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Abstract. Explainable Artificial Intelligence (xAI) is an established
field with a vibrant community that has developed a variety of very
successful approaches to explain and interpret predictions of complex
machine learning models such as deep neural networks. In this article, we
briefly introduce a few selected methods and discuss them in a short, clear
and concise way. The goal of this article is to give beginners, especially
application engineers and data scientists, a quick overview of the state
of the art in this current topic. The following 17 methods are covered
in this chapter: LIME, Anchors, GraphLIME, LRP, DTD, PDA, TCAV,
XGNN, SHAP, ASV, Break-Down, Shapley Flow, Textual Explanations
of Visual Models, Integrated Gradients, Causal Models, Meaningful Per-
turbations, and X-NeSyL.
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1 Introduction

Artificial intelligence (AI) has a long tradition in computer science. Machine
learning (ML) and particularly the success of “deep learning” in the last decade
made AI extremely popular again [15,25,90].

The great success came with additional costs and responsibilities: the most
successful methods are so complex that it is difficult for a human to re-trace,
to understand, and to interpret how a certain result was achieved. Conse-
quently, explainability/interpretability/understandability is motivated by the
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lack of transparency of these black-box approaches, which do not foster trust
and acceptance of AI in general and ML in particular. Increasing legal and
data protection aspects, e.g., due to the new European General Data Protection
Regulation (GDPR, in force since May 2018), complicate the use of black-box
approaches, particularly in domains that affect human life, such as the medical
field [56,63,73,76].

The term explainable AI (xAI) was coined by DARPA [28] and gained mean-
while a lot of popularity. However, xAI is not a new buzzword. It can be seen
as a new name for a very old quest in science to help to provide answers to
questions of why [66]. The goal is to enable human experts to understand the
underlying explanatory factors of why an AI decision has been made [64]. This
is highly relevant for causal understanding and thus enabling ethical responsible
AI and transparent verifiable machine learning in decision support [74].

The international community has developed a very broad range of different
methods and approaches and here we provide a short concise overview to help
engineers but also students to select the best possible method. Figure 1 shows
the most popular XAI toolboxes.
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Fig. 1. Number of stars on GitHub for the most popular repositories presented in this
paper. While these repositories focus on the explanation task, the new Quantus toolbox
[30] offers a collection of methods for evaluating and comparing explanations.

In the following we provide a short overview of some of the most popu-
lar methods for explaining complex models. We hope that this list will help
both practitioners in choosing the right method for model explanation and
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XAI method developers in noting the shortcomings of currently available meth-
ods. Figure 2 gives an overview of the chronology of development of successive
explanatory methods. Methods such as LRP and LIME were among the first1

generic techniques to explain decisions of complex ML models. In addition to
the overview of explanation techniques, we would also like to hint the inter-
ested reader at work that developed methods and offered datasets to objectively
evaluate and systematically compare explanations. To mention here is Quantus2

[30], a new toolbox offering an exhaustive collection of evaluation methods and
metrics for explanations, and CLEVR-XAI3 [8], a benchmark dataset for the
ground truth evaluation of neural network explanations.
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Fig. 2. Chronology of the development of successive explanatory methods described in
this paper. Initially, the methods were focused on model analysis based on the model
itself or on sample data. Subsequent methods used more and more information about
the structure and relationships between the analysed variables.

2 Explainable AI Methods - Overview

2.1 LIME (Local Interpretable Model Agnostic Explanations)

Idea: By treating the machine learning models as black-box functions, model
agnostic explanation methods typically only have access to the model’s output.
The fact that these methods do not require any information about the model’s
internals, e.g., in the case of neural networks the topology, learned parameters
(weights, biases) and activation values, makes them widely applicable and very
flexible.

1 We are aware that gradient-based sensitivity analysis and occlusion-based techniques
have been proposed even earlier [11,62,75,89]. However, theses techniques have var-
ious disadvantages (see [61,70]) and are therefore not considered in this paper.

2 https://github.com/understandable-machine-intelligence-lab/quantus.
3 https://github.com/ahmedmagdiosman/clevr-xai.

https://github.com/understandable-machine-intelligence-lab/quantus
https://github.com/ahmedmagdiosman/clevr-xai
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One prominent representative of this class of explanation techniques is the
Local Interpretable Model-agnostic Explanations (LIME) method [67]. The main
idea of LIME is to explain a prediction of a complex model fM , e.g., a deep neural
network, by fitting a local surrogate model fS , whose predictions are easy to
explain. Therefore, LIME is also often referred to as surrogate-based explanation
technique [70]. Technically, LIME generates samples in the neighborhood Nxi

of
the input of interest xi, evaluates them using the target model, and subsequently
approximates the target model in this local vicinity by a simple linear function,
i.e., a surrogate model which is easy to interpret. Thus, LIME does not directly
explain the prediction of the target model fM (xi), but rather the predictions
of a surrogate model fS(xi), which locally approximates the target model (i.e.,
fM (x) ≈ fS(x) for x ∈ Nxi

).

GitHub Repo: https://github.com/marcotcr

Discussion: There are meanwhile many successful applications of LIME in
different application domains which demonstrates the popularity of this model
agnostic method. As a limitation can be seen that LIME only indirectly solves
the explanation problem by relying on a surrogate model. Thus, the quality of
the explanation largely depends on the quality of the surrogate fit, which itself
may require dense sampling and thus may result in large computational costs.
Furthermore, sampling always introduces uncertainty, which can lead to non-
deterministic behaviours and result in variable explanations for the same input
sample.

2.2 Anchors

Idea: The basic idea is that individual predictions of any black-box classifica-
tion model are explained by finding a decision rule that sufficiently “anchors”
the prediction - hence the name “anchors” [68]. The resulting explanations are
decision rules in the form of IF-THEN statements, which define regions in the
feature space. In these regions, the predictions are fixed (or “anchored”) to the
class of the data point to be explained. Consequently, the classification remains
the same no matter how much the other feature values of the data point that
are not part of the anchor are changed.

Good anchors should have high precision and high coverage. Precision is the
proportion of data points in the region defined by the anchor that have the same
class as the data point being explained. Coverage describes how many data points
an anchor’s decision rule applies to. The more data points an anchor covers, the
better, because the anchor then covers a larger area of the feature space and thus
represents a more general rule. Anchors is a model-agnostic explanation method,
i.e., it can be applied to any prediction model without requiring knowledge about
the internals. Search and construction of decision rules is done by reinforcement
learning (RL) [32,81] in combination with a modified beam search, a heuristic
search algorithm that extends the most promising nodes in a graph. The anchors

https://github.com/marcotcr
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algorithm cycles through different steps: produce candidate anchors, select the
best candidates, then use beam search to extend the anchor rules. To select the
best candidate, it is necessary to call the model many times, which can be seen
as an exploration or multi-armed bandit problem.

GitHub Repo: https://github.com/marcotcr/anchor

Discussion: The anchors are model-independent and can be applied to different
domains such as tabular data, images and text, depending on the perturbation
strategy. However, in the current Python implementation, anchors only supports
tabular and text data. Compared to LIME, the scope of interpretation is clearer
as the anchors specify the boundaries within which they should be interpreted.
The coverage of an anchor decision rule can be used as a measure of the model
fidelity of the anchor. Furthermore, the decision rules are easy to understand, but
there are many hyper-parameters in the calculation of anchors, such as the width
of the beam and the precision threshold, which need to be tuned individually.
The perturbation strategies also need to be carefully selected depending on the
application and model. The calculation of anchors requires many calls to the
prediction function, which makes the anchors computationally intensive. Data
instances that are close to the decision boundary of the model may require more
complex rules with more features and less coverage. Unbalanced classification
problems can produce trivial decision rules, such as classifying each data point
as the majority class. A possible remedy is to adapt the perturbation strategy
to a more balanced distribution.

2.3 GraphLIME

Idea: GraphLIME [38] is a method that takes the basic idea of LIME (see
Sect. 2.1) but is not linear. It is applied to a special type of neural network
architecture, namely graph neural networks (GNN). These models can process
non-Euclidean data as they are organised in a graph structure [9]. The main
tasks that GNNs perform are node classification, link prediction and graph clas-
sification. Like LIME, this method tries to find an interpretable model, which
in this case is the Hilbert-Schmidt Independence Criterion (HSIC) Lasso model,
for explaining a particular node in the input graph. It takes into account the
fact that during the training of the GNN, several nonlinear aggregation and
combination methods use the features of neighbouring nodes to determine the
representative embedding of each node. This embedding is used to distinguish
nodes into different classes in the case of node classification and to collectively
distinguish graphs in graph classification tasks.

Since for this type of model a linear explanation as LIME would return
unfaithful results, the main idea of GraphLIME is to sample from the N-hop
neighbourhood of the node and collect features w.r.t. to the node prediction.
Those are used to train the HSIC Lasso model, which is a kernel method -
thereby interpretable - that can compute on which node features the output

https://github.com/marcotcr/anchor
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prediction depends on. This is similar to the perturbation method that LIME
uses, while the comparison, in this case, is based on HSIC estimation between
the random variables representing the features and the prediction distributions.
This method learns correlations between the features of the neighbours which
also underline its explanation capabilities.

GitHub Repo: https://github.com/WilliamCCHuang/GraphLIME

Discussion: The developers compared GraphLIME with one of the first xAI
methods for GNNs at the time, namely GNNExplainer, w.r.t. three criteria:
(1) ability to detect useless features, (2) ability to decide whether the pre-
diction is trustworthy, and (3) ability to identify the better model among two
GNN classifiers. They show that for synthetic data and human-labelled anno-
tations, GraphLIME exceeds the GNNExplainer by far in the last two crite-
ria. They arrive at a very interesting insight, namely that models that have
fewer untrustworthy features in their explanation have better classification per-
formance. Furthermore, GraphLIME is shown to be computationally much more
efficient than GNNExplainer. It would be beneficial - and is considered future
work - if GraphLIME was also trying to find important graph substructures
instead of just features, if it was compared with other methods like PGExplainer
[52], PGMExplainer [83], GNN-LRP [72], and if it were extended to multiple
instance explanations. Finally, it is important to note that GraphLIME is suc-
cessfully used for the investigation of backdoor attacks on GNNs by uncovering
the relevant features of the graph’s nodes [86].

2.4 Method: LRP (Layer-wise Relevance Propagation)

Idea: Layer-wise Relevance Propagation (LRP) [10] is a propagation-based
explanation method, i.e., it requires access to the model’s internals (topology,
weights, activations etc.). This additional information about the model, however,
allows LRP to simplify and thus more efficiently solve the explanation problem.
More precisely, LRP does not explain the prediction of a deep neural network in
one step (as model agnostic methods would do), but exploits the network struc-
ture and redistributes the explanatory factors (called relevance R) layer by layer,
starting from the model’s output, onto the input variables (e.g., pixels). Each
redistribution can be seen as the solution of a simple (because only between two
adjacent layers) explanation problem (see interpretation of LRP as Deep Taylor
Decomposition in Sect. 2.5).

Thus, the main idea of LRP is to explain by decomposition, i.e., to iteratively
redistribute the total evidence of the prediction f(x), e.g., indicating that there
is a cat in the image, in a conservative manner from the upper to the next lower
layer, i.e.,

∑

i

R
(0)
i = . . . =

∑

j

R
(l)
j =

∑

k

R
(l+1)
k = . . . = f(x). (1)

https://github.com/WilliamCCHuang/GraphLIME
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Note that R
(0)
i denotes the relevance assigned to the ith input element (e.g.,

pixel), while R
(l)
j stands for relevance assigned to the jth neuron at the lth layer.

This conservative redistribution not only ensures that no relevance is added or
lost on the way (analogous to energy conservation principle or Kirchhoff’s law
in physics), but also allows for signed explanations, where positive relevance
values hint at relevant information supporting the prediction and negative rele-
vance values indicate evidence speaking against it. Different redistribution rules,
adapted to the specific properties of particular neural network layers, have been
proposed for LRP [42,58]. In contrast to other XAI techniques which are purely
based on heuristics, the LRP rules have a clear theoretical foundation, namely
they result from the Deep Taylor Decomposition (DTD) [60] of the relevance
function with a particular choice of root point (see Sect. 2.5).

While LRP has been originally developed for convolutional neural networks
and bag-of-words type of models, various extensions have been proposed, making
it a widely applicable XAI techniqe today. For instance, Arras et al. [6,7] devel-
oped meaningful LRP redistribution rules for LSTM models. Also LRP variants
for GNN and Transformer models have been recently proposed [3,72]. Finally,
through the “neuralization trick”, i.e., by converting a non-neural network model
into a neural network, various other classical ML algorithms have been made
explainable with LRP, including k-means clustering [39], one-class SVM [40] as
well as kernel density estimation [59]. Furthermore, meta analysis methods such
as spectral relevance analysis (SpRAy) [47] have been proposed to cluster and
systematically analyze sets of explanations computed with LRP (SpRAY is not
restricted to LRP explanations though). These analyses have been shown useful
to detect artifacts in the dataset and uncover so-called “Clever Hans” behaviours
of the model [47].

The recently published Zennit toolbox [4] implements LRP (and other meth-
ods) in Python, while the CoRelAy4 toolboxi offers a collection of meta analysis
methods. Furthermore, the GitHub library iNNvestigate provides a common
interface and out-of-the-box implementation for many analysis methods, includ-
ing LRP [2].

GitHub Repo: https://github.com/chr5tphr/zennit
https://github.com/albermax/innvestigate

Discussion: LRP is a very popular explanation method, which has been applied
in a broad range of domains, e.g., computer vision [46], natural language pro-
cessing [7], EEG analysis [78], meteorology [54], among others.

The main advantages of LRP are its high computational efficiency (in the
order of one backward pass), its theoretical underpinning making it a trustworthy
and robust explanation method (see systematic comparison of different XAI
methods [8]), and its long tradition and high popularity (it is one of the first
XAI techniques, different highly efficient implementations are available, and it

4 https://github.com/virelay/corelay.

https://github.com/chr5tphr/zennit
https://github.com/albermax/innvestigate
https://github.com/virelay/corelay
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has been successfully applied to various problems and domains). The price to pay
for the advantages is a restricted flexibility, i.e., a careful adaptation of the used
redistribution rules may be required for novel model architectures. For many
popular layers types recommended redistribution rules are described in [42,58].

Finally, various works showed that LRP explanations can be used beyond
sheer visualization purposes. For instance, [47] used them to semi-automatically
discover artefacts in large image corpora, while [5,79] went one step further and
demonstrated that they can be directly (by augmenting the loss) or indirectly (by
adapting training data) used to improve the model. Another line of work [14,87]
exploits the fact that LRP computes relevance values not only for the input
variables, but for all elements of the neural network, including weights, biases
and individual neurons, to optimally prune and quantize the neural model. The
idea is simple, since LRP explanations tell us which parts of the neural network
are relevant, we can simply remove the irrelevant elements and thus improve the
coding efficiency and speed up the computation.

2.5 Deep Taylor Decomposition (DTD)

Idea: The Deep Taylor Decomposition (DTD) method [60] is a propagation-
based explanation technique, which explains decisions of a neural network by
decomposition. It redistributes the function value (i.e., the output of the neural
network) to the input variables in a layer-by-layer fashion, while utilizing the
mathematical tool of (first-order) Taylor expansion to determine the proportion
or relevance assigned to the lower layer elements in the redistribution process
(i.e., their respective contributions). This approach is closely connected to the
LRP method (see Sect. 2.4). Since most LRP rules can be interpreted as a Taylor
decomposition of the relevance function with a specific choice of root point, DTD
can be seen as the mathematical framework of LRP.

DTD models the relevance of a neuron k at layer l as a simple relevance
function of the lower-layer activations, i.e.,

Rk(a) = max(0,
∑

i

aiwik)ck, (2)

where a = [a1 . . . ad] are the activations at layer l − 1, wik are the weights
connecting neurons i (at layer l−1) and k (at layer l), and ck is a constant. This
model is certainly valid at the output layer (as Rk is initialized with the network
output f(x)). Through an inductive argument the authors of [60] proved that
this model also (approximatively) holds at intermediate layers. By representing
this simple function as Taylor expansion around a root point ã, i.e.,

Rk(a) = Rk(ã)︸ ︷︷ ︸
0

+
∑

i

(ai − ãi) · ∇[Rk(a)]i

︸ ︷︷ ︸
redistributed relevance

+ ε︸︷︷︸
0

, (3)

DTD tells us how to meaningfully redistribute relevance from layer l to layer l−1.
This redistribution process is iterated until the input layer. Different choices
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of root point are recommended for different types of layers (conv layer, fully
connected layer, input layer) and lead to different LRP redistribution rules [58].

GitHub Repo: https://github.com/chr5tphr/zennit
https://github.com/albermax/innvestigate

Discussion: DTD is a theoretically motivated explanation framework, which
redistributes relevance from layer to layer in a meaningful manner by utilizing
the concept of Taylor expansion. The method is highly efficient in terms of com-
putation and can be adapted to the specific properties of a model and its layers
(e.g., by the choice of root point). As for LRP, it is usually not straight for-
ward to adapt DTD to novel model architectures (see e.g. local renormalization
layers [18]).

2.6 Prediction Difference Analysis (PDA)

Idea: At the 2017 ICLR conference, Zintgraf et al. [91] presented the Prediction
Difference Analysis (PDA) method. The method is based on the previous idea
presented by [69] where, for a given prediction, each input feature is assigned a
relevance value with respect to a class c. The idea of PDA is that the relevance of
a feature xi can be estimated by simply measuring how the prediction changes
when the feature is unknown, i.e., the difference between p(c|x) and p(c|x\i),
where x\i denotes the set of all input features except xi. Now to evaluate the
prediction, specifically to find p(c|x\i) there are three possibilities: (1) label the
feature as unknown, (2) re-train the classifier omitting the feature, or (3) simu-
late the absence of a feature by marginalizing the feature. With that a relevance
vector (WEi)i=1...m (whereby m represent the number of features) is generated,
that is of the same size as the input and thus reflects the relative importance of
all features. A large prediction difference indicates that the feature contributed
significantly to the classification, while a small difference indicates that the fea-
ture was not as important to the decision. So specifically, a positive value WEi

means that the feature contributed to the evidence for the class of interest and
much more so that removing the feature would reduce the classifier’s confidence
in the given class. A negative value, on the other hand, means that the feature
provides evidence against the class: Removing the feature also removes poten-
tially contradictory or disturbing information, and makes the classifier more
confident in the class under study.

GitHub Repo: https://github.com/lmzintgraf/DeepVis-PredDiff

Discussion: Making neural network decisions interpretable through visualiza-
tion is important both to improve models and to accelerate the adoption of
black-box classifiers in application areas such as medicine. In the original paper
the authors illustrate the method in experiments on natural images (ImageNet

https://github.com/chr5tphr/zennit
https://github.com/albermax/innvestigate
https://github.com/lmzintgraf/DeepVis-PredDiff
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data), as well as medical images (MRI brain scans). A good discussion can be
found in: https://openreview.net/forum?id=BJ5UeU9xx

2.7 TCAV (Testing with Concept Activation Vectors)

Idea: TCAV [41] is a concept-based neural network approach that aims to
quantify how strongly a concept, such as colour, influences classification. TCAV
is based on the idea of concept activation vectors (CAV), which describe how
neural activations influence the presence or absence of a user-specific concept. To
calculate such a CAV, two data sets must first be collected and combined: One
dataset containing images representing the concept and one dataset consisting
of images in which this concept is not present. Then a logistic regression model
is trained on the combined dataset to classify whether the concept is present
in an image. The activations of the user-defined layer of the neural network
serve as features for the classification model. The coefficients of the logistic
regression model are then the CAVs. For example, to investigate how much the
concept “stripped” contributes to the classification of an image as “zebra” by
a convolutional neural network, a dataset representing the concept “stripped”
and a random dataset in which the concept “stripped” is not present must be
assembled. From the CAVs, the conceptual sensitivity can be calculated, which
is the product of the CAV and the derivative of the classification (of the original
network) with respect to the specified neural network layer and class. Conceptual
sensitivity thus indicates how strongly the presence of a concept contributes to
the desired class.

While the CAV is a local explanation as it relates to a single classification,
the TCAV combines the CAVs across the data into a global explanation method
and thus answers the question of how much a concept contributed overall to
a given classification. First, the CAVs are calculated for the entire dataset for
the selected class, concept and level. Then TCAV calculates the ratio of images
with positive conceptual sensitivity, which indicates for how many images the
concept contributed to the class. This ratio is calculated multiple times, each
time using a different “negative” sample where the concept is not present, and a
two-tailed Student t-test [77] is applied to test whether the conceptual sensitivity
is significantly different from zero (the test part is where the “T” in TCAV comes
from).

GitHub Repo: https://github.com/tensorflow/tcav

Discussion: TCAV can be applied to detect concept sensitivity for image clas-
sifiers that are gradient-based, such as deep neural networks. TCAV can also
be used to analyze fairness aspects, e.g. whether gender or attributes of pro-
tected groups are used for classification. Very positive is that TCAV can be
used by users without machine learning expertise, as the most important part
is collecting the concept images, where domain expertise is important. TCAV
allows to test a classification model for arbitrary concepts, even if the model

https://openreview.net/forum?id=BJ5UeU9xx
https://github.com/tensorflow/tcav
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was not explicitly trained on them. The technique can be used to study whether
a network learned “flawed” concepts, such as spurious correlations. Detecting
flawed concepts can help to improve the model. For example, it could be studied
how important the presence of snow was for classifying wolves on images, and
if it turns out to be important, adding images with wolves without snow might
improve the robustness of the model. One drawback can be seen in the effort for
labeling and collecting new data. Some concepts might also be too abstract to
test, as the collection of a concept dataset might be difficult. How would one,
for example, collect a dataset of images representing the concept“happiness”?
Furthermore, TCAV may not work well with shallower neural networks, as only
deeper networks learn more abstract concepts. Also, the technique is also not
applicable to text and tabular data, but mainly to image data5 (last accessed:
21-Feb-2022). A practical example from the medical domain can be found in [19].

2.8 XGNN (Explainable Graph Neural Networks)

Idea: The XGNN method [88] is a post-hoc method that operates on the model
level, meaning that it does not strive to provide individual example-level expla-
nations. RL drives a search to find an adequate graph starting by a randomly
chosen node or a relatively small graph, as defined by prior knowledge. The RL
algorithm follows two rewards at the same time: first, it tries to increase the
performance of the GNN, but secondly to keep generating valid graphs, depend-
ing on the domain requirements. The action space contains only edge addition
for edges in the existing graph or an enhancement with a new node. In the case
where the action has a non-desirable contribution, a negative reward is provided.

GitHub Repo: https://github.com/divelab/DIG/tree/dig/benchmarks/xgra
ph/supp/XGNN and pseudocode in the paper.

Discussion: This explanation method is invented particularly for the task of
graph classifications. The returned graphs are the ones that were the most rep-
resentative for the GNN decision and usually have a particular property that
is ingrained to make the validation possible. It is worth to mention that this is
the only method that provides mode-level explanations for GNN architectures.
The use of RL is justified by the fact that the search for the explanation graph
is non-differentiable, since it is not only driven by the performance but also
by the plausibility and validity of the generated graph. Because the training of
GNNs involves aggregations and combinations, this is an efficient way to over-
come the obstacle of non-differentiation. The provided explanation is considered
to be more effective for big datasets, where humans don’t have the time to check
each example’s explanation individually. A disadvantage can be seen by the fact
that the research idea is based on the assumption that network motifs that are
the result of this explanation method are the ones on which the GNN is most

5 For discussion see: https://openreview.net/forum?id=S1viikbCW.

https://github.com/divelab/DIG/tree/dig/benchmarks/xgraph/supp/XGNN
https://github.com/divelab/DIG/tree/dig/benchmarks/xgraph/supp/XGNN
https://openreview.net/forum?id=S1viikbCW
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“responsive”; nevertheless, this is not entirely true, since one does not know if
other graph information was also important for the decision of the network. The
results of the explanations are also non-concrete since in many cases ground
truth is missing. That leads to a rather weak validation that bases on abstract
concepts and properties of the discovered graphs, such as if they contain cycles
or not.

2.9 SHAP (Shapley Values)

Note that the concepts described in this section also apply to the methods pre-
sented in Sects. 2.9–2.12.

Methods in this family are concerned with explanations for the model f at
some individual point x∗. They are based on a value function eS where S is a
subset of variable indexes S ⊆ {1, ..., p}. Typically, this function is defined as
the expected value for a conditional distribution in which conditioning applies
to all variables in a subset of S

eS = E[f(x)|xS = x∗
S ]. (4)

Expected value is typically used for tabular data. In contrast, for other data
modalities, this function is also often defined as the model prediction at x∗ after
zeroing out the values of variables with indices outside S. Whichever definition
is used, the value of eS can be thought of as the model’s response once the
variables in the subset S are specified.

The purpose of attribution is to decompose the difference f(x∗) − e∅ into
parts that can be attributed to individual variables (see Fig. 3A).

Idea: Assessing the importance of variable i is based on analysing how adding
variable i to the set S will affect the value of the function eS . The contribution
of a variable i is denoted by φ(i) and calculated as weighted average over all
possible subsets S

φ(i) =
∑

S⊆{1,...,p}/{i}

|S|!(p − 1 − |S|)!
p!

(
eS∪{i} − eS

)
. (5)

This formula is equivalent to

φ(i) =
1

|Π|
∑

π∈Π

ebefore(π,i)∪{i} − ebefore(π,i), (6)

where Π is a set of all orderings of p variables and before(π, i) stands for subset of
variables that are before variable i in the ordering π. Each ordering corresponds
to set of values eS that shift from e∅ to f(x∗) (see Fig. 3B).

In summary, the analysis of a single ordering shows how adding consecutive
variables changes the value of the eS function as presented in Fig. 3B. SHAP
[51] arises as an averaging of these contributions over all possible orderings. This
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algorithm is an adaptation of Shapley values to explain individual predictions
of machine learning models. Shapley values were initially proposed to distribute
payouts fairly in cooperative games and are the only solution based on axioms
of efficiency, symmetry, dummy, and additivity.

Fig. 3. Panel A. The methods presented in Sects. 2.9–2.12 explain the difference in
prediction between a particular observation (x) and a baseline value. Often for the
baseline value is taken the expected value from the model’s prediction distribution.
The methods described here distribute this difference e∅ − f(x∗) among the variables
in the model. Panel B. Attributions are based on the changes in the expected value of
the model prediction due to successive conditioning. For a given sequence of variable
order (here, 1, 2, 3, 4) one can calculate how adding another variable will change the
expected prediction of the model. Panel C. For the SHAP method, the variables have
no structure, so any sequence of variables is treated as equally likely. Panel D. The ASV
method takes into account a causal graph for variables. Only variable orderings that
are consistent with this dependency graph are considered in the calculation of attri-
butions. Causal graph controls where to assign attributions in the case of dependent
variables. Panel E. The Shapley Flow method also considers a causal graph. It allo-
cates attributions to the edges in this graph, showing how these attributions propagate
through the graph.

GitHub Repo: https://github.com/slundberg/shap

Discussion: SHAP values sum up to the model prediction, i.e.

f(x∗) = e∅ +
∑

i

φ(i). (7)

https://github.com/slundberg/shap
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In some situations, this is a very desirable property, e.g. if a pricing model pre-
dicts the value of a certain product, it is desirable to decompose this prediction
additively into components attributable to individual variables. SHAP draws
from a rich theoretical underpinning in game theory and fulfils desirable axioms,
for example, that features that did not contribute to the prediction get an attri-
bution of zero. Shapley values can be further combined to global interpretations
of the model, such as feature dependence plots, feature importance and interac-
tion analysis.

One large drawback of Shapley values is their immense computational com-
plexity. For modern models such as deep neural networks and high dimensional
inputs, the exact computation of Shapley values is intractable. However, model-
specific implementations exist for tree-based methods (random forest, xgboost
etc.) or additive models [49]. With care, one should use certain estimation ver-
sions of SHAP, such as KernelSHAP, because those are slow to compute. Fur-
thermore, when features are dependent, Shapley values will cause extrapolation
to areas with low data density. Conditional versions exist [50] (for tree-based
models only), but the interpretation changes which is a common pitfall [57].
SHAP explanations are not sparse since to each feature that changes the predic-
tion, a Shapley value different from zero is attributed, no matter how small the
influence. If sparse explanations are required, counterfactual explanations might
be preferable.

2.10 Asymmetric Shapley Values (ASV)

Idea: SHAP values are symmetrical. This means that if two variables have the
same effect on the model’s behaviour, e.g. because they take identical values, they
will receive equal attributions. However, this is not always a desirable property.
For example, if we knew that one of the variables has a causal effect on the
other, then it would make more sense to assign the entire attribution to the
source variable.

Asymmetric Shapley values (ASV) [22,23] allow the use of additional knowl-
edge about the causal relations between variables in the model explanation pro-
cess. A cause-effect relationship described in the form of causal graph allows the
attribution of variables to be redistributed in such a way that the source vari-
ables have a greater attribution, providing effect on both the other dependent
variables and the model predictions (see Fig. 3D). SHAP values are a special case
of ASV values, where the casual graph is reduced to a set of unrelated vertices
(see Fig. 3C).

The ASV values for variable i are also calculated as the average effect of
adding a variable to a coalition of other variables, in the same way as expressed
in Eq. (6). The main difference is that not all possible orders of variables are
considered, but only the orders are consistent with the casual graph. Thus, a
larger effect will be attributed to the source variables.
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GitHub Repo: https://github.com/nredell/shapFlex

Discussion: In order to use the ASV, a causal graph for the variables is needed.
Such a graph is usually created based on domain knowledge. Examples include
applications in bioinformatics with signalling pathways data for which the under-
lying causal structure is experimentally verified or application in social sciences,
where sociodemographic data in which the direction of the relationship can be
determined based on expert knowledge (e.g., age affects income rather than
income affects age).

A particular application of the ASV value is the model fairness analysis. If
a protected attribute, such as age or sex, does not directly affect the model’s
score, its SHAP attribute will be zero. But if the protected attribute is the cause
for other proxy variables, then the ASV values will capture this indirect effect
on the model.

2.11 Break-Down

Idea: Variable contribution analysis is based on examining the change in eS

values along with a growing set of variables described by a specific order (see
Fig. 3B). If the model f has interactions, different orderings of the variables
may lead to different contributions. The SHAP values average over all possible
orderings (see Eq. 6), thus leads to additive contributions and neglecting the
interactions.

An alternative is to analyze different orderings to detect when one variable
has different contributions depending on what other variables precede it. This is
a sign of interaction. The Break-Down method (see [16,17]) analyzes the various
orders to identify and visualize interactions in the model. The final attributions
are determined based on a single ordering which is chosen based on greedy
heuristics.

GitHub Repo: https://github.com/ModelOriented/DALEX

Discussion: Techniques such as SHAP generate explanations in the form of
additive contributions. However, these techniques are often used in the analysis
of complex models, which are often not additive. [26] shows that for many tabular
datasets, an additive explanation may be an oversimplification, and it may lead
to a false belief that the model behaves in an additive way.

2.12 Shapley Flow

Idea: Like for Asymmetric Shapley Values (ASV), Shapley Flow [84] also allows
the use of the dependency structure between variables in the explanation pro-
cess. As in ASV, the relationship is described by a causal graph. However, unlike
ASV and other methods, attribution is assigned not to the nodes (variables) but

https://github.com/nredell/shapFlex
https://github.com/ModelOriented/DALEX
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the edges (relationships between variables). An edge in a graph is significant if its
removal would change the predictions of the model (see Fig. 3E). The edge attri-
bution has the additional property that for each explanation, boundaries hold the
classical Shapley values. The most extreme explanation boundary corresponds
to the ASV method. The Shapley Flow method determines the attributions for
each edge in the causal graph.

GitHub Repo: https://github.com/nathanwang000/Shapley-Flow

Discussion: Shapley Flow attribution analysis carries a lot of information about
both the structure of the relationship between variables and its effect of particu-
lar groups of variables (explanation boundaries) on the predictions. On the rather
disadvantageous side is that it requires knowledge of the dependency structure
in the form of a directed causal graph, which limits the number of problems in
which it can be applied. For readability reasons, it is limited to small numbers
of variables. Also it requires definition of a background case, i.e. reference obser-
vation. Potential explanations may vary depending on the reference observation
chosen.

2.13 Textual Explanations of Visual Models

Idea: The generation of textual descriptions of images is addressed by sev-
eral machine learning models that contain both a part that processes the input
images - typically a convolutional neural network (CNN) - and one that learns
an adequate text sequence, usually a recurrent neural network (RNN). Those
two parts cooperate for the production of image descriptive sentences that pre-
supposes that a classification task is successfully accomplished. One of the first
benchmark datasets that contained image descriptions was already invented in
2014, the Microsoft COCO (MS-COCO) [48]. The models that achieve a good
performance classification, first detect components and concepts of the image
and then construct sentences where objects, subjects as well as their character-
istics are connected by verbs. The problem of semantic enrichment of images
for language-related tasks is addressed in a number of ways (see, for example,
the Visual Genome project [45]); however, in most cases, such descriptions are
not directly tied to visual recognition tasks. Nevertheless, an advantage is that
textual descriptions are easier to analyze and validate than attribution maps.

It is important to note that the mere description of the image’s content is not
equivalent to an explanation of the decision-making process of the neural net-
work model. Unless the produced sentences contain the unique attributes that
help differentiate between the images of each class, the content of the words
should not be considered class-relevant content. A solution to this problem is
proposed in [31]. This method’s main goal is to do exactly that; to find those
characteristics that are discriminative, since they were used by the neural net-
work models to accomplish the task - those exactly need to be present in the
generated text. To achieve this, the training does not just use the relevance

https://github.com/nathanwang000/Shapley-Flow


xAI Methods - Overview 29

loss, which generates descriptions relevant to the predicted class based on con-
text borrowed from a fine-grained image recognition model through conditional
probabilities. A discriminative loss is invented to generate sentences rich in class-
discriminative features. The introduced weight update procedure consists of two
components, one based on the gradient of relevance loss and the second based
on the gradient of discriminative loss, so that descriptions that are both relevant
to the predicted class and contain words with high discriminative capacity are
rewarded. The reinforcement learning method REINFORCE [85] is used for the
backpropagation of the error through sampling during the training process.

GitHub Repo: https://github.com/LisaAnne/ECCV2016

Discussion: High METEOR [13] and CIDEr [82] scores for relevant explana-
tions were measured for the generated sentences. It is necessary to compare the
resulting explanations with experts since they only know the difference between
sentences that correctly describe the visual content and ones that concentrate
on what occurs only in the class the images belong. This is positive and nega-
tive at the same time; unfortunately, there is no way to check how much of the
generated explanation is consistent without domain knowledge. Furthermore,
data artefacts can also influence both the performance and explanation quality
negatively. Overall though, even ablation studies where parts of the model were
tested separately, showed that the components individually had a higher per-
formance than when trained alone. That indicates that the common training of
visual processing and textual explanation generation is beneficial for each part
individually.

2.14 Integrated Gradients

Idea: The Integrated Gradients method [80] is based on two fundamental
axioms, sensitivity and implementation invariance. Sensitivity means that non-
zero attributions are given to every input and baseline that differ in one fea-
ture but have different predictions. Implementation invariance means that if two
models behave identical/are functionally equivalent, then attributions must be
identical. Although these two axioms sound very natural, it turns out that many
attribution methods do not have these properties. In particular, when a model
has flattened predictions for a specific point of interest, the gradient in the point
of interest zeroes out and does not carry information useful for the explanation.

The approach proposed by the Integrated Gradients method for model f

aggregates the gradients ∂f(x)
∂xi

computed along the path connecting the point of
interest x to the highlighted observation - the baseline x∗ (for computer vision
this could be a black image and for text an empty sentence).

More formally, for ith feature, Integrated Gradients are defined as

IntegratedGradsi(x) = (xi − x∗
i )

∫ 1

α=0

∂f(x∗ + α(x − x∗))
∂xi

dα.

https://github.com/LisaAnne/ECCV2016
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The integral can be replaced by a sum over a set of alpha values in the
interval [0,1].

GitHub Repo: https://github.com/ankurtaly/Integrated-Gradients

Discussion: Integrated Gradients is a widespread technique for explaining deep
neural networks or other differentiable models. It is a theoretically sound app-
roach based on two desirable properties: sensitivity and implementation invari-
ance. In addition, it is computationally efficient and uses gradient information
at a few selected points α. The three main drawbacks are: (1) need for the base-
line observation, selection of which significantly influence the attributions, (2)
works only for differentiable models, suitable for neural networks but not, e.g.,
for decision trees, (3) by default, gradients are integrated along the shortest path
between the baseline and the point of interest. Depending on the topology of the
data, this path does not always make sense and cover the data. Furthermore,
deep models usually suffer from the gradient shattering problem [12], which may
negative affect the explanation (see discussion in [70]). Extensions to this method
are proposed to overcome the above drawbacks.

2.15 Causal Models

Description: In the work of Madumal et al. [53] a structural causal model
[29] is learned, which can be considered an extension of Bayesian Models [44,71]
of the RL environment with the use of counterfactuals. It takes into account
events that would happen or environment states that would be reached under
different actions taken by the RL agent. Ultimately, the goal of any RL agent
is to maximize a long-term reward; the explanation provides causal chains until
the reward receiving state is reached. The researchers pay attention to keep
the explanations minimally complete, by removing some of the intermediate
nodes in the causal chains, to conform to the explanation satisfaction conditions
according to the Likert scale [33]. The counterfactual explanation is computed by
comparing causal chain paths of actions not chosen by the agent (according to the
trained policy). To keep the explanation as simple as possible, only the differences
between the causal chains comprise the returned counterfactual explanation.

GitHub Repo: No Github Repo

Discussion: Model-free reinforcement learning with a relatively small state
and action space has the advantage that we can explain how the RL agent
takes its decisions in a causal way; since neural networks base their decisions on
correlations, this is one of the first works towards causal explanations. The user
has the ability to get answers to the questions “why” and “why not” an action
was chosen by the agent. The provided explanations are appropriate according
to satisfiability, ethics requirements and are personalized to the human mental

https://github.com/ankurtaly/Integrated-Gradients
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model by the use of a dedicated user interface. On the rather negative side is
that this explanation method is evaluated on problems with very small state
and action space (9 and 4 correspondingly). Current RL problems have much
larger state and action spaces and the solution can be found with the use of
Deep Reinforcement Learning [27,32]. The reason is, that the structural model
of the environment dynamics are not known a priori and must be discovered and
approximated during exploration. Furthermore, this work applies only to the
finite domain, although the authors note that it will be part of their research
work to extend it to continuous spaces.

2.16 Meaningful Perturbations

Idea: This approach was proposed by Fong and Vedaldi [21] and can be regarded
as model-agnostic, perturbation-based explanation method. Thus, the explana-
tion is computed solely based on the reaction of the model to a perturbed (or
occluded) input sample. For a given sample x, the method aims to synthesize a
sparse occlusion map (i.e., the explanation) that leads to the maximum drop of
the model’s prediction f(x), relative do the original prediction with the unper-
turbed x. Thus, compared to simple occlusion-based techniques which naively
perturb a given sample by sequentially occluding parts of it, the Meaningful Per-
turbation algorithm aims to directly learn the explanation by formulating the
explanation problem as a meta-prediction task and using tools from optimiza-
tion to solve it. Sparsity constraints ensure that the search focuses on finding the
smallest possible perturbation mask that has the larger effect on the certainty
of the classification performance.

GitHub Repo: https://github.com/ruthcfong/perturb explanations

Discussion: As other model agnostic approaches, Meaningful Perturbations is
a very flexible method, which can be directly applied to any machine learning
model. The approach can be also interpreted from a rate-distortion perspec-
tive [43]. Since the Meaningful Perturbations method involves optimization, it
is computationally much more demanding than propagation-based techniques
such as LRP. Also it is well-known that the perturbation process (occlusion or
deletion can be seen as a particular type of perturbation), moves the sample
out of the manifold of natural images and thus can introduce artifacts. The
use of generative models have been suggested to overcome this out-of-manifold
problem [1].

2.17 EXplainable Neural-Symbolic Learning (X-NeSyL)

Idea: Symbolic AI is an emerging field that has been shown to contribute
immensely to Explainable AI. Neuro-Symbolic methods [24] incorporate prior
human knowledge for various tasks such as concept learning and at the same time

https://github.com/ruthcfong/perturb_explanations
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they produce output that is more interpretable, such as mathematical equations
or Domain-Specific Languages (DSL) [55].

A research work that is dedicated to using symbolic knowledge of the domain
experts, expressed as a knowledge graph (KG), to align it with the explanations
of a neural network is the EXplainable Neural-Symbolic Learning (X-NeSyL)
[20]. The researchers start with the goal to encourage the neural network that
performs classification to assign feature importances to the object’s parts in a
way that corresponds to the compositional way humans classify. After using
state-of-the-art CNN architectures and applying methods such as SHAP (see
Sect. 2.9) to quantify the positive and negative influence of each detected feature,
a graph is built that encompasses constraints and relations elicited from the
computed importances. This graph is compared to the KG provided by human
experts. A designated loss that punishes non-overlap between these two has been
shown to boost explainability and in some cases performance.

GitHub Repo: https://github.com/JulesSanchez/X-NeSyL,
https://github.com/JulesSanchez/MonuMAI-AutomaticStyleClassification

Discussion: This method can be seen as an explainability-by-design approach.
That means that at each step of the training process, it is made sure that the end
result will be interpretable. This is not an ad-hoc method; the training contains
a loss to guide the neural network towards explanations that have a human-
expert like structure. Furthermore, SHAP values provide intermediate feature
relevance results that are straightforward to understand. Disadvantageous is that
the same thing that fosters explainability, contributes to the negatives of this
approach, namely that it needs domain-specific knowledge. This is not always
easy to gather, it may be contradicting if several experts are involved and in
that way constraints the network to compute in a specific way. The researchers
comment on that particular issue and exercise their method with many datasets,
test several CNN architectures and provide performance results with established
as well as newly invented methods to see where and how the human-in-the-loop
[37] works in practice.

3 Conclusion and Future Outlook

In the future, we expect that the newly invented xAI methods will capture causal
dependencies. Therefore, it will be important to measure the quality of explana-
tions so that an xAI method achieves a certain level of causal understanding [65]
for a user with effectiveness, efficiency and satisfaction in a given context of use
[34]. Successful xAI models in the future will also require new human-AI inter-
faces [36] that enable contextual understanding and allow a domain expert to ask
questions and counterfactuals [35] (“what-if” questions). This is where a human-
in-the-loop can (sometimes - not always, of course) bring human experience and
conceptual knowledge to AI processes [37]. Such conceptual understanding is

https://github.com/JulesSanchez/X-NeSyL
https://github.com/JulesSanchez/MonuMAI-AutomaticStyleClassification
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something that the best AI algorithms in the world (still) lack, and this is where
the international xAI community will make many valuable contributions in the
future.
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