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Abstract

Background: Electronic noses are composites of nanosensor arrays. Numerous studies showed their potential to
detect lung cancer from breath samples by analysing exhaled volatile compound pattern (“breathprint”). Expiratory
flow rate, breath hold and inclusion of anatomic dead space may influence the exhaled levels of some volatile
compounds; however it has not been fully addressed how these factors affect electronic nose data. Therefore, the
aim of the study was to investigate these effects.

Methods: 37 healthy subjects (44 ± 14 years) and 27 patients with lung cancer (60 ± 10 years) participated in the
study. After deep inhalation through a volatile organic compound filter, subjects exhaled at two different flow rates
(50 ml/sec and 75 ml/sec) into Teflon-coated bags. The effect of breath hold was analysed after 10 seconds of deep
inhalation. We also studied the effect of anatomic dead space by excluding this fraction and comparing alveolar air
to mixed (alveolar + anatomic dead space) air samples. Exhaled air samples were processed with Cyranose 320
electronic nose.

Results: Expiratory flow rate, breath hold and the inclusion of anatomic dead space significantly altered
“breathprints” in healthy individuals (p < 0.05), but not in lung cancer (p > 0.05). These factors also influenced the
discrimination ability of the electronic nose to detect lung cancer significantly.

Conclusions: We have shown that expiratory flow, breath hold and dead space influence exhaled volatile
compound pattern assessed with electronic nose. These findings suggest critical methodological recommendations
to standardise sample collections for electronic nose measurements.
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Background
Exhaled breath contains thousands of volatile molecules
and their levels change with cellular metabolism and
oxidative stress [1]. Therefore, it is not surprising that
altered exhaled volatile compound levels were found in
various disorders of the respiratory system such as lung
cancer [2-9], malignant mesothelioma [10,11], obstruct-
ive airway diseases [12-14], sarcoidosis [15], obstructive
sleep apnoea [16-18], respiratory infections [19,20] and
in patients with lung transplantation [21].
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Breath tests have unique advantages that they are
completely non-invasive, well-tolerable, hold no risks for
side effects and can be performed even in very sick pa-
tients; therefore they pose an ideal tool for disease
screening. This fact is particularly important in lung
cancer, as early diagnosis is associated with significantly
better prognosis [22].
Gas-chromatography mass-spectometry (GC-MS) is

the gold standard for exhaled volatile compound meas-
urement. However, these machines are very expensive
and need special skills and experience. Electronic noses,
composites of nanosensor arrays and in-built processors,
represent another, generally cheaper and easier tech-
nique to measure exhaled volatile compounds [5]. These
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devices cannot identify and quantify the molecules in
gas mixtures but are able to compare and discriminate
gaseous samples based on the contour of volatile sub-
stances (“breathprint”). In line with this, electronic noses
could distinguish exhaled breath samples of patients
with different respiratory disorders from those of healthy
subjects [23-25].
Lung cancer is probably the most frequently investi-

gated respiratory disorder in electronic nose research.
Numerous studies demonstrated that various electronic
noses could identify lung cancer by analysing exhaled
breath samples [5-9]. Cyranose 320 is one of the most
widely used electronic noses and it applies a carbon
black conducting polymer sensor array which is selective
for polar compounds and its lower detection limit is
around 0.1 ppm (particles per million) [26]. Numerous
volatile substances were identified as being altered in
lung cancer in this concentration range, such as acetone
[3,4,27,28], isoprene [3,4,27,29], benzene [2], xylene [3],
pentane [30], ethanol [28] and methanol [4]. Nonethe-
less, methanol, isoprene [31] and benzene [3,30,31] were
associated with smoking itself. Nevertheless, the discrim-
ination potential of Cyranose 320 to detect lung cancer
was reported to be good [6,7,9].
Unfortunately, no international guidelines exist for

sampling methodology for electronic nose analyses. Some
of the collection-related factors, such as the effect of en-
vironmental volatile substances [32], humidity [33,34] or
sample storage [35] were addressed [24]. Alveolar gases
may be influenced by breath hold (the period between in-
halation and exhalation) and airway-borne substances are
affected by expiratory flow rate [36]. In addition, in the in-
vestigation of lower airway molecules, the exclusion of
anatomical dead space should also be standardised. It is
not surprising that expiratory flow rate, the presence of
breath hold and the inclusion of anatomic dead space may
affect the levels of exhaled volatile compounds [33,37,38],
however in electronic nose research, only the effect of ex-
piratory flow rate has been investigated, but only in a
small group of healthy subjects [14].
Therefore, the aim of this study was to analyse the ef-

fect of expiratory flow rate, breath hold and anatomic
dead space on exhaled breath volatile compound pattern
in lung cancer and health assessed with Cyranose 320.
Methods
Subjects
Thirty-seven healthy individuals (44 ± 14 years, mean ±
SD) and 27 patients with lung cancer (60 ± 10 years) par-
ticipated in the study. Twenty-seven healthy subjects
were never-smokers and 10 were active smokers (31 ± 17
pack years). None of them have any chronic disorder, in-
cluding asthma, COPD, allergy, diabetes, renal or hepatic
disease. In smokers COPD has been excluded with lung
function test.
All patients with lung cancer were current (n = 15) or

ex-smokers (n = 12) with pack years of 60 ± 27. Lung
cancer subjects were enrolled after the diagnosis has been
established based on histology obtained either by endo-
bronchial or transthoracic biopsy. Seventeen lung cancer
patients had adenocarcinoma, 5 had squamous cell carcin-
oma, 3 had small cell carcinoma, 1 large cell carcinoma, 1
carcinoid and 1 sarcoma. Fourteen subjects were diag-
nosed newly and they did not receive any oncological
treatment while 13 were receiving active chemotherapy.
None of the lung cancer patients had asthma, allergy,
renal of hepatic disorder, 12 patients were treated with
COPD, and 4 with diabetes. All patients with COPD were
using long-acting muscarin antagonists and 5 of them
were on inhaled corticosteroids in combination with long-
acting beta agonists.
None of the volunteers had respiratory tract infection

4 weeks prior to the study. All subjects were instructed
to avoid consuming food and beverages [38] and not to
perform physical exercise [39] at least for 2 hours before
sample collection. Current smokers were asked to re-
frain from smoking for at least 6 hours prior to the
measurements.

Study design
All subjects were asked to perform four different breath
collection procedures. Participants inhaled VOC-filtered
room air with a deep inspiratory capacity manoeuvre then
exhaled at a controlled flow rate (50 ml/sec) assessed with
a flow-meter (VenThor, Thor Laboratories, Hungary) and,
to close the soft palate, against resistance (15–20 cmH2O).
The first 500 mL of exhaled air representing anatomic
dead space was discarded using a small-resistance T-valve
and the remaining air representing alveolar space was col-
lected in a Teflon-coated Mylar bag. This method has
originally been used for offline exhaled nitric oxide mea-
surements (Ecomedics, Dürnten, Switzerland), but was
standardised for VOC analyses by our workgroup and was
shown to be reproducible within a day [40] and over
8 weeks [21]. The measurements with electronic nose
were performed immediately after the collection. After at-
tachment of a volatile molecule, sensors in Cyranose 320
respond with changes in resistance. After auto scale nor-
malisation, sensor responses (dR) are calculated by the fol-
lowing formula: dR = (Rs-R)/R, where Rs is the response
to the sampled gas and R is the response to the baseline
reading, the reference gas being the VOC-filtered ambient
room air.
To study the effect of expiratory flow rate, breath hold

and dead space the previously described procedure was
altered. Assessing the effect of expiratory flow rate sub-
jects exhaled at 75 ml/sec which was compared to
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breath samples obtained at 50 ml/sec. To study the
effect of breath hold, after deep inhalation through a
VOC-filter, subjects held their breath at total lung cap-
acity for 10 seconds and exhaled at 50 ml/sec. Finally,
subjects performed an expiratory manoeuvre similar to
the first one, but this time the dead space air was not
discarded and mixed air was collected.
The study was approved by the University Ethics

Committee (Semmelweis University, TUKEB 110/2007),
and all subjects signed informed consent form prior to
the measurements.

Statistical analysis
SPSS 15.0 (SPSS Inc., Chicago, IL, USA), GraphPad
Prism 5.03 (GraphPad Software Inc., San Diego, CA,
USA) and Statistica 8.0 software (Stat Soft, Inc., Tulsa,
OK, USA) were used for statistical analysis. To avoid the
confounding effect of water vapour the four water sensi-
tive sensors (sensors 5, 6, 23, 31) were excluded, thus in
total 28 sensors were analysed. To reduce data dimen-
sionality principal component analysis (PCA) was per-
formed on sensor responses, principal components (PCs)
were sorted based on their initial Eigen value sizes and the
highest three (PC1, PC2 and PC3) were used for further
analysis. To classify cases into categorical divisions, linear
canonical discriminant analysis was used following a step-
wise approach, where Mahalanobis-distance was applied to
exclude outliers [41]. Leave-one-out cross validation was
also performed with Mahalanobis distance followed by lin-
ear canonical discriminant analysis where the same dataset
was used as the validation as well as the training groups.
Pearson correlation, multivariate linear and logistic regres-
sion analyses were performed to detect relationships be-
tween clinical data and PCs.
The primary aim of this study was to investigate whether

collection-related factors, including expiratory flow rate,
breath hold and exclusion of anatomic dead space influ-
ence the breathprints of healthy subjects and patients with
lung cancer. Repeated-measures ANOVA on principal
components followed by the Dunnett’s post hoc test was
applied to analyse this aim in two groups with 4 subse-
quent measurements. Principal components were derived
from sensor responses, therefore a priori calculations on
effect size were based on descriptive statistics of sensor re-
sponses in our previous cohorts [18,40]. In these studies,
the average standard deviation/mean ratio of the analysed
(N = 28, after the exclusion of water-sensitive sensors) sen-
sor responses was 0.35.
In addition, we showed that changes in exhalation flow

rate and breath hold caused a 12% change in exhaled
VOC levels [38]. Together these two (standard devi-
ation/mean ratio of 0.35 and a change of 0.12) result an
effect size of 0.35. Using an effect size of 0.35 and inves-
tigating two groups with 4 subsequent measurements
and a power of 0.80 the minimal estimated sample size
was N = 44 [42]. However, because of the considerable
within group variability of the clinical data in patients
with lung cancer, to improve the power of our results,
we decided to exceed the minimally required sample size
by enrolling 20 additional subjects.
Our secondary aim was to compare healthy and lung

cancer groups when breath samples were collected with
different collection setups. Post hoc power analysis
based on a previous study [13] revealed that the stand-
ard error for correct classification between the healthy
and lung cancer groups was below 6% for all compari-
sons. A p < 0.05 was considered significant.

Results
Effects of expiratory flow, breath hold and dead space on
“breathprint”
Expiratory flow rate, breath hold and dead space signifi-
cantly altered exhaled “breathprints” only in healthy in-
dividuals (p < 0.05) but not in patients with lung cancer
(p > 0.05, Figure 1).
Analysing individual sensor responses in healthy par-

ticipants, expiratory flow rate affected all but sensors 2,
3, 7, 9, 19, 23, 27 and 32, breath hold changed all sensor
responses, while dead space altered all but sensors 1, 12
and 13 significantly (p < 0.05). In patients with lung can-
cer, breath hold affected only sensor 29, while dead
space altered responses of sensors 27 and 29 significantly
(p < 0.05).

The effect of sample collection on the ability of electronic
nose to detect lung cancer
We found a significant difference between exhaled
“breathprints” in healthy subjects and patients with lung
cancer when the previously standardised collection setup
(50 ml/sec, no breath hold and the exclusion of dead
space) was used (p = 0.02, Figure 2). The electronic nose
could discriminate the two groups with a classification
accuracy of 72%, cross-validated accuracy of 70%, 63%
sensitivity, 78% specificity, 63% positive predictive value
and 78% negative predictive value. When only healthy
smokers were compared to patients with lung cancer,
the difference was still significant (p = 0.01, classification
accuracy of 81%, 96% sensitivity, 40% specificity, 81%
positive predictive value, 80% negative predictive value).
Similarly, the difference was significant (p < 0.001) also
when healthy never-smokers were compared to patients
(classification accuracy of 74%, 67% sensitivity, 81% spe-
cificity, 78% positive predictive value, 71% negative pre-
dictive value).
When the healthy and lung cancer groups were com-

pared at higher expiratory rate, the difference was signifi-
cant with classification accuracy of 78%, cross-validated
accuracy of 78%, 81% sensitivity, 76% specificity, 71%



Figure 1 The effect of expiratory flow, breath hold and dead space on principal components. The collection-related factors caused
significant differences only in healthy subjects (p < 0.05), the effect was not significant in patients with lung cancer (p > 0.05). Comparing to
baseline measurements both higher expiratory flow and breath hold caused significant changes in PC1, PC2, PC3, while the inclusion of anatomic
dead space affected only PC1. Data are expressed as mean ± SD. *-p < 0.05, **-p < 0.01, ***-p < 0.001, NS-not significant.
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positive predictive value and 85% negative predictive
value. The difference after 10 seconds of breath hold was
also significant with classification accuracy of 70%, cross-
validated accuracy of 70%, 78% sensitivity, 65% specificity,
62% positive predictive value and 80% negative predictive
value. Although, the difference after inclusion of the dead
space was still significant, the discrimination power was
the poorest with classification accuracy of 70%, cross-
validated accuracy of 69%, 67% sensitivity, 70% specificity,
64% positive predictive value and 75% negative predictive
value.
The effect of tumour histological type and active
chemotherapeutic treatment on “breathprint”
When comparing various histological subtypes, no dif-
ference was observed in “breathprints” (p > 0.05). Simi-
larly, there was no difference in “breathprints” between



Figure 2 Two dimensional PCA plot between healthy subjects
(squares) and patients with lung cancer (circles). Electronic nose
could discriminate the two groups with a classification accuracy of
72% when breath samples were collected with a previously
standardised collection procedure. The difference was
significant (p = 0.02).

Figure 3 Relationships between “breathprint” and FEV1/FVC as
well as age. Significant associations were found between PC2 and
FEV1/FVC (p = 0.03, r = 0.41, Panel A) as well as between PC3 and
age (p = 0.002, r = 0.56, Panel B).
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patients receiving active chemotherapy and treatment-
naive patients (p > 0.05).

The effects of lung function, age and smoking history on
“breathprint”
We found significant correlations between PC2 and
FEV1 and PC2 and FEV1/FVC (r = 0.50 and r = 0.41,
p < 0.05, Figure 3A) as well as PC3 and age (r = 0.56,
p < 0.05, Figure 3B) in lung cancer subjects. Contrarily,
there was no relationship between “breathprint” and
lung function or “breathprint” and age in healthy subjects.
Analysing individual sensors, we did not find significant
relationship between sensor responses and lung function,
age or smoking history in either group of subjects.
To exclude the potential confounding effect of COPD,

comparison between healthy and lung cancer groups
was also performed when only non-COPD lung cancer
subjects were included, yielding still significant differ-
ences (p = 0.03, 60% sensitivity, 63% specificity). “Breath-
prints” of healthy smokers were significantly different
from healthy never smokers (p = 0.01), while pack years
were not related to “breathprints” in any group of
subjects.

Discussion
Electronic noses represent potential non-invasive tools
for the early diagnosis of lung cancer. Unfortunately,
there is still an unmet need for international guidelines
for sampling methodology in electronic nose analyses. In
this study we investigated collection-related methodo-
logical factors in an attempt to improve the standardisa-
tion of the sampling technique for electronic nose
studies.
The expiratory flow rate might influence the breath

level of molecules originating from the conducting air-
ways. On one hand, the levels of volatile molecules with
a steady axial diffusion, such as nitric oxide, may decrease
at higher expiratory flow rate [36,43]. On the other hand,
if a VOC is taken up by the airway tissue, higher expira-
tory flow rate does not allow rapid diffusion towards the
airway vessels and it is associated with elevated breath
VOC levels [37]. Of note, if a molecule is released in the
conducting airways it does not rule out the possibility that
it also originates from the more distant part of the lungs.
Flow-dependence of different VOCs has already been
demonstrated [33,37,38,44]. However, the airway kinetics
of various volatile substances is not fully understood. It is
known from experimental studies on nitric oxide that the
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relationship between expiratory flow rate and exhaled
volatile compound levels may resemble a hyperbolic curve
[43]. In line with this, proportionally higher expiratory
flow rates may result only in marginal differences in ex-
haled volatile levels which might not be detected with
electronic nose. Therefore, we decided to use two rela-
tively slow expiratory flow rates in this study. In addition,
these two relatively slow flow rates could have been
achieved by all subjects, while our experience is that expir-
ation with constant high flow-rates (>200 ml/sec) could be
very struggling for very sick patients. Flow-dependency of
exhaled volatile compound pattern has been investigated
only in a preliminary experimental setup. In that study
100 to 200 ml/sec and 300 to 500 ml/sec expiratory flow
rates were compared in 10 healthy non-smoker subjects
without any significant difference [14]. However, the lack
of difference may have been due to the relatively high tar-
get rates applied in that study. Of course, to understand
the kinetics of VOC production in healthy and patho-
logical airways more than two expiratory flow rates must
be tested, and VOC levels should be measured with more
precise instruments (i.e. GC-MS). The aim of the current
study was only to demonstrate the importance of expira-
tory flow rate control.
In general, if subjects are not instructed properly, they

may provide a breath sample after various times of
breath hold [33]. The breath levels of molecules which
are produced in the acinar airway/alveolar space or the
ones which diffuse through the alveoli are influenced by
breath hold. The longer the breath hold is, the more
molecules accumulate in the airways resulting in higher
breath levels [33,36-38,45].
The effect of dead space air on exhaled volatile com-

pound concentrations is two-sided. Firstly, if a molecule
is produced in the lower airways but not in the upper
part, its concentrations may be diluted by the dead-
space air. Secondly, some molecules may be produced in
the upper airways influencing the results [46]. Therefore,
comparison of alveolar (dead space excluded) and mixed
air (dead space included) samples may reveal the origin
of volatile molecules [27,47]. Two possible approaches
are introduced to avoid the problem of dead space; by
partitioning the first proportion of exhaled air via a T-
valve (time or volume-controlled separation) [46] or by
monitoring the exhaled CO2 concentration and selecting
the period when CO2 reaches the alveolar plateau (CO2-
plateau controlled separation) [47]. A study comparing
the two methods showed that the CO2-controlled method
provides more precise results [27], however the time or
volume-controlled separation which was used in the
current study is simpler and more feasible.
It was shown that expiratory flow rate may alter acetone

[44], ethanol [38], isoprene [33,37] and pentane [37] levels,
breath hold may increase isoprene [33,37], methanol [44]
and acetone [38,44] concentrations and the inclusion
of anatomic dead space may affect acetone levels [27].
Hence, it was not surprising that these factors altered
“breathprints” significantly in the current study. Analysing
the raw sensor data, collection-related factors altered dif-
ferent sensor responses suggesting that they may affect
various volatile molecules differently. Interestingly, these
effects were present only in healthy individuals. Various
studied concluded decreased VOC levels in lung cancer
compared to non-lung cancer control groups [2,4]. This
may imply that VOC levels in lung cancer were below the
lower detection limit of electronic nose (0.1 ppm); there-
fore the lack of changes in lung cancer group was not due
to physiological but analytical reasons. On the other hand,
we have previously shown that expiratory flow depend-
ency of VOCs may not be present in all subjects. Exhaled
ethanol concentration in healthy volunteers with very low
baseline levels was not affected by higher exhalation flow
rate [38]. In addition, as some of the lung cancer subjects
had also COPD, because of the possible airflow limitation,
this might have been biased the kinetics of VOC produc-
tion. This could contribute to the negative results in lung
cancer patients.
Nevertheless, we found that collection-related factors

influenced not only “breathprints” of healthy subjects
but the differences between the two groups. Namely, the
difference between healthy and lung cancer group wid-
ened when breath samples were obtained at higher
expiratory flow rates. This further highlights the import-
ance of sampling standardization, but also suggests pos-
sible opportunities to improve the classification accuracy
of electronic nose. We used a leave-one out cross-
validation method to test the discrimination ability of
different collection setups. This technique has a certain
limitation that the same dataset was used as the valid-
ation as well as the training groups. Therefore, the im-
proved discrimination ability has to be tested blindly in
future studies enrolling external group of new patients.
Unfortunately, there is no consensus which is the best
statistical approach for the classification of electronic nose
data. A recent study highlighted that linear discriminant
analysis, used also in the current study has a superior pre-
diction accuracy, sensitivity and specificity in comparison
to the other techniques, including partial least squares-
discriminant analysis and random forests [48].
Theoretically, expiratory flow-, breath hold-, ant dead

space-dependency of volatile substances may draw a con-
clusion about the anatomic site of production (i.e. con-
ducting airways, alveoli or oral cavity, etc.). Electronic
noses analyse a pattern of molecules, and it is plausible
that volatile compounds contributing to “breathprint” ori-
ginate from various sites. Unfortunately, the electronic
nose used in this study is not able to separate exhaled
volatile molecules; therefore, further studies coupling
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electronic noses with GC-MS are warranted to identify
biomarkers associated with sampling-related changes.
Similarly to previous studies [6,7] we found significant

differences in “breathprint” between healthy subjects and
patients with lung cancer. However these differences
might not be related to the disease itself but to some
other factors. For example, age and smoking history may
alter exhaled molecules [13,18,24,49]. We found a sig-
nificant correlation between “breathprint” and age only
in lung cancer subjects, and we cannot completely ex-
clude the possibility that the difference in age between
healthy and lung cancer groups might have biased our
results. Of note, previous studies showed that age does
not influence the discrimination ability between healthy
controls and patients with obstructive airway diseases
[13,14]. Although smoking may change exhaled volatile
substances [49], it was also shown that it did not affect
the discrimination potential of exhaled volatile compound
profile to detect lung cancer [7,23]. Confirming the previ-
ous results [49], we also found a significant difference be-
tween active-smoker and never-smoker healthy subjects.
Most notably, similarly to previous reports [7,23], the dif-
ference between healthy volunteers and lung cancer pa-
tients was still present irrespectively whether the control
group consisted of smokers or non-smokers. However,
due to the potential effect of smoking, a comparison
enrolling four groups of subjects (i.e. smoking healthy,
non-smoking healthy, smoking patient and non-smoking
patient) would be more accurate to exclude the potential
effect of cigarette smoking. We found no difference in
“breathprints” between active and ex-smoker lung cancer
patients which was similar to the data found in COPD
[12,13]. The relationship between lung function and
“breathprint” is not fully understood. We found a signifi-
cant association between “breathprint” and lung function
in lung cancer, however other authors showed no relation-
ship between acute changes in airway calibre and exhaled
volatile compound pattern [50]. The lack of relationship
between “breathprint” and lung function in healthy sub-
jects might be because of the relatively narrow range of
lung function volumes in healthy individuals.
Important issues which are needed to be investigated

in future studies include histological subtype of lung
cancer, the role of chemotherapy and accompanying dis-
orders. Studies examining exhaled breath showed dif-
ferences in lung cancer compared to control subjects
irrespectively from histology [5-7]. Some of our patients
were on active oncologic treatment. Similarly to the previ-
ous study [5], electronic nose could classify lung cancer
patients correctly disregarding their medical treatment
history. In addition, there were no differences between the
treated and untreated groups. However, this study has not
been powered to analyse the effect of chemotherapy.
COPD is frequently accompanied with lung cancer and it
can modify exhaled “breathprint” itself [13]. Previous stud-
ies showed that exhaled “breathprint” differs in lung can-
cer when it was compared to COPD [5,6]. Of note, in this
study, the difference in lung cancer was still significant
when non-COPD lung cancer patients were analysed.
However, one may argue that in fact the results of the dis-
crimination between lung cancer and controls will im-
prove when a more homogeneous group is studied. To
explore the potential of electronic nose in lung cancer
screening further studies are warranted to understand
possible confounding clinical factors.

Conclusions
In summary, expiratory flow rate, breath hold and ana-
tomic dead space may affect “breathprints” significantly.
These effects may also influence the classification accur-
acy of electronic noses to separate disorders from health;
by altering collection-related factors the discrimination
ability may even be improved. Therefore, our study
points to the need of methodological recommendations
to standardise sample collection for electronic nose
measurements.
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