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Abstract—As the 5th Generation (5G) mobile networks are
bringing about global societal benefits, the design phase for the
6th Generation (6G) has started. Evolved 5G and 6G will need
sophisticated AI to automate information delivery simultaneously
for mass autonomy, human machine interfacing, and targeted
healthcare. Trust will become increasingly critical for 6G as it
manages a wide range of mission critical services.

As we migrate from traditional mathematical model-dependent
optimisation to data-dependent deep learning, the insight and
trust we have in our optimisation modules decrease. This loss
of model explainability means we are vulnerable to: malicious
data, poor neural network design, and the loss of trust from
stakeholders and the general public; all with a range of legal
implications. In this review, we outline the core methods of
Explainable Artificial Intelligence (XAI) in a wireless network
setting, including: public and legal motivations, definitions of
explainability, performance vs. explainability trade-offs, and XAI
algorithms. Our review is grounded in cases studies for both
wireless PHY and MAC layer optimisation and provide the
community with an important research area to embark upon.

Index Terms—machine learning; deep learning; deep reinforce-
ment learning; XAI; 5G; 6G;

I. INTRODUCTION

An essential fabric of modern civilization is the digital econ-

omy, which is underpinned by wireless networking. We are

on the cusp of entering a new era of mass digital connectivity

enabled autonomy. An increasing number of people, machines,

and things are being connected to automate and digitise

traditional services. Wireless networking has transitioned from

its traditional role as an information channel (1G to 3G) to a

critical lever in the new industrial revolution of automation

(5G and beyond to 6G [1]). It is envisaged that by 2030, 6G

services require 1000× data rate and manage diverse service

requirements such as massive ultra-reliable low latency com-

munication (M-URLLC) for control of autonomous entities

across transport to precision manufacturing.

Orchestrating co-existence via spectrum aggregation be-

tween different radio access technologies (RATs) is essential

to meeting this demand. As such, real-time complex radio

resource management (RRM) is critically important with strict

guarantees. However, this has become too complex for con-

ventional optimisation. As such, there is a global push for

Artificial Intelligence (AI) driven information ecosystems [2]
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to support more fine-grained user-centric service provision

(see 3GPP Release 16 TR37.816). Recent research on the

application of AI in 5G PHY and MAC layers can be found

in IEEE ComSoc Best Readings in Machine Learning in

Communications.

A. AI and Trust

As communication systems increase complexity, Deep

Learning (DL) in the popular form of Deep Neural Networks

(DNNs) is set to transform both PHY layer (e.g. blind signal

detection in nonlinear channels) and MAC layer (e.g. rapid

power control for massive MIMO) modules. In this new era

of complexity explosion, previous model-based optimisation

lack either explicit mathematical models or do not have the

processing time to calculate heuristic solutions. DNN presents

an excellent opportunity to transform complex data-rich prob-

lems into solutions.

An open challenge with DNN is the lack of transparency

and trust compared to traditional mathematical model-based

optimisation. Neural networks (NN) with multiple layers

cannot explain the essential features that influence actions,

nor the impact of data bias on the uncertainty of outputs.

Beyond supervised learning for PHY layer signal detection,

DNN is especially opaque when coupled with reinforcement

learning (RL) [3], where the Markov Decision Process (MDP)

is integrated with hidden layer dynamics. As such, there is

the need to develop explainable algorithms that can quantify

uncertainty, especially mapping data inputs, algorithm design,

to the projected wireless key performance indicators (KPI).

A trustworthy AI should be able to explain its decisions

in some way that human experts can understand (e.g. the

underlying data evidence and causal logic). Understanding

both our opportunity and vulnerability to deep learning is

essential to the success of future wireless services.

B. Novelty & Organisation

In this review, we outline the core concepts of Explainable

Artificial Intelligence (XAI) for future wireless systems:

1) Section II-A: Public and legal motivations for improving

the transparency and trust in AI algorithms;

2) Section II-B: Definitions of explainability from specific

quantitative indicators to general qualitative outputs;

3) Section III: Review of current deep learning techniques

in PHY and MAC layer and their level of performance

vs. explainability trade-off;

4) Section IV: Technical methods to improve explainability

in deep learning;

5) Section V: Summary of open challenges;
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Fig. 1. Example of deep learning applications in supervised learning of equalisation with nonlinear symbol distortion.

Our review is grounded in cases studies for both PHY and

MAC layer optimisation, including examples of explainability

in existing algorithms.

II. MOTIVATION AND DEFINITIONS OF XAI

A. Public Trust & Legal Frameworks

At the heart of our need to add explainability / interpretabil-

ity to DNNs is the need to build trust in a quantifiable way.

Traditional mathematical model-based algorithms have reason-

ably high clarity in how a mathematical model and the input

data leads to output decisions. For example, water-filling (WF)

power allocation shows clearly how the Lagrangian multiplier

transforms input channel gains to output power allocation

solution. Whilst DNNs can accelerate the optimisation time

and often the accuracy, they remain opaque and doesn’t tell

us the impact of input data and bias on decisions, the reasoning

for decisions, and how the DNN logic can reverse teach human

experts.

Beyond the technical requirements, the legal framework

for AI is still in its infancy, and there are several explicit

requirements for XAI in different regions, such as EU GDPR

requires machine learning algorithms to be able to explain

their decisions (see Recital 71), or that the French Digital

Republic Act requires transparency in the degree and mode

of algorithms that contribute to decisions, the data used and

its provenance, the weight of different data features, and the

resulting actions. The key is that rightly or wrongly, humans

can attempt to explain if prompted to, and we need machines

to have that equal capability in order to ensure trust and a

legal pathway towards improving safety and reliability.

B. Definitions and Modes of Explainability

In classic wireless systems, explicit models seek to map

inputs to outputs and when models are well known, Bayesian

inference outperforms deep learning (DL). In absence of mod-

els, DL attempts to automatically construct high-dimensional

non-linear models based on data. Whilst some DL models

can be interpretable (e.g. deep random forests and decision

trees), the most scalable deep learning algorithms (DNNs) lack

explainability.

An intuitive and good starting point for explainability is for

it to meet two conditions:

1) Prediction is correct

2) Prediction is based on the correct data features and logic

The latter is much harder to define numerically, let alone

implement alongside a DNN framework. This is particularly

challenging when we are dealing with DRL, large input data

sets, and multiple hidden layers – we will discuss these aspects

later in the paper. For now, we discuss the different modes of

explainability, with an illustration in Fig. 3.

1) Visualisation: The simplest form are visual outputs from

the DL algorithm highlighting data features that causally lead

to the output choice (e.g. DeepLIFT [4]). This may or may

not map to the human perceptions of key features which

also contribute to our cognitive reasoning. When combined

with well known case studies, whereby the input and output

mapping is established, we can both satisfy that predictions are

correct and it is likely the human operator can easily accept

or reject the key visual features.

2) Hypothesis Testing: A more rigorous form of the afore-

mentioned is hypothesis testing, whereby a well formulated

argument is tested based on the input data and output decision.

Here, we can test if: i) certain key features are important in

the mapping, ii) the mapping function behaves as we expect

(monotonic, nonlinear, ...etc.), and iii) we can accept or reject

the hypothesis.

3) Didactic Statements & Symbolic Representation: Per-

haps the ultimate form of explainability would use natural

language or mathematical models to communicate to the

human operator, explaining what data features and reasoning

led to a decision/output. The metrics considered in natural

language processing (NLP) would range from the repressive-

ness and accuracy of a n-gram linguistic output, the brevity

penalty of short communications, and many of the metrics

are universalised under the Bilingual evaluation understudy

(BLEU) framework. Mathematical algebraic expressions of the

NN’s actions will require flexible functions to explain the NN’s

mapping, such as hyper-geometric functions. Both will require

intuitive machine-human interfaces to explain the learning and

decision process.

C. Metrics of Explainability

There are several metrics that can be used to quantify the

accuracy of explainable models: i) the accuracy or representa-

tiveness of the local model (e.g. polynomial fit or sensitivity

analysis at a neuron in DNN) or global model (e.g. generalised
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TABLE I
AI EXAMPLES IN WIRELESS COMMUNICATION

Problem Domain Representative Paper Classic Approach ML or DL Approach Improvement at BER Explainability

Signal Detection Ye18 (WCL) DFT with LS or MMSE DNN with 3 hidden >15dB at 10−1 Low

Channel with Memory Farsad18 (TSP) Viterbi Detector (VD) SBRNN with 1 hidden 20 VD mem. at 10−1 Low

Decoding of LDPC Nachmani18 (JSTSP) Belief Propagation (BP) RNN with 5 hidden 1dB at 10−3 V. Low

Channel Estimation Neumann18 (TSP) Orth. Matching Pursuit CNN with 1 hidden 2dB at 10−1 Low

NOMA SCMA Detection Kim18 (CL) Message Passing DNN with 4 hidden 2dB at 10−3 V. Low

Channel Est. mm-M-MIMO He18 (WCL) Support Detection CNN and 3 layers 17dB at 5dB SNR V. Low

Cognitive Radio Tsakmalis18 (JSTSP) Expectation Prop. Bayesian MCMC 25 flops at 10−1 error Medium

Power Allocation Nasir19 (JSAC) Frac. Prog. & WMMSE DQN‘with 3 hidden 1bps/Hz None

Cross RAT Channel Access Yu19 (JSAC) RL DQN with 6 hidden 5% rate None

Interf. Align with Cache He17 (TVT) RL DQN with 4 hidden 20% rate None

Antenna Sel. Joung16 (CL) MaxMinNorm SVM 5% at 10−1 Low

WSN Diagnostics Liu10 (TON) Clustering Bayesian Belief Net. 5% Medium

User Behaviour Recog. Wang10 (TMC) SVM Random Forest 2-6% Low

QoE of Multimedia Hameed16 (TM) Fixed Decision Tree 50% overhead High

TABLE II
METHODS AND METRICS FOR XAI APPROACHES

XAI Approach Method Relevant Measures Application Areas

Feature Sensitivity DeepLIFT feature analysis [4] Variogram (VARS) RRM: impact of input states on action

Accept or Reject Null Hypothesis Bayesian or Frequentist p-value Cell Planning: inclusion of social factors

Local Fitted Model Local Linear Model (LIME) [5] Coeff. of Determination Optimisation: discover input interactions

Global Fitted Model Meijer G [6], B-spline Coeff. of Determination Optimisation: model discovery

Physics Informed Model Surrogate Twin (PhyML) [7] Loss, Confusion Matrix Channel non-linear equalisation

Reduced MDP Model State Reduction [8] computational complexity RRM & Optimisation

Reduced Neural Network Model Pruning [9] Loss, Confusion Matrix RRM on Mobile devices

Didactic Statements Natural Language Processing n-gram: precision, brevity, BLEU AI to engineer interface

hyper-geometric function fit across whole DNN), ii) the per-

formance of an explainable physics informed DNN, and iii)

the computational complexity cost of the explainable models.

The approaches which we explain above are summarized with

their metrics and KPIs in Table II below.

III. DEEP LEARNING IN WIRELESS: EXPLAINABILITY VS.

PERFORMANCE

A. Review of Deep Learning & Wireless Applications

1) PHY Layer: Supervised DL has a wide range of applica-

tions in the PHY layer. In signal detection, it can equalise non-

linear distortions by feeding the received signals corresponding

to transmit data and pilots [10], outperforming classic MMSE

approaches - see example in Fig. 1. When channels have mem-

ory, a bidirectional recurrent neural network (RNN) is more

suitable and does not require channel state information (CSI),

out performing Viterbi detection [11]. Similar approaches for

mm-Wave Massive MIMO, and end-to-end channel estimation

have also been performed – a summary of their performances

is given in Table I, along with their reported performances and

potential level of explainability.

2) MAC Layer: In MAC layer RRM, classic reinforcement

learning based solutions do not rely on accurate mathemat-

ical models. Whilst this overcame the challenges faced by

traditional model dependent optimisation, the Q-table used

in RL cannot scale to more complex problem sets such as

coordinated multi-BS offloading to heterogeneous devices, and

will lead to non-convergence and a high computational delay.

Deep RL (DRL) relies on the powerful function approximation

and representation learning properties of DNN to empower

traditional RL with robust and high efficiency learning. In

Fig. 3, we demonstrate an example of offloading user traffic

based on observed state, and reward inputs. This in turn

is translated into a reward distribution over possible actions

and an action is selected. In the next time iteration, the

consequence of those actions are observed.

A summary of DRL performance gains is given in Table I,

along with their reported performances and potential level of

explainability. Currently, most existing DRL solutions applied

in RRM use off-the-shelf algorithms with little consideration

on the RRM feature set and DRL design. This means that the

resulting benefit and penalties incurred (e.g. latency and energy

consumption) cannot be understood by the radio engineers

monitoring and configuring the network. In order to achieve a

trusted autonomy, the DRL agents have to be able to explain

its actions for transparent human-machine interrogation.

B. Trade-off and Interpretation Bias

In Fig. 2 we show a illustrative mapping of AI algorithms

reviewed in Table I. There is an intuitive trade-off between

explainability and performance when the mathematical model

is not known. In the case of known or good models,

DL cannot outperform classic statistical / signal processing

methods - this is a mute point. When it is not known, as

is the case for many complex systems, DL improves the

performance at the cost of explainability. Whilst the DNN’s
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Fig. 2. Trade-off between AI performance gain and explainability with a
variety of PHY and MAC layer examples. Trade-off exists when there are no
or poor explicit models.

performance in complex model-free problems is superior to the

aforementioned Bayesian and classic non-linear techniques,

its bias to data input bias is well documented but not well

understood. First, it maybe intuitive to think that the weights

connecting units may reveal insight (partial explainability)

to its high performance. However, DNNs learn mapping in

a discontinuous way. As such, adding purposefully designed

input data noise (with no explainable features) into a well

established classifier can lead to severe mis-classification. This

area of adversarial deep learning remains an open challenge

which we discuss more at the end of the paper.

1) Bayesian Methods: Here, we can see that Bayesian

techniques (of which tabular and decision trees methods can

also fit into) have a high degree of explainability, transparently

mapping data evidence (marginal) to model parameter estima-

tion to output confidence distribution (posterior). Even when

Bayesian inference is problematic, we tend to understand why

[12], e.g. when:

1) the number of expected outcomes is large, e.g. too many

power control levels or input modulation possibilities

(e.g. 256 QAM)

2) a large number of marginals of the data-generating

distribution are unknown (e.g. unknown mobility speed

distribution amongst a range of vehicles)

We also know how this affects outputs: (i) two sets of data

from the same situation may appear completely different and

lead to different decisions, or (ii) small changes in the model

parameters or data (its prior) can cause a different posterior

conclusion. We detail more on data and algorithm bias below.

Decision trees and random forests also have good explain-

ability, even deep ones (deep random forests and deep decision

trees), the reasoning behind how the tree is formed is less clear

compared to Bayesian model based methods. Furthermore,

RF finds the optimal decision tree, but is often vulnerable to

random permutation in out-of-bag (OOB) samples, otherwise

known as Mean Decreased in Accuracy (MDA).

2) Non-Linear Methods: As we move away from the

Bayesian framework, non-linear classification techniques such

as Support Vector Machine (SVM) quickly lose explainability

and there is no clear reason why data leads to one type

of classification nor do we understand how over-fitted it is.

DQNs stack several layers of non-linear activation functions

and the explainability of a DQN from either a model trans-

parency or a reasoning transparency perspective is not clear.

Furthermore, the problem of sample bias and overfitting is

further exasperated when we use DQNs to resolve a wide

range of signal detection and channel estimation problems. The

explainability is further reduced in DRL, whereby we further

complicate the explainability surrogate model, reaching almost

zero explainability in the DRL naive form.

IV. METHODS TO IMPROVE EXPLAINABILITY

Here, we give a review of recent attempts to improve

explainability in DNNs. To motivate the reader, we given an

example of RRM in a 5G UAV setting [13]. Whilst UAVs are

already helping to improve 5G networks, building explainable

trust between the coordination modules and human operators

is critical in 6G. As shown in Fig. 4, a UAV small-cell can

fly between different service regions as well as recharge. At

each service region it performs power allocation over a large

number of parallel OFDM channels. To achieve real-time op-

timisation, a DNN is used to approximate the classic iterative

Water-Filling (WF) power allocation solution, whilst a Double

Dueling Deep Q-Network (DDDQN) is used to approximate

the MDP for the UAV’s flight actions. We map the previous

and following XAI methods to the aforementioned wireless

communication context. A summary of the methods listed

below, their metrics for performance and potential applications

in wireless communications is given in Table II.

A. Symbolic Representation

A mathematically rigorous form would be to find the most

likely or the precise form of mapping performed by DNN,

as a function of the NN’s weights and activation functions.

There are a number of approaches, including using the generic

Meijer G-function [6], or Fox H-function. Meijer G-function is

a general hyper-geometric function intended to include most

known special functions and classes. As such, it provides a

flexible framework to discover the mapping between input

variables and output solution. In the example in Fig. 4, the

neural network f(·) ∈ F can rapidly map input channel

gains to output power allocation without the iterative search

of classic WF. In order to verify that the solution mapping

doesn’t yield unexpected results, we map f(·) → g(·), where

g(·) ∈ G is a hyper-geometric function. The end result is that

a strong match is achieved and an analytic equivalent solution

to iterative WF is found.

B. Feature Visualisation Techniques

At the perhaps most intuitive level of explainability, one can

post-hoc visualise the features that are important based on their
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and compressed neural network (NN).

weights or gradients of local nodes in the NN after training. In

a gradient based approach, we calculate the gradient of each

input feature with respect to an output, where a small change

in the input data feature leads to the level of outcome change

can be visualised. Using the example in Fig. 4, we implement

a DDDQN reinforcement learning model and highlight the

impact of different state features on the resulting UAV actions.

The weights for different state values highlight that certain

features such as battery power b and load satisfied l are

more important than other factors. One challenge is that local

features in hidden layers are non-linear and therefore the inter-

pretation maybe not trivial. This explainability process can be

further enhanced by yielding didactic statement explanations

by layer-wise relevance propagation (reversing the NN by

weight importance).

C. Local Machine Learning Model Reduction

Instead of reducing the global DL machine learning model,

we can also create simpler surrogate models of selected partial

data. For example, we can select only the load demand data

(see states in Fig. 3 to see how this input feature affects the

output. In general, one attempts to identify one or a set of

interpretable model (such as the interpretable linear models,

decision trees, rule tables discussed previously) that is locally

faithful to the classifier in question [5].

We can also create local explainable surrogate models to

understand better what DL is doing. In Fig. 3, we can see that

the load of users 4 & 5 influence action choice and can be

local linearly divided between the URLLC and eMBB load

demand - and this output can be either visual or quantitative

analysis. One popular approach based on the above logic is

called Local interpretable model-agnostic explanations (LIME)

[14]. LIME introduces a measure of complexity such that one

attempts to find the most faithful local explainable model with

the smallest complexity. As such, in our case in Fig. 3, LIME

has quantified that the linear model that divides URLLC and

eMBB demand is more explainable and less complex than a

higher order polynomial model.

D. Physics Informed Design

Designing DL algorithms that are physics based can negate

many of the concerns, as they have direct explainability.

For example, equalising the nonlinear channel loss (e.g. a

multitude of dispersion and phase noise in NLSE channels)

is traditionally achieved via digital back propagation methods

such as Split-Step Fourier Method (SSFM). Designing DNN

that approximates this process in the form of a Learned Digital

Back Propagation (LDBP) is achieved by unrolling the SSFM

iterations and approximating each span inversion with 2 layers

[7]. However, in many cases, this is not possible because we
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lack a workable traditional mathematical model or that it has

unsatisfactory performance.

E. Global Machine Learning Model Reduction

Since we know that simpler machine learning models are

more likely to be explainable, e.g. fewer parts to link mathe-

matically, more likely to be in a form we recognise, ...etc., and

as such model reduction makes sense. There are a multitude

of ways in which this can be achieved with varying results

and we detail some, but not all approaches below. Reduced

models are particularly useful for reducing the long term

energy expenditure of DNN algorithms, which is of benefit

to mobile devices.

1) Problem Reduction: In reinforcement learning, the

framework is often formulated from a Markov Decision Pro-

cess (MDP). The size of MDP is directly determined by the

state and action spaces, which grow super-polynomially with

the number of variables that characterise the domain. To sup-

port fine-grained RRM, we have to adopt high-resolution com-

munication context to accommodate context-aware optimiza-

tion, which often results in a large-scale Partially Observable

MDP (POMDP). The worst-case complexity is determined

by the model, ranging from POMDP with PSPACE-complete

(polynomial to input) to PO Stochastic Games with NEXP-

complete (non-deterministic Turing machine) complexity. In

general, one can compress MDP model in two stages:

• MDP model construction: one can appropriately choose

the definitions of state and/or action to adjust their reso-

lution. For example, when the transmit power constitutes

the action space, we could use a limited number of

discretised levels to approximate their dynamic range

with controlled performance loss. Example: hierarchical

action space methods can be used to approximate the

POMDP problem, achieving a scalable compression.

• During learning: the size of MDP model can be further re-

duced by aggregating identical or similar states, allowing

us to reduce learning complexity with a bounded loss of

optimality [8]. The similarity of states can be measured in

terms of optimal Q function, reward and state transitions,

Boltzmann distributions on Q values, etc..

2) Neural Network Reduction: Previous studies have re-

vealed that NNs are typically over parameterised [9], and

one can achieve similar function approximation by removing

components (e.g. pruning the network as shown in Fig. 3
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and only retaining useful parts with greatly reduced model

size. There are several typical ways on compressing DNN by

exploiting sparsity in NN:

• Reducing the number of parameters: removing the num-

ber of connections/weights, or pruning filters.

• Architectural reform: replacing fully-connected layers

with more compact convolutional layers.

• Weight quantization: reduce the bit width integer.

In general, selecting appropriate local data or reducing the

global model also gives extra explainability power by devel-

oping experiential and example-based explanations.

V. CHALLENGES AND CONCLUSIONS

In the context of Beyond 5G and 6G, the main areas that

require improved trust are mainly in automation for transport,

precision manufacturing, healthcare, and human machine brain

interface. I believe there are three main multi-disciplinary areas

for 6G. (1) Human Machine (Brain) Interface: developing

rational and intuitive interfaces that communicate (e.g. didactic

statements, interactive visual) to users and engineers. The

recent advances in 6G human-brain interfacing [1] for tactile

control and shared intelligence presents a futuristic framework

for XAI. XAI Twin: develop an explainable twin AI system

to work in parallel to the DL systems that are designed for

optimisation performance. Recent work to develop a Neuro-

Symbolic Concept Learner (NS-CL) agent that mimics hu-

man concept learning, able to translate back to the language

description of the features [15]. Adversarial AI: Develop

defence mechanisms that can recognise targeted attacks against

DL and XAI engines.

As 6G will need to enable greater levels of safety-critical

autonomy across a wide range of industries, building and

quantifying trust between human end-users and the enabling

AI algorithms is legally imperative. At the moment, we simply

don’t understand a wide range of deep learning (DL) modules

that contribute to PHY and MAC layer roles. In this review,

we outlined the core concepts of Explainable Artificial Intel-

ligence (XAI) for 6G, including: public and legal motivations,

definitions of explainability, performance vs. explainability

trade-offs, methods to improve explainability, and proposed

a framework to incorporate XAI into future wireless systems.

Our review has been grounded in case studies for both PHY

and MAC layer optimisation and provide the community with

an important research area to embark upon.
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