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Despite the growing popularity of machine learning models in the cyber-security applications (e.g., an intrusion detection system
(IDS)), most of these models are perceived as a black-box. 'e eXplainable Artificial Intelligence (XAI) has become increasingly
important to interpret the machine learning models to enhance trust management by allowing human experts to understand the
underlying data evidence and causal reasoning. According to IDS, the critical role of trust management is to understand the
impact of the malicious data to detect any intrusion in the system. 'e previous studies focused more on the accuracy of the
various classification algorithms for trust in IDS.'ey do not often provide insights into their behavior and reasoning provided by
the sophisticated algorithm. 'erefore, in this paper, we have addressed XAI concept to enhance trust management by exploring
the decision tree model in the area of IDS. We use simple decision tree algorithms that can be easily read and even resemble a
human approach to decision-making by splitting the choice into many small subchoices for IDS. We experimented with this
approach by extracting rules in a widely used KDD benchmark dataset. We also compared the accuracy of the decision tree
approach with the other state-of-the-art algorithms.

1. Introduction

Organizations are increasingly developing more complex
cyber-security ecosystems that rely on different peers such as
people, technology, and processes to function effectively.
Trust management in cyber-security is based on the rela-
tionships between these peers including (1) people and
groups, (2) people and organizations, (3) organizations, and
(4) people and technology. Each of these trusting peers can
deploy cyber-security countermeasures that an individual
can rely on to prevent and defend against cyber-attacks [1].

Artificial Intelligence (AI) is a set of models and
methodologies that are used to extract knowledge from a
collection of data. Furthermore, no human can trust an AI
system, because it is both possible and desirable to quality of
data, complexity of methodology and accountability, and
experiences of AI engineer. In regarding to the AI-based

solutions for cyber-security context, other software devel-
opment techniques can be peers with AI since these do not
“trust,” so no one actually can trust AI-based solutions in
cyber-security systems. 'e tricky question is “how we can
trust the AI-based solutions in cyber-security systems which
are designed based on the data, methodology, and expert
accountability?” To answer this question, researchers have
captured interpretability and the topic eXplainable Artificial
Intelligence (XAI) to justify the AI-based solution reliability,
ability, and trustworthy [2]. Further details about trust and
AI, explainable AI, and explainable AI and intrusion de-
tection system are addressed in the following subsections.

1.1. AI andTrustManagement. An open challenge with AI is
the lack of understanding and trust compared to traditional
model-based optimisation. For example, deep reinforcement
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learning is not able to explain the essential features that
influence actions [3]. 'is drawback is being worst, which
affects the trust management in cyber-security (e.g., mali-
cious vehicle identification) [4]. Furthermore, for the
Bayesian inference, the recent research has shown that they
are incredibly brittle to insufficient data. 'erefore, the need
to develop statistical AI algorithms is increasing to quantify
uncertainty, especially mapping big data inputs and algo-
rithm design, to the projected wireless key performance
indicators (KPIs) [5]. Rather than trying to create statistical
AI algorithms that are inherently interpretable, there has
been a recent research direction for explosion of work on
“explainable AI” where the statistical AI algorithms are
created to explain the AI black-boxmodel [6]. Consequently,
trustworthy AI should be able to explain its decisions to
allow the human expert to understand the underlying data
evidence and causal reasoning.

1.2. Explainable AI. In the last few years, AI has achieved a
notable success by delivering the best of expectations over
many applications. 'is empirical success of machine
learning (ML) and deep learning (DL) models attributes to
the combination of efficient learning algorithms and their
huge parametric space [5]. 'e combination of the para-
metric learning space comprises hundreds of layers and
millions of parameters, which makes ML and DL models be
considered as complex black-box models [7]. Due to the
black-box-ness of the models, AI experts (e.g., engineers and
developers) need to search for a direct understanding of the
mechanism by which a model works. 'e transparency,
which is the opposite of the black-box-ness of models, is
increasingly being demanded to avoid the danger of making
decisions that are not justifiable and do not allow obtaining
detailed explanations of their behavior. For example, in
precisionmedicine, binary predictions are insufficient due to
their sensitivity of medicine prescriptions to the patients.
Also, for cyber-security, the misleading predictions can
make the system vulnerable for attacks and lead to zero-trust
security for critical systems.

Consequently, the focus of the recent research in AI is
related to explainable AI field, which plays a vital role in
improving practical deployment of AI-based solution.
Considering of interpretability during AI-based solution
design can empower their implementability because (1)
interpretability helps ensure impartiality in decision-mak-
ing, i.e., to detect, and consequently, correct from bias in the
training dataset (i.e., imbalanced dataset); (2) interpretability
strengthens the robustness of AI-based solutions by high-
lighting potential adversarial perturbations that could
change the prediction; and (3) interpretability empowers the
trust of AI-based solutions by providing the meaningful
variable inference and causality of model reasoning [5, 8].
Explanation methods and techniques for AI/ML interpret-
ability can be classified according to different criteria as
follows: (1) premodel, in-model, and postmodel, (2) intrinsic
and post hoc, (3) model-specific and model-agnostic, (4)
feature engineering, and so on [8]. According to this work,
feature engineering and the rule-based model will be

addressed to exploring the decision tree method for un-
derstanding the characteristics of malicious attacks for en-
hancing trust in IDS.

1.3. IntrusionDetectionSystems. Intrusion detection systems
(IDS) have been developed rapidly in research and industry
in response to the increasing cyber-attacks against gov-
ernments and commercial enterprises globally. 'e annual
cost of fighting cyber-crime is continuously increasing [9].
'e most disastrous cyber-crimes are those caused by
malicious insiders, denial of services, and web-based attacks.
Industries or companies can lose their intellectual property
due to these malicious attacks into the system. To fight back
against such acts, organizations deploy a firewall, antivirus
software, and an intrusion detection system.

Intrusion detection (ID) is a vital part of cyber-security.
It allows us to identify malicious network activity before it
compromises information availability, integrity, or confi-
dentiality [10]. It is a process of identifying security breaches
by examining events occurring in an information system. In
today’s increasingly digital world, lack of network access is
unthinkable in both professional and personal life. Nowa-
days, with a rise of the Internet of 'ings (IoT) devices
connected to the Internet, attackers have maximum possi-
bilities for intrusion attack. 'us, keeping the network
devices safe from the intrusion is an important task.'is also
opens up the issue about how to successfully secure from
both known and unknown threats. 'ere is no straight-
forward answer to this because of the increasing number of
threats every year [11].

Any valuable information having network access needs
to be permanently protected from all attempts to destroy,
expose, alter, disable, steal, or gain unauthorized access and
usage. To prevent valuable information from such a mali-
cious act, the intrusion detection system (IDS) is designed.
'e IDS is a device or software application that collects and
analyzes information in a network to identify possible se-
curity breaches, including data for both intrusion (i.e., at-
tacks from outside the organization) and misuse (i.e., attacks
from within the organization) [11]. 'e classical IDSs are
mainly signature-based, detecting only known attacks, and
their major drawback is the inability to detect new attacks
[12]. One way to address that kind of problem is to use a
“machine learning” (ML) approach that provides computers
the ability to learn without being explicitly programmed. ML
is mainly applied to improve detection accuracy and low
false alarm rate [13].

1.4. Explainable AI and Intrusion Detection Systems.
Nowadays, due to highly accurate predictions, the deep neural
network (DNN) is gettingmore popular.'ese kinds ofmodels
are useful, but they are hard to interpret. For example, using the
DNN model, the control of a self-driving car requires thou-
sands of parameters tuning [14]. In the context of IDS, if such
DNNmethods are implemented, then it is tough for a network
administrator to understand the reasoning provided by theML
system. DNN is also called black-box models [15]. A black-box
keeps its decision-making the process challenging to interpret
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because DNN primarily edits different features by trial and
error until they find the ideal solution [16]. Many studies in the
IDS useML techniques to increase the classification accuracy of
known attacks, recognize anomalous network traffic, and
automate model construction [17]. However, few of these
systems focus on interpreting the results as a means of un-
derstanding how the ML algorithms reach into the conclusion
for predicting attacks.

If the attacks are explained in the forms of rules, it can be
easily interpreted. For example, simple interpreted rules in
the form of If, 'en statement. Also, the explanation is
needed to highlight (i) which parts of the target of the attack,
(ii) which parts of the network features, and (iii) what parts
of the security policies are violated. 'e challenge is to link
up the IDS, analyze it, explain it, and provide insight to
network administrators to enforce security policies for
identified attacks. An essential backbone for this process is to
have models that can logically interpret results. 'us, we
consider decision tree (DT) for such a task. If the scenario
demands an explanation over the prediction, then DTs are
the perfect models because they can provide an under-
standable explanation over the prediction. Unlike other
methods in supervised machine learning methods, DTs do
not require assumptions on the distribution of data. It
handles the feature colinearity (highly correlation among
features) problem efficiently. 'us, the interpretative model
seems to be necessary in the context of IDS.

1.5. Contribution. Although previous work has used DT in
IDS, their main focus is on the accuracy of benchmark
machine learning algorithms. Conversely, we focus on the
interpretability in a widely used benchmark dataset called
KDD datasets [18]. Our contribution is as follows:

(1) We addressed XAI concept to enhance trust man-
agement that human experts can understand (e.g.,
the underlying data evidence and causal reasoning).
To do so, we have used feature engineering and the
rule-based model to explore the decision tree algo-
rithm in the area of IDS.

(2) We analyzed the importance of feature based on the
entropy measure for intrusion detection.

(3) We interpreted the rules extracted from the DT
approach for intrusion classification.

(4) We compared the accuracy of the decision tree with
the state-of-the-art methods.

'e rest of this work is organized as follows: a review of
relevant works is conducted in the section “Related Work.”
In the “Methodology” section, we demonstrated the DT
method. Results and experiment settings are mentioned in
the sections “Experiments” and “Discussion.” Finally, we
conclude our work and describe some direction for future
works in the section “Conclusion and Future Work.”

2. Related Work

'ere are different types of solution proposed for IDS such
as statistical methods [19], hidden Markov model [20],

artificial neural network [21], and fuzzy logic [22]. Recent
studies showed that support vector machines (SVMs)
demonstrated high accuracy in developing IDS [23, 24].
However, its main caveat is that it needs a long training time,
which makes its usability limited. 'ere are also classical
data mining methods used in IDS, such as association rule
mining. For example, Ilgun et al. [25] employed rule-based
techniques to design and develop IDS, where expert
knowledge is considered as a rule set. Similarly, Lee et al. [26]
used association rules instead of human experts as an an-
alytical model. 'e limitation of such methods is an ex-
traction of a large number of association rules, which
increases the complexity of the model.

One of the critical aspects of a supervised classification
model is feature selection. Selecting essential features will
reduce the computational time of the algorithms. Due to the
significant features of network data, many IDSs were de-
veloped with feature selection [27]. Chebrolu et al. [28]
classified primary features in constructing an IDS that is very
crucial for real-world intrusion detection. Zaman and
Karray [29] implemented a feature selection technique to
construct a lightweight IDS. Vimalkumar and Radhika [30]
implemented principal component analysis (PCA)-based
feature selection technique in the big data framework for
IDS. Balakrishnan et al. [31] developed an IDS model with a
gain ratio as a feature selection technique and two classi-
fication techniques, namely, support vector machine and
rule-based classification which were used for identifying the
class label and demonstrated higher accuracy levels for
denial of service (DoS) attacks. One drawback of this kind of
approach is being high computational for employing sep-
arate gain ratio and classification algorithm.

Most of the IDS-based studies focused on the perfor-
mance of the implemented model. Farrahi and Ahmadzadeh
[32] explored various algorithms such as k-means clustering
Näıve Bayes, support vector machine, and OneR algorithms.
'is model resulted in better accuracy for regular traffic and
DoS attack. Also, the genetic algorithm (GA) was imple-
mented to enhance the detection of different types of in-
trusions with an accuracy of 97% [33]. 'e work by
Alkasassbeh et al. [34] focused on different types of attack,
such as http flood, smurf, siddos, and UDP flood. 'ey
implemented various machine learning algorithms to detect
DoS intrusions and demonstrated the high accuracy of
98.36% using multilevel perceptron (MLP). Peng et al. [35]
proposed an IDS system based on a decision tree to improve
the efficiency of detection. 'eir method showed better
performance over Näıve Bayesian and KNN methods.

'e researchers are still investigating to find an effective
way to detect the intrusions with high performance, high
speed, and low false-positive alarm rate [36]. 'e majority of
the IDS system is focused on accuracy. Less interest is given
on the interpretable side of predictive algorithms. In this
work, we explore the interpretable side of the classification
algorithm implemented for IDS using a decision tree. A
decision tree is considered as a highly interpretable model
[37]. Interpretability is a promising approach to diagnose
issues and verify the correctness of machine learning models
in an IDS setting by providing insight into the model’s
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reasoning. 'erefore, we used a decision tree algorithm that
ranks the importance of features, provides explainable rules
for intrusion detection, and has comparable accuracy with
the state-of-the-art algorithms.

3. Methodology

3.1. Decision Tree. A decision tree is nonparametric among
the supervised learning methods. It uses a tree-like approach
for decisions, demonstrates the chance of event outcomes.
'is method provides decision rules which are interpretable
and straight-forward and contains a conditional control
statement. It allows to see and interpret the logic for the data,
unlike another supervised model such as SVM. 'is method
is also termed as a supervised learning model in machine
learning because it allows automatically building predictive
models via algorithms from a given set of observations (data)
as a training dataset [38]. 'e decision model is built top-
down in the form of tree structure from the (top) root node
with subsequent decision nodes and leaf nodes. 'e root
nodes are significant predictors, and the leaf nodes provide a
final classification, as shown in Figure 1.

'e decision tree generates rules based on splitting
criteria. 'ere are different algorithms for the construction
of the decision tree, but one of the best is called the ID3
algorithm, which stands for Iterative Dichotomiser 3 [39].
ID3 [40] constructs a decision tree by constructing a top-
down, greedy search through the given sets of training data
to test each attribute at every node. It uses statistical metric
call information gain to select which attribute to test at each
node in the tree. 'is metric computes how well a given
attribute separates the training examples according to their
target classification.

3.1.1. Entropy. It is a measure in the information theory,
which characterizes the impurity of an arbitrary collection of
examples. If the target attribute takes on c different values,
then the entropy S relative to this c-wise classification is
defined as

E(S) �∑
c

i�1

−Pi log2pi, (1)

where E is the entropy and pi is the probability of S belonging
to a class i. 'e logarithm of base 2 means the entropy is a
measure of the encoding length computed in bits.

3.1.2. Information Gain. It computes the expected mini-
mization in entropy by splitting the examples according to
its attribute.'e information gain, Gain (S;A) of an attribute
A, concerning the collection of examples S is defined as

Gain(S, A) � E(S) − ∑
v∈values(A)

Sv
∣∣∣∣
∣∣∣∣

|S|
E Sv( ), (2)

where values (A) is the set of all possible values for attribute
A and Sv is the subset of S for which the attribute A has value
v. 'is metric is used to rank attributes and build the de-
cision tree where at each node is located the attribute with

the highest information gain among the attributes not yet
considered in the path from the root.

4. Experiments

Here, we answer the following questions:

(i) Q1-Features: are all features important in the pre-
diction process?

(ii) Q2-Rules: what are the rules extracted by the DT?

(iii) Q3-Accuracy: how accurate DTis compared to other
state-of-the-art methods?

Datasets: the DTmodel is applied to the 1999 KDD Cup
network intrusion dataset (http://kdd.ics.uci.edu/databases/
kddcup99/kddcup99.html). 'e data come from DARPA 98
Intrusion Detection Evaluation handled by Lincoln Labora-
tory at MIT. According to [41], these datasets were collected
usingmultiple computers connected to the Internet tomodel a
small US Air Force base of qualified personnel by using several
simulated intrusions. 'ere are 42 attributes used in this
dataset. 'ere are five main groups of which four of them are
labeled as attacks, and one group is “normal,” which means no
threat. 'e description of the attacks is shown in Table 1.

Previous studies using this data [42–44] have applied the
classification algorithm to predict the personal attacks and
report the performance of different supervised classification
algorithm in multiclass settings. Intrusion detection is usually
equivalent to a classification problem, such as a binary
classification problem, i.e., identifying whether network traffic
behavior is normal or malicious. In this study, we are not
considering to make the multiclass prediction. We focus on
explaining how algorithms come into a conclusion to predict
the normal or malicious in a binary setting.

4.1. EvaluationMetric. 'e following evaluation metrics are
used to assess the accuracy of the model.

4.1.1. Precision. In a classification problem, precision is
defined as the number of true positives (tp) over the number
of true positives plus the number of false positives (fp).
Formally,

Age < 35 

Yes

Yes Yes

No

Takes high
cholesterol diet ?

Unfit Fit

No

Workout in the
morning ?

Fit Unfit

No

Is a person �t ?

Figure 1: Example of a decision tree.
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Precision �
tp

tp + fp
, (3)

where tp is true positives (correctly identified) and fp is false
positives (incorrectly identified).

4.1.2. Recall. In a classification problem, Recall is defined as
the number of true positives (tp) over the number of true
positives plus the number of false negatives (fn). Formally,

Recall �
tp

tp + fn
, (4)

where fn is false negatives (incorrectly rejected).

4.1.3. F1-Scores. F1-score captures the tradeoff between
precision and recall of a classifier model. It is combined
metrics of both precision and recall and computed as the
harmonic mean between these metrics:

F1 �
2 × Precision × Recall

Precision + Recall
. (5)

4.2.Q1: Features. 'ere are 42 attributes in the datasets. Out
of these 42 attributes, 41 attributes are classified into four
different classes [45]:

(1) Basic features (BFs) are the attributes of individual
TCP connections

(2) Content features (CFs) are the attributes within a
connection suggested by the domain knowledge

(3) Traffic features (TFs) are the attributes computed
using a two-second time window

(4) Host features (HFs) are the attributes designed to
assess

'e core concepts in machine learning hugely impact the
performance of the model. It allows us to get rid of the
irrelevant features from the model that do not contribute to
the prediction accuracy. Less redundant features also mean
less opportunity to make decisions based on noise. 'us,
fewer features also reduce algorithm complexity to train the
model faster. DT has a natural method for selecting essential
features from the model. It can be obtained from the number
and the quality of splits that are generated from a predictor
variable [46].

'e importance of features can be estimated from data
by building a prediction model. DT has a built-in mecha-
nism to report on variable importance. We randomly split

our datasets as follows: 60% data as training, 20% data as
validation, and 20% data as the test set. DT considers all
features and creates a split on the one that is separating class
labels the best in terms of entropy (III-A1) measures using
training datasets. 'e ranking of the important features is
demonstrated in Figure 2.

We observed that feature V23 is ranked highest. It is
from attacks that last for more than two seconds.

We are not sure by only manual inspection that is the
critical feature to keep in the modeling process. 'us, we
performed feature selection, which is considered as one of
the traffic features (T) category. 'e name of the feature is
“count,” which is computed using a two-second time
window and is a numeric attribute. Similarly, we observed
that feature V3 is ranked second, which is from the basic
features (B) category, and the feature name is “service.” 'is
feature is based on the attributes of the individual TCP
connections, such as http and telnet. 'is feature is of the
discrete attribute. 'e third highest ranked feature is “Flag,”
which is also from the basic (B) category. 'is feature is
about the normal or error status of the connection and is a
discrete attribute. 'e description of the top 10 important
features is shown in Table 2. From the table, we observed that
one traffic (T), two basic (B), three content (C), and four host
(H) feature categories are ranked according to their
importance.

It implies that a combination of BCTH features gives a
better model for intrusion detection.

4.3. Q2: Rules. We extracted the rules from our training set
data. Figure 3 shows DT created from our dataset. 'e top
node is the root node, and the bottom node is the leaf node.
'e rules traverse from the top nodes to the bottom nodes.
'ere are a total of 19 steps involved in the construction of
this tree. 'e steps are demonstrated in by depth-first
fashion from the node by node. Each traversal from the root
node to the leaf node gives the controlling rule for the
decision. 'e leaf nodes are the decision nodes.

We extracted the rules from our model using rattle
(https://cran.r-project.org/web/packages/rattle/vignettes/rat
tle.pdf) package in R. For the demonstration purpose, the
five rules for predicting normal and malicious nodes are
shown in Table 3.

4.4. Q3: Accuracy. We compared the performance of the
decision tree with two popularly used classification algo-
rithms: (i) support vector machines [47] and (ii) logistic
regression [48]. 'e results of the comparison are shown in
Figure 4. From the results, we observe that DT algorithms

Table 1: Types of attack in the datasets.

Types of attack Examples Quantity Proportion (%)

Denial of service (DoS) smurf, apache2, pod, etc. 229,853 73.90
Remote-to-local (R2L) imap, worm, phf, etc. 16,189 5.2
User to root (U2R) perl, rootkit, and so on 228 0.07
PROBING nmap, portsweep, etc. 4,166 1.34
Normal Usual traffic patterns 60,593 19.48
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have higher performances, in terms of precision, recall, and
F1-score. However, the improvement is very marginal. DT
performed equally in terms of precision and recall for
predicting malicious and normal nodes. In contrast, SVM
has similar performance for predicting malicious nodes but
low performance for predicting normal nodes in compari-
sons to DT. LR performed better in comparison to SVM in
predicting the normal nodes but did not perform better in
predicting malicious nodes in comparison to SVM and DT.

SVM has a low recall in comparison to other methods in our
data. In terms of the F1-score, also DT has the best per-
formance. One of the reasons for DTto perform better is that
it does not take features to be linear/normal or additive, and
the possible interactions do not need to be prespecified. 'e
problem, such as missing values of covariates, multi-
collinearity, and outlier, is automatically taken into account
[49]. Moreover, LR is a linear model; thus, in these datasets,
maybe all features are not linear, so we see its performance
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V11
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V24

V32

V12
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V3
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Figure 2: Ranking the features based on information gain.
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V23 > = 81

V6 < 2 V37 > = 0.5

V3 = ctf
domain eco_i

ecr_i ftp
ftp_data

gopher link
mtp name

private
remote_job rje
ssh time whois

V39 > = 0.91

V5 > = 50e + 3

V3 = finger
http

V5 < 9 

V3 = bgp
courier

csnet_ns ctf
daytime

discard domain
domain_u echo

eco_i ecr_i
efs exec ftp

ftp_data
gopher

hostnames
http_443 imap4

iso_tsap
klogin kshell

ldap link
login mtp name

netbios_dgm
netbios_ns
netbios_ssn
netstat nnsp
nntp other

pop_2 pop_3
printer
private

remote_job rje
shell sql_net
ssh sunrpc

supdup systat
uucp uucp_path

vmnet whois
Z39_50

Maliciou Normal.

Maliciou Normal. Maliciou

Maliciou Normal.

Maliciou Normal.

Normal.

yes no

Figure 3: Decision tree from the training dataset. Pink nodes are malicious nodes, and green nodes are normal nodes.

Table 2: Description of top ten features used in a decision tree.

Sr. No. Features Description Type Label

V23 Count
Number of connections to the same host as the current connection in the past

two seconds
Continuous T

V3 Service Network service on the destination, e.g., telnet Discrete B
V6 Flag Normal or error status of the connection Discrete B
V12 Logged_in 1 if successfully logged in; 0 otherwise Discrete C
V32 Dst_host_count % of connections that have continuous H “SYN” errors Continuous H
V24 Serror_rate % of connections that have continuous H “SYN” errors Continuous H

V37
dst_host_

srv_diff_host_rate
'e percentage of connection that has different destination machine Discrete H

V2 Protocol_type Type of the protocol, e.g., TCP and UDP Discrete C
V5 dst_bytes Number of data bytes from destination to source Continuous C
V39 dst_host_srv_serror_rate Server error rate Continuous H
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Table 3: Decision rule description from the training sets for malicious and normal nodes. 'e bold text is the clauses for the rules.

Leaf
numbers

Rules Interpretation

63

[V42� normal. Cover� 681132 (47%)]
V23< 79.5
V37< 0.495
V39< 0.905
V5≥ 8.5

IFV23< 79.5, V37< 0.495, V39< 0.905, V5≥ 8.5,THEN the class is normal, which
covers 47% of terminal nodes, overall 681132 cases

125

[V42� normal. Cover� 43147 (3%)]
V23< 79.5
V37< 0.495
V39< 0.905
V5< 8.5

V3� auth, finger, http, IRC, smtp, telnet,
tftp_u, time, X11

IF V23< 79.5, V37< 0.495, V39< 0.905, V5< 8.5, V3� auth or finger or http or
IRC or smtp or telnet or tftp_u or time or X11, THEN the class is normal which

covers 3% of terminal nodes, overall 43146 cases

14

[V42�malicious. Cover� 3559 (0.01%)]
V23< 79.5
V37< 0.495
V39≥ 0.905

IFV23< 79.5, V37< 0.495, V39≥ 0.905,THEN the class is malicious, which covers
very small amount of terminal nodes, overall 3559 cases

60

[V42�malicious. Cover� 1538
(0.005%)]
V23< 79.5
V37< 0.495
V39< 0.905

V5≥ 4.995e+ 04
V3� finger, http

IF V23< 79.5, V37< 0.495, V39< 0.905, V5≥ 4.995e+ 04, V3� finger or http,
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Figure 4: Performance of the state-of-the-art methods in predicting the classes betweenmalicious and normal nodes. LR: logistic regression,
DT: decision tree; SVM: support vector machines. (a) Precision. (b) Recall, (c) F1.
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lower in comparison to DT. Similarly, we employ SVM with
a linear kernel, but it performed better than LR but cannot
outperform DT.

5. Discussion

An advantage of the presented explainable analysis of
decision tree algorithm is to provide a trustworthy AI
solution for IDS. In particular, the decision tree algorithm
has explored its decisions using feature engineering and the
rule-based model that human experts can understand (e.g.,
the underlying data evidence and causal reasoning).
Understanding the characteristics of malicious attacks and
vulnerability to IDS is essential to the success of future
cyber-security systems.

It is interesting to note that a lot of research work based
on the original KDD dataset reported high prediction ac-
curacy using KDD intrusion detection data. 'e prior work
benchmarks the supervised classification algorithms to show
which algorithms perform better in the datasets. However,
our approach is different. Detecting intrusion is important,
but knowing and explaining to them how they are caused is
an important issue. Machine learning algorithms are
complex, and it is sometimes difficult how they derive the
conclusion for decision-making, which makes them unus-
able for many scenarios. It is especially true for cases where
the decision might need to be understood, such as in
malicious node detection in a communication network. Any
network engineers or security personnel who work on the
attacks have a “right to an explanation.” A decision tree’s
ability for human comprehension is often mimicking the
human level thinking, so it is simple to understand the data
and make some good interpretations [50].

Decision rules follow a common structure: IF, the
conditions are met, and THEN, making a certain prediction.
Decision rules are probably the most interpretable predic-
tion models [51]. 'eir IF-THEN structure semantically
simulates human language and the way we think, provided
that the condition is built from intelligible features, the
length of the condition is short (a small number of fea-
ture� value pairs combined with an AND), and there are not
toomany rules.'e decision tree learns these IF-THEN rules
from the datasets. In the context of malicious node iden-
tification, these rules can play an important role in avoiding
large attacks and save the communication infrastructure
from further damage. For example, the rules like this can be
an alarm to security personnel: [IF V23≥ 79.5, V6< 2 THEN
the class is malicious, with the probability of 97%]. It means
there are 97% chances of the malicious nodes if the number
of connections to the host is greater than 79.5, error status of
the connection is less than two, and then these nodes can be
malicious, so higher caution is required. 'is rule is
straightforward and highly informative to deal with the
network security personnel to monitormalicious behavior in
the network.

Another classification algorithm, such as SVM or even
deep neural network, indeed gives us a better prediction.
However, in terms of interpretability, the decision tree is
considered to be one of the best methods. A tree is the

natural interpretation of humans. When a human constructs
a decision tree, the questions and answers are based on their
rationale and knowledge. In data science, the creation of
these rules is usually administered by an algorithm learning
which questions to ask by analyzing the entire dataset. In the
context of the malicious node detection, the algorithm will
look at entire datasets to figure out a different set of rules to
classify “normal” and “malicious” nodes. 'e decision tree
algorithms mathematically split the entire network dataset
and judge its class. 'is whole process of learning network
intrusion data through decision trees can classify new
network data in a way that any human can understand and
do judgment.

6. Conclusion and Future Work

AI makes decisions using a complex system of analysis to
identify potentially hidden patterns and weak signals from
large amounts of data. Given the consideration, interpret-
ability in AI-based solutions becomes essential for en-
hancing the trust for the in real-life applications. Cyber-
security systems (e.g., the IDS system) are one of the crucial
sensitive applications where the systems are vulnerable to
malicious attacks. 'erefore, we explore decision tree al-
gorithm for the malicious node identification by applying an
openly available KDD dataset. We performed three im-
portant tasks in this dataset: (i) ranking the features, (ii)
decision tree rule extraction, and (iii) comparison with the
state-of-the-art algorithms. Not all features have an equal
contribution to the malicious node prediction. We saw that
the network traffic feature is computed using a two-second
time window as one of the major predictors in the decision
tree and is made root node by the algorithms. 'e second-
highest ranked feature is a basic feature-based network
service for individual TCP connections. 'e brief descrip-
tion of the ranking of the network features is given in IV-A3.

By observing the decision tree rules, we found out what
set of feature values could distinguishmalicious from regular
network traffic. 'ese rules are interpretable and help net-
work security personnel to enhance the trust by taking a
possible course of action in the case of malicious traffic
identification. In this work, we explained the rules generated
by the decision tree algorithms. 'ese rules are simple IF-
THEN rules with logical conditions. 'e beauty of the de-
cision tree algorithm is the rule extraction, and explaining
these rules to any network expert can make proper planning
in the future to avoid the network intrusions. In Table 3, we
interpreted the rules extracted by the decision tree
algorithms.

We compared the performance of the decision tree al-
gorithm with the other state-of-the-art algorithm. We found
that the decision tree has a marginal improvement with
other state-of-the-art methods in terms of precision, recall,
and F1-scores. 'e decision tree algorithm is computa-
tionally cheaper and easy to evaluate and intuitive, unlike
other methods such as SVM. SVM is a compelling method,
but it is computationally expensive and noninterpretable.
'ere is an essential advantage of the decision tree; for
instance, the missing values in the data also do not affect the
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process of building a decision tree.'is model does not need
to be normally distributed. However, there are caveats to
these methods. 'ere may be a chance of overfitting when
the algorithm captures noise in the dataset, due to this al-
gorithmmight perform better in the training set but perform
poorly in the test set. Another noteworthy limitation is for
data, including categorical variables with a different number
of levels, information gain in decision trees is biased in favor
of those attributes with more levels. 'is behavior might
impact prediction performance.
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