
Explainability and Dependability Analysis of
Learning Automata based AI Hardware

Rishad Shafik, Adrian Wheeldon and Alex Yakovlev
Microsystems Research Group, School of Engineering, Newcastle University, NE1 7RU, UK.

E-mail: Rishad.Shafik@ncl.ac.uk; Adrian.Wheeldon@ncl.ac.uk; Alex.Yakovlev@ncl.ac.uk

Abstract—Explainability remains the holy grail in designing
the next-generation pervasive artificial intelligence (AI) systems.
Current neural network based AI design methods do not
naturally lend themselves to reasoning for a decision making
process from the input data. A primary reason for this is the
overwhelming arithmetic complexity.

Built on the foundations of propositional logic and game
theory, the principles of learning automata are increasingly
gaining momentum for AI hardware design. The lean logic based
processing has been demonstrated with significant advantages
of energy efficiency and performance. The hierarchical logic
underpinning can also potentially provide opportunities for by-
design explainable and dependable AI hardware. In this paper,
we study explainability and dependability using reachability
analysis in two simulation environments. Firstly, we use a behav-
ioral SystemC model to analyze the different state transitions.
Secondly, we carry out illustrative fault injection campaigns in
a low-level SystemC environment to study how reachability is
affected in the presence of hardware stuck-at 1 faults. Our
analysis provides the first insights into explainable decision
models and demonstrates dependability advantages of learning
automata driven AI hardware design.

I. INTRODUCTION

Tsetlin machine (TM) is a promising new machine learn-
ing (ML) algorithm, recently proposed by Ole-Christoffer
Granmo [1]. It is built on Mikhail Tsetlin’s original learning
automaton based control principles for complex systems [2] as
well as contemporary linear tactics based game theory [3]. Dis-
cretization of the control states is a major simplification in TM,
which allowed for using linear tactics to reinforce the states
over time in parallel [4]. As such, TM can define a machine
learning problem through hierarchical and powerful proposi-
tional logic expressions [1]. These have enabled the design of
the first-ever hardware architecture [5], which demonstrated
significantly lower energy consumption and resource frugality
than state-of-the-art neural networks alike.

Figure 1 depicts a schematic diagram of different structural
blocks in the TM hardware. As can be seen, a fundamental
property of TM is data encoding at the input as a set of
Boolean digits rather than binarized numbers with positional
significance. These digits and their complements define a set
of literals. The combination of these literals participating in
the definition of the output class is controlled by Tsetlin
automata (TAs), which are finite automata with linear tactics.
Each TA constitutes a set of states that define the discrete
action space. During training rewards are used to reinforce the
states towards an action and penalties are used to transition the
states for weakening automaton confidence in performing an
action. Ensemble of TA actions define the output of a clause.

Selection of 
Literals

(include/exclude)

Clauses
(Output: 0 or 1)

Classification
(Majority
Voting)

FeedbackState Updates
(Linear Tactics)

Tsetlin
Automata

FSMs

datapoint1

datapoint2

…..

datapointNBo
ol

ea
ni

za
tio

n
(fr

om
fe

at
ur

e
ex

tr
ac

te
d

da
ta

)Input
data

Data blocks InferenceReinforcement

Figure 1. A schematic diagram of TM, showing different structural blocks

These action updates take place in discrete space, rather than
in gradient-descent steps, which is another major differentiator
when compared to traditional neural networks. This feature
can be exploited for discernible and explainable artificial
intelligence (AI) hardware design. This requires understanding
reachability of TAs states and clause outputs in relation to the
Boolean literals during the training and inference exercises.

In this paper, we provide the first insights into explainability
of TM using reachability analysis. Additionally, we study de-
pendability of the same in terms of the impact of faults on state
reachability. Specifically, we make the following contributions:
firstly, a state transition based reachability analysis of TM
applied to a binary XOR example for demonstration, and
secondly, a fault injection campaign led analysis to investigate
the impact of stuck-at faults on the state transitions and their
reachability.

The paper is organized as follows. Section II provides a
state transition based reachability analysis. Section III studies
the reachability further in the presence of faults. Finally,
Section IV concludes the paper highlighting our future work.

II. REACHABILITY ANALYSIS AND EXPLAINABILITY

Commonly, when people refer to reachability analysis they
define it as a process of exploring the set of states that a
(usually discrete event) system can visit while performing a
set of permitted actions. Often this process has a specific aim
associated with checking certain properties of the system. In
our research, we define reachability slightly more specifically,
as the property of the system that allows it to navigate through
the finite state-space produced by the composition of finite-
state automata, namely TAs. This property is crucial for the
hardware to generate the intended and bounded outputs by
relating them to sequences of the input data points.

To investigate reachability of the AI hardware using the
principles of learning automata (Figure 1), a key hardware
block is the team of TA within the reinforcement part. The
TA use their internal states to facilitate the selection (i.e.



s1 s2 sN sN+1 sN+2 s2N

Action 1: α1 Action 2: α2

. .

.
. .
.

penalty
reward

Figure 2. A Tsetlin automaton for 2-action environment with 2N states

inclusion or exclusion) of Boolean literals for clauses, thereby
defining the clause outputs. The clause outputs then govern the
feedback mechanism in the inference part, which subsequently
generates the reward/penalty signals sent to the TAs. Hence, the
overall operational cycle involves the work of both sequential
part (TAs) and combinational part (clauses, classifiers and
feedback). As input data sequences are applied, the whole
system evolves in the TA state-space and eventually reaches
the subset of states (trained states) where the system can
perform its most advantageous classification decisions. The
latter property, convergence to the stable trained state, is
crucial for the accuracy and efficiency of the TM in terms
of performance and energy. Besides, reachability becomes a
measure of explainability because the trajectories of states
through which the system converges can be easily traced.

Figure 2 shows a high-level state transition diagram of each
automaton with 2N internal states in a 2-action environment.
We denote the TA states as S={s1, s2, . . . sn . . . s2N}, where
sn is the n-th state. Each automaton initially starts with a
random state near the action boundary, i.e. either sN or sN+1.
This allows for the TA to make minimum number of state
transitions to reinforce an action. After each reinforcement
step, a reward is used to strengthen an action or a penalty is
used to weaken the automaton confidence in performing the
current action [1]. Since state transitions take place in discrete
single steps, sn is the TA state resulting from a transition from
either of sn−1 or sn+1. For a given state of sn, the action
performed by the automaton is given as:

G(sn) =

{
α1; if 1 ≤ n ≤ N
α2; if (N + 1) ≤ n ≤ 2N

(1)

To demonstrate the number of reinforcement steps needed
to fully converge to the final state as well as the corresponding
action, we consider an automaton with 2N = 6 internal states
and 2 actions. The state transition equations of all automaton
states are given as below:

s1 = (s1 AND R) + (s2 AND R); (2)
s2 = (s1 AND P ) + (s3 AND R); (3)
s3 = (s2 AND P ) + (s4 AND P ); (4)
s4 = (s3 AND P ) + (s5 AND P ); (5)
s5 = (s4 AND R) + (s6 AND P ); (6)
s6 = (s5 AND R) + (s6 AND R), (7)

where R and P are the reward and penalty signals generated by
the state update circuit (Figure 1). From Eqns. (2)-(7), given
the random initial state of either s3 or s4, the automaton needs
minimum 3 or 4 reinforcement steps.

The states of the whole TM are formed as Cartesian products

s1 s2 s3 s4 s5 s6

penalty
reward

s1 s2 s3 s4 s5 s6

s1 s2 s3 s4 s5 s6

s1 s2 s3 s4 s5 s6

Action 2: IncludeAction 1: Exclude

X0=0 (included)

X1=0 (excluded)

X0’=1 (included)

X1’=1 (excluded)

TA0

TA1

TA2

TA3

(a) Reinforcing 4 TA with datapoints (X0, X1): (0, 0)

s1 s2 s3 s4 s5 s6

s1 s2 s3 s4 s5 s6

s1 s2 s3 s4 s5 s6

s1 s2 s3 s4 s5 s6

Action 2: IncludeAction 1: Exclude

X0=0 (excluded)

X1=1 (excluded)

X0’=1 (included)

X1’=0 (excluded)

TA0

TA1

TA2

TA3

(b) Reinforcing 4 TA with datapoints (X0, X1): (0, 1)

s1 s2 s3 s4 s5 s6

s1 s2 s3 s4 s5 s6

s1 s2 s3 s4 s5 s6

s1 s2 s3 s4 s5 s6

Action 2: IncludeAction 1: Exclude

X0 (excluded)

X1 (included)

X0’ (included)

X1’ (excluded)

TA0

TA1

TA2

TA3

(c) TA states After 11 reinforcement steps (i.e. 44 datapoints)

Figure 3. Illustrative example of TA state changes in a 2-input binary XOR

of the states of individual TAs. To illustrate how bounded TA
state transitions contribute to reachable learning formulation
in the TM algorithm, we simulate a 2-input XOR using a
behavioral SystemC description of the same. The inputs and
their complements constitute 4 literals and as such 4 TA are
used in each clause. Each automaton consists of 6 states
as exemplified above. A total of 4 clauses are used in the
inference circuit, of which 2 are positive clauses and 2 are
negative clauses into the majority voting (i.e. classification)
circuit. Figure 3 shows the internal states of 4 TA, defining
one clause output only.

The state transitions in a training step correspond to 4
datapoints (which are the set of literals), but only 2 are shown.
The TA start with the same initial states of s3. After the first
datapoint (X:[X0, X1]=[0, 0]) reinforcement, the clause sees
an output of 1 as all TA states suggest no inclusion of 0
literals. Overall, this results in an erroneous classification and
as such 2 penalties in TA0 and TA2, causing them to transition



to s4 (Figure 3(a)). After the second datapoint (X:[0, 1]), the
clause output is 0 as the TA2 state favors the inclusion of a 0
literal (X ’

0). However, as the clause output generates a wrong
classification but with a lower error, TA0 is penalized to s3 and
TA3 is rewarded to s2 (Figure 3(b)). With more datapoints and
their associated single-step reinforcements (Eqns.(2)-(7)), the
TA continue to settle for states with higher reward probabilities,
e.g. s1 and s6 (Figure 3(c)). This guarantees convergence
during training.

The above analysis of reachability for the XOR example
shows an important property of the TM, where the (integer)
vector of states of TAs is effectively mapped (contracted) onto
the (binary) vector of actions include/exclude. This mapping
allows us to define the notion of equivalence between the
states of TAs, and hence define the conditions for detecting
convergence to the trained state as soon as possible, thus
improving the efficiency of the system and its performance.

III. DEPENDABILITY ANALYSIS

We continue our reachability analysis further in this section
and study how dependability of the system is affected in the
presence of faults. For these, we use an RTL SystemC model
of a 2-input XOR with fault injection handles using [6]. Our
fault injection campaign includes a stuck-at 1 fault model,
applied to the reinforcement part, i.e. TA. Our future research
includes comprehensive fault injection in the TM.

s1 s2 s3 s4 s5 s6 X0’ (excluded)

s1 s2 s3 s4 s5 s6 X0’ (included)

s1 s2 s3 s4 s5 s6 X0’ (excluded)

s1 s2 s3 s4 s5 s6 X0’ (excluded)

…

#1

#2

#3

#18

Figure 4. The impact of a stuck-at 1 fault in TA1’s state transition and hence
learning. Notice how originally included literal is now excluded because of
fault in the TA.

For demonstration purposes, we inject a stuck-at 1 fault
in the least significant bit (i.e. bit position 0) of automaton
1 (i.e. TA1) within the first clause. This is done to observe
how this fault can change TA1 state transitions (see Figure 4)
when compared with the same in Figure 3. As can be seen,
the automaton assumes an initial state of s3 and does not
change the state after the iteration step 1. This is equivalent
to a no-action reinforcement of 4 datapoints. In the iteration
step 2, the automaton state is penalized towards s4 through an
increment operation (i.e. from register value of 011 to 100).
However, due to the fault the automaton transitions to s5 (i.e. a
register value of 101). After iteration step 3, the automaton is
rewarded towards s6. However, the faulty automaton state tries
to transition to an unreachable state of s7. As the state bounds
are protected through a [modulus 6 +1] operation internally,

the automaton changes the state to s1. The automaton retains
this state until automata in all clauses are converged (after
18 iteration steps). Note that unlike the TA1 state in the first
clause of the fault-free TM (Figure 3), the faulty automaton
excludes the associated Boolean literal, X ’

0.
From Figure 4 it is evident that a fault in an automaton can

influence its state transitions significantly. For example, the
state values of TA1 are constrained to only 3 out of 6 states: s1,
s3 and s5, 2 of which are inclined towards the exclude action.
This affects the reinforcement as well as inference for the first
clause, resulting in a maximum achievable accuracy of 75%.
Indeed, defining the relationship between input datapoints and
output classes can be challenging with limited state transitions
if there are no other means of fault masking or mitigation.

0

20

40

60

80

100

4 6 8 10 12
M

ax
. a

cc
ur

ac
y

No of clauses

Fault at TA1 - bit 0
Fault at TA1 - bit 1
Fault at TA1 - bit 2

(a) Max. accuracy for different number of clauses

0

10

20

30

40

4 6 8 10 12

N
o 

of
 tr

ai
ni

ng
 s

te
ps

No of clauses

Fault at TA1 - bit 0
Fault at TA1 - bit 1
Fault at TA1 - bit 2

(b) No of iteration steps for max. accuracy

Figure 5. The impact of stuck-at 1 faults in TA1 at different bit positions in
terms of accuracy and performance; number of clauses are varied to observe
how clause redundancy naturally masks the faults.

Next, we will explore if TM design allows for fault masking
if resource provisions are relaxed in terms of number of
clauses in the inference part (Figure 1). For this, we carried out
another experiment with variable number of clauses from 4 to
12, each with 6 TA states. Figure 5 presents the results in terms
of the maximum training accuracy and the corresponding
number of iteration steps to convergence. To observe the
significance of fault positions, we injected stuck-at 1 faults
in different positions of the TA1 register: at bit positions 0, 1
and 2. As expected, when the number of clauses are increased
to 8 or more, the training accuracy increases to 100% for
all fault injection campaigns (Figure 5(a)). Provisioning more
clauses in TM allows for further state transition variations.



More variations, in turn, provide masking of the stuck-at fault
completely. This observation is akin to traditional fault-tolerant
design principles [7], where redundant hardware resources
together with majority voting mitigate the impact of faults.
TM already features majority voting in the classification circuit
and as such it allows for more clauses to independently process
the different automaton states internally and yet find the team
of automata that correctly define the relationship between
Boolean literals and output classes.

0

20

40

60

80

100

6 8 10 12

M
ax

. a
cc

ur
ac

y

No of states

(a) Max. accuracy for different number of TA states

0
5

10
15
20
25
30

6 8 10 12

N
o 

of
 tr

ai
ni

ng
 s

te
ps

No of states

(b) No of iteration steps for max. accuracy

Figure 6. Impact of stuck at faults in TA1 in terms of accuracy and
performance with variable number of TA states.

Although fault positions do not affect the accuracy as
clauses are increased, they influence the training times (Fig-
ure 5(b)). This is because the fault positions can constrain
the number of state transitions available to an automaton,
often with an action bias. This can increase the number of
reinforcement steps needed to increase the automaton action
confidence. For example, a stuck-at fault in bit position 2 is
more challenging to mask as it only allows for the include
action states: s4 (100), s5 (101) and s6 (110). The other
automata within the clause take more reinforcement steps to
converge their states diverging from this bias. This also ex-
plains the longer convergence time with lower number clauses.
However, as the number of clauses is increased, the training
convergence times decrease due with more redundancy and
diversity between clauses.

Finally, we study the impact of number of states (i.e. state
register sizes as well as their values) on the reachability of TM
states under fault scenarios. For this, we repeat the stuck-at 1
fault injection in TA1 register in bit position 0 for 4 different
state sizes: from 6 to 12, each with a 4-clause configuration.
Figure 6 shows the maximum training accuracy as well as their
convergence times. As can be seen, the accuracy increases

from 75% to 100% when the number of states is increased
from 6 to 8, corresponding to a 1-bit increase in the automaton
register size from 3 (Figure 6(a)). The increase in the register
size as well as the state values allow each automaton to
explore a larger state-space. In a 6-state (3-bit) automaton
register, a stuck-at 1 fault in bit position 0 can result in 3
allowable states. Conversely, in an 8-state (4-bit) automaton
register the same can results in 4 allowable states. Note that,
with one clause unable to provide correct outcomes, the 6-
state automaton converges faster than the 8-state automaton.
However, as more state values are allowed in the automaton,
the learning converges faster to the maximum accuracy of
100% (Figure 6(b)).

IV. SUMMARY AND CONCLUSIONS

We presented the first insights into explainability and de-
pendability of learning automata based AI hardware design
using reachability analysis. Our key findings are as follows.
Firstly, with a bounded state-space, TM can start from random
initial TA states and yet reach a learnt state with incremental
reinforcements. As the initial training datapoints generate
erroneous outcomes, the randomization-enhanced feedback
mechanism continues to navigate to and strengthen an action
with higher reward probabilities when it reduces errors [1].
This guarantees convergence. Secondly, with suitably chosen
redundant clauses and thereby more state transition variations,
stuck-at faults can be fully masked without requiring any
additional fault mitigation strategy. The TM can achieve the
maximum accuracy faster during training with higher number
of clauses. Thirdly, by allocating more TA states and as such
expanding the valid state-space, stuck-at faults can also be
completely masked. Under fault scenarios, higher number
of states allows for faster learning convergence. Compared
with clause redundancy approach, expanding the state register
sizes provides more energy-frugality. Our future work includes
reachability analysis using formal checking tools and theory
with comprehensive fault injection campaigns.

ACKNOWLEDGEMENT

The authors gratefully acknowledge the inputs from Jie Lei
as well as funding from EPSRC IAA project “Whisperable”
and EPSRC grant STRATA (EP/N023641/1).

REFERENCES

[1] O.-C. Granmo, “The Tsetlin Machine - A Game Theoretic
Bandit Driven Approach to Optimal Pattern Recognition with
Propositional Logic,” arXiv e-prints, Apr. 2018. [Online]. Available:
http://arxiv.org/abs/1804.01508

[2] I. M. Gel’fand and M. L. Tsetlin, “Some methods of control for complex
systems,” Russian Mathematical Surveys, vol. 17, no. 1, p. 95, 1962.

[3] J. Von Neumann and O. Morgenstern, Theory of games and economic
behavior (commemorative edition). Princeton university press, 2007.

[4] O.-C. Granmo, “Introduction to the Tsetlin Machine,” University of
Agder, Norway, Tech. Rep., 2019.

[5] A. Wheeldon et al., “Learning automata based AI hardware design for
IoT,” Philosophical Trans. A of the Royal Society, vol. (in press), 2020.

[6] R. A. Shafik, P. Rosinger, and B. M. Al-Hashimi, “SystemC-based
minimum intrusive fault injection technique with improved fault represen-
tation,” in 14th IEEE Intl. On-Line Testing Symposium, 2008, pp. 99–104.

[7] J. Mathew, R. Shafik, and D. K. Pradhan, Energy-efficient fault-tolerant
systems. Springer USA, 2014.


