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Abstract

Deep learning models perform poorly on

tasks that require commonsense reasoning,

which often necessitates some form of world-

knowledge or reasoning over information not

immediately present in the input. We collect

human explanations for commonsense reason-

ing in the form of natural language sequences

and highlighted annotations in a new dataset

called Common Sense Explanations (CoS-E).

We use CoS-E to train language models to

automatically generate explanations that can

be used during training and inference in a

novel Commonsense Auto-Generated Expla-

nation (CAGE) framework. CAGE improves

the state-of-the-art by 10% on the challeng-

ing CommonsenseQA task. We further study

commonsense reasoning in DNNs using both

human and auto-generated explanations in-

cluding transfer to out-of-domain tasks. Em-

pirical results indicate that we can effectively

leverage language models for commonsense

reasoning.

1 Introduction

Commonsense reasoning is a challenging task for

modern machine learning methods (Zhong et al.,

2018; Talmor et al., 2019). Explanations are a way

to verbalize the reasoning that the models learn

during training. Common sense Question Answer-

ing (CQA) is a multiple-choice question answer-

ing dataset proposed for developing natural lan-

guage processing (NLP) models with commons-

sense reasoning capabilities (Talmor et al., 2019).

Although these efforts have led to progress, it is

still unclear how these models perform reasoning

and to what extent that reasoning is based on world

knowledge. We collect human explanations for

commonsense reasoning built on top of CQA and

introduce them as Common Sense Explanations

(CoS-E)1. CoS-E contains human explanations in

1
https://github.com/nazneenrajani/CoS-E

Question: While eating a hamburger with friends,
what are people trying to do?

Choices: have fun, tasty, or indigestion
CoS-E: Usually a hamburger with friends indicates a

good time.

Question: After getting drunk people couldn’t
understand him,it was because of his what?

Choices: lower standards,slurred speech, or falling
down

CoS-E: People who are drunk have difficulty speaking.

Question: People do what during their time off from
work?

Choices: take trips, brow shorter, or become hysterical
CoS-E: People usually do something relaxing, such as

taking trips,when they don’t need to work.

Table 1: Examples from our CoS-E dataset.

the form of both open-ended natural language ex-

planations as well as highlighted span annotations

that represent words selected by humans as impor-

tant for predicting the right answer (see Table 1).

Talmor et al. (2019) show that using Google

search to extract context from top 100 result snip-

pets for each of the question and answer choices

does not help much in improving the accuracy on

CQA trained using even the state-of-the-art read-

ing comprehension model BiDAF++ (Seo et al.,

2017) augmented with a self-attention layer and

ELMo representations (Peters et al., 2018).

In contrast, we leverage a pretrained language

model to generate explanations that are useful for

commonsense reasoning. We propose Common-

sense Auto-Generated Explanations (CAGE) as a

framework for generating explanations for CQA.

We break down the task of commonsense reason-

ing into two phases. In the first phase, we pro-

vide a CQA example alongside the corresponding

CoS-E explanation to a language model. The lan-

guage model conditions on the question and an-

swer choices from the example and is trained to

generate the CoS-E explanation.

In the second phase, we use the language model

https://github.com/nazneenrajani/CoS-E
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…

(a) One time-step of training a CAGE language model to gen-
erate explanations from CoS-E. It is conditioned on the ques-
tion tokens Q concatenated with the answer choice tokens
A1, A2, A3 and previously generated tokens E1, . . . , Ei−1. It
is trained to generate token Ei.

…

CSRM

(b) A trained CAGE language model is used to generate ex-
planations for a downstream commonsense reasoning model
(CSRM), which itself predicts one of the answer choices.

Figure 1: An overview of CAGE trained on CoS-E and CQA.

to generate explanations for each example in the

training and validation sets of CQA. These CAGE

explanations are provided to a second common-

sense reasoning model by concatenating it to the

end of the original question, answer choices, and

output of the language model. The two-phase

CAGE framework obtains state-of-the-art results

outperforming the best reported baseline by 10%
and also produces explanations to justify its pre-

dictions. Figure 1 shows an overview of our pro-

posed approach.

In summary, we introduce a new Common

Sense Explanations (CoS-E) dataset to study neu-

ral commonsense reasoning and provide a new

method, CAGE for automatically generating ex-

planations that achieve a state-of-the-art accuracy

of approximately 65% on CQA v1.0. We demon-

strate explanation transfer on two out-of-domain

datasets. Note that before our final submission,

the organizers released a more challenging v1.11

of CQA with 5 answer choices instead of 3 and so

we also included the new version in our results and

discussions.

2 Background and Related Work

Commonsense reasoning Datasets that require

models to learn to predict relations between situ-

ations or events in natural language have been in-

troduced in the recent past. The Story Cloze (also

referred to as ROC Stories) involves predicting the

correct story ending from a set of plausible end-

ings (Mostafazadeh et al., 2016) while the Situ-

ations with Adversarial Generations (SWAG) in-

volves predicting the next scene based on an initial

event (Zellers et al., 2018). Language Modeling

based techniques such as the GPT and BERT mod-

els get human-level performance on these datasets

(Radford et al., 2018; Devlin et al., 2019). They

have been less successful on tasks that require

clear understanding of how pronouns resolve be-

tween sentences and how that interacts with world

knowledge. For example, the Winograd Schemas

(Winograd, 1972) and challenges derived from

that format (Levesque et al., 2012; McCann et al.,

2018; Wang et al., 2018) have proven difficult for

even the most modern machine learning methods

(Trinh and Le, 2018) to achieve near-human per-

formance, but the emphasis on pronoun resolution

in those challenges leaves room for exploration

of other kinds of commonsense reasoning. CQA

is a new dataset that consists of 9500 questions

with one correct answer and two distractor an-

swers (Talmor et al., 2019). The authors claim that

because all the answer choices are drawn from the

same source concept, the dataset requires models

to actually infer from the question rather than take

advantage of distributional biases. We, however,

observed that the current state of this dataset has

gender disparity with higher proportion of femi-

nine pronouns used in negative context.

The authors show that the state-of-the-art lan-

guage models perform very poorly compared to

human participants on their dataset. Although,

CQA introduces a benchmark for evaluating com-

monsense reasoning capabilities of models, it is

still unclear how and to what extent do models ac-

tually do common-sense reasoning. CoS-E builds

on top of their benchmark, on the other hand, pro-

vides data in the form of explanations that can be

used to study and analyze as well as evaluate a

model’s reasoning capabilities.

Natural language explanations Lei et al.

(2016) proposed an approach for rationale genera-

tion for sentiment analysis by highlighting com-

plete phrases in the input text that by itself is

sufficient to predict the desired output. Human-

generated natural language explanations for clas-

sification data have been used in the past to train a

semantic parser that in turn generates more noisy
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labeled data which can used to train a classifier

(Hancock et al., 2018). Camburu et al. (2018)

generate explanations and predictions for the nat-

ural language inference problem (Camburu et al.,

2018). However, the authors report that inter-

pretability comes at the cost of loss in perfor-

mance on the popular Stanford Natural Language

Inference (Bowman et al., 2015) dataset. We find

that, unlike for e-SNLI, explanations for CQA

lead to improved performance in what Camburu

et al. (2018) would call the explain-predict setting.

In the multi-modal setting, Rajani and Mooney

(2018) showed that visual explanations can be

leveraged to improve performance of VQA (An-

tol et al., 2015) and that an ensemble explanation

is significantly better than individual explanations

using both automated and human evaluations (Ra-

jani and Mooney, 2017).

Knowledge Transfer in NLP Natural language

processing has often relied on the transfer of

world-knowledge through pretrained word vec-

tors like Word2Vec (Mikolov et al., 2013) and

GloVe (Pennington et al., 2014). Contextualized

word vectors (McCann et al., 2017; Peters et al.,

2018) refined these representations for particular

inputs by using different forms of general encod-

ing. Language models trained from scratch on

large amounts of data have made groundbreak-

ing success in this direction by carefully fine-

tuning for specific tasks (Dai and Le, 2015; Rad-

ford et al., 2018; Howard and Ruder, 2018; Devlin

et al., 2019). These models have the advantage

that only a few parameters need to be learned from

scratch and thus perform surprisingly well even on

small amounts of supervised data. Fine-tuned lan-

guage models do not however work as well for di-

rectly predicting answers for CQA (Talmor et al.,

2019). In our work, we show how these fine-

tuned language models are more effective when

leveraged to generate explanations and empirically

prove that they also linguistically capture common

sense.

3 Common Sense Explanations (CoS-E)

We used Amazon Mechanical Turk (MTurk) to

collect explanations for our Common Sense Ex-

planations (CoS-E) dataset. The CQA dataset con-

sists of two splits – the question token split and

the random split. Our CoS-E dataset and all our

experiments use the more difficult random split,

which is the main evaluation split according to Tal-
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Figure 2: Analysis of the CoS-E v1.0 dataset. Percent

of the dataset that contains the answer, a distractor, ei-

ther, at least one bigram from the question, and at least

one trigram from the question.

mor et al. (2019). We also release CoS-E for CQA

v1.11.

Human participants are given the question and

answer choices along with the ground-truth an-

swer choice. Turkers are prompted with the fol-

lowing question: “Why is the predicted output the

most appropriate answer?” Annotators were in-

structed to highlight relevant words in the question

that justifies the ground-truth answer choice and

to provide a brief open-ended explanation based

on the highlighted justification could serve as the

commonsense reasoning behind the question. We

collected these explanations for the CQA train-

random-split and dev-random-split, which have a

size of 7610 and 950 for v1.0 and 9741 and 1221
for v1.11 respectively. Table 1 shows a random

sample of examples from our CoS-E dataset with

both free-form explanations and highlighted text.

From here on, we refer to the highlighted words as

CoS-E-selected and the free-form explanation as

CoS-E-open-ended.

In MTurk, it is difficult to control the quality

of open-ended annotations. So, we do some in-

browser checks to avoid obviously bad explana-

tions. Annotators cannot move forward if they do

not highlight any relevant words in the question or

if the length of explanations is less than 4 words.

We also check that the explanation is not a sub-

string of the question or the answer choices with-

out any other extra words. We collect these ex-

planations from only one annotator per example,

so we also perform some post-collection checks to

catch examples that are not caught by our previ-

ous filters. We filter out explanations that could

be classified as a template. For example, expla-

nations of the form “<answer> is the only option

that is [correct|obvious]” are deleted and then re-

annotated.

Figure 2 shows the distribution of explanations

collected in the CoS-E v1.0 dataset. 58% of expla-
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nations from CoS-E contain the ground truth, but

the effectiveness of CoS-E is not constrained only

to those examples. Our model obtains state-of-the-

art results by using CoS-E only during training.

Empirical results show that even when using only

those explanations that do not have any word over-

lap with any of the answer choices, performance

exceeds that of baselines that do not use CoS-E

at all. We also observed that a significant pro-

portion of the distractor choices are also present

in the CoS-E dataset and on further analysis we

found that for those examples, annotators resorted

to explaining by eliminating the wrong choices.

This indicates that it is difficult even for humans to

reason about many of the examples in CQA. Be-

cause CoS-E uses crowd-sourcing, it also adds di-

versity of perspective and in particular diverse rea-

soning on world knowledge to the CQA dataset.

Even though many explanations remain noisy af-

ter quality-control checks, we find that they are of

sufficient quality to train a language model that

generates commonsense reasoning. We refer to

Section 5 for more details on empirical results and

ablation analysis on CoS-E.

4 Algorithm

We present Commonsense Auto-Generated Expla-

nations (CAGE) and apply it to the CQA task.

CAGE are generated by a language model and are

used aas supplementary inputs to a classification

model. Each example in CQA consists of a ques-

tion, q, three answer choices, c0, c1, c2, and a la-

beled answer a. Our CoS-E dataset adds a human

explanation eh for why a is the most appropriate

choice. The output of CAGE is a language model

generated explanation e that is trained to be close

to eh.

4.1 Commonsense Auto-Generated

Explanations (CAGE)
In order to supply CAGE to a classification model,

we fine-tune a language model (LM) to gener-

ate explanations from our CoS-E dataset. Our

LM is the large, pre-trained OpenAI GPT (Rad-

ford et al., 2018) which is a multi-layer, trans-

former (Vaswani et al., 2017) decoder. GPT is

fine-tuned on the combination of CQA and CoS-E

datasets, as shown in the left half of Figure 1. We

explore explanation generation in two settings –

1) explain-and-then-predict (reasoning) (Figure 1)

and 2) predict-and-then-explain (rationalization).

Reasoning This is our main approach and in this

the LM is fine-tuned conditioned on the question,

answer choices and the human generated explana-

tion and not the actual predicted label. So, the in-

put context during training is defined as follows:

CRE = “q, c0, c1, or c2? commonsense says ”

The model is trained to generate explanations e ac-

cording to a conditional language modeling objec-

tive. The objective is to maximize:
∑

i

logP (ei|ei−k, . . . , ei−1, CRE ; Θ)

where k is the size of the context window (in our

case k is always greater than the length of e so that

the entire explanation is within the context). The

conditional probability P is modeled by a neural

network with parameters Θ conditioned on CRE

and previous explanation tokens. We call this kind

of explanation reasoning because they can be au-

tomatically generated during inference to provide

additional context for commonsense question an-

swering. In Section 5, we show that this approach

outperforms the reported state-of-the-art on CQA

by 10%. For the sake of completeness, we also

experimented with the reverse of this approach

wherein the model first makes the predictions and

then generates explanations based on those labels,

which we call rationalization and is discussed be-

low.

Rationalization In rationalization, the LM

model conditions on the predicted labels along

with the input to generate post-hoc rational-

izations. So, during the fine-tuning step, the

input context contains the output label and is

constructed as follows:

CRA = “ q, c0, c1, or c2? a because ”

The training objective for the LM in rationaliza-

tion is similar to that in reasoning except that in

this case, the model has access to the ground truth

labels to the input questions during training. Be-

cause the language model is conditioned on the

predicted label, the explanations cannot be con-

sidered as common sense reasoning. Instead, they

offer a rationalization that makes the model more

accessible and interpretable. We find that this ap-

proach outperforms the current best model by 6%
and also produces interestingly good quality ex-

planations as discussed in Section 5.

For CAGE, we generate sequences of maximum

length 20, use a batch size of 36, train for a maxi-

mum of 10 epochs, selecting the best model based
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on validation BLEU and perplexity scores. Learn-

ing rate was set to 1e−6, warmed up linearly with

proportion 0.002 and weight decay 0.01.

4.2 Commonsense Predictions with

Explanations
Given either a human explanation from CoS-E or

reasoning from a language model, we can then

learn to perform predictions on the CQA task.

For the classification module of our proposed ap-

proach, we adopt the widely popular BERT model

(Devlin et al., 2019) which we refer to as just

BERT. BERT can be fine-tuned for multiple choice

question answering by adding a simple binary

classifier that takes as input the final state corre-

sponding to the the special [CLS] token placed

at the start of all inputs to BERT models (Devlin

et al., 2019). We apply this same approach to

the CQA task. For each example in the dataset,

we construct three input sequences for fine-tuning

BERT. Each sequence is the concatenation of the

question, a separator token [SEP], and one of the

answer choices. If the approach requires expla-

nation from either CoS-E or automatically gener-

ated as in the CAGE, we concatenate the question,

[SEP], the explanation, [SEP], and an answer

choice. For BERT, the explanations share the same

input representation as that of the questions. We

also experimented with the explanation sharing the

same representation as that of the answer choice

but found that the performance decreased slightly.

When explanations are used only during train-

ing, the explanation variable is optional and the

answer choices directly follow the question dur-

ing evaluation. For all our experiments we used

a train batch size of 24, test batch size of 12, 10
training epochs and maximum sequence length of

50 for the baseline and 175 for all experiments in-

volving explanations. The right part of Figure 1

gives an overview of the classification module of

our proposed approach.

4.3 Transfer to out-of-domain datasets
Transfer without fine-tuning to out-of-domain

NLP datasets is known to exhibit poor perfor-

mance. For example, for the comparatively eas-

ier natural langauge inference task with fixed la-

bels, Bowman et al. (2015) show that the accuracy

dropped by 25% when training on SNLI and eval-

uating on SICK-E (Marelli et al., 2014). We study

transfer of natural language explanations from the

CQA to SWAG (Zellers et al., 2018) and Story

Cloze Test (Mostafazadeh et al., 2016). Both the

datasets are multiple-choice like CQA and the au-

thors publicize them as commonsense reasoning

and inference tasks.

We use the GPT language model fine-tuned on

CQA train and dev sets to generate explanations

on the SWAG train and val sets (with 73546 and

20006 instances respectively) and the Story Cloze

Spring 2016 val and test sets (with 1870 instances

each). We then train a BERT classifier using the

input instances and generated explanations and

evaluate on the SWAG and Story Cloze test sets.

5 Experimental Results

We present results on the CQA dataset using

variations of our proposed Commonsense Auto-

Generated Explanations (CAGE). All our models

are based on BERT, which also serves as our base-

line without any CoS-E or CAGE. All our ablation

analysis is conducted on the CQA dev-random-

split. We also show results for key models on the

final test split.2

Method Accuracy (%)

BERT (baseline) 63.8
CoS-E-open-ended 65.5
CAGE-reasoning 72.6

Table 2: Results on CQA dev-random-split with CoS-E

used during training.
Table 2 shows results that compare a BERT

baseline that uses only the CQA inputs and the

same architecture but trained using inputs that

contain explanations from CoS-E during train-

ing. The BERT baseline model reaches 64% accu-

racy and adding open-ended human explanations

(CoS-E-open-ended) alongside the questions dur-

ing training results in a 2% boost in accuracy.

By generating explanations as described in Sec-

tion 4.1, we can give the commonsense question

answering model access to an explanation that is

not conditioned on the ground truth. These expla-

nations (CAGE-reasoning) can be provided during

both training and validation and increases the ac-

curacy to 72%.

Table 3 shows the results obtained on the CQA

test split. We report our two best models that

represent using human explanations (CoS-E-open-

ended) for training only and using language model

explanations (CAGE-reasoning) during both train

and test. We compare our approaches to the best

reported models for the CQA task (Talmor et al.,

2
https://www.tau-nlp.org/csqa-leaderboard

https://www.tau-nlp.org/csqa-leaderboard
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Method Accuracy (%)

RC (Talmor et al., 2019) 47.7
GPT (Talmor et al., 2019) 54.8
CoS-E-open-ended 60.2
CAGE-reasoning 64.7
Human (Talmor et al., 2019) 95.3

Table 3: Test accuracy on CQA v1.0. The addition

of CoS-E-open-ended during training dramatically im-

proves performance. Replacing CoS-E during training

with CAGE reasoning during both training and infer-

ence leads to an absolute gain of 10% over the previous

state-of-the-art.

Method Accuracy (%)

CoS-E-selected w/o ques 53.0
CoS-E-limited-open-ended 67.6
CoS-E-selected 70.0
CoS-E-open-ended w/o ques 84.5
CoS-E-open-ended* 89.8

Table 4: Oracle results on CQA dev-random-split using

different variants of CoS-E for both training and valida-

tion. * indicates CoS-E-open-ended used during both

training and validation to contrast with CoS-E-open-

ended used only during training in Table 2.

2019). We observe that using CoS-E-open-ended

during training improves the state-of-the-art by ap-

proximately 6%.

Talmor et al. (2019) experimented with using

Google search of “question + answer choice” for

each example in the dataset and collected 100 top

snippets per answer choice to be used as context

for their Reading Comprehension (RC) model.

They found that providing such extra data does

not improve accuracy. On the other hand, us-

ing CAGE-reasoning resulted in a gain of 10%
accuracy over the previous state-of-the-art. This

suggests that our CoS-E-open-ended and CAGE-

reasoning explanations provide far more useful in-

formation than what can be achieved through sim-

ple heuristics like using Google search to find rel-

evant snippets. We observed that our models’ per-

formance on test is lower than those on validation

and this trend was confirmed by the organizers of

the task.

To establish an oracle upper-bound on the per-

formance, we also explored an experimental set-

ting in which human-generated explanations from

CoS-E are provided during both training and val-

idation. These results are summarized in Table 4.

We note that this is an unfair setting because the

human that provided the explanation had access to

the ground truth answer; these results merely serve

as an oracle for how much potential benefit can

come from using CoS-E-open-ended. If the open-

ended human explanations (CoS-E-open-ended)

are provided at inference time, performance jumps

to approximately 90%. These results also motivate

an attempt to automatically generate explanations

that establish the world knowledge needed to solve

CQA. CAGE-reasoning is our attempt towards this

goal.

Table 4 also contains results that use only the

explanation and exclude the original question from

CQA denoted by ‘w/o question’. These variants

also use explanation during both train and valida-

tion. For these experiments we give the explana-

tion in place of the question followed by the an-

swer choices as input to the model. When the

explanation consists of words humans selected as

justification for the answer (CoS-E-selected), the

model was able to obtain 53% in contrast to the

85% achieved by the open-ended human explana-

tions (CoS-E-open-ended). Adding the question

boosts performance for CoS-E-selected to 70%,

again falling short of almost 90% achieved by

CoS-E-open-ended. We conclude then that our

full, open-ended CoS-E thus supply a significant

source of information beyond simply directing the

model towards the most useful information al-

ready in the question.

Method Accuracy (%)

CAGE-reasoning 55.7
BERT baseline 56.7
CoS-E-open-ended 58.2

Table 5: Test results on CQA v1.11.

We experimented with one final setting in which

we only used open-ended explanations that did not

contain any word from any answer choices (23%.

In this setting, we call these “CoS-E-limited-open-

ended” explanations because these explanations

are limited in the choice of words allowed. We

observe that even using these limited kind of ex-

planations improves over the BERT baseline in Ta-

ble 4, which suggests that the explanations are pro-

viding useful information beyond just mentioning

the correct or incorrect answers.

We also evaluated our key models – CoS-E-

open-ended used during training only and the

CAGE reasoning on the v1.11 of CQA that was re-

leased before the final submission. Table 5 shows

the results obtained on the more challenging CQA

v1.11.

Camburu et al. (2018) empirically show that
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transferring explanations on the natural language

inference (NLI) problem from SNLI to MultiNLI

performs very poorly and is still an open challeng-

ing problem. We study transfer of explanations on

commonsense reasoning tasks. The NLI problem

has a small fixed set of pre-defined labels unlike

the commonsense reasoning tasks such as CQA,

SWAG and Story Cloze. Table 6 shows the results

obtained by the BERT baseline without explana-

tions and using our transferred explanations from

CQA to SWAG and Story Cloze. We observed

that adding explanations led to a very small de-

crease (< 0.6%) in the performance compared to

the baseline for both tasks.

Method SWAG Story Cloze

BERT 84.2 89.8
+ expl transfer 83.6 89.5

Table 6: Results for explanation transfer from CQA to

out-of-domain SWAG and Sotry Cloze tasks.

6 Analysis and Discussion

In Table 2, using CAGE-reasoning at both train

and validation resulted in an accuracy of 72%,

but Table 4 shows that if CAGE-reasoning truly

captured all information provided in CoS-E-open-

ended, performance would be 90%. This gap be-

tween CAGE and CoS-E prompted further analy-

sis.

We measure quality of CAGE using human

evaluation and automated metrics. One of the met-

rics is the BLEU score (Papineni et al., 2002),

which measures syntactical precision by n-gram

overlap. We also report perplexity, which pro-

vides a token-level measure of how well the lan-

guage models predict the next word. We ob-

tained a peak BLEU score of 4.1 between CAGE-

reasoning and CoS-E-open-ended and perplexity

of 32. Language models that are not fine-tuned

achieve BLEU score of only 0.8. Though it is

clearly beneficial to fine-tune the LM and empiri-

cal results suggested that CAGE increased perfor-

mance, these scores suggest that humans and LMs

have widely varying ways of providing useful ex-

planations.

Error analysis on the baseline BERT model

that does not use any explanations indicates that

the model performs poorly on questions that are

longer on an average and are more compositional.

The average length of such questions is 14 words

as opposed to the average length of 13 words for

questions that the model using CAGE predicts in-

Question: What could people do that involves talking?

Choices: confession, carnival, state park

CoS-E: confession is the only vocal action.

Reason people talk to each other

Rationale: people talk to people

Question: A child wants to play, what would they likely want?

Choices: play tag, breathe, fall down

CoS-E: A child to play tag

Reason Children want to play tag, and they want to play tag with their

friends.

Rationale: Children want to play tag, what would they want to do?

Question: They were getting ready for a really long hike, he put the food

in his what?

Choices: recycling center, house, backpack

CoS-E: Backpacks are used on hikes

Reason a backpack is a place to store food and supplies.

Rationale: a backpack is used to carry food and supplies

Question: You can do knitting to get the feeling of what?

Choices: relaxation, your, arthritis

CoS-E: Your are focusing on a repetitive task.

Reason knitting is the only thing that is relaxing.

Rationale: you can do knitting to get the feeling of what?

Table 7: Random sample of explanations generated by

humans from CoS-E and our CAGE framework’s rea-

soning and rationalization approaches. Boldface indi-

cates gold label. All the typos and grammatical errors

are as they appear in the actual output sequence.

correctly. Therefore, we can conclude that expla-

nations help elucidate the longer and more com-

plicated compositional questions.

Table 7 shows a collection of examples from

CQA, CoS-E, and CAGE samples. We ob-

serve that CAGE-reasoning typically employs

a much simpler construction than CoS-E-open-

ended. Nonetheless, this simple declarative mode

can sometimes be more informative than CoS-E-

open-ended. CAGE achieves this by either pro-

viding more explicit guidance (as in the final ex-

ample of Table 7) or by adding meaningful context

(as in the third example by introducing the word

‘friends’). We observe that CAGE-reasoning con-

tains at least one of the answer choices 43% of the

time, out of which it contains the model’s actual

predicted answer choice 21% of the time. This

suggests that there is more to the effectiveness of

CAGE-reasoning than directly pointing to the an-

swer.

Question: What is the main purpose of having a bath?

Choices: cleanness, use water, exfoliation, hygiene, wetness

Explanation: the only purpose of having a bath is to clean yourself.

Question: Where can you store you spare linens near your socks?

Choices: cabinet, chest, hospital, dresser drawers, home

Explanation: dresser drawer is the only place that you can store linens.

Question: Where do you find the most amount of leafs?,

Choices: forrest, floral arrangement, compost pile, field, ground

Explanation: the most likely place to find leafs is in a garden.

Table 8: Random sample of incorrectly predicted in-

stances by CAGE-reasoning on CQA v1.11 dev-set.

Bold indicated ground-truth and underline indicates

our CAGE’s prediction.
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We also carried out human evaluations to

compare 400 examples of CoS-E and CAGE-

reasoning. We asked human participants on Me-

chanical Turk to guess the most appropriate an-

swer choice based on only the explanation without

the question. This tests whether the explanation

by itself is sufficient for a human to arrive at the

same answer as the neural network. We found that

Turkers were able to arrive at the same answer as

the model based on CAGE-reasoning 42% of the

time. This initially seemed low, but Turkers could

only arrive at the same answer as humans using

only CoS-E-open-ended 52% of the time

From Table 7, we observed that CAGE-

rationalization and CAGE-reasoning were often

identical or differed only in word ordering or

by replacing one of the answer choices with an-

other. Humans could predict the answer based

on just CAGE-rationalization 42% of the time,

same as CAGE-reasoning. Although CAGE-

rationalizations seem to be better than CAGE-

reasoning, we find that it does not drastically im-

prove the model’s language generating behavior

which is what humans judge while trying to guess

the right answer without the actual question.

Even though CoS-E and CAGE are noisy, they

empirically perform well when used by down-

stream models for CQA, but this is not the case for

misleading explanations. If we manually changed

a random sample of 50 examples to have adversar-

ial misleading explanations, performance dropped

from 60% to 30%, well below the baseline of 50%
validation accuracy. For example, we changed the

explanation from “being able to use“ to “buying

more will alleviate stress“ for the question “If a

couple is having financial issues, buying products

can lead to what“ with answer choices “economic

boom”, “disagreements”, “being able to use”. Of

the 70% of the errors made by a model trained

on misleading explanations, 57% of them were

instead correctly answered by our model trained

with true CoS-E explanations. This demonstrates

the effectiveness of having well-informing expla-

nations.

Camburu et al. (2018) use human explanations

to train a neural network model on the SNLI

dataset (Bowman et al., 2015). However, they

obtain explanations at the cost of accuracy. The

authors use the InferSent (Conneau et al., 2017)

model for classification and add a one-layer LSTM

as the explanation decoder. They report a slight

drop in performance (< 1%) when training on

human explanations and testing by first predict-

ing an answer and then generating explanations.

There is a further drop of approximately 2% ac-

curacy when their model generates explanations

prior to predicting an answer based only on that

explanations. However, they also show that a

bidirectional encoder with MLP-classifier obtains

96.83% accuracy when given only human expla-

nations. CQA experiences a lift from explana-

tions when e-SNLI performance appears to de-

grade with explanations. For CQA, humans are

able to predict the right answer only about 52%
of the time using only human explanations from

CoS-E.

On the more challenging CQA v1.11, we ob-

served that our CoS-E model trained on human

explanations but evaluated without explanations

obtains state-of-the-art performance, beating the

BERT baseline by 1.5%. Surprisingly, we found

that our CAGE-reasoning model performs slightly

worse than the baseline. However, during error

analysis we found that the language model expla-

nations do not exhibit any obvious problems. Ta-

ble 8 shows some samples that CAGE predicts

incorrectly. We observed that many of the in-

correctly predicted instances had the correct an-

swer in the generated explanation, such as “dresser

drawer” and “cleanness” in the first two exam-

ples, but this information is not properly used by

the BERT classifier. A more explicit method of

guiding attention towards the relevant information

in the explanations might be necessary for such

cases. The model also frequently errs when the

choices seem semantically close such as “forest”

and “compost pile” in the third example. In these

cases, the classifier often predicts the incorrect

choice on v1.11, but was able to predict the cor-

rect choice on v1.0 when only 3 choices were pre-

sented. This suggests that simply concatenating

explanations is unable to make sufficiently clear

the more difficult cases of the newer version of

CQA.

Transferring the language model used to gener-

ate commonsense explanations to out-of-domain

datasets, SWAG and Story Cloze, led to slight

decrease in performance. Upon inspection, the

generated explanations exhibited little grammati-

cal or syntactical errors and often contained appar-

ently relevant information. Table 9 shows exam-

ples from both datasets and the corresponding gen-
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SWAG

Question: Men are standing on motorbikes getting ready for a motocross competition.

Choices: man places the ladders onto a fence and winds up a marching wall, high with hammer and a stone., man is talking to the camera and

standing on a podium., man stands outside in the field going at arms of people and leading a long jumping calf in front., man drops

the javelin to the ground and jumps it very high.

Explanation: man is talking to the camera and not the crowd.

Question: The man examines the instrument in his hand.

Choices: The person studies a picture of the man playing the violin., The person holds up the violin to his chin and gets ready., The person stops to

speak to the camera again., The person puts his arm around the man and backs away.

Explanation: the person is holding the instrument in his hand.

Question: The woman is seated facing the camera while another woman styles her hair.

Choices: The woman in purple is wearing a blue dress and blue headband, using the pits to style her hair., The woman begins to cut the hair with her

hair then serves it and begins brushing her hair and styling it., The woman puts some right braids on his., The woman continues to have

her hair styled while turned away from the camera.

Explanation: the woman is using the braids to trim her hair.

Story Cloze (ROCStories)

Question: My friends all love to go to the club to dance. They think it’s a lot of fun and always invite. I finally decided to tag

along last Saturday. I danced terribly and broke a friend’s toe.

Choices: My friends decided to keep inviting me out as I am so much fun., The next weekend, I was asked to please stay home.

Explanation: the next weekend, i would be asked to stay home

Question: Ari spends $20 a day on pickles. He decides to make his own to save money. He puts the pickles in brine. Ari waits 2 weeks for his pickles

to get sour.

Choices: Ari opens the jar to find perfect pickles., Ari’s pickles are sweet.

Explanation: pickles are the only thing that can be found in a jar.

Question: Gina sat on her grandpa’s bed staring outside. It was winter and his garden was dead until spring. Her grandpa had passed away so there

would be no one to tend it. The weeds would take over and strangle the flowers.

Choices: Gina asked her grandpa what kind of flowers he liked best., Gina decided to go outside and pick some of the weeds.

Explanation: the weeds would take over and strangle the flowers.

Table 9: Random sample of explanations generated by the language model fine-tuned on CQA and transferred

without further training to SWAG and Story Cloze. Bold indicates ground-truth.

erated explanations. In the SWAG dataset, each

question is a video caption from activity recogni-

tion videos with choices about what might happen

next and the correct answer is the video caption of

the next scene. Generated explanations for SWAG

appear to be grounded in the given images even

though the language model was not at all trained

on SWAG. Similarly, we found that for the Story

Cloze dataset, the explanations had information

pointing to the correct ending. Nonetheless, the

classifier was unable to make use of this informa-

tion to improve performance.

7 Conclusion and Future Work

We introduced the Common Sense Explanations

(CoS-E) dataset built on top of the existing Com-

monsenseQA dataset. We also proposed the

novel Commonsense Auto-Generated Explana-

tions (CAGE) framework that trains a language

model to generate useful explanations when fine-

tuned on the problem input and human explana-

tions These explanations can then be used by a

classifier model to make predictions. We empir-

ically show that such an approach not only results

in state-of-the-art performance on a difficult com-

monsense reasoning task, but also opens further

avenues for studying explanation as it relates to

interpretable commonsense reasoning. We also

performed comprehensive error analyses of lan-

guage model explanations and evaluated explana-

tion transfer to out-of-domain datasets.

While CAGE focuses on generating explana-

tions prior to predicting an answer, language mod-

els for explanation might also be jointly trained to

predict the answer. They might also be extended to

a broader set of tasks. With a sufficient dataset of

explanations (analogous to CoS-E) for many tasks,

it might be possible to fine-tune a more general

explanatory language model that generates more

useful explanations for unseen tasks.

With deferral of explanation to neural models,

it will be crucial in the future to study the ethical

implications of biases that are accumulated dur-

ing pretraining or fine-tuning. Explanations must

be carefully monitored to ensure that they do not

reinforce negative or otherwise harmful reasoning

that might then propagate into downstream mod-

els. For example, in CQA we observed significant

gender disparity and bias with higher proportion of

female pronouns used in negative contexts. This

kind of bias has inevitably propagated into CoS-

E and advise these datasets and trained models be

used with that in mind.
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