-elltrorsucireompetenty. The detailed -analysis-of systemsof_knawiedge_hold '

promise for such identification. Components of competencYi involve multiple

representations, 'understanding the function of basic arithmetic principles, such as the

identity function, and multiple linkages across concepts that are used in any one aspect

of 'arithmetic. Semantic networks permit the display of these elements and their links.
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With the ability to display the system of knowledge, we can determine both if teachers

appear to have conceptual ,understanding themselves and if they transmit it in their

explanations-. If they do not, it is .possible to remedy the situation in a straightforward

fashion. Namely, we can construct in-service support that is tied to lesson presentation

rather than independent thematic issues; we can expand the conceptual and linkage

information in marginal notes of teacher's manuals; and finally, we can make use of

pressipg examples (such as 3/7 and 243/567) to expadd th8 application of principles. As

teachers increase their conceptual knowledge and become more fluid in connecting their

knowledge to lesson presentations, their students' mathematical competence should also

improve.
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Table 1

Sample of Responsps to Fraction Interview

C:.C./ -; r

ailo

Experts

Konrad Yoda Wall R Wers

Novices

Lawn Spark Benny Mark
Define a fraction

,

Segment between
-1 or other

Whole numbers

Equal division of
something

A elan of a
whole

An equal part of .
a whole

A part of a
whole

.
.

A part.of a
whole

A piece of a
whole

Parts of a
whole

What do students
have trouble rec-
ognizing as frac-
Lions

Mixc%d numbers They don't

6
'0

0/4, 9t. 3/1

,

1/2 because it's
too familiar

Common denom-
inators (sic]

Number and
fraction [mixed
number)

Fractions beyond
one whole 5 1/5

What does "a re-
timed fraction"
mdan7

.

Dividing by one
renamed as a
fraction
,

-

Making it smaller
Dividing through
by the same,
number

Bringing it to
lowest terms

No number can go
in evenly

Use a common de-
nominator and
take to smallest
number

Dividing the num-
erator ana denom-
inator by the
largest number

Broken down into
smaller parts than
any other

Lowest terms

How do you
know it's
reduced?

No numbers left
to divide by

Can't divide
*

Can't divide num-
erator or denom-
inator

Two numbers not
related

Can't reduce
further

Can't divide Vampires who
hate to see a frac-
tion not reduced

No longer divide
it

How do you
know if 2 frac-
Lions are
equivalent 7

2 fractions same
amount

Same area; could
multiply by num-
ber (1) to get
another

Equal; could mut-
tiply or divide to
get the other

.

"Two equal not in
size but number"
No - the opposite

Equal to same
amount

Multiply or divide
by same number

2 fractions mean
the same thing

1/2 . 3/6: "equi-
valent fractions are
halves of a whole"

3 1 243 Yes; 81 .

.

Yes; 81 goes into
both '

Yes; divide by
81 get 3, 7

Yes; 567 f 7 .
81. No, 81 is a
whole number
Not equivalent.

Both 3, 7 get 81
but both numbers
don't go in. no.

Tough No, shut
off recorder. 81
is for both. No.

243 f 3 = 81 x
7 . 567. Yes

,

Can't do it. Don't
know.7 567

equivalent?

Define proper/
improper fraction

- ----- ------
Models for frac-
tion. 1st choice

others

Less than or
more than 1

Numerator small-
er or bigger than
denominator

Not sure numer-
ator smaller;
numerator bigger

Numerator bigger Numerator small-
er or bigger

Numerator small-
er; more than 1

Don't know.
Don't know

Top smaller/larger
than bottom

Number line, fig.
ures. Paper fold
is tough

Area, drawing Area, not discrete
Hard to draw
number line

Disgete
because of sets,
area. Love num-
ber line but don't
have one

Objects. Number
line not concrete

Region -- more
visual

'

Regions. Don't
understand num-
ber line

Number line
Can manipulate sets,
too

t .

Draw and tell
unit for 3/4, 5/5,
5/4

OK OK OK

.

OK OK 0l OK OK Unit:
all 5 pieces and 1

OK OK Unit:
2

OK OK Unit:
5 segments

OK OK Prompt
but probably OK

OK OK Unit
one wreath

8 -. OK
OK Unit is 5 *

1.wholes
Example of frac

.tion of whole
1

1/4 of 16 2/3 of 12 2/3 of 18 Can't generate With prompt
2/3 of 18

40 out of 100
ingens or 35 out of
WO

5 bunnies
2 Of 5 bunnies

2/5 of dominoes
with 2 dots

What is a ratio
and how is it like
a fraction?

Same as fraction. Ratio ii a fraction Don't know No difference Not asked Not asked
i

Don't know- One figure compar.
ed to another

Ratio of unshaded
to shaded CM

2 : 1

.

2 : 4 2 : 4 Can't be done . 1 : 2 ., 2 : 4 1 :2 2 : 4

Why does it work
to multiply by
the same number

"

Multiply by 1

..

Multiply by 1
r

Multiply top and
bottom by sarge
equals 1

Multiply by same
number

Multiply by same
number

Because it's the
same number

Because it's the
same number

Because it's the
same number
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Circle
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Divide
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Divide
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Divide
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