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Abstract
With the extensive application of deep learning (DL) algorithms in recent years, e.g., for detecting Android malware or 
vulnerable source code, artificial intelligence (AI) and machine learning (ML) are increasingly becoming essential in the 
development of cybersecurity solutions. However, sharing the same fundamental limitation with other DL application 
domains, such as computer vision (CV) and natural language processing (NLP), AI-based cybersecurity solutions are inca-
pable of justifying the results (ranging from detection and prediction to reasoning and decision-making) and making them 
understandable to humans. Consequently, explainable AI (XAI) has emerged as a paramount topic addressing the related 
challenges of making AI models explainable or interpretable to human users. It is particularly relevant in cybersecurity 
domain, in that XAI may allow security operators, who are overwhelmed with tens of thousands of security alerts per day 
(most of which are false positives), to better assess the potential threats and reduce alert fatigue. We conduct an extensive 
literature review on the intersection between XAI and cybersecurity. Particularly, we investigate the existing literature from 
two perspectives: the applications of XAI to cybersecurity (e.g., intrusion detection, malware classification), and the secu-
rity of XAI (e.g., attacks on XAI pipelines, potential countermeasures). We characterize the security of XAI with several 
security properties that have been discussed in the literature. We also formulate open questions that are either unanswered 
or insufficiently addressed in the literature, and discuss future directions of research.
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1 Introduction

Artificial intelligence (AI) is a paradigm for simulating human 
reasoning, e.g., classifying previously unobserved data, predict-
ing future events such as stock market trends, forecasting sales 
and consumer behavior. The goal of this field has been to develop 
general intelligence in AI [23]. Interest in AI-related research has 
been growing exponentially, partly motivated by its outstanding 
performance in computer vision (CV) and speech recognition. As 
researchers focus on improving model performance, the ability 
to explain the reasoning behind a model’s predictions becomes 
increasingly crucial. For example, “Why did I not get a loan?” 
and “Why does this X-ray picture say I have cancer?” are com-
pelling questions that the research community must be able to 
answer. Therefore, researchers have been exploring explainable 
AI (XAI), which is a paradigm that targets AI models and aims 
to provide explanations for their predictions.

Researchers have discussed the need to provide explanations 
for their models regarding several practical [44, 135], ethical [50], 
and operational [77] considerations. DARPA’s XAI program [44] 
highlighted that a machine learning (ML) model’s explainability 
is inversely proportional to its prediction performance (e.g., accu-
racy). Notably, deep learning (DL) models, which are arguably the 
most robust and complex type of AI algorithms, are also the most 
difficult to explain. The role of XAI is to enhance explainability 
while maintaining high performance. Xu et al. [135] claimed that 
XAI is essential for i) professionals (e.g., doctors) using AI sys-
tems to understand the decisions made, ii) end users (e.g., patients) 
who are affected by an AI decision—there are legal regulations 
that codify this need, such as the General Data Protection Regula-
tion (GDPR) [1], and iii) developers to improve AI algorithms by 
accurately identifying their strengths and weaknesses.

Holzinger et al. [50] highlighted the intersection between 
security and explainable ML. They argued that XAI could be 
used to select the right data anonymization techniques so that 
privacy is protected while the ML results remain viable. To com-
ply with the GDPR [1], researchers resort to anonymizing data 
they use. However, several standard anonymization techniques 
distort the predictions of ML algorithms. Researchers suggest 
that AI explainability could help in selecting ideal anonymization 
techniques for ML algorithms, as comprehending the ML deci-
sions would aid in understanding and estimating bias. Thus, XAI 
could be the key to designing solutions that leverage the power 
of ML while protecting privacy. There are two main approaches 
to explain deep neural networks (DNNs): i) making parts of a 
DNN transparent—sensitivity analysis [104] and layer-wise rel-
evance propagation (LRP) [15] are well-known methods, with 
superior performance for LRP to identify the most relevant pix-
els; ii) learning semantic graphs called explanatory graphs from 
existing DNNs, which aim to extract the knowledge learned by 
a DNN and model it as an explainable graph, as proposed by 
Zhang et al. [138].

Longo et  al. [77] classified studies on XAI into two 
approaches: a minority of works that focuses on creating inher-
ently explainable models, and the majority that wraps black-box 
models with a layer of explainability, the so-called post hoc mod-
els. They also argued that explainability might be more attractive 
in some domains than others, including critical domains such 
as threat detection, protection against adversarial attacks, physi-
cian decision support, autonomous vehicles, and object detec-
tion. These domains are frequently explained by saliency maps 
[51]. From the perspective of technical challenges, they high-
lighted several issues, including the lack of a common approach 
to evaluate and compare AI models and the need to interpret 
explanations in the form of visualization or human-readable 
text. We conducted a rigorous literature review by investigat-
ing relevant papers from eight major digital academic libraries: 
Google Scholar, IEEE Xplore, ScienceDirect, SpringerLink, 
ACM Digital Library, Scopus, ResearchGate, and Semantic 
Scholar. During the collection process, we combed these librar-
ies based on a keyword search as follows: i) explanation-related 
terms such as “explainable,” “interpretable,” “understandable,” 
“intelligible,” and “comprehensible”; ii) AI-related terms, includ-
ing “AI,” “XAI,” “ML,” “DL,” “classification,” and “prediction” 
and “black-box.”; and iii) security-related terms, such as “adver-
sary,” “threats,” “attack,” “cybersecurity,” and “detection.”

To understand recent advancements in the field, the 
search was limited to publications between 2000 and 2022. 
The collated papers were classified by topic, i.e., applying 
XAI to cybersecurity or the security of XAI methods. We 
also checked the reference lists of the selected papers and 
employed a cascading strategy to identify additional papers, 
yielding a final list of 50 papers. The XAI has been broadly 
surveyed in several studies [2, 29, 47, 105]. Because it is an 
emerging field, the existing literature can be justifiably sur-
veyed without a specific domain scope. However, the recent 
advancements and increasing threats in the real world war-
rant a cybersecurity review of XAI. There are two existing 
works that address this topic from a high-level perspective: 
[6] and [121]. In [6], Mohiuddin et al. discussed the topic 
of XAI through the lens of multiple applications: health-
care, smart cities, NLP, security, etc. From a cybersecurity 
perspective, most of their analyses targeted intrusion detec-
tion systems, and their usage in the previously identified 
applications. The works discussed in the various cyberse-
curity subsections of that book did not explore the technical 
considerations and omitted several implementation details 
and technical results. Similarly, [121] considered various 
applications for AI models, but always presented a cyberse-
curity approach (as opposed to the scope of [6]). The analy-
sis was divided into three questions: what is the motivation 
for applying AI to a specific domain; what are the technical 
requirements for it; and how can XAI help with achieving 
the goals presented in the motivation?
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We argue that this work is distinct from the existing 
literature in two main aspects. First, this survey focuses 
on how to apply explainability and which methods are 
relevant to cybersecurity applications. Second, this survey 
analyses the security of XAI methods and identifies exist-
ing trends and challenges. It outlines technical research 
avenues that would immensely contribute to the AI and 
XAI research community.

The contributions of this survey are as follows:

– We provide a comprehensive background with the main 
concepts, existing methods, limitations, and risks associ-
ated with securing explainable systems.

– We collect and analyze 50 papers and organize them in a 
cybersecurity-oriented taxonomy.

– We discuss open research problems and identified mul-
tiple research avenues for future work.

The remainder of this article is organized as follows. Sec-
tion 2 introduces the taxonomy of XAI and scope of this 
survey. Section 3 introduces the surveyed terms, models, 
and XAI methods. Section 4 reviews the state of the art of 
explainable classifiers for cybersecurity tasks. Section 5 
explores the security of XAI methods. In Section 6, we 
present unaddressed AI-related research questions and our 
perspective on the future of XAI in cybersecurity. Finally, 
we conclude this survey in Section 7.

2  Taxonomy

AI models are a major actor in the cybersecurity research 
landscape. However, ensuring the proper use of AI mod-
els in a cybersecurity context is an arduous task. Shaukat 
et al. [111] provide a broad review on the applications of 
ML techniques to cybersecurity. Cybersecurity applica-
tions of AI encompass network security, computer secu-
rity, mobile security, etc. In essence, AI and XAI methods 
have been implemented on various datasets corresponding 
to the research trends. As such, we believe that discussing 
the broadest range of applications will give the reader a 
diversified vision about the landscape of XAI in a cyber-
security context. Therefore, we argue that transparency of 
and trust in AI also belong to the scope of cybersecurity 
as they contribute to reducing the potential maliciousness 
toward the AI model and the system in general. We extend 
this approach to the analysis of the security of XAI meth-
ods, where we discuss various works either compromis-
ing the explanations or defending them against unwanted/
unexpected behaviors.

XAI is a growing research domain, to which research-
ers have contributed different definitions and perspectives 
owing to a lack of standardization. For example, the authors 

of [2, 128] employed the approach of the six W questions—
What, Who, When, Why, Where, and How. This approach 
helped identify different stakeholders in AI-based systems 
and define the scope of XAI and the reasoning behind the 
need for XAI. Another approach was to characterize XAI 
through its intrinsic properties. Arrieta et al. [13] classi-
fied XAI models as white box or post hoc models, whereas 
the authors of [46] and [94] outlined desirable properties 
for XAI. Hagras [46] discussed the link between human-
understandable information and the flexibility of the data 
labeling process. Paredes et al. [94] discussed explanations 
for cybersecurity and insisted that explanations should be 
able to capture changes in an attacker’s strategy, or to help 
identify anomalies when they are outlined by detection 
mechanisms. Kuppa et al. [66] proposed a taxonomy for 
XAI concerning its security properties. They also demon-
strated a novel black-box attack on explainable models and 
evaluated it on three datasets. The proposed taxonomy cov-
ered three domains: the explanations of predictions made 
by a model, the security properties associated with models 
(i.e., confidentiality, integrity, and privacy), and the threat 
models used. The authors differentiated confidentiality and 
privacy by highlighting that the former pertained to the 
features of data, while the latter pertained to the expla-
nations given to various security actors. We employed a 
different approach by considering the intersection of XAI 
and cybersecurity (Table 1). In this survey, we explored 
both methods for explaining AI-based cybersecurity appli-
cations and security analyses of XAI methods. In the first 
case, the literature we surveyed covers various practical 
scenarios, mostly supported by cybersecurity datasets (23 
papers). In the second case, we identified several properties 
with respect to the security of XAI that were discussed in 
the state of the art (27 papers). Our taxonomy differs from 
those of existing XAI surveys, as most of them considered 
XAI from an intrinsic perspective. Numerous explanation 
methods were not attacked; however, the security proper-
ties presented in this survey should be relevant for these 
methods as well. We do not mention these methods in this 
survey to preserve our cybersecurity perspective. Table 1 
describes the classification of the existing literature regard-
ing our taxonomy.

3  Preliminaries

Before discussing the intersection of XAI and cybersecurity, 
we remind the reader of certain terms, and present a few 
intrinsically explainable models and explainability methods. 
As mentioned in Section 2, we do not introduce the reader to 
models or explanation methods that were not encountered in 
the surveyed literature.
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3.1  Glossary

In the literature, “explainable,” “interpretable,” and 
“understandable” have been used interchangeably. We 
agree that explainable and interpretable are synonyms, but 
“understandable” is not. We define the terms interpretable/
explainable and understandable using the studies of Arri-
eta et al. [13] and Molnar [85].

Explainable/interpretable Explainability (interpretability) 
can be defined as the ability to provide the meaning of the 
relationships a model’s inputs and its outcomes have, in a 
human-readable form [85]. In the XAI field, explainability 
(interpretability) is the degree to which the decision made by 
an AI model can be understood by humans. The higher the 
explainability (interpretability), the easier it is for humans 
to comprehend why a model made a decision.

Understandable Understandability can be defined as the 
capability of an AI model to make a human understand its 
function without needing to explain the model’s intrinsic 
mechanisms [13]. In this survey, we discuss scientific con-
tributions from the perspective of explainability (interpret-
ability), as it is the most common approach in the literature. 
We argue that the literature is not mature and does not pro-
vide distinct definitions for these terms. We considered the 
philosophical issue of understandability to be outside the 
scope of this survey but provided a tentative definition to 
guide readers.

3.2  Explainable models

The models presented in this section can provide expla-
nations without requiring an external XAI method. The 
intrinsic mechanisms of the model can be extracted, and 
the model can provide information in a human-understand-
able way.

Linear regression model (LR) [48] is a linear approach for 
modeling the relationship between feature inputs and their 
outcomes. An LR model linearly approximates results using 
the weighted sum of the feature inputs. The formula of LR 
is expressed as follows:

where y represents the regression target (output), χ rep-
resents the feature input, βn denotes the weight value, and 𝜖 
represents the error term.

The logistic regression model [61] is an extension of LR 
because LR treats classes as numbers, 0 or 1, and attempts to 
find a hyperplane that minimizes the distance between points 
and the hyperplane. In other words, the LR model cannot 
efficiently solve classification problems. Logistic regression 
is not based on probability; rather, it is merely a simple inter-
polation process. Thus, linear interpolation cannot provide a 
meaningful threshold for distinguishing classes.

The generalized linear model (GLM) [33] is another exten-
sion of LR model. The GLM addresses the problem that 
a simple weighted sum in LR is too restrictive for real-
world problems. LR requires the assumption that the tar-
get outcome follows a Gaussian distribution, whereas the 
GLM allows a non-Gaussian distribution and connects the 
weighted sum of distributions through a nonlinear function. 
The formula for the GLM can be described as follows:

where g denotes link function, βnxn denotes the weighted 
sum, and Ey denotes the distribution probability.

Decision tree (DT) [60] is a graph representation of data 
instances. In summary, DT splits data multiple times based 
on defined cutoff values (decision nodes), thereby creating 
different subsets. Each instance will belong to a specific 

y = �0 + �1�1 + �2�2 + ... + �n�n + �

g(Ey(y|x)) = �0 + �1x1 + +�2x2 + ... + �nxn

Table 1  Classification of the surveyed literature

References

XAI & 
Cybersecurity

Explainable Classification for 
Cybersecurity

XAI for transparency and trust [8, 11, 39, 45, 53, 54, 57, 58, 79, 106, 
109, 123, 124, 132, 133, 143]

XAI for improving the performances [43, 102, 131]
XAI for explaining errors [32, 34, 76, 82]

Cybersecurity of XAI methods Fairness [7, 10, 27, 66, 72, 99, 117, 118]
Integrity [20, 28, 37, 49, 66, 115, 139]
Privacy [65, 66, 113, 141]
Confidentiality [65, 66, 84]
Robustness [17, 38, 56, 59, 65, 66, 69, 70, 83, 112]
Explanation evaluation [3, 52, 74]
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subset. The excellence of the DT algorithm arises when the 
relationship between features and outcomes is nonlinear. The 
tree structure algorithm enables the processing of nonlinear 
data. The formula for a DT can be expressed as follows:

where x represents the input feature, y represents the out-
put, I

{
x ∈ Rm

}
 denotes the identity function, and Rm denotes 

the leaf node.
The construction of a DT is a recursive splitting process. 

The algorithm attempts to create subsets by grouping all 
data points until the best partition (based on the information 
gain theory) has been identified. The DT model has a simple 
interpretation from the explainability perspective. From the 
root node, we go to the next node until the desired subset is 
found. Figure 1 illustrates a decision node. The visualization 
bolsters the explainability of the decision-making process, 
as it is based on if–then rules that start from the root node. If 
rule A is met, we proceed to decision node A. If not, we will 
go down to decision node B. We repeat this process until we 
reach the leaf node, which reveals the predicted outcome. In 
a DT, each feature has a “significance level,” which is called 
feature importance. The overall model importance is at 100, 
which is then passed along all branches. This means that 
each feature has a share in the overall model importance. 
The prediction in a DT can be explained by the formula:

y =

M∑

m=1

cmI
{
x ∈ Rm

}
where x is an individual instance, f(x) is the prediction of 

an individual instance, y is the mean of the target outcome, 
and n is the total number of features. The prediction of an 
individual instance is the mean of the target outcome plus 
the sum of feature contributions of n features.

Random Forest (RF) [19] is a supervised ML algorithm that 
operates by generating a multilevel DT. RF is widely used 
for classification and regression. The RF algorithm com-
prises two main parts: bagging and boosting. Bagging refers 
to the creation of additional data by replicating original data 
to reduce the variance. Boosting refers to the sequential 
combining of weak learners with strong learners. The for-
mula for RF can be expressed as follows:

where m represents the number of trees, y represents the 
output, x′ represents the new point wanted to be predicted, W 
denotes the weight value, j represents the respective tree, and 
xi denotes the neighbor of x′ that share the same leaf in tree j.

Extra Trees [5] is a supervised ML algorithm that shares 
similarities with RF. The main difference is that RF uses 
bootstrapping that sub-samples input data with replacement, 
whereas Extra Trees uses all original samples. During the 
splitting-node phase, RF chooses the optimal split, whereas 
Extra Trees chooses the split randomly. The extra trees algo-
rithm is faster but does not return the optimal tree.

Naive Bayes [100] is a supervised ML algorithm based on 
the Bayes theorem, which states that given a class of vari-
ables, every feature is conditionally independent. The Naive 
Bayes function can be expressed as follows:

where x represents the features, n denotes the total num-
ber of the features, and y represents the class variable.

Gradient Boosting (GB) [35] is an ensemble learning method 
for modifying weak learners by unifying them into one 
stronger learner. The GB method is widely used with DT as 
the learning model. The residual learning and decision path of 
GB trees can be used to measure the contribution of each fea-
ture to the prediction result, making the GB model is explain-
able. The GB formula for DT can be expressed as follows:

f (x) = y +

n∑

i=1

feature.contribution(i, x)

y =
1

m

m∑

j=1

n∑

i=1

Wj

(
xi, x

�
)
yi

y = argmaxyP(y)

n∏

i=1

P(xi|y)

Fig. 1  The structure of a decision tree
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where Fm represents the model, nj denotes the number of 
samples in terminal node j, and γjm1(x ∈ Rjm) implies that the 
value of Yjm is chosen if the given x is located in the terminal 
node Rjm. The average residual rim in the terminal node Rjm 
is the optimal value of Yjm that minimizes the loss function.

3.3  XAI methods

Explanation methods are used to identify the contribution 
of each data parameter to the classification made by ML 
algorithms. In this section, we introduce such methods by 
classifying them into two families: local explanation and 
global explanation methods.

3.3.1  Local explanations

Local explanations are used to understand the classification 
of a single data input. For example, “Why is this image clas-
sified as a cat?”

Local surrogate models is a model that accurately do 
approximation in a local feature space around a single input, 
explaining an individual prediction. A surrogate model 
itself is a statistical model that has been trained to accu-
rately approximate the output of a black-box model. One 
example of local surrogate model for XAI is Local Inter-
pretable Model-agnostic Explanations (LIME) [97]. LIME 
is an explanation method that locally approximate a black-
box ML model to explain each prediction. The main idea 
of this model is to perturb the original data, and then feed 
them to the model. The data points are weighed as the prox-
imity function of the original point. Based on those data 
points, LIME trains a local surrogate model that locally 
gives a good explanation. The local surrogate model can be 
described by the following formula:

where x represents the instance for generated local model 
g that minimizes the loss function L, f denotes the origi-
nal model, Ω(g) represents the model complexity, and πx 
denotes the proximity measure that defines the area around 
instance x considered for the explanation.

LIME was extended using a Bayesian approach in [116, 140] 
because of its instability. If we perform a repeated run using 
LIME, it will generate inconsistent explanations. To address 
this issue, studies have used Bayesian reasoning to exploit the 
prior knowledge and improve the explanation fidelity.

Fm(x) = Fm−1(x) + v

Jm∑

j=1

�jm1(x ∈ Rjm)

explanation(x) = argminL(f , g,�x) +�(g)

SHapley Additive exPlanations (SHAP) [78] is a method to 
explain individual predictions in a black-box setting. The 
prediction is based on the Shapley value—an average con-
tribution value of a feature across all possible combinations. 
The main purpose of SHAP is to measure the contribution 
of each feature to the prediction result. It can be described 
using the following formula:

where g denotes the explanation model, z′ denotes the 
combination vector, M denotes the maximum combina-
tion size, and ϕj denotes the feature attribution for feature j. 
Feature attribution indicates the contribution level of each 
feature to the prediction result. SHAP was extended with a 
Bayesian approach in [116] because of its high computa-
tional cost. In addition, a prediction algorithm that approxi-
mates the optimal number of samples is required to reduce 
the number of queries.

Anchors modeling [98] is an explanation method on any 
black-box model that attempts to find a decision rule for the 
prediction process. A rule becomes an anchor of a prediction 
if changes in any feature value will not affect the prediction 
result. Anchors combine graph search and reinforcement 
learning methods to minimize the processing time. Anchors 
use perturbation-based methods to generate local explana-
tions using if–then rules. This differs from LIME, which 
uses a local surrogate model. Anchor modeling is a model-
agnostic method that can be applied to any model. An anchor 
A can be expressed as follows:

where Ξ represents the evaluation function, x represents 
the explained instance, f denotes the classification model, 
Dx(z|A) represents the distribution of neighbors x—where 
the same anchor A is applicable—and τ specifies the preci-
sion threshold, which is between 0 and 1.

Individual conditional expectation (ICE) [41] is an explana-
tion method that uses a line plot for each instance to demon-
strate the degree of variation in predictions when a feature is 
modified. ICE focuses on a specific instance and visualizes 
the prediction dependence of each feature separately. Thus, 
it can uncover a heterogeneous relationship with an intuitive 
curve that is legible. However, ICE can only display one 
feature at a time. There can also be some invalid data points 
if the feature of interest correlates with another feature.

Counterfactual explanations [130] represent a causal sce-
nario that can be described as “If A does not happen, B will 

g(z�) = �0 +

M∑

j=1

�jz
�
j

ΞDx(z|A)[1f (x)=f (z))] ≥ �,A(x) = 1
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not happen.” When applied in XAI, this concept describes 
the smallest change in feature values that can affect the 
output. Counterfactual explanations can be applied to both 
model-agnostic and model-specific scenarios. A counterfac-
tual instance must generate predefined predictions as close 
as possible with similar instances regarding feature values. 
A counterfactual explanation can be formulated as follows:

where x denotes the selected instance that is to be 
explained, y′ represents the desired outcome, λ represents 
the bias value, and x′ represents the counterfactual explana-
tions. A low initial value is assigned for λ, which is then 
continuously increased until the loss is minimized. Finally, 
the list of counterfactual explanations that minimized the 
loss is obtained.

Local explanation method using nonlinear approxima-
tion (LEMNA) [45] is an XAI method for AI-based security 
applications. It combines a mixture regression model with 
a fused lasso to generate high-fidelity explanation results. 
The fused lasso is used to handle the feature dependency 
problem. The mixture regression model is used to approxi-
mate local nonlinear decision boundary explanations for 
complex security applications. The formula for LEMNA 
can be described as follows:

where K specifies the number of linear models, 𝜖 denotes 
random variables from a normal distribution, β denotes the 
regression coefficient, and π holds the weight value.

3.3.2  Global explanations

Global explanations are the opposite of local explanations in 
that they are focused on the overall behavior of the model. 
Instead of explaining singular instances, they target the aver-
age distribution of data.

Partial dependence plot (PDP) [35] is an explanation 
method that illustrates the marginal effect of a feature on the 
output of an AI model. The PDP focuses on the overall aver-
age instance, instead of a specific one. Thus, it is also the 
opposite of ICE. The PDP can be considered the average line 
of an ICE plot. The value for one instance can be computed by 
setting all other features with similar values, and then creating 
another variant for that specific instance. As such, the PDP 
can reveal the relationship between a feature and the predic-
tion result. The formula for a PDP can be described as follows:

argmin
x�

max
�

L(x, x�, y�, �)

f (x) =

K∑

j=1

�j(�j.x + �j)

where f̂  denotes the partial function, xs represents the 
input feature that is going to be plotted, and xC consists of 
other features used in the model.

Accumulated local effects (ALE) [36] explains the influence 
of a feature on the prediction result of an AI model on aver-
age. The concept of ALE was introduced to address the main 
limitation of a PDP: its fidelity level reduces drastically if 
the features in the AI model are correlated. ALE show the 
variation of model prediction in a small area where the ana-
lyzed input is located.

Global surrogate model [90] is an explainable method for 
generating a surrogate model by approximating the predic-
tion result and the interpretability of the underlying explain-
ability model. First, a dataset is selected (it can be the same 
dataset that was used to train the underlying model or a new 
dataset). Then, for the selected dataset, the prediction result 
is derived from the original model. Subsequently, an inter-
pretable model is trained based on the dataset and its predic-
tion. Finally, a global surrogate model is generated.

where R2 is the coefficient of determination that repre-
sents the proportion of variation, SSE is Sum of Squares 
Error, SST is Sum of Squares Total, y(i)

s
 represents the i-th 

instance of the surrogate model, y(i)
o

 represents the prediction 
result of the original black-box model, and ymean represents 
the mean of the original black-box model prediction.

Feature interaction [137] is an explainable method based on 
marginal distribution estimations. It was proposed to address 
the problem that when features are correlated, the prediction 
cannot be manifested as the sum of feature effects. The effect 
of one feature influences other features. The feature inter-
action concept states that the interaction between features 
represents a change in the prediction result, which happens 
by varying the features considering each feature effect. The 
formula of feature interaction can be expressed as follows:

where PDjk(xj,xk) represents the partial dependence func-
tion between features and PDj(xj) and PDk(xk are the partial 
dependence functions of each single feature.

Functional decomposition [30] is a method that constructs 
a visualization of individual features and interaction effects. 
The prediction function can be represented as the sum of 

f̂S(xS) = EXC

[
f̂ (xS,XC)

]
= ∫ f̂ (xS,XC)dℙ(XC)

R2 = 1 −
SSE

SST
= 1 −

∑n

i=1
(y(i)

s
− y(i)

o
)2

∑n

i=1
(y

(i)
o − ymean)

2

PDjk(xj, xk) = PDj(xj) + PDk(xk)
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functional components. The decomposition function can be 
described as follows:

where p denotes the number of input features, f denotes the 
prediction function, and xs denotes the feature vector in the index 
set S, in which each subset represents a functional component.

3.3.3  Explaining neural networks

The methods presented here are specific to gradient-based 
models, which use forward and backward propagations of 
gradients during training.

Feature visualization [92] is an explainable method that 
converts learned features into an image visualization that 
describes the feature’s characteristics. DNNs can learn high-
level features through hidden layers. An input image under-
goes several feature engineering processes as it passes every 
layer. The deeper the layer, the more complex the learned 
features become. The feature visualization of a layer in a 
neural network (NN) is done by finding the input that maxi-
mizes the activation of that layer. The optimization problem 
of feature visualization can be described as follows:

where h denotes the activation function, image img is the 
input of the neural network, b describes the layer, x and y 
specify the spatial positions of a neuron, and z is the chan-
nel index.

Saliency maps [9]—also known as pixel attribution, heat 
map, sensitivity map, gradient-based attribution method, or 
feature relevance—are an explanation method that explains 
individual predictions by providing attributes to each feature 
based on its degree of influence on the prediction result. 
Saliency maps can be classified into two approaches: per-
turbation- and gradient-based approaches. The perturbation-
based method generates an explanation by manipulating 
parts of an image, which is categorized as model-agnostic. 
The gradient-based approach computes the gradient of the 
prediction result with respect to the input features. Both 
approaches assign each pixel a value that can be converted 
into the categorization result’s relevance level.

Explanatory graph [138] is a graphical model that repre-
sents knowledge in each convolution layer of a convolu-
tional neural network (CNN). As the filter in a pretrained 
CNN is activated by different object parts, the patterns from 

f (x) =
∑

s⊆{1,...,p}

fs(xs)

img∗ = argmax
img

∑

x,y

hn,x,y,z(img)

each filter are extracted. Subsequently, the patterns are dis-
entangled in a supervised manner to generate an explana-
tory graph that clarifies the knowledge representation. The 
method visualizes the spatial relationships between patterns, 
filtering out noisy patterns, and ensuring the consistency of 
feature representation among different images.

4  Explainable classification 
for cybersecurity

In this section, we survey studies in three different scenarios: 
when explanations are used for transparency of the model; 
when explanations are used to improve the performance of 
the model; and when explanations are used to explain errors 
made by the classifier. We summarized the contents of these 
studies in Table 2.

4.1  Explanations for transparency and trust

A core objective of XAI is to provide users with action-
able explanations that will help them understand why the 
model made a decision. We divide this section by the type 
of explanation: surrogate models, global explanations, and 
interpretable models.

4.1.1  Explaining with surrogate models

Islam et al. [54] proposed a semantic approach assigning 
confidentiality, integrity, and availability (C, I, A) meanings 
to attacks and features in a dataset. First, they designed a 
feature generator, where the three most important features 
for each attack are extracted. New features were then created 
by assigning a C, I, or A attribute to the ones they extracted. 
In addition, they computed a coefficient that illustrated the 
weight of the feature in the overall impact of C, I, or A. Sec-
ond, they implemented an evaluator that ran multiple attack 
detection models and measured the impacts of different sets 
of features, including the previously generated ones. They 
used the CIC-IDS2017 dataset [110]. Due to resource limi-
tations, the dataset could not be entirely exploited, thereby 
limiting the scope of validity of their results. The results 
illustrated that, although the set of generated features did 
not outperform the full set of features, it did not perform 
significantly worse. The generated features also provided 
a human operator with an explanation of the contribution 
of the C, I, or A attribute in the classification of the attack. 
Similar results were obtained when trying to detect unknown 
attacks (i.e., removing all data from a specific attack before 
training). Interestingly, a structured query language injection 
can only be detected using the proposed method. The weaker 
performance is partly due to the simplification of the attacks 
and features into three attributes (i.e., C, I, and A).
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Zolanvari et al. [143] proposed TRUSTXAI, a model-
agnostic, high-performance XAI model suitable for 
numerical applications. They used three different datasets: 
WUSTL-IIoT [142], NSL-KDD [126], and UNSW [88]. 
These are tabular traffic datasets for intrusion detection. 
The system works by modeling the statistical behavior of 
AI outputs. The input features are transformed into a set of 
latent variables using a factor analysis [93]. Subsequently, 
these variables are measured using the mutual informa-
tion concept. The most influential variables for the output 
are set as representatives of the class. Finally, the Gauss-
ian distribution is used to determine the likelihood of each 
sample’s class. Their experiment showed that TRUSTXAI 
successfully provided explanations for random samples with 
a 98% success rate. Six samples (three positives and three 
negatives) were randomly chosen from the test set. Com-
pared with LIME, TRUSTXAI was superior in performance, 
speed, and explainability. They claimed that the proposed 
model yields a more straightforward explanation than LIME, 
by modeling the output with a statistical measure, which is 
easy to understand. However, it has one main limitation; it 
tends to overfit due to the use of mutual information when 
picking class representatives.

Karn et al. [57] introduced an automated cryptomin-
ing pod detection in a Kubernetes cluster using a statisti-
cal explainability mechanism. They attempted to identify 
and classify any background malware executables that were 
running. For the explanation task, they implemented SHAP 
for XGboost, LIME for NN, and DT. The explanation justi-
fies any pod removal decision, implying a running process 
of cryptomining. Similarly, [123] proposed a hybrid ora-
cle–explainer approach to develop an explainable intrusion 
detection system (IDS), which combined an opaque clas-
sifier based on an artificial neural network (ANN) and an 
interpretable module using DT. During the inference phase, 
the ANN classification decision of a given input is explained 
by the DT’s decision on the same input, or the closest input 
in terms of the l2 (Euclidean) norm.

Guo et al. [45] proposed LEMNA, an explanation frame-
work for malware detection applications. LEMNA is the 
sole explanation method designed specifically for cyberse-
curity applications. They used a the PDF malware dataset 
from Smutz et al. [120]. LEMNA attempts to approximate 
a local area within a DL decision boundary using an inter-
pretable model. This model is designed to handle feature 
dependency and nonlinear local boundaries. The framework 
works by treating a DL model as a black-box and performing 
approximation using a mixture regression model boosted by 
a fused lasso. The fused lasso forces similar coefficients of 
neurons to be assigned to adjacent features within a small 
threshold, taking features as groups and making the learning 
algorithm learn a target model based on the feature groups. 
The mixture regression model is a combination of multiple 

LR models; Guo et al. employed it to avoid the nonlinear 
approximation problem.

4.1.2  Global explanations

An explainable IDS was proposed in [132], which combined 
local explanation (using original SHAP) and global expla-
nation (using modified SHAP). In particular, the value of 
each feature was divided into several intervals, each of which 
was measured with Shapley values. The Shapley values were 
then averaged, yielding a global explanation. While SHAP 
offers fast computation for explanation, the framework lacks 
capability for real-time updates.

In [11], an autoencoder (AE)-based anomaly detection 
scheme using SHAP is proposed. They examined the robust-
ness of the methodology by replacing one feature with noise 
and assuming that the noise feature should not explain an 
anomaly. If the selected feature contributed to the expla-
nation, they introduced a perturbation. The new instance 
should be less anomalous, and the anomaly score should 
then be reduced. They experimented with the KDD Cup 
1999 dataset (intrusion detection) from the UCI ML archive, 
revealing that SHAP outperformed LIME on reducing the 
reconstruction error.

SHAP was also used in [106] for explaining and interpret-
ing classification decisions of an ML-based network IDS. 
Two classifiers—a deep feedforward NN and an RF—were 
evaluated on several recent intrusion detection databases, 
namely CIC-IDS2018 [22], TON_IoT [87], and BoT–IoT 
[63]. Two feature sets of each database were considered: 
one set contained 83 features extracted via CICFlowMeter 
[71], while the other contained 43 features extracted from 
NetFlow [107]. The evaluations were focused on finding the 
most interesting features for each classifier. The results of 
explainability exhibited some similarities between the two 
classifiers with respect to the most influential features in 
different databases. The authors also noted that the influ-
ence and importance of each network feature varied with 
the dataset.

Alenezi et al. [8] designed an explainable ML framework 
for malware and malicious URL detection. They imple-
mented three XAI methods based on SHAP: TreeExplainer, 
KernalExplainer, and DeepExplainer. These XAI methods 
explained the prediction of common classifiers, such as RF 
and XGboost. They used a URL dataset, ISCX-URL2016 
[81], and an Android malware dataset, CICMalDroid 2020 
[80], both published by the Canadian Institute for Cyber-
security. They compared the performance of each method 
using different setups. The results showed no optimal uni-
versal setup for any one scenario.

Khan et al. [58] designed a timely detector for attack vec-
tors on the Internet of Medical Things networks. The model 
was developed using bidirectional simple recurrent units. 
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The detector uses the phenomenon of skip connections to 
solve the vanishing gradient problem and reduce the train-
ing time. The study used the TON_IoT dataset [87], which 
contains several cyberattack classes, such as ransomware, 
backdoor, denial-of-service, distributed denial-of-service, 
Man-in-the-Middle, injection, cross-site scripting (XSS), 
and scanning attack. Their experiment demonstrated that the 
proposed model outperformed the long short-term memory 
and gated recurrent unit models at a lower computational 
cost. They also used LIME to investigate the contribution 
of each feature in the prediction phase.

Zebin et al. proposed an RF-based IDS to detect DNS-
over-HTTPS (DoH) attacks [124]. Precisely, they used 
SHAP to explain the results by determining the most impor-
tant features. The proposed method was evaluated with the 
CIRA-CIC-DoHBrw-2020 [86] dataset, where the traffic is 
described by 29 features. The experimental results demon-
strated the flow duration and packet length as the most dis-
criminative features.

Similarly, Giudici et al. [39] applied an enhanced version 
of SHAP (which is more global and robust in the presence of 
outlying observations), called the Shapley–Lorenz decom-
position method [40], to explain classification decisions on 
ordinal cyber-data (e.g., ordinal severity levels of cyber-risks 
include “low,” “medium,” or “high”). To explain the severity 
of each event, a linear rank regression model was used to 
express the observed severity as a function of a set of four 
explainable variables describing i) attack type (e.g., cyber-
crime or espionage), ii) attack technique (e.g., zero-day or 
malware), iii) type of victim (e.g., banking or hospital), and 
iv) geographic area where the event occurred (continent).

The explainable variables were the marginal contribu-
tions associated with each feature and are calculated using 
the Shapley–Lorenz decomposition method. The results 
showed that Shapley—Lorenz values were significantly 
easier to be interpreted than the Shapley values that were 
not normalized.

Iadarola et al. [53] introduced a framework for Android 
malware detection using an explanation method for image 
recognition. They tried to address the weakness of signature-
based anti-malware detection, which cannot detect zero-day 
malware. First, a binary executable dataset was converted into 
images, and then a CNN was used for training. In the explain-
ability steps, they generated heatmaps with Grad-CAM [108] 
and classified a subset of the test samples to the correspond-
ing class of malware. They evaluated 8,446 Android malware 
samples from 6 malware families and obtained an average 
accuracy of 0.97. In addition to its inability to detect uniden-
tified malware, the method requires a huge amount of training 
data to achieve a decent detection accuracy.

Shahid et al. [109] proposed an automated common vul-
nerability scoring system (CVSS) vector and severity score 
calculator for security vulnerability detection. The CVSS 

standard is an analysis of the severity of computer vulner-
abilities conducted by security experts. The CVSS vector 
represents the characteristics of a vulnerability, which can be 
computed into the severity score. The severity score repre-
sents the level of danger posed by the vulnerability and acts 
as the threshold in the classifier. CVSS scores are usually 
designed by a human expert, which is a time-consuming 
and arduous process. Consequently, automation is required. 
They trained several bidirectional encoder representations 
from transformer classifiers, with each metric producing the 
CVSS vector. The goal of the trained model was to deter-
mine the value of a CVSS vector with high accuracy. For the 
explainability method, gradient-based input using a saliency 
map was used to determine the most influential input.

4.1.3  Interpretable models

Mahbooba et al. [79] aimed at addressing the trust issue 
between users and ML models for IDS. They highlighted 
that most previous studies focused on the accuracy of clas-
sifiers without providing any insight into their reasoning or 
behavior. They used the DT algorithm on the KDD99 dataset 
[126]. In summary, their methodology comprised three main 
steps: feature ranking, DT rule extraction, and comparison 
with state-of-the-art algorithms. They described the feature 
on each branch and the threshold value to explain how the 
tree made decisions. However, their algorithm was vulner-
able to overfitting amid noise in the dataset.

Wang et al. [133] introduced TrafficAV, an explainable 
mobile malware detector. They captured the network traffic 
of a mobile device and investigated it for suspicious activity. 
TrafficAV gathers network traffic features by performing a 
multilevel network traffic analysis using the C4.5 DT algo-
rithm. The explainability method is ad hoc, based on the DT. 
They evaluated 8,312 benign applications and 5,560 mal-
ware samples on HTTP models, achieving 99.65% accuracy.

4.2  Explanations for improving the performance 
of classifiers

In this subsection, we discuss recent works about using 
XAI to improve the performance of classifiers. The major-
ity of latest publications in the field of AI have focused on 
improving accuracy, detection rate, and F1 score, while 
reducing the false alarm rate. Improving the model’s per-
formance via parameter tuning in a heuristic manner is 
computationally taxing. Consequently, XAI is deemed 
capable of increasing AI’s performance in an explainable 
way. We highlight three use cases: 1. Explainable IDS, 2. 
Side channel attack detection, and 3. Anomaly detection.

Khan et al. [131] leveraged global explanation on Tree-
SHAP to correlate an RF decision for explainable IDS. 
Their explainable IDS architecture comprised three main 
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modules: (1) RF classifier (RFC) module for security pre-
dictions; (2) SHAP module extracting values relative to 
each feature of the dataset, and representing the impor-
tance of each feature in the decision made by the RFC; (3) 
Credibility assessment module (CAM), which utilizes the 
prediction and Shapley values to evaluate the confidence 
of prediction made by the RFC.

In particular, the CAM module evaluates the plausi-
bility of the second-most probable prediction over the 
confidence expressed by the Shapley values of the most 
probable prediction computed by the RFC module. In the 
case of divergence, other classifiers were used to reassess 
the decision. The CIC-IDS2018 dataset [22] was finally 
used to compare the proposed IDS with other state-of-the-
art classifiers. Adversarial attacks were also employed to 
evaluate the robustness of the proposed IDS, which out-
performed a native version of the RFC.

Gulmezoglu [43] proposed an XAI-based framework 
using side-channel analysis against website fingerprinting 
attacks. The framework detects side-channel attacks by 
discovering the most dominant features extracted from a 
dataset using CNN and RF. During the training phase, they 
used a self-generated side-channel attack dataset collected 
from the Google Chrome and Firefox browser developer 
tools. After the DL model was trained, LIME and saliency 
maps were used to examine the most dominant features of 
the website fingerprinting attack. They also verified the 
robustness of the framework. After perturbing the data 
points, a new model was trained and tested with the per-
turbed dataset. Their experiment revealed a drop of 16% in 
the attack rate, with five times less performance overhead. 
Subsequently, they generated adversarial noise to antici-
pate further attacks.

Roshan et al. [102] proposed the application of KernelS-
HAP to reconstruct the errors of an AE to select the best 
features in an anomaly detection dataset. To understand and 
interpret the roles of features in improving AE-based anom-
aly detection, they compared three cases: (1)] no feature 
selection (all features); (2) feature selection using unsuper-
vised feature correlation; (3) feature selection using SHAP.

Experiments with a subset of CIC-IDS2017 (benign data 
for training, benign and malicious data for testing) revealed 
SHAP-led feature selection as exhibiting the best overall 
performance. However, it displayed slow feature computa-
tion and the possibility of an increase in the time complexity 
with the sample size.

4.3  Explaining errors

A few studies have explained, using XAI, why a security 
model would make a mistake. Marino et al. [82] used adver-
sarial examples to explain the importance of each feature 
on the decision made by gradient-based classifiers. They 

examined a set of misclassified samples and found the mini-
mum amount of modification required to rectify the classifi-
cation. They compared two models, an LR and a multilayer 
perceptron [101]. They used the NSL-KDD dataset [126]. 
However, the dataset was published in 2009. This limitation 
does not influence the usability of the proposed method; 
however, it does challenge the validity of the results for cur-
rent threats. Although the study allowed determining the 
key features in the model, it did not provide interpretation 
guidelines about the meanings of the features.

Fan et al. [32] used SHAP for feature attribution compu-
tation in an Android malware detection system. The main 
purpose of their study was to maintain model classifica-
tion performance over time. They stated that the change in 
performance was difficult to understand when they updated 
the model. SHAP was used to interpret the output of the 
model by assigning Shapley values for each feature. The 
prediction change was analyzed by comparing the pattern 
changes of feature attribution. First, the feature attribution 
of each sample before and after the update was collected. 
Second, the changes in feature attributions were clustered, 
obtaining the pattern of changes. The experiment showed 
that the method successfully prevented overfitting and inef-
fective updates.

Liu et al. [76] introduced FAIXID, a framework that 
provides data cleaning and XAI for IDS. Unlike other 
studies, they offered a data cleaning method to address 
the data quality problem. The cleaning process solved 
the issue of “the data we want and the data we have.” 
Their focus was to propose several data cleaning tech-
niques, instead of the explainability method. However, 
their method was designed specifically for a homogenous 
set of features—if the dataset has different features, more 
adjustments will be needed.

Farrugia et al. [34] proposed the usage of XAI in an appli-
cation for cyber-fraud detection, with the goal of achiev-
ing a fully autonomous prescriptive solution for explain-
able cyber-fraud detection within the iGaming industry. 
The application of XAI in this context allowed the authors 
to minimize the adverse effects of incorrect predictions. A 
private dataset with labeled instances of verified fraudulent 
players made by the Gaming Innovation Group was used. 
However, this manually labeled dataset was also the main 
limitation. In their method, they trained different models 
(RF, LGB, DT, and LR) on the dataset; they used stratified 
10-fold cross-validation and compared the models using the 
area under the curve (AUC). Next, they extracted explana-
tions for every individual prediction. Finally, they empiri-
cally evaluated data drift and suggested retraining the model 
every month as the drift rate was approximately one month. 
They compared each model using the standard metrics 
(AUC, precision, time, recall, and F1), where RF obtained 
the most consistent results.
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4.4  Discussion

Despite not belonging to a cybersecurity use case, the mer-
its of the following study deserves the reader’s attention. 
Aguilar et al. [4] proposed an explainable AE using DTs 
for anomaly detection that deals with categorical data. Par-
ticularly, categorical attributes were one-hot encoded, and 
each attribute was used to construct a DT, which output the 
predicted attribute by considering other attributes. A final 
prediction layer was employed to determine whether the 
data point was an anomaly. As such, each DT explained one 
attribute, explaining the final decision through a set of DT 
rules. Twenty-eight datasets from the UCI ML Repository 
[14] were used for the experiments. Especially, datasets 
with two balanced classes or multiple imbalanced classes 
were divided using distribution optimally balanced strati-
fied cross-validation [136]. The resulting datasets had one 
majority class and one minority class for anomaly detection. 
The performance of the AE was compared with six other 
classifiers in terms of AUC and average precision score. The 
proposed solution ranked third per median value for AUC, 
but first for average precision. The strength of their study 
is the simplicity with which explanations were extracted 
from the trees while demonstrating them through synthetic 
examples. However, this system had limited scalability to 
datasets with less than a thousand attributes or with cat-
egorical attributes having tens of different values. As listed 
in Table 2, DTs have already been used in cybersecurity 
tasks, and the performance of this DT-based AE approach 
is worth investigating.

5  Security properties of XAI

In this section, we survey the literature investigating the 
security of XAI and outline several relevant security prop-
erties. We characterize the security of explanation methods 
according to four properties: fairness, integrity, privacy, and 
robustness. We include these properties under the scope of 
cybersecurity by considering how an attacker may compro-
mise them (e.g., altering explanations for an unfair treat-
ment) or how a potential victim may defend against such 
attacks (e.g., by consolidating explanations against adver-
sarial examples). By analyzing the literature, we elaborate 
on each property in the following subsections. The surveyed 
works are summarized in Table 3.

5.1  Fairness

A model is said to be fair if its output is irrelevant to indi-
viduals’ sensitive features, such as sex, race, or religion 
[95]. This is especially crucial when models used for 

decision-making affect individuals, such as loan, employ-
ment, insurance, or sentence. An explanation can be used to 
evaluate the fairness of a model, e.g., an auditor can verify 
the fairness of a decision by inspecting how a local model 
produced by LIME or SHAP uses the sensitive features. 
However, an agent who plans to discriminate or favor a 
group of people would attempt to deceive the auditor into 
believing the model is fair. Such an attack, called fairwash-
ing, has a notably different threat model than classic attacks 
on ML models, because a fairwasher is generally the model 
owner. The threat model is advantageous to the attacker 
because he/she generally has full knowledge of and control 
over the model, whereas the auditor may only possess lim-
ited knowledge and no control. Fairwashing has been widely 
studied, and most explanation methods thus far have been 
successfully attacked. The following studies show that, in 
general, an owner can easily fairwash their model and com-
plicate the detection of fairwashing for the auditor. These 
studies could serve as a reminder that the model owner 
should not be allowed to generate explanations.

Anders et al. [10] showed through differential geom-
etry that the saliency-based explanations of a classifier can 
be arbitrarily modified without changing its predictions. 
They demonstrated the relationship between explainabil-
ity and manifold learning, highlighting that the explana-
tions were based on dimensions orthogonal to the data 
manifold. They also proposed and experimented with a 
robust explanation method called tangent-space-projected 
explanation, which could not be manipulated by the attack 
described in the study.

Slack et al. [117] focused on manipulating counterfactual 
explanations. These explanations are especially attractive 
because they are actionable, i.e., they indicate what modifi-
cation of the input can modify the output. This explanation 
is generated by a local search that attempts to maximize an 
objective function. This objective function depends on the 
endpoint loss (how close its value is to the desired class) 
and the distance between the origin and the endpoint. For 
NNs, this explanation is generally computed by hill climb-
ing. A fair model should provide explanations with action-
ability (i.e., the simplicity to act on the explanation) that 
does not depend on the sensitive features, such as sex or 
race. However, the authors showed that the model owner can 
modify the learning procedure, so that a small perturbation 
applied to an input belonging to some population leads to 
counterfactual explanations. Precisely, the Euclidean norm 
of the counterfactual explanation will be remarkably lower. 
The authors experimentally demonstrated that such a modi-
fied model retained good accuracy, and the maneuver was 
not easily detected. Countermeasures include reducing the 
model complexity and adding noise to the initialization of 
the counterfactual-explanation-generation procedure.
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Slack et al. [118] indicated that ad hoc explanations such 
as LIME and SHAP, which work by evaluating the neighbors 
of the input for which they generate an explanation, can be 
deceived. However, the neighbors may be outside the mani-
fold, i.e., they have a very low probability in the distribution 
of the input feature space. The authors exploited this fact to 
build an off-manifold point detector that detected whether 
LIME or SHAP were using some neighbors to generate an 
explanation. When this explanation process is detected, the 
model owner can substitute their model with a locally fair 
model that only relies on relevant attributes. The authors 
experimentally revealed that LIME was more vulnerable 
than SHAP. However, this attack can only be performed in 
black-box settings, when the auditor does not have access 
to the model’s internals. Additionally, its quality greatly 
depends on the off-manifold point detector, which must have 
good accuracy.

Sinha et al. [115] introduced an attack that completely 
modified the explanations with subtle input perturbations, 
while leaving the prediction unchanged in the domain of 
NLP applications. They built the input perturbation using a 
greedy algorithm based on metrics adapted to NLP applica-
tions, and successfully deceived LIME and integrated gradi-
ent explanation techniques.

Le Merrer et al. [72] indicated how a model owner can 
always wipe unwanted attributes from a local explanation 
when he/she controls the explanation generation method 
and not an external auditor. Precisely, they focused on local 
explanations in the form of DTs, where a model owner could 
simply eliminate any occurrence of sensitive features in the 
DT after its generation (e.g., with LIME). This attack could 
be detected by exhibiting inconsistencies between explana-
tions; however, the authors showed that these inconsistencies 
were difficult to obtain in practice, at least when the search 
was random.

Diamnov et al. [27] proposed a method that could mod-
ify a pretrained model to manipulate the output of feature 
importance explanation methods. They assumed that the 
explanation methods used in real-world settings could not 
indicate the fairness of a model. To prove their hypothesis, 
they chose several datasets from the UCI ML Repository 
[14], which contains data with sensitive features, such as 
sex or race. They optimized an existing model with a modi-
fied loss objective function. After the attack, the feature 
importance computed by the explanation method was com-
pletely modified.

Aivodji et al. [7] investigated the rationalization problem 
and the associated risk of fairwashing. Subsequently, they 
introduced LaundryML, an algorithm that enumerated the 
optimal model according to fidelity and unfairness. They 
considered fairwashing when the fidelity of the new model 
is high while the unfairness is significantly lower. They used 
two datasets known for their biased nature—Adult Income 

[62] and ProPublica Recidivism [55]. They used the fidel-
ity and unfairness metrics to evaluate the performance of 
LaundryML. The results obtained using a real-world dataset 
demonstrated the feasibility of the proposed approach.

Hence, all those attacks on fairness are fairwashing, 
where the model owner attempts to deceive auditors into 
believing their model was fair. However, fairwashing is not 
the only type of attack that can be orchestrated on fairness. 
For example, a user could create an adversarial example to 
manipulate a fair model into producing explanations that 
make it look unfair. If technically possible, this attack could 
be used to tarnish the public relations of a company.

Relevant use cases of fairwashing applied to security appli-
cations have not been published. Most scholars are interested 
in social bias, particularly linked to sex and skin color. Never-
theless, we expect fairwashing to be applicable to nationalities 
or geographical locations at a time where security products are 
playing an increasingly crucial role in cyberwarfare. Although 
fairwashing is widely studied, few defense mechanisms exist. 
In fact, several proposed attacks have resulted in their theoreti-
cal concealability. This line of research should be expanded 
to achieve verifiable fairness of ML models.

5.2  Integrity

Integrity is a classic property of data and processes that con-
cerns their trustworthiness and accuracy. A classic attack 
on the integrity of an ML model is the set of adversarial 
examples that evade a classifier by subtly modifying the fea-
ture input. Fairwashing can be considered a subcategory of 
integrity attacks, as it targets the integrity of explanations 
to feign fairness. In this subsection, we focus on integrity 
attacks that do not target fairness.

An explanation typically can be used as a second layer of 
information to complete a prediction. For example, an expert 
could use both prediction and explanation to make a deci-
sion. Therefore, an attack on integrity, in the classic sense, 
is an attack altering data provided to the expert (prediction, 
explanation) with no countermeasures indicating the manip-
ulation. Notably, during fairwashing, the objective of the 
attacker is to retain the (biased) output and modify the expla-
nation; meanwhile, in the class of attacks we describe in this 
subsection, both the output and explanation are manipulated.

The method proposed by [49] comprised optimizing a 
model to deceive saliency map-based explanation methods. 
This optimization is achieved by modifying the loss func-
tion to include the error between the produced explanation 
and the targeted, artificial explanation. The attack can be 
either passive, in which case the produced explanations are 
uninformative to the auditor, or active, in which the model 
owner fabricates the explanations. The authors experimen-
tally demonstrated the transferability of their attack to vari-
ous saliency map-based explanation methods.
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Dombrovski et al. [28] showed that subtle modifications 
in images processed by NNs could yield arbitrary explana-
tions for saliency map methods, while keeping the network 
output constant. They orchestrated the attack by local opti-
mization, similar to classic adversarial attacks. The authors 
demonstrated that they could achieve this primarily owing to 
the use of the ReLU activation function. Indeed, the attacks 
were not distinguishable, creating piecewise linear bounda-
ries and a very large curvature. The authors proposed more 
robust explanations by replacing ReLU with SoftPlus only 
in the network that generated the explanations.

Galli et al. [37] analyzed the impact of adversary attacks 
on XAI methods. They used two perturbation attacks 
(IFGSM, DeepFool) on four CNNs to generate adversarial 
samples. Their experiments were performed on the Dog 
vs. Cat dataset [31] and the UIUC sports event dataset 
(Event8) [73]. Two methods of XAI (layered Grad-CAM 
and guided Grad-CAM) were used to detect adversarial 
attacks. However, the authors showed that the attack had no 
discernible impact on the interpretations produced by XAI 
to someone who is unaware of the attack, as the change 
was not detectable. Thus, relying on the explainability of 
results to detect the existence of adversarial attacks is not 
a rigorous approach.

Kuppa et al. [66] proposed a black-box attack on explain-
able models and evaluated the attack on three datasets. The 
attack had two possible targets: either the classifier alone or 
the classifier and interpreter. The attack focused on gradient-
based classifiers (i.e., NNs). The purpose of the attack was 
to identify relevant perturbations in an adversarial sample to 
compromise the system, while maintaining the explanation 
of the sample. The authors presented three cybersecurity-
related scenarios where the classifiers were variations of the 
perceptron. These scenarios targeted a perceptron tasked 
with detecting malicious PDF documents [45], a perceptron 
for Android malware classification [12], and an IDS using 
adversarial AEs [67]. They implemented these attacks using 
the datasets proposed by the original authors for each sce-
nario, which reinforced the validity and reusability of Kuppa 
et al.’s [66] results.

Kuppa et al. [65] proposed a general formalization of 
security problems in XAI. First, they highlighted the moti-
vation of their work by describing five real-life use cases: 
i) membership inference attacks (which involved determin-
ing if a sample belonged to the training data), ii) model 
extraction attacks (which aimed at retrieving the actual 
parameters used in a model), iii) poisoning attacks (which 
targeted the classification performance by corrupting train-
ing data), iv) adversarial examples (which aimed to evade 
security classifiers), and v) counterfactual explanations 
(the goal of which was to find the input data points that 
shared similarities with other entry points but did not yield 
the same classification results).

Although counterfactual explanations were similar to 
adversarial examples, they differed in purpose; the latter 
aimed to evade security classifiers, whereas the former 
facilitated understanding of a model by providing expla-
nations for it. The authors mathematically defined the 
attack model for these use cases as well as the explanation 
methods. They exploited three datasets: leaked passwords 
from multiple incidents, CIC-IDS2017 [110] for network 
traffic, and a malware dataset collected from Virusshare 
[129], combined with benign software collected from vari-
ous sources. They evaluated their implementation against 
multiple commercial tools and demonstrated the attacks’ 
ability to evade antivirus solutions.

Cantareira et al. [20] proposed a method for investigat-
ing models subjected to adversarial examples. The method 
used the visual analytic framework to explain adversarial 
attacks. This method explored layers and weights inside a 
model to determine which areas were triggered by adver-
sarial examples and allowed to compare data from training 
data and adversarial examples. The method is as follows. 
First, it trains two models with different datasets—small 
CNN for MNIST dataset and MobileNet V2 for ImageNet. 
Second, it generates adversarial data using projected gradi-
ent descent, while selecting random data from the training 
sample as the background data, to create an adversarial 
set. Third, it selects an image from the baseline, runs it 
through the models, and projects its output on a view 
with the adversarial counterpart. With this, we observed 
the change in their behavior at each layer of the models, 
though the effectiveness of the view depends on how rep-
resentative the background data is.

Zhang et al. [139] argued that DNN interpretations were 
vulnerable to adversarial attacks. They defined adversarial 
attacks as Adv2, which disrupted both the DNN and its 
interpretation, and succeeded in deliberately designating 
a prediction and its interpretation. Thus, they could gen-
erate adversarial samples, the predictions of which were 
interpreted as benign samples. Notably, the DNN and its 
interpretation are nonlinear, which allows an attacker to 
exploit both. Finally, they explored the possible counter-
measures to handle these attacks. They mathematically 
proved the effectiveness of their proposal, and demon-
strated it through experiments performed on the ImageNet 
[25] and ISIC 2018 challenge dataset [21].

5.3  Privacy

XAI methods can be used to violate the privacy of either 
the model or data. While several papers have explored the 
privacy issues of AI algorithms, few have focused on the 
privacy of XAI methods. Likewise, to protect the privacy of 
the model users, the explanation model should be unclon-
able. The literature contains a report on the cloning a model.
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Zhao et al. [141] showed that attackers could exploit the 
flaws of XAI to reconstruct a private image from model 
explanations. This is called an image-based model inver-
sion attack. They also indicated that the image reconstructed 
based on model prediction alone lacked quality, and that 
the exploitation of one or more explanations significantly 
improved the quality. Their experiments also confirmed that 
XAI methods that provided more explanations resulted in 
a greater loss of privacy, as they provided richer informa-
tion that can be exploited by attackers. The authors called 
for further studies on the tradeoff between explicability and 
privacy.

Shokri et al. [113] investigated how explainability, in 
addition to model predictions, contributed to performing 
membership inference attack, i.e., inferring whether a par-
ticular data point was present in the training dataset. They 
studied several types of explainability models and found 
that some methods, such as perturbation-based explana-
tions (e.g., SmoothGrad [119]), were more robust than back-
propagation explanations such as integrated gradient [122], 
although they produced explanation models with lower qual-
ity. They also demonstrated that an attacker could recon-
struct most of the dataset from the AI model prediction and 
XAI results (example-based explanation method). Finally, 
their experiments showed that i) the correlation between 
explainability and membership varied with the size of the 
dataset and that it was easier to execute a membership attack 
using XAI, on high-dimensional datasets, and ii) that minor-
ity data were more likely to be revealed.

Miura et al. [84] proposed a data-free model extraction 
(DFME) attack called MEGEX. The objective of that study 
was to clone a model without the initial dataset using both 
the prediction and explanation of the results. The initial 
hypothesis for cloning a model is that if the dataset used 
for training is available, the model can be reproduced by 
requesting the prediction; however, when the dataset is 
unknown, methods based on generative models that gen-
erate data for requested data to the victim model can be 
chosen. With MEGEX, the authors used the explanation to 
train a generative model. They compared their method with 
an existing method, DFME [127], and evaluated the test-data 
accuracy of the clone model from the two methods with the 
CIFAR-10 [64] and SVHN [91] datasets. They achieved a 
better result with fewer queries to the victim model. The 
main advantage of this method is its ability to reproduce a 
model with high accuracy and fewer queries. However, it 
requires access to the explanation from VanillaGrad.

5.4  Robustness

As we have previously defined the integrity property, where 
an attacker is attempting to forge explanations, we will dis-
cuss here works related to the robustness of explanations. 

In the following works, robustness is considered variations 
in explanations induced by variations of the original input.

Kang et al. [56] discussed attacking DNNs and their 
explanations with adversarial patches. An adversary patch 
is a correctly localized rectangle that does not hide objects 
in an image and causes its misclassification. By varying the 
location and perturbation ratio of the patches, the authors 
showed that these attacks could i) perturb the result of the 
DNN, but not those of the XAI model. The model can then 
determine the patch responsible for the misclassification; ii) 
perturb the DNN and explainability method, which can no 
longer detect the patches and designates other regions of the 
image as responsible for the decision.

The XAI method considered was Grad-CAM, and experi-
ments were performed on ImageNet.

Shi et al. [112] presented a variant of the IFGSM [68] 
attack, which is in turn based on FGSM [42]. The general 
idea of the IFGSM is to repeatedly adjust the perturbation 
direction with a fixed step size. Shi et al. [112] proposed 
an adaptative FGSM (Ada-FGSM) attack, where the step 
was dynamically adjusted to improve the performance. 
They compared their results with the performance of four 
other models; in terms of success rate and accuracy metrics, 
Ada-FGSM performed up to 1% better than the second-best 
model, IFGSM. They also used visualization techniques to 
follow the gradient evolution of these iterative algorithms 
and analyzed the results of their experiments. However, their 
analysis was limited to a few visual examples and was not 
applied to the entire dataset of their experiment. The gener-
ality of the behavior of Ada-FGSM with other data samples 
is difficult to determine.

Ghorbani et al. [38] indicated that the interpretation of an 
NN’s decision is fragile as a small adversarial perturbation 
could change it without changing the classification results. 
Disrupting the interpretation of NNs could harm the trust-
worthiness of certain applications, e.g., healthcare, where 
the interpretable decision was relevant as the classification 
result. They considered two categories of interpretation 
methods—the first one explained results by identifying the 
most important features (feature importance methods), and 
the second one by identifying training samples that contrib-
uted the most to the classification result (influence function 
methods). Adversarial attacks on interpretation methods aim 
to disrupt the contribution scores assigned to features and 
training samples by lowering the score of the most important 
features/training samples. The authors also defined iterative 
attacks for feature importance methods, and gradient sign-
based attacks for influence function methods. To measure 
the robustness of the different interpretation methods, the 
authors compared the interpretations (saliency maps) of 
each method on the original input, and its perturbed version. 
They used two metrics to measure the similarity between 
two interpretations—one based on rank correlation, and 
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the other on the intersection of selected features/training 
samples identified as important by each interpretation. The 
authors highlighted that the vulnerability of the interpre-
tation methods stemmed from the high dimensionality of 
the input instances and highly nonlinear structures of deep 
networks.

Rieger et al. [99] proposed a defense method against 
adversarial attacks on explanations. They aggregated mul-
tiple explanations methods to reduce the variance of each 
explanation, thereby enhancing stability against adversar-
ial examples. They explored two scenarios: one where the 
attacker was unaware of the XAI method used and optimized 
against the wrong one, and the other where the attacker 
optimized against the aggregation of XAI methods. In both 
cases, the attacker had full control over the input and full 
knowledge (but no control) about the network. In addition, 
in the second scenario, the attacker knew the parameters 
and ratios used by the aggregation method. Their results 
show that, if an attacker optimizes his/her example against 
one method, the attack does not accurately translate into 
another method. We assume that an attacker would occasion-
ally optimize against the correct explanation method. In the 
second scenario, despite the attacker having full knowledge 
about the target system, the results showed that the proposed 
aggregation method was resilient against adversarial exam-
ples. In the experiments, they used VGG16 [114], a deep 
CNN and the ImageNet [26] dataset. Although the study 
explored multiple explanation methods, it omitted the inte-
grated gradient [122] method from the aggregation owing to 
its computational complexity, thereby indicating a potential 
scalability issue.

Fenoy et al. [69] proposed a method for evaluating the 
robustness of XAI algorithms against adversarial noise. 
They studied the effect of the FGSM adversarial attack on 
two XAI algorithms: Grad-CAM [108] and SIDU [89]. 
These algorithms work on images, so the authors proposed 
to use a portion of 100 natural images from ImageNet. How-
ever, to assess the robustness of the algorithms, the ground 
truth of the explanation is required. Hence, Fenoy et al. [69] 
collected data from an eye tracker to create a heatmap for 
each image of the dataset. After collecting all data, they used 
Grad-CAM and SIDU to obtain a new heatmap, applied an 
adversarial attack (FGSM) on the data, and measured the 
Kullback–Leibler divergence between the eye tracker and the 
XAI algorithms. This method permits assessing and finding 
highly robust algorithms against adversarial attacks, albeit 
only on FGSM in Fenoy et al.’s study.

A few papers focused on the mathematical proof of the 
robustness of XAI methods. For example, Kindermans et al. 
[59] highlighted the sensitivity of saliency methods (used for 
XAI) to adversarial attacks. They proposed an axiom called 
“input variance,” which states that these methods must 
verify to become robust. They mathematically proved the 

effectiveness of their method and demonstrated it through 
experiments on the MNIST database.

Malfa et al. [70] developed a robust method to locally 
explain decisions made by NNs in NLP. They performed 
mathematical and experimental demonstrations of their pro-
posal on sentiment analysis datasets. They trained fully con-
nected NNs and CNNs for their experiments, and the results 
showed that the explanations could detect the words in the 
sentence that influenced the prediction.

Attribution methods assign a score to each feature based 
on its contribution to the classifier’s prediction. Wang et al. 
[134] showed that attribution methods were vulnerable to 
adverse perturbations. They modeled the vulnerability of 
these methods in terms of the geometry of the targeted mod-
el’s decision surface and formalized their robustness as a 
local Lipschitz condition on the mapping. Subsequently, they 
proposed a smooth surface regularization to improve the 
robustness of all gradient-based attribution methods.

Several detectors of Android malware now exist, but they 
are generally vulnerable to adversarial examples that evade 
detection. Melis et al. [83] used gradient-based explanations 
to evaluate the robustness of a model against such adversar-
ial attacks. They used gradient-based explanations to quan-
tify the evenness of feature importance, i.e., how close it is to 
equal importance for each feature. They also experimentally 
demonstrated that this uniformity was strongly correlated 
to the adversarial robustness for the gradient input and inte-
grated gradients methods.

Boopathy et al. [17] showed that attacks that sought clas-
sification and explanation evasion would generally disturb 
the explanation of the original class as well. To detect such 
attacks, they proposed a metric called l1 2-class discrepancy, 
which measured the explanation discrepancy of both the 
original class (e.g., malicious software) and the target class 
(e.g., benign software). For nonbinary classification prob-
lems, the authors adapted their method by weighting classes 
according to their importance in prediction. By incorporat-
ing this metric into the learning loss, highly robust models 
could be learned. Their experiments validated the concept 
and demonstrated the high robustness of the model.

5.5  Evaluation of the explanation

A “good” explanation is arguably difficult to define, as every 
stakeholder has different needs. In this section, we present 
studies that provide concrete evaluation of explanations, 
concerning the properties previously discussed. At the time 
of writing, the most popular perspective for evaluation was 
the robustness of the explanation.

Lin et al. [74] highlighted the lack of rigorous and com-
putationally inexpensive evaluation approaches and metrics 
to quantify the performance of explainability methods. To 
address this, they evaluated XAI methods based on their 
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ability to detect a backdoor trigger present in an input and 
causing its misclassification. A backdoor trigger is a small 
patch in an image (a yellow square in this paper) that causes 
the classifier (Trojan model) to misclassify the input. A good 
explanation should indicate that the reason for such mis-
classification is precisely the presence of this trigger. The 
explanation should indicate it as the region that contributed 
most to this misclassification. To diversify the evaluation 
measures, the authors considered several variations of the 
trigger by varying its color, size, and position in an image. 
They evaluated their proposal by considering several classi-
fiers and different explainability methods on the ImageNet 
dataset [103].

Hooker et al. [52] proposed a measure of the approxi-
mate accuracy of feature importance. They highlighted the 
challenge of evaluating the reliability of an explanation in 
the absence of a ground truth. One existing technique is to 
remove the important features from the input and observe 
the decrease trend of the classifier accuracy. However, this 
method has its drawbacks: it does not comply to one of the 
assumptions in ML that the training and evaluation data 
come from the same distribution. To address this issue, the 
authors proposed to evaluate the XAI methods by assess-
ing the decrease trend of the accuracy of a retrained model 
as the important features are removed. They named this 
approach “remove and retrain” (ROAR). The authors also 
performed a large-scale experiment where they choose the 
model ResNet-50, six estimators of feature importance, 
and three renowned open-source image datasets (ImageNet 
[24], Food 101 [18], and Birdsnap [16]). The results reveal 
that the commonly used base estimators were on par with 
a random assignment of importance. They concluded that 
their findings were pertinent to sensitive domains where the 
accuracy of XAI is crucial.

Adebayo et al. [3] showed that some saliency map (e.g., 
guided backpropagation and guided Grad-CAM) methods 
were, in fact, model- and data-independent (such as an 
edge-detection algorithm). Model independence means 
that a method is mainly based on data and not on a model; 
it evolves by comparing with a random model. Data inde-
pendence entails learning a model on data with completely 
shuffled labels. Therefore, the explanations created from 
such saliency maps are irrelevant to understanding the clas-
sifier’s decision. The results show that visual verification of 
an explanation alone cannot evaluate an explanation method.

5.6  Discussion

The security of XAI methods has mostly been investigated 
through the lens of an attacker. We surveyed 27 papers on 
the security of XAI, but only 6 of them described coun-
termeasures to a security problem. Additionally, most of 
them addressed the vulnerabilities of DNNs. The crafting 

of adversarial examples to evade classifiers has proven to 
be highly accessible in the computer vision field, and to 
some extent to other fields as well. The topic of fairness will 
become an important societal issue when automated deci-
sions are widely adopted. Existing works show the fragility 
of explanations, and attribute it to the high dimensionality 
and nonlinearities inherent to deep networks.

6  Discussion and future work

In the previous sections, we surveyed scientific publications 
that either employed explanation methods for cybersecurity 
use cases or directly investigated the security of explana-
tion methods. Most existing studies target the same specific 
topics; only a few have broadened their research scope. In 
this section, we discuss different research avenues that we 
believe constitute the future direction of secure explanation 
methods. These topics cover several requirements, such as 
legal, business efficiency, and performance evaluation.

6.1  From feature space to problem space

A challenge that was not addressed before is the reusability 
of XAI methods when applied to cybersecurity use cases. 
The type of cybersecurity data varies across different secu-
rity applications. Information regarding how security inci-
dents are triggered and attacks are orchestrated may be lost 
when processing raw security records through ML-based 
classification models. Pierazzi et al. [96] provided a formal 
definition of the transformation mapping the problem space 
to the feature space from the perspective of adversarial 
attacks against malware detection algorithms. Manipula-
tions over the feature space that successfully flip a classi-
fier’s decision output may violate the feasibility constraint 
posed by the problem space. For example, malware detec-
tion generally employs the term frequency-inverse document 
frequency (TF-IDF) vectors of n-grams of opcodes and/or 
dynamic analysis traces as feature representation. Modify-
ing the TF-IDF feature vector may easily change the clas-
sifier’s output. However, determining the changes in the 
raw opcodes/system calls that can cause variations in the 
TF-IDF feature representation remains a challenging task. 
This is intrinsically an ill-posed reverse problem. Further, 
the low-level codes/system calls of a malware sample are 
organized to deliver malicious functions. Blind modifica-
tion of any code segment might render the malware sample 
inexecutable. The feasibility constraints, i.e., coding syntax 
and code design of malware samples, implicitly limit the 
possible modifications in the problem and feature spaces. 
However, these constraints are not readily available and dif-
ficult to encode in a computable manner. In modern ML 
models, such as DNNs, mapping from the problem and 



808 Annals of Telecommunications (2022) 77:789–812

1 3

feature spaces can be complex. Owing to the multilayered 
and highly nonlinear transformation embedded in a DL 
architecture, the association between the raw attributes given 
in the input and the embedding vectors derived at the deep 
layers cannot always be presented analytically. Therefore, 
we observed a gap between the interpretation given in the 
problem space and that provided in the feature space in most 
ML methods, especially in DL models. Although SHAP, 
LIME, and layer relevance propagation-based XAI methods 
can be used to unveil important features encoded by a DL 
model in classification, the link between the importance of 
the encoded embedding features with the contribution of the 
raw attributes given in the problem space is difficult to be 
reversibly recovered.

6.2  Privacy vs. explainability tradeoff

As discussed in Section 5.3, few papers have addressed 
the privacy challenges for XAI methods. Existing works 
have demonstrated that privacy and the design of an effec-
tive XAI method can be contradictory, and that several 
XAI methods can be useful but not secure. The two cases 
that have been explored are the “model inversion attack” 
and the “membership inference attack”. However, Liu 
et al. [75] covered several other types of privacy attacks 
orchestrated on AI models, such as “feature estimation 
attack” (learning some features from the training dataset), 
“model extraction attack” (learning an approximation of 
the model), and “model memorization attack” (retrieving 
the exact values of features). These attacks can also be 
extended to explainability methods used to interpret AI 
models, as indicated in [113, 141].

Most studies on privacy in AI focused on highlighting 
the possible attacks rather than proposing solutions to them. 
Nevertheless, a few solutions indeed have been proposed, as 
indicated in [75], e.g., i) encryption training data and ML 
model, ii) reduction of the accuracy of data and model avail-
able to an attacker using obfuscation mechanisms, such as 
noise addition to the output classifier and iii) use of aggrega-
tion techniques in the case of collaborative learning to keep 
collaborating models and datasets private.

However, these methods must be adapted to the XAI con-
text and tested to measure their effectiveness in preserving 
the privacy of models and data.

In conclusion, XAI adds an additional layer to the 
attack surface of the AI pipeline; therefore, its use must be 
carefully considered—is it wise to use an XAI method to 
understand an AI model, at the risk of making the system 
vulnerable, or should it be dispensed with to reduce the 
attack surface? Thus, the choice of an XAI method offer-
ing the best compromise between explanatory quality and 
confidentiality is crucial.

6.3  Reinforcing explainability with external data

Various methods using XAI have been reported. XAI offers 
explanations on the decisions made by AI models. Meth-
ods thus far have focused on generating explanations solely 
based on data and algorithms used by AI models. However, 
external data that have not been used by security models can 
be used to reinforce the explainability of alerts. When secu-
rity operators recognize a malware activity on the Internet, 
they frequently search in external data, such as honeypots 
analysis results and/or threat intelligence reports, to confirm 
their discovery.

Takahashi et al. [125] employed this approach to reinforce 
the explainability of AI models. They established several 
security-analysis models, including malware traffic detec-
tion, sandbox analysis, code analysis, threat intelligence 
search, and Darknet traffic analysis models. Various secu-
rity operations are automated with comprehensive data. 
For example, when malware traffic is detected by a traffic 
analysis model (AI-based), the system runs other models and 
collects comprehensive information, including first name, 
family name, behavior, exploited vulnerabilities, and target 
devices. By reviewing this information, users can confirm 
that the malware traffic analysis model has detected a real 
threat.

Unlike other XAI studies in the AI domain, XAI for 
cybersecurity research can utilize assorted security-related 
data. Therefore, these data could be used to explain the deci-
sions made by security AI models and could reinforce the 
explainability of the AI models. This type of study should 
be furthered.

7  Conclusion

As with any other computer science field, Cybersecurity has 
been widely studied under the scope of AI. XAI is gaining 
momentum and might become a legal requirement for vari-
ous service providers. We surveyed the existing XAI litera-
ture related to cybersecurity from two perspectives—XAI 
for cybersecurity tasks and security of XAI methods. From 
the first perspective, although the existing literature already 
has a considerable number of scientific papers, we found a 
lack of consideration for real scenarios in their approaches. 
We believe that meaningful scientific contributions should 
go beyond the application of an XAI method to a cyberse-
curity dataset, and attempts must be made to bridge the gap 
between the fields of AI and cybersecurity. From the sec-
ond perspective, we divided the security issues into multiple 
classes and addressed the existing literature regarding the 
attack surface, current attack vectors, and potential coun-
termeasures. The state of the art reveals a lack of counter-
measures for the defense of XAI methods, which is also 
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reflected in CV, where heatmaps and saliency maps are eas-
ily compromised. We highlighted several research avenues 
to improve the security of explainable methods, covering 
both practical aspects such as privacy concerns and ethical 
aspects, including fairness and fairwashing. We conclude 
this survey by reaffirming that AI will be a major actor in 
enforcing business policies and assisting with important 
decision-making matters. As such, XAI should guarantee 
fair, clear, and unbiased treatment.
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