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Abetfacf

The relatlbnsdlp between’ exbért teachers’ classroom behavior and their sueject matter
knowledge is an area of research that has not been e)'(amlned extenslvely. To begin that
study, one topic, fraction kndwledge, gms explored in depfh as it oce;urred in Watdral
teaching settlnge. Fractions are one of the more d_lrrlcdlt toplces in elementary arlthmetlc; '
much of this difficuley is aetributable to the complex relationships among the xheanlng%‘
and representatlm 5 of fractions and basic arithmetic opei'atlons. Desplte these. difficultles
a.ssq_clated with fractions, manir teachers are quite proficient.at oteachlng children to
perrorm. operations with fractions. We. examined ‘"e’xpert téachers' kno’wledge by using
extenslve‘proeocqls to Investigate the/con-ten't and orge.nlzatlon of teachex_:s' Kknowledge of
rractloes. These protocols m.v'olved Interviews, card sorting tasks, and transcriptions of
videotaped lessons. Semantlc)networks that rerleeted ‘their knowledge of r;'actlo.xr;s were .

developed for individual teachers. Comparisons of these semantic networks showed that

there were wide disparities among the knowledge of experﬁ teach"ex_j§.‘ -SBome teachers

L4
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’ - " * -~
displayed relaplvely rich conceptual knowledge of fractions while others relied upon
preélse kndwledge of algorithms. Implications of these knowledge dlrrerences are

discussed.



Expertise in Mhthematics Instruction: Subject Matter Knowledge
_q’-.l‘hls paper explores the organ}z‘atlon ?nd content of subject matter knowledge used by
expert arithmetic teachers. Teaching can be considered a coénltlve skill and, as such, it
is ar;xenabl"e to ;.nalys'ls in .ways similar to other cognitive sklllé (Leinhardt & ,Gr'eeno, in
preparation). The expértlse involved in the cognltlvoi asi)ects of teaching can be seen as
. emerging rro;rl .two core-areas of knowledge: lessqn structure and subjéct matter. M

'y
qtructure knowledge Includes the skills needed to plan and run a lesson smoothly, to pass’

easlly l'rom one segment to another, and to e'cplaln materlal clearly. Subject matter

knowledge includes conceptual understanding, the particular algorithmic operatlons, the

connection between dll'lferent algorithmic procedures, tl;é«§ubset of the numbei‘- system
b . : )

> . . -

being drawn upon, understanding of ‘¢lasses -of student ,errors, and Currlﬁ‘lum\

o

presentation. Subject matter knowledge serves to support lesson structure and acts as a
resource in the selection of examples, formulation of explanations, etc. Subject matter

knowledge also constrains lesson structure in that the content of the less)on" strongly
V. N .

influences how It is to be taught. The skills assoclated with lesson structure and subject

matter knowledge are obviously Intertwined. However, while it is unllk‘ely that a teacher

coﬁl(_i be devéld o—r competel;ce In one area and. still be an e)&pert, there.seéin to'.be cases
,in which teach'ers with similar outcomes or success levels have quite a different l:aiancé
of skilis. The object_lve of this work is to explore the nature, le:;'.el, and ‘utlllzatlon of
subject matter knowledge among :;,set of expert teachers. It is compatible \(}vlth a .second

line of research on lesson structure knowledge (Leinhardt, 1983b; Leinhardt & Greeno, In
o . . : . v

preparation).



. 4 3.

Theoretical Fv N ri(

X

This research explores the dlme.n’s’lons. oi‘g" e and conteht of teacher's subject
matter kno-wle'dge in one particular area, fractio. . .ocused on fractions because of
its importance in fourth grade mathematics.  There. - ‘veral significant algorithms to

be taught in fourth grade: equivalent fractlons. raising fractions to a specific
dehomlnator, reducing fracfions, adding and -su* *raétlng with likes and unlike-
denominators, mixed numbers, and convertlng mixe. _;[;nbers to fractions and back

again. Fractions are difficult to teach and to learn'beca e they have several different

conceptual meanings; a part of a regional whole, a portion of a discrete set of objects, a

measurement point on a number line, or one number divided by another. They are

difficult also because two numbers are used to repi'esent-a s'lngle quantity and because’
different number names can represent the same quantity. There is considerable syjdence

that children, even those who perform traditional tasks well, have quite primitive notions

of the underlying concepts of fractions (Wachsmuth, Behr & Post, 1983). .
. \ . .

While algorithmic competency Qf teachers is geilerally assumed (although observation

indicates even this to be limited), the ability to represent the elements of an algorithm E .

.a communicable way as with blocks q‘plcttfres and then connect the procedur

representation together is not assumed, nor is it frequently observed. (Resnick, 1982;'

Champagne & Rogalska-Saz, 1984). leen' the lmpértance <‘)r,ear1y‘ mathematics

do L]

instruction, it iIs surprising that so little research haé addressed the lssqe of the type aqd
level of subject matter skill used and required. by teachers. With ‘rew ‘xceptl',ons
(Coleman's vocabulary test, for example) r'égearch In the‘subject'mat.ter knowlédge (level,

brganlzatlon, and understandlr_lg) of teachers has been alluded ‘to but not studied

(Evertson, Emmer, & Brophy, 1980; Pigge, Gibney, & Ginther, 1080). This Is true both

3
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in process product fesearch and in research in the cognitive process of teachers. The

research reported here begins that study.

- "The content of the"teaclrcl"s lesson ls"seen as the ﬁroduct of -a cognitive system that

represeits knowledge ‘In hoth_ declarative and pracedural forms (Anderson, 1983).

Declarative knowledge consists prlmarlly of th_e"racts that are known about a particular

domain wh_ﬁe procedural knowledge represents the algorithms and heuristics that operate

~on thosé facts. Forﬂex_ampfe, basic multiplication facts can be stored in declarative form

to be used procedurally"“’lvhen used to ralse fractions to a common denominator. A
’ L 3

common method ror representing declarative knowledge is in the form of semantic
- networks (Woods, 1975). A semantlc network is a node-llnk stl‘uctux’e in which concepts
are represented as nodes -that are linked tOgether according to a derlned set of -

relatignships. A cornr,noﬁmethod for representing ﬂfo?edural knowledge is through the

-

use of production. rules ‘that specify actions and the conditions under which those actions.
) ]

wlll-belpeérmed (Anderson, 1983). . ' SR .

s "~ ‘ . .
To review, the overal} ‘cognitive system of a }éacher is base” upon at “least two

organized knowledge .b'ases. One conslsts of general teaching skiils and strategies, the .
other cozlsts or speclﬁc informatlen ne¢essary ror the content presentatlon This second

body or lnformatlon has as resources the text materlal teacher C] manuals and elements

EA
[

or experlence that ldentll‘y what's hard to. teach It also lncludes algorlthmlc competence
and, at some level implielt understandlng o\:qw procedures work. as well as the goals
subgoals and constraints of the ‘tasks belng tau_ght (Greeno,“ Rlley &" Gelman, "1084;

-

Resnick, 1982). This seco'nd aspect is considered the knowledge component of 'expertlse ’

(Lesgold, 1983; Glaser, 1983). '



L .
Recent work :In cognitive psychology has explored' the significance of content
4 ~ ) .

knowledge in expert performance. (Chi, Glaser, & Rees, 1982; Glaser, 1983; Green'o,
1978; Lesgold, 1983; Voss, Greene, Post, & Penrer, 1983). Initial work in tlie field of
[ . . ke

expert performance attempted to analyze the structural or procedural aspects of

) . s : _ _
perrormanc'c devold o@tent knowledge but as research extends deeper into areas that
rely on broad substantive knowledge (such as physlcs political sclence, geography)

exploratlon of the content knowledge must be undertaken as well. 'Thls trend toward the

analﬁsls of domaln-specific knowl.edge has also been userul in the deVelopment of expert
g . . '

systems in the realm of artificial lnte‘lllgence. Some of the ‘morc notable cases involve
(advances in medical diagnosis (Pople, 1981; Shortliffe, 1976), and intelligent com;uter
assisted Instruction (Sleeman & Brown, 1983). By doing a detailed analysis of subject'

matter of rractlons on the part of expert teachers, we hope to understand how that

Q

knowledg® Is used in effective teachlng

Relation ‘of SubJect Matter Knowledge to: Lesson Structure
Arithmetic lessons are not homogeneous, contlnuous streams of actlon lasting for forty -

' : : ' . 8 :
minutes. Most good lessons contain several segments or structures (Good, Grouws &

‘

x‘lbmeler, 1983; Leinhardt,. 1983b). Each of these segments ca‘n be analyzed by

considering the system of goal? and subgoals tilat mediate the selectlon'of partlcular

: f
actions. These systems or goals and actlons can ba represented by plannlng nets (Van
Lehn & Brown, 1980). Plans are constructed ln response -to the need to achleve certaln .

goals (§terlk, 1981; Hayes-Roth & Hayes-Roth, ~1979). Chne or the most sallent actlon

- segments in the teaching of arithmetic ls the presentat,lon orjxaterlal t'Presentatlons are
. +
/l
the actlvity segment most closely identified with 'teachlng Other segments are guided

practice, monitored practice, drill, tutorlng. ete. It Is in the context of present,atlon that

Q o : -_.7 "' ) ',
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teachers Introduce new concepts, present new algorithms, review learned material, dnd
ortér explanations. 1t is also in ‘the context of a presentation that teachers must draw

most heavily on their subject matter knowledge.’

In order to see how subject matter know!edgé'ls used, brler_'descrlf)tlons' of a portion of

the theoretical ‘planning net will be provided. Presengatlon of algorithms Is analyzed in
terms of four goals: definitions pyesented, algorithm presented, algorithm learned, and

algbrlthm understood. Figure 1 d&lays the planning net for the seéond goal, presenting

" the algorithm. Thé planning net gontains both the goals (hexagons) and the actions
. (rectangles) involved in presenting an algorithm. The relationships among aciloﬂs' and

. goals are captured by labeled links. Consequenceé links show. the actions that, when

completed, will achieve a given goal. Goals that are linked to act}oné by pre-requisite
links must be satisfied before.that action can be executed. For example, a pre-requisite of
demo'nst,rat‘lng an algorithm ls'ldentmcatlon of the steps in that algorithm. Goals that

-7 . ) >
are c'oquulsltes of actions must remain true thropghout the execution of the action; for

[y

example, maintaining student attention. Planning.nets can also Include post-requisites,

r - ot

goals that -are linked to actions which become true upon the completloh of tﬁe action,

and tests for Iterative actions (Greeno, Riley, Gelman, 1984; Newell & Simon, 1973;

-

Sacerdotl, 1977).

-
N

In Figure 1, the. goal of having the algorithm presented Is the consequence of three

actions: s'tatlng the algorithm, demonstrating. the _:algorlthm, and Identifying the
. ‘ ’ - . .

conditions for use. These three actions require subject matter knowledge for their

content selection as well as for the remaﬁﬁlg actions and gdals.'Thus. in order io know :
. o S, s S -
* which algorithm to state and which demoixstratloe, to use, the subject matter knowledge

>
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must_/,be""éctlvated. As can be seen from the figure, however, the nature of that

.//' * -

) ledge. remains unspeci . The purpose of presenting the planning net 18 to

conte;tuhglze the subject matter knowledge, which lsAthe focus of this paper. . Y

-

Insert Flgpre‘l here

3

Data Source and Analysis
Four expert mathematics teachers and four novices who taught at the fourth grade

level were selected.! These ‘teachers were a subsample of a et of twelve expert teachers

v - N .

and four novices who participated In a three-year study of expertise (Lelnﬁardt,“foss:;.
1983b, 1983c). The expert; teachers were selected because of thie unusual and conslsteont

\ growth scores of their students in mathematics over a five year period. The novices were .
. 4 ]

student teachers In thelr last year of a teacher tralning program. The subgroup of four
expert teachers were chosen from the set of twelve beca%they taught at similar grade ‘

levels. Two of the experts seen’ed to have high kndwledge of szrtfect matter; one had

moderate knowledge, and one had low knowledge. The four novices had moderate to

fow subject nratter knowled.ge. In the first two years of the study extepgilve data were °
collected on these t.eachers:' th'ey were observed for approximately 3 months each .year;

t—l_ley wer;vld_eotaped for 10 héurs; they were lntérvlewed on several topics, including the

- taped lgssons,—plannlng and évalqatlng their lessons, and fraction knéwledge.'They were

also given card sort tasks on math topics. Transcription of the resultant protocols

became one data base while transcriptions of videotapes and observatigns of their in-class
. . ‘ .

¢

1Some of t.he't.eavcﬁh_ers were male; however, In order tJ preserve anogymlt.y. we describe all-individuals
- .as-female. -

.
»
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performance became another. *

R .

- The analyses were of twQ types. First, the fraction interview and- aihematlcs card
f l\nmzl/edge and

sorts were analyzed to determine any consistent patterns o

-

understandlng as well as confusion and mlsunderstandlng Second! three of the teachers

two high knowledge and one mlddle knowledge teacher, were examlned mere closcly ’

4

Vldeotapes of these .three teachers each teachlng a lesson on reduclng fractions that

lasted one or two periods were examined ln detall The teachers taught the lessons in the

o .
same progression (spontaneously) and.had completed prior lessons in similar sequences.

They used the same pages of text and very similar examples. . We were trying to

establl‘sh the dlrrerences in content used and communjcated by those teachers whose-

/

‘performance was superficially similar, but whose knowledge organization was

e

substantially differént. A i : S

f'\ ’r . . .
We analyzed the declaratlve knowledge base: by building semantic network

representations of the text material alone and representations for each.of the-teachers.
These- semantic nets are quite powerful .tools for demonstrating similarities and

+

‘differences among knowledge bases.‘ The lnrormarlon ln a'glven semantic net was based
< on videotapes of lessons and the parallel stlmulated recalls, with interviews and card sort
data usetl to conrlrm the presence of a partlcular concept or relationship. While this type
of non-statigtical but rormalﬁanalysls of qualitative data for a small number of cases is

new to educational research it has become a, confirmable methodology for psychology

(Ericsson & Simon, 1980) C A

Since the formalism of semantic networks is rel"atlvely new to educational research. it

, \/.

Q "‘.‘- : ‘ ’10
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will be helpful to discuss thelr applisation 1n somewhat more detall. “A semantic network

is a node-link structure that contalns two types of knowledge: concepts and refations

among those concepts. Concepts are represented as nodes while the relationships among

those concepts are rep,resented as labels on the links. The lnformatlon(represente_d in the

nodes depends upon the particular domain, and the number of -nodes Is a function of
both the domain and,the level of analysis. A relatively simple domain that is analyzed

. . 'S
- at a high level will have‘a small number of nodes while a complex domain analyzed at a
finer level of detail wili have a large number of nodes. The number of iinks is also a

'runctlon or’the domaln and the level of analysls soO that a detalled ‘'semantic network or a

.~

complex domain will tend to have a large number or iinks. A major constraint piaced on

the development of a semantlc network has to do wlth' the labels and direction of the
12 N
links. While link labels tend to vary somewhat acrqss domalns there Is' a ralrly well
p
speclrled set of frequently used labels One of the -most commo} link labels is has-prop
e

e

which deslgnates one node as being the property of another node. The~dl’rectlon_or the

arrow specifies which node Is the exempldr :and whlch Is the property. For example, a

- . ) - . t \ ‘0 . N
node representing the concept bird could have has-prop links to the concepls of

feathe'rs and flies. (Note, of ‘course that nelther or these concepts are properties of ali

LA
/ birds but that they are propertles of most blrds) Another common label is is a whlch’

r

designates a node as belng an Instantiation of a hlgher-level concept. For example. the
- .

' -

nodes representlng concepts fof eagle and crow would have is a llnks to the higher level

concept of bird. " Other common iink labels are has-part, subset, and is-part. Several of

these link. labels describe Inverse relationships and Jt is often the case that only one

ar

relationship Is shown explicitly. -

LY
]
«

There are two "basic useés of semantic networks-in cognitive sclence‘.research. One

11




common use of semantic networks Is tl‘w"constructlon of hypothetical knowledze bases '

used todTevelop' hypotheses about the-'{nowledge that ls.surrlclen.t to perform a particular -

task. A second use of semantic ‘networks Is to d'evelop_ models of the problem-solver's

knowledge base. In this type of research, the information in the semantic networl'_( is

based'.upon' the information that fs ootalned from verbal protocols taken during the

problem-solving activity. The use of semantic nets in the current analysis Is essentially a -'

eomblnatlon of these two uses. First, a semantic network was developed that represents

'th' basic fraction l\nowledge contalned in the text. Secondly. semantic networks were

develo\ged from transcrlbed vldeOtapes (and addltlonal matenial) of the correspondlng

- r
. «

lessons as presented by different  teachers. .These scmantic networlos.représen_t a

combination of a core or fraction knowledge plus the information that~the te"acher

discussed explicitly during the lesson presentation.

. T ‘

o : " Results ‘

. . B ‘ : : . .\. N b
Overview o S .

The outcome of the card sorts and fraction knowledge interviews cdnfirmed our

impression that in spite of high levels of student success ror all teachers, - two teachers

had exceptionally hlgh' math knowledge, one,had’ﬁlddle-level knowl‘edge. and one had

barely surrlclent math l;nowledge. ~Novices had generally low knowledge, but there were

' some surprises.

.
v

The math sort data indicated that there"were natural breaks between those experts

with high versus low math knowledge as well as between the‘e)g_nerts and novices.

Briefly, using both diagramatic trees and sorts we observed the following differences: a)

X 2 . L5

ngh knowledge experts sorted 45 math topic cards l'\to approxlmately 10 categories and

ordered tlle toplcs by difficulty to teach or perform. They also grouped addition and

N

.
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, subtractlon together and then ordered problems through to decimals. b) Novlces made
_ categorles for every one or two problems and noted llttle differentiation in. difficulty.

They also lndlcated almost no 1nternal connectlons
<
Wlth respect to‘teachfng fractions, slmllar distinctions appeared in the tapes and ‘.
lntervlews F'or example. although all teachers taught equlvalent fractions, when queried
about the equlvalence or 3/7 to 243/567 the less knowledgeable teachers tended to get
81 as a ractor and then to say elther that the rractlons were not equlvalent or that they
;dld not know. Also the less knowledgeable lndlvlduals whén discussing equlvalent
rractlons. dl'd not mentlon that to raise or lower a rractlon you multiply or divide by a
‘ rraetlonal equivalent~of one (in thle case 81/81), nor when interviewed did they seem to
' reallze. ft- was true. In contrast, the two teachers who had greater math skilis
immedliately saw the equivalence and repc'frted it. Both of these teachers when they were
teaching noted the fact that equlvzil\e‘xiceoccurred because the original fraction was belng
'ml-xltlplled by one, . - \ B ~.
Interviews = y . A C
Table 1 summarizes twelve items from the lractlon Interview. Most of the teachers and
. ) e
novlces tended to answer a subset of eight Iitems In a reasonable way, _wlth some ¢
excer)tlons as noted‘ln the table (darkened 'llnes ’polnt out discrepancies). Four of the
items seemed to discriminate between groups of teachers ln an lnterestlhg way. In
defining a fraction, seven Of the- teachers referred to equal parts of a whole, thus
retalnlng.the notlon_or equal se’g?ents and their relationship to the whole. One teacher

~4 .
defined a fraction as the points between zero and one or zero and any other whole

.

_Dumber, including the whole numbers. This teacher was the only one who consistently

used the-number llrfe as a frame for the lessons and the only one who saw fractions as

‘ S o .13
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having a measurement property. ~

Perhaps the most telling item was one which followed : an item that asked for a
dgrlnltldn‘-or' equivalent. All teachers defined équlvalent cor;ectly, emphasizing -the
regional e&uallty. The next question was ®"are 3/7 and 243/567 equlval/ent?'l"l‘he
example is, In some sense, "illegal® because it takes a slmple construct and pushes it out
of the normally observed rénge. The two high and one middle knowledge expert saw
very quickly that 8 was a common factor and that the fractions were thercfore
equivalent. That Is, they found 81 and recognized its slgmrlc'ance. Our lower knowledge
expert and two’n()vlces found 81; but they did not know what to ‘do with ‘lt and

 eventually said that the fractions were not equivalent. As Ms. Lawn said,

*No, walt, let's see. Well, I'm saying that because you can divide 3 into 253
and 7 into 567, ahm, huh, not neéessarlly because you cannot, as they are, 3
and 7 don't both go into these numbers evenly (that is that 7 doesn't go into
243) . . . Okay, no, I'm just figuring, it's 81 over 81, if you divide it out that
way . .. Isn't that funny, I teach, I'm teaching thatand 'understandlng it when

- I'm teaching it. Yeah it does, no, they aren't equivalent because you can't
divide them by the same number. Like, I would have to divide 567 In order to
see If théy were equivalent and it isn't. Let's see 21 . . . no, they aren't. Can

T ——you tell me?* -
This level of confusion was present for two other teachél_fs, one expert and one novice.
One other novice rérﬁsed the item, and one (Ms. Benny) got it by feasohlng, *243
divided by 3 equals; 81 times seven equals 567, but she did not explicitly mention that
81 was common 2} factor. Thus, among the teachers there is a clear break In
bl

understanding, whex"'e' the rule can be success'rully stated by some but not applied by
{ ' . .

them in extreme cases.

A third item of interest involved the concept of unit. The teachers were asked to draw

pictures representing 3/4, 5/5, and 5/4, which all but cne did successfully. They were

Q . | - 14 %J
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also asked to lndlcate the unit for each of these (4/4 5/5 4/)4 respectlvely) Everyone
! /
correctly answered the rlrst two but our high, and mlddle &nowledge experts and one

/

" novice (Ms. Benny) were the only ones who recognlzed one as the unit base of 5/4; two
low knowledge teac‘hel‘s sald that tq'e five segments (numerator) were the unlt and one
“eacher, our low knowle(\ige ‘e)?ert sald that the unlt was two.wholes. The concept of
unit is important to fractions because’ ‘lt allows one to mov'e back and.forth from dlscrete
i N :

to continuous models without losing ,ihe lmportl‘eht'relatlons. For example, 5/8 ls no:

‘ equivalent to 5/4, but the same number of pleces ére. involved in both numerators and
denqmlnators if one Is referring to two.r‘ectarllg.les each divided into four segments. If the
unit ls\.blurred from one to tWo, tl}e fraction meanlng can be as'well. One of our rxovlces
first sald that the five-fourths item was impossible to draﬁv'. She then drev'v five circles,
divided each one into fourths, and s.haded one-fourth of each of the five circles (5/20).

This repre'sents direct verbal translatlofl of the problem from five-fourths to five one-

fourths.

The fourth item that produced unex_pected results was designed to determine the
teachers’ understanding of ratio In relation to rractlons. We chose the ratib problem for
two reasons:' a) ratio is t:augflt'ln‘ fifth grade and these were fourth grade teachers who
might have students ready to move 'ahead;. and b) ratio uses the notation 6: fractions but

v

not the operations. The tgem first asked how ratios were similar t(_i or different from
fractions. .Then,' the teachers were shown a rlgure and asked to sp&:iry what fraction
was shaded, and the ratio of un?faded to shaded. Essentleliy, ratlo/ represents the
numeric relation between two things (part/whole, part/part, speed/dlstarxce, etc.). Ratlos

are not numbers on the number line and can undergo mathematical operations only

"ev - .
under particular clrcumstances'i. However, re.tlos can be expressed using fraction-like

Q 15
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notations and can include either the part/whole concepts In fractions or the part/part .

concepts. Not one of our teachers Indicated that they knew any of this. All either sald

-

that a fraction and ratio were identical or similar, or said that they did not know. One

»
1

novice, Ms. Mark, said rz-mos showed relations. ,\;Vhen shown'_an itemm that had dots
arranged In a ratio of 2 fo 4, ‘she 'expréssec;;; ratio correc;iy. However, when asked r<l>r
an equivalent ratio, she could o.n'ly fepgat her 1/3 fraction answer. One teacher gave én
_Incorrect respo.nsé of 2 to 1; the other. six were able to state the ratio as 2 to 4.
Presept;éd‘Lessons |

’Jleén the apparent disparity between the ability to express an algorithm and the
knowledée un’derlylnlgi 'tl.lat.algorlth‘m. (undérstandlng), we &ecl@ed to focus on, the
re'preselnpatloh of Subjeét matter knowledge as presented In classroom lessons by three

.

experts who had adequate subject matter knowledge.. -We selected' the one or two lesson

sequences on reducing fractions. The lessons v;"él;e examined by constructing semantic
° . .

nets that describe the content of the subjéct matter presemtation. In the following

dlscu_sslon. we present fhe coré material shargd by all ﬁresentatloné; then we'examlne the

textbogk presentation; and rlnal)y we present an analysis of thel.three ex.bert teachers. 1;1

describing the teaéhers. we start with a brief summary of the lesson flow and then

present the semantic net for-the subject matter presentation.

Core. _ Figure 2 displays the semantic net for. the core of knowledge lnvolvéd in
reducing fractions. By ®core® we méan the concepts that are sh.ared_ érr‘x'ong the three
. expert teachers and the text. This ‘core is based on the concept fraction. A fraction is
¢ number and has the parts 1umerator and denominator. A fraction also has the
property that It can have different repre"sentation.s. By representaﬁions we mean tha%

a fraction can be represented or modeled In a non-numeric system. One of the critical
. 2 .

e
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concepts ‘of the core Is that equivalence .is a relation between two fractions. A
Judgement of équiwalence can be made when each of two fractions is an input to
that relation. The concepts represénted Ini this core or nucleus can ‘be connected to other

concepts and it Is these*additlonal éong‘epts and relations that distinguish the teachers
N > . . 7

from each other as well as from the text.

1l

[AnS4

Insert Figure 2 !}ere - Cofe

i

., -

Text. In addition to the core of fractloh Information, the’ text Includes information
" about alternate representations for fractlons as well as information about t"h?

relationships between fractions and the operations of multiplication and division.

Insert Figure 3 here - Text

n[,

The semantic network shown In Figure 3 describes the information Epntalned in the

text and includes three altern@esentatloné for fractions. The Indst commoh)r\'

these representations involves the concept of a region and appears in the lower right

side of the network. The text explicitly states that a regional representatlgn has th
property of shape, which can be among other things a rectangle or a circle. The

critical relationship that 1s not explicitly discussed In the text Is the fact that a region is

a unit whole (shown by a dotted line). The other concepts and relationships shown for

<

the region representation are explicitly stated in the text. The basic notion represepted )

in the upper portion of the region representation is that a unit whole can be divided

a

v - -17
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into two parts, one shaded and the other unshaded. . Through a mﬁmamlng,
v . EX , s

the number of units represented in the shaded part of the region Is ‘shown to
correspond to the #umerator' of a Praction-wmle the total - number of units
corresponds to th‘e dencminator of aé‘ract‘;ion. As long as the size of the units is kept
eq;lal. units can be added .(by drawing'.llnes) or.,removed (by erasing‘ llnéé) and ‘the

fractions represented by the number of shaded units to the total number of units will

remain equivalent. ' .

L4
»

An alternate form of representation dlscusséd' In the ‘text is .'the number-line. The
number-line and its rélatloqsplp to equivalent rracflons is not covered extensively In the
text. Most\ of the information regarding number-line representations is provided by .
a élxrgle diagram with very ilttle supporting  discussion. This .mlnlmal covc;rage ls' :
evidenced by the small number of hodes connected to tﬂe c'oncept of the number-line.
The prln;ary relationships are that a nuxhber-line %s the préperty or.points tl‘]:‘at are
labéled_ By fractions. The text a:lso lntroﬁucw the nothn that there can be several
different nuﬁlber-iines. each of which has'tpe property of 2 family. The fact that ;hls
particular has-prop link is dashed represents the fact that tﬁe text did not gxpllcl-tly
mention the concéﬁt of a family. This 'co,ncépt was adopted from one of the teachers
who explicitly uses the tefm (see: discusslon of Konrad for detalls). The expression of
equivalence is éccompllshed'by 'llnlné up*® a.grou;> of number-lines in a vertical
array. If the number-lines have gqual sized units, it 1s possible to show how 1/2 on the
s number-lin;a is equivalent to (lines up with) 2/4 on the '4'5.' number-line.

The third form of representation discussed in the text ls‘disqret.;e objects. Like the

concept of a region, the discrete objects representation is impllcitly linked to the

b

Q b. 18 :.."“-
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concept of the a unit whole {unit set—li This set Is further divided Into two subsets of -
objects unit set—2 and unit set-3 Ttﬁ members of unit set-2 are- deﬂned as havlng a

partlcular property, prop-1 (eg bott'les) The members of unit set-3 also have this

~—

mbnt also have an a’ddmonal dlstlngulshlng property represented by‘p‘rop-z
(e.g., full of liquid). In constructlng the value of a fraction, the quantlty assoclated w\lth
' the ntxmber of members of umw:j to the numerator ar_xd the quagtlty :

assoclated with the number of members of unit set-1 corresponds to the denominator.

The connection betw'e'en discrete objects and the lﬂd\sets{not explicitly discussed in
text. Unlike its discussion of region represehtation, the dext does not provide

descriptlon of how the discrete object representation can be used “to discuss

g
fuil).

In addition to the-alternate r_epmsentatibnt;, the text .provldes éener;l descriptions of
how “the multiplication and divizion operators can be used to generate equivalent
fractions. The baslc concepts associated with these operators are reducing to lower
terms and equlvalence As shown in the upper portion of Figure 3, there is a relatively
close relationship among the multiplication and division operators: and the concepts of

- reducing .and equivalence. Tﬂe malin pol}lts expressed in the text are that equivalent -
fractions can be generated by either multiplying or dividing the numerator and
denominator of an existing fraction by the same number. This Is represented by ‘the
the relationships among the inputs® and oulput of the ther operators and the -

equivalence relation. Baslcally, both the numerator and the denominator of a

fraction A can be multiplied or divided by B and the result wlll be an equivalent

18
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raction A’. vision Is explicitly mentioned to have the property of reducing and
fraction A’. Division is expiicitl ld h h perty of reducing

-~

- hence creating a fraction In lower terms. Furthermore division has the property of

being restricted In that both the numerator and denomlnator of A must be.e venl!,

—

dlvlslble by B. Multlplicatlon, however, has no restrictions on the numbers that may

~

be psed in the operation.
' # .

The text's description of the general concepts and operatlons involved iﬁ’équlvalent
fractions includes most of ‘t,fxe critical relatlonsmgs\ What the text fa§is to provlde is any
_//»A - ' v

expllélt d_escrlptlon of how these concepts and_ operations ai"e to be‘ applied in a problem"
solvlpg sltuatlpn. The ‘only wLy to zicqulre this knowledge from the book, would be
through the/ process of lnducthn in which "the.‘student acqulres an understanding of the
propér rules aqd concepts while wgrklng through the problems. Although induction is a

powerful learning mechanism that can lead to the acquisitibn of correct concepts and

rules, It Is also a re!atlvely inefficient use of cognitive resources and can result in the

.

acquisition of mlsconcef)tlons and incorrect rules.

The omission of this crltlcal'lnrormatloh rrém the text was not an overglghtvbut was an
Intentional decision. Rather than providing the students with a lengthy discussion of the

various algorithms and heuristics that can be %pplle_d when generating equlvaient

b3
N

_.rractlons, thes text Is deélgned to provide a general framework that can then be'
elaborated on by individual teachers. In the course of the lesson, teachers can introduce
whatever algo.rlthms and heuristics thejr feel are appropriate. In the following sections,

\w'e dlséuss how dlrrerept tedéhers handle the task of teaching the concepts and

o}er\atlo_ns for reducing fractlons. .
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Konrad. Ms\.\ Konrad presented her lesson during an eieVeh-mlnute presentation on

day one and a seven-minute follow-up 6h day two. The presentation (whlch was followed

by guided praétlc‘e’ and Individual practice) contalned six segments. First Konrad

reviewed the fact that A/A equaled one and that any fraction in ‘Which the numerator

-

and denominator were the same equaled one. Secondly, she reviewed the fact that any
. . * . NS . )

number (inclfding a fractloq)r when multiplied by'ope yiclds that same number (or

fraction). ‘K rad connected segments one and two by neting that- such multiplication

)

produces equivalent fractions. , ' : . \ '

" The third segment was the beginning of the new material. I prad noted that whole
numbers divided by one ylel,ded the same number and thqn said fr ctlons dlv‘lded by one
. v

or a fractional name for one returned the same number or rraction She demonstrated

this by dividing 3/6 by 3/3 and noted that the answer yleld’d an equivalent rractlon

‘R

pair, 1/2 and 3/6. This was supported by a pictorial repn_a'sentatlor_x_. Two equal-sized
rectangles were drawn, one divided and shaded to show 3/6, the other to' show one-half;
and students were Invited to compare th_em. ‘This’ was/a minor mistake In that the idea

of the operation would be more easily conveyed with lone drawing rather than two.
. / :

The ‘fourth segment was complex. In thls segfnént kon;ad sho_“;ed.that while one can
multiply by any rractlonal name ror one (any of the numberline families) and get an
equlvalent fraction, dlvldlng by rractlbnal names ror one Is restricted. The fifth segment
continued the divisional glscusslon and presentéd the notlon of iterative division as a
precursor to lowest terms. The final seginent labeled‘the process--reducing to lowest
terms. The second lesson revlevfed‘,eiamples. and added hints for knowing when reducing

had been completed. ' ) )
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.t Insert Figure 4 here - Konrad - generic

-

The semantic netwo-rk, shown in Figure 4. was developed from the Information

, contained in Konrao's' class 'presen'tatlon and interviews. Konrad uses two of the
’ . ' . - ~ L]
. alternate representations presented In 'the‘ text, the region ‘and the number-line

" The region representation show:: on T,he right, side of Flgure 4 differs froni the text in

that Konrad uses two unit who1es rat!her than one. Each unit whole however, Is

-

essentially the same as the one descrlbed in tlie text. The demonstration provided 1n the
text showed ___‘ghat as long .as the.r'partsor a‘unit whole remained equal in slze, the
adaltlon or deletion of interfor lines woula not affect the oVerall relationshlp betwecen the
shaded part and the 'liiiit'.whole Konrad on thke other hand, uses two entlrely
separate region representations (rectangles) to demonstrate the same baslc point.
leen two rectangles of equal size with equally sized shaded subparts, the addltlon or .
deletlog of 1nterlor lln&s to elther reetangle produces a dlfferent fractional
representation, but does not change the equiyalencel of those fraptions. However, as

shown in Figure, 4, the student has to make the inference of equivalence of area between

the two rectangles.

The other representation used by Konrad is the number-line. Here too, the
kwork depicting this concept olrrers from the text. Konrad goes to great lengths to.l
show how a set of number-line families, each defined according to"the value‘\,yor a
‘whole nurnber, can be used to represent the equi'v;'alenee of two fractions. 1K.onr\§\d's

operation for achieving this is similar to that described in the text. That is, vgrtlcally

’

_ 2
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ailgned number-lineg can be used to show how the ffaction 2/4 In the “4* family is

equivalent to 3/6"1n the "6* family. In addition to elaborating on the description )
o . \ . -

offered by the text, Konrad uses the set of number-linés to Introduce the éoncepts of

.o - . . o ’ '

proﬁer and improper fractions and the concept of the identity element or the
\ .

L}

®fractional name for one® that exists In each number-line fhmily.
"\ 4. - L e

; | _ ‘ .
Thel-;identitx element is the key to Kon(_ad's method 6\: teaching the donc\gpt of

eq(i‘valence. ) We elabora-fe- this ieNFlgure 4 which shows t\l\le baslc. in(érmathn\‘ti\l'at
Konrad uses to des’cﬂbe the relationship b;tween thc; identity_\;lement ‘and equfvalent.
fractions. The primary thlngs to rocus on are the relatlonshlps amox;g the inputs to
multiplicatlon and the concepts of the identity element and fraction These
relationships show that multiplicgtion of a fraction by the identlty.glement will
alway‘é yleld an equivalent fraﬁtiox; regardless of the value of y._;he fraction or the

» value of numerator and denomina_tor of the identity element. For example, 2/4

multiplied by 4/ 4,>5/ 5, or 300/300 will each yleld an equivalent fraction. o
- o .

Iy
&

Insert Figure 5 here - Konrad multiplication/equivalence 1

Flgure 5 shows the another step lil Konrad's lesson, that is, the division of'a whole
number by the identity element. The primary points of focus in this figure are the .
relationships amdng division an%l/ts inputs. One of the inputs to division Is lmpllc?&

specifled as the dividend while the other mput the identxty element is lmpllcltly

t- ..

speclﬂed as the- dwnsor These relatlonshlps are lmpllclt because Konrad does not use

these terms but emphaslzes the point that A is divided _x B. Notice that the mputs to
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equivalence are numbe;s but they are not identified as’fractions. Instead, A Is
' : o
"defined as a whole' number which satisfies the rest;riction that is placed on the

" ' \ . / ) ‘ "

ry

"~ division of fractions.

. - Insert Figure 6 here - Konrad dlvlsldn/equl(alence

e ‘ ok )/

Figure 6 shows the final step of Konrad's fesson in which di\iisiop by the identity
.. . o

element is applied to a fraction. This Is represented by the reintroductioni of the ig a
relationship between number and fraction. Recall that tﬁls _ilnk Is absent from the

prior Figures 4 and 5. Once this relationship Is restored, however, there is a“ chdnge in

0

the way In which the restriction on division can be satis fied. In order to satisfy this

. restriction both the "num'erator. and denominator of A must be evenly ,diviﬂ‘: :
y o

by the numbers In B. If this co‘nstfalnp Is met, then division kas the propert

) o

reducing the original ﬁactiqn to lower terms.

A : |Insert Figure 7 here - Kohrad'divlsiop/reduclng' .

’

« )

f .
. /
It should be apparent from the number and density of the semantic networks

A\

describing Konrad's lesson‘that she is providing the students with a_rlch _body of

’ P o
conceptual information. On the ot_her hand, at no point in time does she provjde the

stude“n{'s with an explicit descriptfon of "an algorithm for réd—uclng fractions to lower

terms. On the surface, it would appear that Konrad's lesson places a demand upon the -

-

students to in(iuce the proper rules that w{ll'lead to problefn solutions. In some ways .

*
. ~
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_ this Is true, but it is important to note that, as opposed to the text, much of the.

R Information In Konrad's lesson can be viewed as providing lmpllclt rules for applylng the
£ ]
_multlpllcatlon and division aqperators. In the case of multlpllcatlon, for example the use

~

of the lde?mty element will always lead to an equlvalent rractlon What is mlsSlng is a
discussion of how to select the particular ldentlty element that will lead to the deslred’

rractlon. In the case of division, Konrad uses the lmpllclt notion or restrictions to guide

-

the selectlon of a proper ldentlty element. Adherence to these restrlctlons will lead to an
A i

eq'ulvalent fraction, but again not necessarlly the,_deslred one. In the subsequent lesson,
Iionrad offers a Iiumberor 'hlnts" about the choice of identity "elements as well as some

“hints® about when a fraction can.not be further reduced. &

v
*

These hints take the form of heurlstlcs that gulde the process of reducing fractions to°

~

lower ‘t.errrls. A heurlsgc oan be thought of ‘as- a *rule og thumb® that willl usually but.

not alvy;ays lead to a eroblem solution. An algorlthr'n. on the otﬁer hand, .derlnes a
. specific set of operatlons that, {if correctly applled"wlll always lead to a sollitlon. “The

obvious dlrrlculty with algorlthms is that they are of little use In sltuatlons where they.‘

cannot be applied. Whlle heurlstlcs may not always lead to a correct solutjon, they can,
3 ) !
be applled to a broader ‘range of problems. It is not clear wl;en or how these t\y':o

problem solving methods should be taught, but it is cle. that the process_’\c")r teachl_‘ng. .'

heuristics Is different than that for teachlng algorithms. .Th.ls' dl_rr\esg;ce can be seen l)y‘
. .' . 2 , . AN ¢ e " .
comparing Konrad's lesson with the lessons of the following two- teachers wlib teach
explicit al’gorlthms.

ot

*Wall. Ms. Wall gave her lesson during a]q_gle velght—mmute pre'se\matlon. Like

’

Konrad, she also had six segments in he\r) presentation. However, she started with the,

-y -

»
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‘segment that had ended Konrad's lesson-—namely, labeling the process as reducing °

»

| rractlons to lower terms. In the second segment, Wall drew a rectangle, marked off 3/6

-

- and erased the thirds lines to "reduce® l.t to 1/2. She then asked the ¢lass how 3/6 got to

1/2 ellcxtlng the thlrd lesson segment-the operatlon of division. The fourth segment
\ s
skipped to the netlon of equlvalent(lng) fractions by multiplication and its oppaaite,

*reduclng rractlons by division. The fifth segment was the crux'of the lesgon. The

. o 3, -t

algorithm was presented as follows: a) determine whether the numerator ds: a ta.ctor or

- b )

the derominator; 1r so, divide and stop, b) if .not;: list the numerator's’ ractors, startlng

“with the largest and test until a common ractor is found for both numerator and

-

denominator and_ divide by it. - Finally, Wall worked through several problems The '

. .

presentatjon was very clean and sparse; responses rrom s udents were those the lesson
\ . N . 4 t ~r - . .

réquired, and the algorithm got taught.' Little time Avas devoted “to conceptual

development. ta €

Y * »
-

Figure 8 shows a semantic network representing the conceptual information that Wall

"includes In he:r lesson on equivalent fractions. The ®core® Information Is essentially{thé

(%Y

same as Konrad's, but there Is no link showing that equivalence is a relation. Another

A Y

thing to note 1{ that. reducing and eqﬁi{ralence are represented as the oulpul of

divfsion»and multiplication, réspectlvely. In addition, these two concepts are treated

as oppositeS, In that red}cing has the property of making smaller while equivalence

" has the property of making la'rger. . \4//

IS

-

Insert Flgure 8 here - Wall - generic
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The other major part of this semantic network is the region representation shown

. A
~on the right hand side of Figure 8. This portion. of the structure is similar to that

. . .
provided in the text. The primary difference is that Wall uses the operation of erasing

lines to represent the process of reducing rather than the relationship of equivalence.

The majoi‘ part of Wall's lesson Is captured fn her&'ery detalled presentation of z;n
algorithm for reducing fractions. This procedure is explicitly taugaht and is very errl;lent.
Figure @-shows the procedure ln‘ﬁa flow chart which regads from top to bottom. Given the
objective of redpcl_ng a fraction, examine the numeratpr and seej ir it ls. a ractdr of the
(ienom_lnator; ir it Is, divide bofh the numerator an(; the denominator by the numerator

and the new fraction Is In lowest terms. If the nu erator Is not a faftor of the

denomlnatdr, then list all factors of the numerato'l:5 select the largest and test to s'ee ir it
- Is also a factor of the den'omlnator.‘ Keep going d;)wn the list of factors and when the
largest conmon one is r:;uhd, divide by it; then the fraction will be ln loweét te;mﬁ. In

contrast to Konrad's procedure, this is non-iterative and requires no checks for

reducibility.

—

5
/
S

g Insert Figure 9 here - Wall - algorithm .

..

There are sorr{e apparent dlrre}ences between Wall's_(lésson émd the information
provided by the Book. Wall focuses on a single rgrm of representation and does not
‘attempt to provide the students with a detailed understanding of the various concepts '
surrounding equivalent.rractlons. ‘Rather, she provides a relatively ‘éparse-rcogc_cptual

framework and a very efficient algorithm for "i'educln'g, fractions to lowest terms. Wall's-

-
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lesson also involves some erroneous information that could eventually cause confusion on
the part of the students. The most obvious of these errors is the relationship between
reducing fractions and *making smaller® or 'taklng\away.'

\

\
Yoda. Ms. Yoda gave two lessons on reducing rrac\tlons--one lasted two and one half

minutes; the? other, ten énd one-half. The combined presentations consisted of a total of
seven segments. She started by centering the notion of equlvale’.nt fractions, saying the
class had b«;en usmg multiplication and now they wouid use division. The second
segment reviewed the "cloud® notion from the text, and the lesson ended. The next day,
the rh:st segment (thfrd In"sequence) reviewed. the lz;bels of reducing and equlvaience.
The next two segments were discussions of odd .and even numbers. In pgrtlcﬁlar. she
reviewed the fact tlllat'even .m'xmbers ilavg the property of always being reduélble by two
and possibly iteratively. Yodé's sixth segment lntroduéed the label of lowest terms and
- ¢ : :
the idea of needlnfg\E find the largest common factor. When that factor Is found (just

how is not specified), division by It produces a fraction in lowest terms. Yoda then

worked several examples without further explanatlon.’

Figure 10 shows a semantic net representing the conceptual information in Yoda's
lesson plan. As with Ql'e prevlou; semantic nets, Yoda's lesson involves a relatlvcli
explicit description of the “core® information. In z;ddltlon to this, she discusses the
notion that numbers can have the properties even or odd and that fractions can be
made larger via multiplicatlo;x and smaller via division.clee Wall. ‘Yoda discusses

-

the fact that reducing has the property of making smaller. The concept of making

larger, however, s only seen-as-a property of multiplication and there is no direct link

between making larger and equivalence. The*majority of Yoda's lesson Involves the

28
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description of-an algorithm that the students can use to reduce fractions. This algorithm

is shown in Figure 11.

<
Insert Figure 10,here - Yoda - generic

-

3

The algorithm :taught by Yoda‘ Is nefthef as succinct, mor as reljable as that taught by
wall. In addition, during the course of teaching the alg.c)rlphxh, Yoda makes several
crlglcal errors. In teaching her reducing algorithm, Yoda attempts to teach a simple
reduction method -and then pulld oh this unt_u she presents a compiete algorithm. She
begins wltl; an a‘lgorlth;n that is rélatlvely simple .but applies only to certain types of

v

«-
problems.

A

Insert Figure 11 here - K]gprithm 1

-
9 B

5 .
-

o m

f Fléurg li shows ¢he basle algc;rlthm dea presents. The initial steps involve writing
(the rr;ctlon, putting dlviﬂon signs next to the numeraldr and denomlnat‘of. putting
*1ittl6 clouds® next to the division signs, and writing an equal sign to the rlght'or the
‘u"lmle clouds® These inftial steps are all designed to provide a format for worklng:on
the problem. The *little clouds®. are used l;y Yoda to designate where the reducing
~numbers are to be written and'tq_ Prevent the cﬁlld from losing track of the original
prjobléﬂ'l. The first critical ‘stép involves testing Whethe.r or not the numerato_r and

denominator are even. ’i‘hls test ls not valid for 2ll reduction problems but since the first

examplé Yoda chooses involves even numbers in both the numerator and denominator

29 -
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she is able to proceed with the problem. :I‘he next steps involve writing a *2* in each of
the little clouds, dividing the numerator and denominator by "2% and then writing the
results to the right of the equal sign. In_order to determine if tﬁe original -rrac;lon has
been reduced to lowest terms, it ls,necéssary to test the reéult or, the dlvlslon. At this
point in her i)resentatlon, Yoda changes the test from determining if the numerator and
denor_mnator are even, to determining if there is a number that _wlll go evenly into both.
Thls is shown in the rlov.v chart by the dashed line connec,glng to two test diamonds. If
there is no number that will go evenly into the numerator and denomlnator the fraction
has been reduced to lo:yest terms and the procedure is finished. Since the example Yoda
chose was in lowest terms following the first glvlslon, there was no ’opportunlty to discuss

what another divisor would be.’ ]

=]

At this point, Yoda selected a new problem that was considerably more difficult than
the first: In fact, this problem could not be solved by following the steps In Figure 11.

The steps to solve this new ﬁroblem are shown in Figure 12.

Insert Figure 12 here - Algorlth;ri 2

“The first step involves *finding the blggeét number that goes into the numerator and
denomlnqtor.' Presumably, Yoda lntendéd this step lto be a generalization of the test
shown in the initial flow chart. Unfortunately, there was no explicit mention made
about the relatlon;hlp between the first and seéond problems. ' The next step shown in

Figure 12 is "think what two numbers multiplied equal the numerator.® The essential

3

aspect of this step iIs ractorl-ng the numerator but agafn there is no explicit mention of
L J
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this' process. One selects the largest nﬁmbef that goes into both numer;tor and
denominator evenly and Qritw it ln’the 'llt_tle. clouds."® Theli._. that number is divided
into both the numerator and denominator, and the answer is written to th;: right of the
equal sign. The next step Is to determine if the fraction has been reduced to lowest )
terms. This Is accomplished by see{ng if the fraction ls even or odd. If the fraction is
even then it Is necessary to repeat the process. If thé rractlbn Is odd, an addlthep
Is involved to determine if there is a number that goes evenly into both ghe numerator
and denominator. If such a number exists, then it is necessary ‘to repeat. If no such
number exists, the fraction is in lowest term.s gnd the procedure stops. One additional
thing to note about this algoxllthm is that Yoda simply states tha't If the fraction is nq; in
lowest terms, it is necessary fo "gp further® without specifying exactly what that entalils.
Yoda's lesson lacks both a detailed conceptual framework and, an efficlent algorithm.
N _
Like Wall, Yoda's presentation of equivalent fractions involves a misconception about
the relationship between reducln§ anh *making smaller.® However, both Yoda and Wall
support the demand’lng (;iem:;ndlng in the sense of cognitive load) algorﬁhmlc string with
effective use of externai mexﬁory devices—In Yoda's case "the clouds® and in Wall's, the
bracketed factor list.
Summgry and Concll_xsio;xs

Summary.

We examined a grou;;""br expert teachers and novices. Expert teachers ha‘d{shown
" similarly high levels of student growth 'ove£ time while nbvlces were begl'nnlng teachers.
Among this set we notlced conslderaﬁle variabllity in their knov;'ledge of fundamental
fractions concepts. The differences 'betweeLll novices and e_xperté were consistent with
other research on expertise (Chl, Glaser & Reese, 1982; Larkin, 1983) namely, experts

»
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had more elaborate and deeper categories vyhlie novices had 'more horizontal separate
category systems for pro'blems. However, a_mong the experts there were dlrrerences in
. leve-ls of -subject matter knowledge. We selected three experts who all seemed quite
slmllar in their knowledge of Iractlons and in thelr lesson. coverage In-depth analysis of
the explanation behavior, however, revealed substantial dlrrerences In the detalls of their
presentations ‘to students. Specifically, there was considerable dlrrerence In the level of
conceptual lItIOrmatlon presented as well as differences in the degree to which procedural
algorlthmlc information was presented. Secondly, teactlers.‘_had deeldely dlrrereﬁt
emphases In their presentations--they entered the toples differently. Konrad approached
the toplc of reduclng fractions through the identity element, while Yoda and Wall _.

approached it via the contrast with finding equivalent fractions. Finally, we‘ noticed

differential representation’systems: -numberline, regional, and numerical.

There are several general Issues that emerge from these analyses with respect to

student learning and teacher competence. One lssue is the fact that textbooks and

teachers often provide lncomplete descriptions of the concepts and relationships in a

domain. In general, the less'complete the student’s knowledge base, the greater tlie'

likellhood tliat the student yvlll generate incorrect inferences, develop misconceptions,

.

and produce inaccurate problem situations (Resnick, 1980). Specifically, with respect to

equivalence, te(lvalence can be malntahied by elther reducing or raising a fraction. The
.° .- ‘ e ——

book and the teachers, however, rocus on the malntenance or equlvalence by ralslng a

-
.

fraction by multlpllcatlon and rall to Anote the symmetry of multlpllcatlon and division.

In no case was the lnterrelathnshlp of these concepts made explicit. In fact, one teaclter

. .
explicitly mentioned that equivalence and reducing are opposites.

.
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-~ P . N .
A-’'second related area has to do with the mapping between the numerical
| S r
. ¢
represcntation of frac.dens and the alternative representations. A striking example

4 . . . T
Involves the mapping between equivalence of numbers and regions. The fraction, 2/4, Is

often rebresented by a rectangle divided into four parts \rlth two of those parts shaded.
In order to show how 2/4 is éqrrlvalent- to 4/8 with numbers, 2/4 13 multiplied by 2/2.
The comparable acﬁﬁ in the rectangle is to bisect the existent rlgure with a slrlgle line
ro create eight total parts, four of \:/hlch are now shaded. In order to understand this
comparison, severgl intuitive points must be-cénsldered. First, multiplication -by 2/2 is
equlvalenr to drawing a single !lne. Secondly, and po‘tentlally more conruslng,-drawlng a
line Is actually a dlvlslorr process arrd yet this is somehow equlvaient to ‘multlr;ll\catl-on by
2/2. Mathematically, these relatlonshlps are quite precise, but on the rational level the
mapplng is ‘not ’a’t) all stralghtforward An additional problem arises in children’s
conceptlons of rractlons:, tpey often confuse the cohrepts of larger and smaller when
dealing with rractlons, For example, some children judge 1/8 to be larger than 1/4
because 8 Is larger t,han 4. This type of\rgsconceptlon can further hinder an
understandipz of equlvalqnce. -
) "4 ,

A major objectlve‘ in current efforts to improve mathematlc; corru:etency in children is.

to Impyove the reasoning and understanding of conceptual aspects as opposed to simple

skill development. Until recently, however, we have had no sysiemhtlc way to identify

-

—tﬁémnintror:such—crxmperency;—'Fhe—e}et&ﬂed-analysl&otsvéiemgptknowledgehold__r :
promlse for such identification. Components 6( competenc\yvl'ln\iolve | multiple |
reﬁreséntar,lons, -understanding the function 6( basic arithmetic principles, such as the
Identity function, @n’g mrrltlple lmkﬁgés across concepts that are used In any one aspect

- of ‘arithmetic. Semantjc networks-permit the display of these eiements and their links.
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A

With the abillty to display the system of know!edge, we can determine both 1f teachers
appear to have conceptual ,undlerstan'dlng themselves and if they trahsmlt At in thelr
explanatloné. If they do not, 1‘t is possible to remedy the situation in a stralght\l’orward
- fashion. Namely, we caﬁ construct in-service support that is tied to liesson presentation
rz;ther than independent thematic Issues; we can expand the co'nceptual and linkage
ln(ormatlon in marginal notes of teacher’s manuals; and‘ rlflally, we can make use 9‘1’
press{g'g exam_ples (such as 3/7 apd 243/567) to expand thg application of principles. As
tez;;hers increase their conceptual knowledge and become more fluld !n connegting their

'knowledge‘ to lesson presentétlons, their students’ mathematical competence should also

improve. “
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. - Table 1 Laud Loy .‘ ::...::|E
4 Sample of Hcsponsps to Fraction Interview - ’ :
\\ Experts Novices
\ . . j
. “:‘ Konrad Yoda Wall Rivers Lawn & Spark Benny ° Mark
Define a fractiom Sé’gmenl hetween } Equal divisionof | A part of a Anequal partof .| Apartofa A'partofa A pirce of a Parts of 3
0 -1 or other '] something whole ' awhole whole whole whole whole
whale numbers )
What do students | Mixed numbers They don't 0/4, 9 - 1an 1/2 because it’s | Common denom- | Number and Fractions beyond
+ have trouyble rec- 4 too familiar inators {sic) fraction {mixed onewhole 51/5
ognizing as frac- | ) . number)
tions : b3 ) .
What does “a re- | Dividing by one Making it smaller | Bringing it to No number can go | Use a common de- | Dividing the num- | Broken down into Lowest terms
duced fraction” renamed as a Dividing through | lowest terms in evenly ‘nominator and erator and denom- | smaller parts than
4 méan? fraction by the same. e _take to smallest | inator by the any other
- s . number number largest number
How do you No numbers left | Can‘t divide -| Can’t divide num- | Two numbers not | Can‘t reduce Can‘t divide Vampires who No longer divide
know it's to divide by . grator or denom- | related further hate to see a frac- | it
reduced? inator tion not reduced )

" How do you 2 fractions same | Same area; could | Equal; could mul- | “Two equal not in] Equal to same Multiply or divide | 2 fractions mean | 1/2 = 3/6: “equi-
know if 2 frac- amount multiply by num- | tiply or divide to | size but nuinber” amount by same number | the same thing valent fractions are
tions are ber (1) to get get the other No - the opposite ' halves of a whole”
equivalent ? another :

' 3 ! 23 Yes; 81 . Yes; 81 goesinto { Yes; divide by Yes; 567 + 7= | Both3,7get81 | Tough — No, shut { 243 = 3= 81x | €an‘t do it. Dont
7 567 . ° | both Y 81 get 3,7 81. No,8lisa but both numbers | off recorder. 81 | 7 =567. Yes know.
equivalent? - =~ whole number don‘t go in—no. { is for both. No.

F ) Not equivalent. i
Define proper/ Less than or Numerator small- | Not sure numer- Numerator bigger | Numerator smali- Numerator small- | Don‘t know. Top smaller/larger
improper fraction | more than 1 er or bigger than | ator sinaller; er or bigger er; more than 1 Don‘t know | than bottom

denominator numerator bigger
Maxclels for frac- Number tine, fig- | Area, drawing Area, not discrete | Dis éle - Objects. Number | Region - more Regions. Dont [ Number line -
tion. 1st choice ures. Paper fold Hard to draw hecause of sets, line not concrete | visuat understamd num- | Can manipulate sets,
— others is tough “ 4 number line area. Love num- ber line too -
. ber line but don‘t . L
have one )
Drawandtell | OK OK OK OK .0K OK OK OK Unit: }OK OK Unit: |OK OK Unit: |OK OK Prompt |OK OK unit (B3 - ok &
unit for 3/4, 5/8, : all 5 piecesand 1 | 2 5 segments but probably OK | one wreath OK Unitis5s ?
5/4 5 . wholes .
Examiple of lrac ) 1/4 of 16 2/30f 12 2/30f18 Can't generate Withprompt o | 40 out of 100 6 bunnies 2/5 of dominoes

1o shaghl [37:3)

e

Ltion of whole ‘| 2/3 01 18 m&msor 35 out olﬂ 2 of 5 bunnies with 2 dots
’ . 100
What isa ratio © Same as fraction. | Ratio is a fraction | Oon‘t know No difference Not asked "Not asked Don’t know- One fiqure compar-
amnd how is it like ‘ ’ ) ed to another
a lr:-ncliun’ ) .
Ratio of unshaded | 2: 1 2:4 2:4 Can't he done . 1:2 . 2:4 1:2 2:4

Why does it work
Aeinly by

Multiply by 1

l: MC 2number 7| 7

Mullinly" by 1

Multiply top and’
bottnm by s.1ruo
cquals 1

Multiply by same
numler

Multipty by; same
mnnwbor

Because it’s the
same number

Because it’s the
saime mimber

[]
Because it’s the
saime number

Aruitoxt provided by Eic:
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