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Abstract

In the following article, we introduce a novel workflow, which we subsume under the term “explainable cooperative machine 

learning” and show its practical application in a data annotation and model training tool called NOVA. The main idea of our 

approach is to interactively incorporate the ‘human in the loop’ when training classification models from annotated data. In 

particular, NOVA offers a collaborative annotation backend where multiple annotators join their workforce. A main aspect 

is the possibility of applying semi-supervised active learning techniques already during the annotation process by giving the 

possibility to pre-label data automatically, resulting in a drastic acceleration of the annotation process. Furthermore, the user-

interface implements recent eXplainable AI techniques to provide users with both, a confidence value of the automatically 

predicted annotations, as well as visual explanation. We show in an use-case evaluation that our workflow is able to speed 

up the annotation process, and further argue that by providing additional visual explanations annotators get to understand 

the decision making process as well as the trustworthiness of their trained machine learning models.

Keywords Annotation · Cooperative machine learning · Explainable AI

1  Motivation

In various research disciplines (Behavioural Psychology, 

Medicine, Anthropology,...) the annotation of social behav-

iours is a common task. This process includes manually 

identifying relevant behaviour patterns in audio-visual mate-

rial and assigning descriptive labels. Generally speaking, 

segments in the signals are mapped onto a set of discrete 

classes, e.g., a certain type of gesture, a social situation (e.g., 

conflict), or the emotional state of a person.

In Affective Computing, a subset of these events—the 

so called social signals—are used to augment the spoken 

part of a message with non-verbal information to enable 

a more natural human–computer interaction. [54, 55]1. To 

automatically detect social signals from raw sensory input 

(e.g., speech signals) machine learning (ML) can be applied. 

That is, sensory input is transformed into a compact set of 

relevant features and a classifier is trained on manually 

labelled examples to optimise a learning function. Once 

trained, the classifier can be used to automatically predict 

labels on unseen data.

However, since humans transmit non-verbal messages 

through a number of channels (voice, face, gestures, etc.) and 

due to the complex interplay between these channels (think, 

for instance, of a faked versus a real smile, which depends 

on subtle contractions of the muscles at the corner of the 

eyes as well as the timing of the muscle activations [53]), 

progress in SSP is directly linked to the availability of large 

and well transcribed multi-modal databases rich of human 

behaviour under varying context and different environmental 

settings [16]. Common challenges in creating such datasets 

lie in the high degree of naturalness required of the record-

ing scenarios, how well one recording scenario generalises 

to other settings, the number of human raters needed to reach 

a consensus on labels, and of course the sheer amount of 

data. Thinking of the many hours of labelled data that are 

required, it is clear that gathering large amounts of annotated 

training samples seems like an infeasible task, in respect to 

time, cost and effort.

Even though there exists a vast resource of raw data, 

which is nowadays pervasive in digital format and relatively 
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easy and inexpensive to collect, e.g., from public resources 

such as social media, the problem of gathering relevant 

annotations still needs to be overcome. One approach is the 

Active Learning (AL) [67] algorithm that interactively query 

the user to manually label certain data points. The core idea 

of AL is to extract the most informative instances from a 

pool of unlabelled data based on a specific query strategy 

[46]. These selected instances are then passed to human 

annotators and finally—after labelling—a model is derived 

from this subset. This, of course, reduces the labelling effort. 

In addition, it has two more positive side effects. First, it 

speeds up the training since fewer instances have to be pro-

cessed. Second, it helps improving the maximum accuracy, 

as it reaches a more coherent learning model (focussing on 

the most relevant cases).

In this article, we subsume learning approaches that 

efficiently combine human intelligence with the machine’s 

ability of rapid computation under the term Cooperative 

Machine Learning (CML) [15, 66]. In Fig. 1 we illustrate 

our approach, which creates a loop between a machine 

learned model and human annotators: an initial model is 

trained (1) and used to predict unseen data (2). An active 

learning module then decides which parts of the predic-

tion are subject to manual revision by human annotators. 

A human annotator additionally has the option to create a 

visual explanation for each decision of the model (3+4). 

Afterwards the initial model is retrained using the new 

labelled data (5). Now the procedure is repeated until all 

data is annotated. By actively incorporating human expert 

knowledge into the learning process it becomes possible 

to interactively guide and improve the automatic predic-

tion. Hence, the approach bears the potential to consider-

ably cut down manual efforts. For instance, the system 

may quickly learn to label some simple behaviours, which 

already facilitates the work load for human annotators at 

an early stage. Then over time, it could learn to cope with 

more complex social signals as well, until at some point it 

is able to finish the task in a completely automatic manner. 

Such an iterative approach may even help bridging the gap 

between quantitative and qualitative coding, which still 

defines a great challenge in many fields in social science 

[9]. Additionally we implemented recent explainable AI 

techniques to not only identify the parts where the machine 

is not confident about it’s predictions, but to also be able 

to provide visual explanations about the model’s decision 

criteria.

In this paper, we introduce a next-generation annotation 

tool called NOVA, which implements the described work-

flow that interactively incorporates the ‘human in the loop’ 

[24, 26]. In particular, NOVA offers semi-automated anno-

tations and provides visual feedback to inspect and correct 

machine-generated labels by incorporating eXplainable AI 

(XAI) techniques. In that sense, our work combines three 

recent topics of ML: Explainable Artificial Intelligence, as 

the transparency of the decision process is increased via 

visualisation of the predictions; Semi-Supervised Active 

Learning, since labels with low confidence are highlighted 

to guide the user towards relevant parts; and finally, Inter-

active Machine Learning [25], because human intelligence 

and machine power can cooperate and improve each other.

We subsume our overall approach under the term eXplain-

able Cooperative Machine Learning (XCML). We see the 

main contributions of this work as follows:

• In Sect. 2, we propose a novel two-step CML strategy: 

as long as only few labelled instances are available the 

system is applied to local fractions of the database. Later, 

as more labelled instances become available, larger parts 

can be predicted.

• In Sect.  3, we evaluate the proposed strategy on an 

audio-based annotation task by simulating the incre-

mental injection of additional information during train-

ing. Results show that the proposed strategy significantly 

reduces manual coding efforts.

• In Sect. 4, we introduce an open-source tool for collabo-

rative and machine-aided labelling (NOVA). A walk-

through is presented to demonstrate the collaborative 

annotating capability of the system.

• In Sect. 5, we describe how explainable AI techniques 

may extend the proposed Cooperative Machine Learning 

workflow, to not only speed up the process, but to also 

give better understanding to users of such a system how 

well their model performs and why it fails or succeeds.

• In Sect.  6, we discuss experiences, limitations and 

chances of applying Cooperative Machine Learning in 

the annotation process from the perspective of end-users.

Fig. 1  The scheme depicts the general idea behind Cooperative 

Machine Learning (CML): (1) an initial model is trained on partially 

labelled data. (2) The initial model is used to automatically predict 

unseen data. (3) Labels with a low confidence are selected, and addi-

tionally visual explanations are generated and (4) they get manually 

revised by the annotator. (5) The initial model is retrained with the 

predicted/revised data
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For the sake of clarity related work will be given separately 

for each section.

2  Cooperative Machine Learning

Interactive machine learning [2, 18] aims to involve users 

actively in the creation of models for recognition tasks. Most 

IML approaches integrate automated data analysis and inter-

active visualisation tools in order to enable users to inspect 

data, process features and tune models. One main aspect of 

interactive machine learning is the goal of integrating end-

users in the training process of Machine Learning models, 

making this process easier accessible to non-Machine Learn-

ing experts. In this section, we focus on approaches that 

facilitate the acquisition of annotated data sets and introduce 

a novel methodology for applying Cooperative Machine 

Learning (CML) to speed up annotation of social signals in 

large multi-modal databases and to involve the user actively 

in the Machine Learning loop.

2.1  Related Work

A common approach to reduce human labelling effort is 

the selection of instances for manual annotation based on 

active learning techniques. The basic idea is to forward only 

instances with low prediction certainty or high expected 

error reduction to human annotators [47].

An art of its own right thereby is how to estimate which 

are these most informative ones. A whole range of options to 

choose from exist, such as calculation of ‘meaningful’ con-

fidence measures, detecting novelty (e.g., by training auto-

encoders and seeing for the deviation of input and output 

when new data runs through the auto-encoder), estimating 

the degree of model change the data instance would cause 

(i.e., seeing whether knowing the label of a data point would 

make a change to the model at all), or trying to track ‘scarce’ 

instances, i.e., trying to find those data instances that are rare 

in terms of the expected label.

Further more sophisticated approaches aggregate the 

results of machine learning and crowdsourcing processes 

to increase the efficiency of the labelling process. Kamar 

et al. [27] made use of learned probabilistic models to fuse 

results from computational agents and human labellers. They 

showed how to allocate tasks to coders in order to optimise 

crowdsourcing processes based on expected utility. Zhang 

et al. [64] developed an agreement-based annotation tech-

nique that dynamically determines how many human annota-

tors are required to label a selected instance. The technique 

considers individual rater reliability and inter-rater agree-

ment to decide on a combination of raters to be allocated 

to an instance. Active learning has shown great potential 

in a large variety of areas including document mining [50], 

multimedia retrieval [62], activity recognition [49] and emo-

tion recognition [65].

Most studies in this area focus on the gain obtained by the 

application of specific active learning techniques. However, 

little emphasis is given to the question of how to assist users 

in the application of these techniques for the creation of 

their own corpora. While the benefits of integrating active 

learning with annotation tasks has been demonstrated in a 

variety of experiments, annotation tools that provide users 

with access to active learning techniques are rare. Recent 

developments for audio, image and video annotation that 

make use of active learning include CAMOMILE [39] and 

iHEARu-PLAY [23]. However, systematic studies focus-

ing on the potential benefits of the active learning approach 

within the annotation environment from a user’s point of 

view have been performed only rarely [10, 29].

While techniques that enable systems to learn from 

human raters have become widespread, little attention has 

been paid to usability challenges of the remaining tasks left 

to end-users [2]. Rosenthal et al. [42] investigated which 

kind of information should be provided to users in order 

to reduce annotation errors in a setting for active learning. 

They found out that contextual information and predic-

tions of the learning algorithms were in particular useful 

for the annotation of activity data. In contrast, uncertainty 

information had no effect on the accuracy of the labels, but 

just indicated to the labellers that classification was hard. 

Amershi [4] investigated how to empower users to select 

samples for training by appropriate visualisation techniques. 

They found that a representative overview of best and worst 

matching examples is of higher value than a set of high-

certainty images and conjecture that high-certainty images 

do not provide much information to the learning processing 

due to their similarity to already labelled images. In another 

paper by Amershi et al. [3] the authors suggest an interac-

tive visualization technique to assess model performance 

by sorting samples according to their prediction scores. In 

their tool the user can directly inspect samples to retrieve 

additional information and annotate them for better perfor-

mance tracking. This way, the tool allows users to monitor 

the performance of individual samples while the model is 

iteratively retrained.

The approaches above supported users in the annotation 

and selection of samples for training. As an alternative, 

graphical user interfaces have been developed that enable 

users to create their own annotated examples for training 

models. Typically, the labels are given by instructions or 

stimuli to be provided to the users to evoke particular behav-

iours. An example includes SSI/ModelUI [57]. It presents 

users with a graphical user interface that allows them to 

test different machine learning algorithms on labelled data. 

Labels are acquired by stimuli which may include textual 

instructions, but also images or videos. However, users have 
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to determine themselves which kind of stimuli and data are 

most useful to create and tune models.

Summing up, it may be said that many studies experi-

entially investigate the potential of novel techniques to 

minimise human labour. In addition, few studies were run 

to actually label novel data, rather than test whether such 

method could save effort. Also note that the prevailing 

choice is merely active learning rather than the combination 

with semi-supervised learning, i.e., cooperative machine 

learning. Relatively little attention has been paid, however, 

to the question of how to make these techniques available 

to human labellers. There is a high demand for annotation 

tools that integrate cooperative machine learning in order 

to reduce human effort—in particular in the area of social 

signal processing where human raters typically disagree on 

the labels [36].

2.2  Two‑Fold Strategy

The cooperative machine learning strategy we propose here 

is a two-fold one. It is divided into a Session Completion 

(SC) step during which information of a fraction of a single 

session is used to complete the remaining part of the session, 

and a Session Transfer (ST) step during which information 

from a set of labelled sessions is used to predict a set of 

unlabelled sessions. In our understanding, a session defines 

a single continuous and self-contained recording. The ses-

sions of a database can be captured on different dates and 

sites involving different subjects.

The division is motivated by the lack of labelled data in 

the beginning of an annotation process, which usually does 

not allow to build models that are robust enough to gener-

alise well to the unseen parts. This is especially true if the 

recording conditions and the involved subjects vary between 

the individual sessions. Nevertheless, already small frac-

tions of labelled data can be sufficient to build models that 

are able to make reliable predictions on data that resembles 

the instances that have been seen so far. An example is data 

recorded from the same subject under comparable condi-

tions—something we can generally expect from snapshots 

of the same session. Even if these models are too “weak” 

to make reliable predictions for the whole dataset, they can 

help to speed up the early annotation process. In the follow-

ing, we refer to a classifier trained on samples of a single 

session as a session-dependent classifier. Once enough ses-

sions have been completed, a session-independent model 

can be trained and used to accomplish remaining sessions.

To ensure the quality of the recognition, manual verifica-

tion of the outcome of the classification might be necessary. 

This procedure can be accelerated by rating the predictions, 

e.g., by adding confidence values to the predicted instances. 

Instead of reviewing everything annotators can concentrate 

on parts with low confidence, i.e., labels that have been 

predicted with a high uncertainty.2 The proposed strategy 

can be summarised as follows: 

1. Session Completion Manually assign labels to a frac-

tion of a session and train a session-dependent classi-

fier. Apply it to complete the remaining fraction. Based 

on the confidence values generated by the model query 

manual revision.

2. Session Transfer Take all (with aid of step 1) fully 

labelled sessions and train a session-independent clas-

sifier. Apply it to predict annotations for remaining ses-

sions. Again, based on the generated confidence values 

decide which parts require manual adjustment.

So far we have distinguished between session-dependent and 

session-independent classification. Depending on the corpus 

to which the strategy is applied, this may not necessarily be 

the best practise. For instance, if a dataset is composed of 

recordings that are too short to apply the first step we can 

adapt the strategy and initially complete recordings belong-

ing to the same subject. Once we have labelled data from 

a sufficient number of individual subjects, we continue by 

training a subject-independent model and apply it to the 

remaining recordings. Likewise, we can use the described 

strategy across several databases, too. In that case we would 

concentrate on individual databases first and afterwards 

obtain a database-independent model that we use to label 

the remaining databases.

2.3  Implementation

To efficiently apply the described strategy, we would like 

to know the sweet spot for applying the Session Comple-

tion and the Session Transfer step. On the one hand, if we 

apply it too early the model becomes unstable and predic-

tions will be poor. On the other hand, if we annotate more 

data than necessary we give away precious time. To avoid 

any of the described situations, we are interested in find-

ing a good trade-off between machine performance and 

human effort. Unfortunately, we cannot easily guess what is 

the ideal moment to hand over the task to a machine. This 

is because the amount of training data that is required to 

build a robust model depends on a number of factors, such 

as the homogeneity of the data, the discrimination ability of 

the extracted features, the number of subjects and classes, 

and not least at the complexity of the recognition problem. 

Alternatively, instead of trying to determine a sweet spot 

beforehand (and possibly miss it), we could iteratively test 

2 In a multi-class classification task uncertainty can e.g., be derived 

from the distance a predicted sample has to the decision boundaries 

of the other classes.
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the applicability of the strategy and stop when the perfor-

mance seems promising.

Therefore, we opted to make the described strategy an 

integral part of our tool (see Sect. 4). This allows annota-

tors to visually examine the results at any time and to indi-

vidually decide whether more labelling is required or not. 

However, this means that the time it takes to run the CML 

strategy becomes a crucial factor. Generally, it should not 

take longer than a few seconds or the annotation process 

will be interrupted (this is especially true for the session 

completion step). To reach this goal, we should reuse as 

much information as possible. One possibility is to apply 

classification on a small sliding window (frames) and use a 

rather simple (e.g., linear) classifier. The former means that 

features have to be extracted only once (or can be even pre-

extracted); the latter ensures a fast training.

In the following, we describe the workflow for discrete 

annotations, i.e., we deal with multi-class problems. In case 

of the SC step we receive the raw signal stream (e.g., an 

audio signal) of the current session and a partly finished 

annotation composed of labelled segments with a discrete 

start and end point. The segments can be of variable length 

and there may be gaps between two successive segments. By 

applying the following procedure we then predict the seg-

ments for unlabelled fraction of the session (see also Fig. 2): 

1. If not provided, extract frame-wise features for the whole 

session.

2. Find the frame that coincides with the end point of the 

last label in the annotation and split the feature sequence 

into a training fraction (preceding frames) and a predic-

tion fraction (successive frames).

3. In the training set assign frames that overlap with a 

labelled segment by at least 50% to the corresponding 

class. In case of several candidates keep the dominant 

one (most overlap). Assign remaining frames to a rest 

class.

4. Learn a classifier using all frames from the training frac-

tion.

5. Use the classifier to label the prediction fraction by 

assigning to each frame the class with the highest prob-

ability.

6. Combine successive frames belonging to the same class 

and keep the average probability of the combined frames 

as confidence. Remove frames that belong to the rest 

class. Optionally, apply thresholds to remove small seg-

ments and fill gaps.

7. Add the predicted segments to the original annotation 

and mark segments with a low confidence.

The ST step works in the same way with the difference 

that whole sessions are used to train the classifier, which is 

applied to predict whole sessions afterwards.

3  Evaluation

In this section we turn to some experiments in which we 

examine the practical effect of the proposed Cooperative 

Machine Learning (CML) strategies of Sect. 2. We do this 

by means of a database including natural human-human 

interaction and simulate a situation where the detection sys-

tem is applied to predict unlabelled fractions of the dataset. 

Using the original and predicted parts of the corpus to train 

a final detection model we evaluate the robustness and effi-

ciency of the CML approach.

3.1  Database and Problem Description

We first introduce the dataset we used for evaluating our 

approach. The NOvice eXpert Interaction (NOXI) database 

[8] is a corpus of screen-mediated face-to-face interactions 

that features natural interactions between human dyads in an 

expert-novice knowledge sharing context. In a session one 

participant assumes the role of an expert and the other par-

ticipant the role of a novice. The corpus was created as a part 

of the ARIA-Valuspa [52] (Artificial Retrieval of Informa-

tion Assistants—Virtual Agents with Linguistic Understand-

ing, Social skills, and Personalised Aspects) project, and 

therefore has a strong focus on medial face-to-face interac-

tions in an Expert-Novice setting. Figure 3 shows two users 

during interaction.

One purpose of NOXI is to study interruption strategies. 

For instance, when a listener decides to ask a question or 

comment to what the speaker was saying and therefore starts 

an attempt to take over the speech turn. The simplest way 

to detect such situations is by looking for spots where the 

voice of the two participants is overlapping. If afterwards a 

Fig. 2  Visualisation of the cooperative machine learning strategy 

by means of the SC step: (a) the end point of the last segment of the 

manual annotation defines where the training fraction ends and pre-

diction begins (b) Labelled segments are mapped onto frames and 

empty frames are assigned to a rest class. (c) A model is build from 

the frames in the training fraction and used to predict the frames in 

the prediction fraction. (d) Successive frames with the same class 

label are combined, the rest class is removed and segments with a low 

confidence are highlighted
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speaker change occurs we can assume that the interrupting 

party successfully took over the turn. Otherwise we can treat 

it as a failed attempt. However, an interposed utterance is not 

necessarily a signal to interrupt the speaker. It can also be an 

expression of approval or interest, denoted as backchannels. 

Likewise, not every speaker pause signals a floor change 

if, for instance, the speaker needs time to think what to say 

next. To bridge these pauses speakers usually utter a filler 

sound. Hence, to correctly identify speaker interruptions we 

have to separate backchannels and fillers from other speech 

parts.

In the following, we present a detection system that is 

trained to automatically identify backchannels and fillers 

in speech. First, we evaluate the system following a classic 

machine learning approach to measure the performance of 

the system. Afterwards, we examine if and to what extent 

the system is able to speed-up the manual annotation process 

in the CML loop.

3.2  Detection System

Though in our experiments we concentrate on the detection 

of speech and fillers/ backchannels, we opt for a detection 

system that is as generic as possible. This will allow us to 

apply it to other classification problems, too. Also, speed 

performance plays a crucial role as we do not want to inter-

fere with the annotation process. In the following we start by 

describing the proposed generic detection system.

Due to its modularity and capability of fast online incre-

mental processing we rely on the OPENSMILE audio feature 

extraction tool [17]. However, we refrain from using a large 

statistical feature set like the ComParE (Computational 

Paralinguistics Evaluation) set, which assembles 6373 fea-

tures by brute-force combination of Low Level Descriptors 

(LLDs) with Functionals [45]. This kind of feature sets are 

usually applied on chunks of several seconds length (e.g., 

a whole utterance). In our scenario, however, we opt for 

a frame-based feature set extracted over a small moving 

window that can be reused across successive training steps. 

Also, we should keep in mind that especially in the begin-

ning of the annotation process the size of the training sets 

can be small. In that case a smaller feature set will lower the 

risk of overfitting.

Mel-Frequency Cepstral Coefficients (MFCC) provide a 

compact representation of the short-term power spectrum. 

Not only have they a long tradition in speech recognition 

systems [40] and speaker verification tasks [20], but have 

also been successfully applied in the field of social signal 

processing, e.g., emotional speech recognition [7, 31, 33, 38, 

44, 56] and laughter detection [28, 32, 51]. For our tests, we 

calculate 13 Mel-Frequency Cepstral Coefficients (including 

the 0th coefficient) and their first- and second-order frame-

to-frame difference (delta–delta).

According to standard practice we use a moving win-

dow of 25 ms with a frame step of 10 ms. Afterwards we 

reduce the stream to a frame step of 40 ms by averaging 

always four frames. This ensures that the sample rate of 

the feature stream is consistent with the video frame rate of 

25 Hz. Though not relevant for the current study, it will be 

handy if we want to integrate visual features in the future. 

Yet, 40 ms are small enough to detect start and end point of 

voiced segments sufficiently accurate. Since the length of the 

filler events we want to detect may be longer than 40 ms, we 

optionally concatenate neighbouring frames from both sides 

of the current frame—in the following denoted as context 

size n. A context of size 3, e.g., means that the current frame 

is extended by three frames from the left and three frames 

from the right. This increases the number of features by a 

factor of 2 ⋅ n + 1 . Figure 4 illustrates the feature extraction 

step.

As classification model we use a linear Support Vector 

Machine (SVM) provided by LIBLINEAR—a Library for 

Large Linear Classification [19]. Since the implementation 

does not use kernels, training time is significantly reduced 

even for large input sets composed of several ten thousand 

samples. For multi-class classification we select a L2-reg-

ularised logistic regression solver (option-s 0) and add a 

bias term of 0.1 (option-B 0.1). We keep default values for 

all other parameters. Since we expect unbalanced class 

Fig. 3  Snapshots of user interaction (left) and observer screen (right) 

during a recording session for the NOXI database

Fig. 4  Illustration of the feature extraction step. First, four MFCC 

frames with a dimension of 39 are averaged to reduce the sample rate 

of the signal to 25 Hz. Afterwards, neighbouring frames are added, 

here three frames from the left and three frames from the right. This 

results in a final feature vector of size 273
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distributions, we randomly remove samples to match the 

size of the class with the least number of samples. Finally, 

features values are scaled between − 1 and 1 (when we test 

a sample we apply the scaling derived from the training set). 

Confidence values are scaled in a way such that individual 

class scores sum to 1.

3.3  Results

Having established a generic classification system we will 

now evaluate recognition performance on the NOXI corpus 

(see Sect. 3.1). We pick 18 sessions (German sub-corpus) 

and randomly split them into a training set including two-

third of the sessions summing up to nearly 7 h of audio data. 

The remaining six sessions form the test set with an overall 

duration of almost 3.5 h.

To evaluate the proposed detection system we need to 

establish a ground truth. We use NOVA (will be introduced 

in Sect. 4) to manually annotate voiced parts in the audio 

files. To not introduce a machine bias none of the CML 

strategies described in Sect. 2 are applied. Manual annota-

tion is accomplished by three experienced annotators, each 

completing six sessions. Table 1 lists the applied annota-

tion scheme. Since labels are assigned to voiced sounds the 

remaining parts implicitly define the rest class SILENCE. 

Because of the better audio quality we use the head set 

recordings. However, it turned out that the close-talk record-

ings tended to pick up breathing sounds, so we introduce 

an additional BREATH class to prevent false alarms dur-

ing silenced parts. Backchannels, fillers, laughter, and other 

voiced sounds such as grunts and coughs, are gathered in a 

single class denoted as FILLER. Speech segments that are 

neither backchannels nor fillers are labelled as SPEECH. An 

example of an annotation is shown in Fig. 5. We asked the 

raters to measure how long it took to annotate the sessions. 

In total they spent a little more than 14 h, which results in 

an average time of 47 min per session.

Next, we split the annotations in frames of 40 ms length 

and extract MFCC features, which results in 946,783 frames 

(exact class distribution are given in Table 1). We sample 

the training set down to 22,918 samples per class and train 

a linear SVM model. Results are summarised in Table 2. 

We report classwise recognition accuracy and Unweighted 

Average (UA) recall (average across classes). For a direct 

comparison with the INTERSPEECH 2013 Social Signals 

Paralinguistic Challenge we also consider the Area Under 

the Curve (AUC) measure. A 85% AUC for the FILLER 

class (best case) shows that results are comparable to 

Schuller et al. [45]. We take this as a prove that our detection 

system does a reasonable job on the examined task.

As seen in Table 2 increasing the number of concate-

nated frames has a positive effect on the recognition accu-

racy (∼ 10%) . Especially the FILLER class benefits from a 

larger frame context (25% improvement), which we explain 

with the fact that fillers are usually short and isolated speech 

episodes surrounded by silence. In Fig. 6 we notice a saturat-

ing effect for more than 10 frames, meaning we don’t gain 

any additional improvements by adding more context. Also, 

we must not forget that in an online recognition system each 

additional frame that we look into the future introduces extra 

delay. For this reason, we decided to stick with a stacked 

context of 5 introducing a lag of 0.2 s, which we found still 

tolerable.

To give an impression how the system performs in terms 

of speed we report measurements on an Intel(R) Core(TM) 

i7-3930K. In our tests extracting MFCC-based features with 

a context of size 5 and a frame step of 0.04 s took 0.9 s for 

one minute of mono audio sampled at 48 kHz. Extrapolated 

to 10.5 h of interaction it requires less than 10 min to extract 

features for the whole German subset. Since features are 

reused this defines a one-time effort. Training a linear classi-

fier on the training set (91,672 frames after class balancing) 

took on average 50 s. Frame-wise prediction on the test set 

(306,206 frames) only ~2.9 s. Such values suggest that the 

proposed detection system is fast enough to be embedded 

into the annotation process without causing serious interrup-

tions (even if several hours of data are used as input/output).

3.4  CML Simulation

Finally, we want to know how the proposed detection system 

performs in combination with the proposed CML strategies. 

In Sect. 2 we have defined the sweet spot as the moment 

when additional annotation efforts no longer improve the 

stability of the classification model. Practically, this defines 

the ideal point to hand the task over to the machine. To expe-

rientially determine the sweet spot for the given problem, we 

incrementally inject information into the training process. 

In the following, we simulate this procedure by splitting the 

original training set into two parts: we assume that n ses-

sions have been manually labelled (subset L), whereas the 

remaining sessions are yet unlabelled (subset U). Now, we 

derive three classifiers c, c′ and c′′ (see Fig. 7): 

c  Train with the labels of L.

c
′  Use c to predict the labels of U and retrain with the 

predicted labels.

Fig. 5  Example of a manual annotation
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c
′′  Before retraining inspect the predicted labels if their 

confidence is below a threshold t and correct them if 

necessary.

c
′ simulates the case where the annotation process is 

stopped at some point and the labelled fraction of the data-

base is used to predict the remaining parts. Note that in this 

case all predicted labels are included during the final train-

ing step, i.e. no automatic selection strategies and no addi-

tional manual efforts are applied.

c
′′ simulates the case where parts of the prediction are 

inspected (here the selection is based on the class confi-

dence). To assess the additional manual effort we measure 

what we call the Inspection Rate (IR), which is the fraction 

of frames below the confidence, and the Correction Rate 

(CR), which is the fraction of frames that are finally assigned 

a different label.

Table 3 summarises the performance of c, c′ and c′′ on the 

test set (the same as before). In each row we assume that n 

sessions of the original training set have been labelled (e.g., 

n = 4 means that L consists of sessions 1 to 4 and U consists 

of sessions 5–12). Based on the results we can gain some 

interesting insights. Let us therefore assume we aim for a 

classification model that is at maximum one percent worse 

than the reference model trained on all sessions, i.e. has an 

Unweighted Average (UA) recall of at least 77.1% (through-

out the tests we have applied a stacking context of 5).

The performance of classifier c shows that ten of the 

twelve sessions are sufficient to yield a 77.8% recognition 

accuracy. Hence, to achieve our goal we can stop after label-

ling ten sessions and skip the last two. Now, what happens if 

we extend the training set with predicted labels (no selection 

or manually correction yet)? Checking the results of c′ we 

see that again ten sessions are required to achieve the desired 

accuracy. In fact, extending the training set with purely pre-

dicted data generally has no positive effect on the recogni-

tion performance. Although disappointing at first glance this 

is actually not too surprising. Obviously we cannot expect 

to improve a model unless we inject some new knowledge, 

which is not the case if we add predictions without inspec-

tion. This is as if we asked a student to revise his own test, 

which is pointless unless we point out some of his mistakes 

first.

Table 1  Annotation scheme and 

frame number per class
Class Description Train % Test %

SPEECH Speech (except filler and backchannels) 265,466 41.4 126,183 41.2

BREATH Breathing (except unvoiced laughter) 22 918 3.6 3929 1.2

FILLER Backchannels, fillers, laughter, and other voiced sounds 26,665 4.2 8592 2.8

SILENCE Implicit rest class representing unvoiced parts 325,528 50.8 167,502 54.7
∑

640,577 306,206

Table 2  Classwise recall 

and area under the curve (in 

brackets) in % with respect to 

the context n 

UA unweighted average, UAAUC  UA of AUC 

n 0 1 2 5 10 15

SPEECH 64.7 (95) 67.6 (96) 69.5 (96) 73.7 (97) 74.6 (97) 74.3 (97)

BREATH 82.5 (95) 84.3 (96) 85.1 (97) 87.2 (98) 87.9 (98) 88.2 (98)

FILLER 46.6 (69) 54.1 (74) 59.1 (77) 66.1 (82) 71.9 (84) 74.1 (85)

SILENCE 82.9 (92) 83.1 (93) 83.9 (94) 85.5 (95) 84.0 (96) 82.8 (96)

UA (UAAUC) 69.2 (88) 72.3 (90) 74.4 (91) 78.1 (93) 79.6 (94) 79.8 (94)

Fig. 6  Classwise UA recall in % with respect to the context size n 

Fig. 7  In the default condition a classifier c is evaluated after train-

ing with labelled sessions (L) only. In case of c′ unlabelled sessions 

(U) are predicted and used to retrain the model. And in case of c′′ 

predicted labels are reviewed and possibly corrected before retraining 

takes place
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Hence, some manual efforts are needed here. And indeed: 

after correcting frames with a confidence below 0.5 (that is 

9% of all frames in the remaining subset) c′′ yields 77.1% 

already after 6 sessions. To achieve this we actually had 

to review 27% of predicted frames. If we assume that the 

remaining six sessions make up approximately half of the 

frames this corresponds to 
1

8
 of the full training set, i.e. in 

total we have to examine 
5

8
 (= 

1

2
+

1

8
 ) of the training data. As 

mentioned earlier the average time to annotate a session was 

47 min. Hence, we can reckon a saving of approximately 

3.5 h (5.9 h instead of 9.4 h). Obviously, this significantly 

speeds up the annotation process.

Apparently, the more work we are willing to spend on 

the correction of predicted labels the earlier we receive a 

stable classification model. In fact, if we lift the correc-

tion threshold to 0.75 we observe that c′′ now yields 77.4% 

already after the first session. However, this is achieved at 

the expense of a more than three times higher inspection 

rate (87%), which means that we have to view almost 
9

10
 of 

the corpus (precisely 0.87
9

10
+

1

10
 ). Hence, it can be a better 

strategy to complete a couple of sessions first and in return 

apply a smaller correction threshold afterwards leaving less 

data for inspection.

4  NOVA Tool

The results of the previous section encouraged us to inte-

grate the proposed Cooperative Machine Learning (CML) 

approach into our annotation tool NOVA. This way we give 

annotators the possibility to immediately inspect and if 

necessary correct predicted annotations. Though an earlier 

version of the tool existed (see [6]), we extended it to achieve 

a seamless integration of the collaborative annotation pro-

cess. NOVA is open-source and can be downloaded from 

http://githu b.com/hcmla b/nova.

4.1  Related Work

NOVA’s interface has been inspired by existing annotation 

tools. For instance, EUDICO Linguistic Annotator (ELAN) 

[63], Annotation of Video and Language (ANVIL) [30], and 

EXMARALDA (Extensible Markup Language for Discourse 

Annotation) [43]. These tools offer layer-based tiers to insert 

time-anchored labelled segments, that is discrete annota-

tions. Continuous annotations, on the other hand allow an 

observer to track the content of an audiovisual stimulus over 

time based on a continuous scale. A tool that allows label-

lers to trace emotional content in real-time on two dimen-

sions (activation and evaluation) is FEELTRACE [12]. Its 

descendant GTRACE (General Trace) [13] allows the user 

to define their own dimensions and scales. Other tools to 

accomplish continuous descriptions are CARMA (Continu-

ous Affect Rating and Media Annotation) [21] and DARMA 

(Dual Axis Rating and Media Annotation) [22]. An inter-

esting approach for gathering crowd-sourced annotations is 

IHEARU-PLAY [23], that allows labelling audio material on 

a valence-arousal scale in form of a browser-game. Whereas 

most tools are restricted to describe audiovisual data by a 

single user, REPOVIZZ [37] is an integrated online system 

to collaboratively annotate streams of heterogeneous data 

(audio, video, motion capture, physiological signals, etc.). 

Datasets are stored in an online database, allowing users to 

interact with the data remotely through a web browser.

Table 3  Recognition results 

on the test when incrementally 

injecting information into the 

training process using the three 

classifiers c, c′ , c′′ (see remarks 

in text)

In case of c′′ t defines the confidence threshold for inspecting predicted labels. In each row we start with 

n labelled sessions. Bold values refer to recognition rates that are comparable to the reference model (see 

remarks in text). Results are obtained with the detection system described earlier using a stacking context 

of 5

c c
′

c
′′ ( t = 0.5) c

′′ ( t = 0.75)

n UA (%) UA (%) UA (%) IR (%) CR (%) UA (%) IR (%) CR (%)

1 67.2 70.1 74.1 38 14 77.4 87 25

2 72.3 70.5 74.3 51 17 78.0 82 25

3 73.0 71.6 76.0 36 12 77.9 66 18

4 74.4 73.2 76.4 36 12 78.0 59 18

5 76.2 75.8 76.9 31 11 78.0 51 16

6 76.3 76.4 77.1 27 9 78.0 45 14

7 76.4 76.4 77.2 25 9 78.2 40 13

8 77.0 76.3 78.0 15 5 78.0 26 7

9 76.8 76.9 78.1 11 4 78.1 19 6

10 77.8 77.8 78.0 5 2 77.9 10 2

11 78.1 77.9 78.1 1 0 78.1 4 1

12 78.1 78.1 78.1 – – 78.1 – –

http://github.com/hcmlab/nova
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Though the mentioned tools are of great help to create 

annotations at a high level of detail, the tools offer none or 

only little automation. Since labelling of several hours of 

interaction is an extremely time consuming task, methods 

to automate the coding process are highly desirable. To this 

end NOVA has been advanced with features to create col-

laborative annotations and to apply CML strategies out of 

the box (see Sect. 2). To support a truly collaborative work-

flow between several annotators and the machine a data-

base back-end is provided to store, exchange, and combine 

annotation work.

4.2  General Interface

The NOVA user interface has been designed with a special 

focus on the annotation of long and continuous recordings 

involving multiple modalities and subjects. Unlike other 

annotation tools, the number of media files that can be dis-

played at the same is not limited and various types of signals 

(video, audio, facial features, skeleton, depth images, etc.) 

are supported. Further, multiple types of annotation schemes 

(discrete, continuous, transcriptions, geometric, etc.) can be 

selected to describe the visualised content (see Fig. 8 for an 

example). Several statistics are available to process the anno-

tations created by multiple coders. For instance, statistical 

measures such as Cronbach’s � [14] or Cohen’s � [11] can 

be applied to identify inter-rater agreement and annotations 

from multiple raters can be merged from the interface.

4.3  Annotation Types

The coding process of multi-modal data depends on the 

phenomenon we want to describe. For example, we would 

prefer a discrete annotation scheme to label behaviour that 

can be classified into a set of categories (e.g. head nods and 

head shakes), so that all annotators use the same “vocab-

ulary”, whereas variable dimensions like activation and 

evaluation are better handled on continuous tiers. For tasks 

like language transcriptions, which consist of hundreds of 

Fig. 8  NOVA allows it to visualise various media and signal types 

and supports different annotation schemes. From top down: full-body 

videos along with skeleton and face tracking, and audio streams of 

two persons during an interaction. In the lower part several discrete 

and continuous annotation tiers are displayed. Annotations can be 

edited on a static fraction of the recording or interactively during 

playback
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individual words, we want to assign labels with free text. 

Finally, we might also want to annotate geometric points in 

visual material, for example if we want to learn about move-

ments of the face.

To meet the different needs, NOVA supports four kinds 

of annotations:

1. Discrete annotations consist of a list of labelled time 

segments. Each segment has a start and end point and 

holds a label name. Segments can vary in length, may 

overlap and possibly have a gap to adjacent segments. 

Label names are not arbitrary but chosen from a set of 

predefined (classes).

2. Free annotations are similar to discrete annotations, 

but allow annotators to assign free label names. This is 

obviously useful if an annotation task can not easily be 

reduced to a few classes (for example in case of speech 

transcriptions). See Fig. 9 for an example of a free tier.

3. Continuous annotations are continuous in time and 

space. Instead of names, numerical values (scores) are 

assigned at a constant interval defined by a selectable 

sample rate.

  A live mode is available that allows annotators to 

interactively change the score values by moving the 

mouse/a gamepad or using the up and down keys to the 

desired level. See Fig. 10 for an example of a continu-

ous tier. This is especially useful for regression tasks in 

machine learning, or for describing emotions and atti-

tudes.

4. Geometric annotations are meant for annotation tasks 

where neither discrete nor continuous annotations are 

useful. Imagine we want to train a model to recognise 

facial landmarks, for example to calculate the FACS 

automatically.

4.4  Annotation Schemes

Each annotation type comes along with its own annotation 

scheme. For example, for discrete annotations a scheme con-

tains information such as the annotation’s name, the back-

ground colour of the tier and the labels allowed on the tier, 

respectively their colours. Once such a scheme is loaded, the 

annotator can only chose between these predefined labels. 

As described before, for FREE annotations, labels are not 

predefined and can be chosen freely during the coding pro-

cess. Continuous and geometric schemes contain informa-

tion such as the sample-rate, the minimum and maximum 

ranges, and for geometric annotations the number of points 

per frame. Using annotation schemes allows multiple anno-

tators to create comparable annotations, and helps avoiding 

errors and misunderstandings.

4.5  Database Backend

To support a collaborative annotation process, NOVA main-

tains a database back-end, which allows users to load and 

save annotations from and to a MongoDB3 running on a 

central server. This gives involved annotators the possibil-

ity to immediately commit changes and follow the annota-

tion progress of the others. MongoDB is an open-source 

and cross-platform NoSQL database. We have chosen it in 

favour of a relational database due to its simplicity and fast 

read/write operations.

We opt for a design that not only allows to read and write 

annotations, but manages all relevant meta data of a corpus, 

too. Generally, each corpus is represented by a single data-

base including several collections (the analogous to tables in 

relational databases). The collections are (see also Fig. 11):

• Meta Meta information about a database, including the 

data server location, and a description

• Sessions Stores general information for each recording 

session, such as location, language and date.

• Annotators Stores names and meta information of the 

involved annotators (human or machine!).

• Roles Stores the different roles subjects can take on dur-

ing a recording session (e.g., listener vs speaker).

• Streams Stores the recorded stream files. Each file is 

assigned to a media type, a session, a subject and a role. 

Fig. 9  Example of a discrete (bottom) and free (top) annotation tier. 

The start- and endpoint of a label can be directly changed with the 

mouse (even during playback). The name of a label can be changed 

through a dialogue by using pre-defined ‘hot keys’

Fig. 10  Example of a continuous annotation tier. A value within a 

predefined range is assigned at a constant interval

3 https ://www.mongo db.com/.

https://www.mongodb.com/
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An url is included that points to the location where the 

file can be downloaded.

• Schemes Stores the available annotation schemes.

• Annotations Stores the headers of created annotations. 

An annotation is linked to an annotator, an annotation 

scheme, a role and a session. Optionally, a list of stream 

files is referenced to store which information should be 

displayed during the annotation process.

• AnnotationData Contains the actual annotation data 

(segments or scores) for an annotation. Additionally a 

Backup is stored for each annotation, allowing the user 

to go back to the previous version.

As soon as several users collaborate on a common data-

base it becomes crucial to implement adequate security poli-

cies. For instance, we want to prevent a situation in which a 

user accidentally overwrites the annotation of another user. 

Therefore, standard users can only edit and delete their own 

annotations. They can, however, load annotations of other 

users. In that case the annotation is copied and stored under 

their username. Only users, privileged with admin rights 

may edit and delete annotations of other users. They can 

also assign newly created annotations to specific users. This 

way, an admin can divide up forthcoming annotation tasks 

among the pool of annotators.

Beside human annotators, a database may also be visited 

by one or more “machine users”. Just like a human operator 

they can create and access annotations. Hence, the database 

also functions as a mediator between human and machine. 

To control the annotation progress we have introduced a 

‘isFinished’ flag that signals if an annotation requires fur-

ther fitting or is finished. A second flag ‘isLocked’ marks 

whether an annotation is editable or not.

NOVA provides instruments to create and populate a 

database on a MongoDB server from scratch. This gives 

users the possibility to apply the tool on their own corpora. 

At any time new annotators, schemes and additional ses-

sions can be added. No specific knowledge about databases 

is required.

4.6  ML Backend

For best possible performance tasks related to machine 

learning (ML) are outsourced and executed in a background 

process. As ML framework we use our open-source Social 

Signal Interpretation (SSI) framework.4 SSI has been suc-

cessfully applied to a couple of recognition problems in the 

past, see e.g., [34, 35, 51, 58, 59, 61]. Since SSI is primar-

ily designed to build online recognition systems, a trained 

model can be directly used to detect social cues in real-time 

[60].

Fig. 11  Overview of NOVA’s database structure. Annotations and meta information on subjects, sessions, etc. are stored in different collections. 

NOVA includes necessary tools to maintain and populate a database

4 http://opens si.net.

http://openssi.net
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Though, SSI is developed in C++, it offers a simple XML 

interface to define feature extractors and classifiers. For 

instance, the definition of the MFCC features from Sect. 3.2 

looks as follows: 

When applied to a stream, the signal values are first run 

through a pre-emphasis filter before MFCC features are 

extracted over a sliding window of 25 ms with a frame step 

of 10 ms (timings can be overwritten in NOVA). To config-

ure the MFCC extraction (e.g., the number of coefficients) 

a separate option file is created (here ’mfccdd’). However, 

SSI supports other features sets, too. For instance, it allows 

to run scripts from the widely used OPENSMILE toolkit [17]. 

And it provides feature sets for other type of signals. For 

instance, a wrapper for the OPENFACE tool [5] is available to 

extract of facial points and action units from video streams.

Likewise, the classification model from Sect.  3.2 is 

defined as follows: 

Here, SSI is configured to balance the number of class 

samples by removing samples from overrepresented classes 

and scale features into a common interval. As training model 

a linear SVM will be used. However, SSI also supports a 

Python interface for using other classification models as 

well, e.g. Google’s neural network framework TENSORFLOW,5 

as well as native implementations in C/C++. However, as 

we argumented before, we suggest to use fast classifiers 

because for users interacting with such a system, latency 

is a crucial aspect as we deal with short training iterations.

4.7  Basic CML Walk‑through

We will conclude this section with a walk-through that dem-

onstrates NOVA’s CML tools. In this section we will go 

through the CML workflow, and turn to the extensions of 

eXplainable CML in the next section. We assume that a data-

base has been created and populated with several sessions 

of audio recordings from one or more users. In our case, 

we work on the NOXI [8] and apply an annotation scheme 

containing the labels BREATH, FILLER and SPEECH. 

Note that number and names of the classes is defined by the 

underlying annotation scheme, which be easily adapted by 

the user to fit any other labelling problem.

As a first step, we extract MFCC features for the German 

sessions in the NOXI database. The dialogue is shown in 

Fig. 12. It allows us to choose a source stream and a feature 

extraction method (only methods that can be applied to the 

selected stream will be listed). Optionally, we can overwrite 

the default frame step and context sizes. Extraction can be 

accelerated by running several sessions in parallel (here 8).

In a next step, we can now pick an annotation scheme 

and apply it to the previously extracted feature streams. Fig-

ure 13 shows the interface that allows us to select the input 

and choose a classification model (only models are shown 

that fit the selected input). Optionally, we can set a left and 

right context to concatenate neighbouring feature frames 

(see Sect. 3.2). Afterwards the trained model is stored and 

can now be applied to predict unlabelled data.

To predict annotations, both CML strategies from 

Sect. 2.2 are available. In case of Session Transfer a dia-

logue similar to the one in Fig. 14 is shown. However, this 

time we select a previously trained model and use it to pre-

dict the selected sessions. In case of the Session Completion 

step, the annotation is completed by temporarily training a 

model using only the labels available from current tier. An 

example before and after the completion is shown in Fig. 14. 

The screenshot shows that labels with a low confidence are 

highlighted with a pattern. This way crucial parts are quickly 

found and can be revised if necessary.

To assess the prediction accuracy of a model, a dialogue 

similar to Fig. 13 is available. Here, we can pick a trained 

model and the sessions we want to use for evaluation (only 

sessions with an according annotation are listed). The model 

is now applied to predict labels for the selected sessions 

and the output is compared to the existing annotations. The 

result is presented in form of a confusion matrix as shown 

in Fig. 15. A confusion matrix provides information on 

the overall recognition performance, as well as, accuracies 

for individual classes and which class pairs are often con-

fused. Note that this feature is only available for the Session 5 https ://www.tenso rflow .org/.

https://www.tensorflow.org/
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Transfer step, respectively a classical Supervised Learning 

approach, as we need to have ground truth labels to compare 

our model with.

5  eXplainable AI (XAI) Extension

The application of CML provides the possibility to 

reduce the time needed for annotating while sustaining 

satisfactory classification accuracies. However not only 

Fig. 12  Screenshot of the feature extraction dialogue. The user chooses a stream (here audio) and an according feature extraction method (here 

mfccdd). Feature extraction is applied for the selected roles and sessions

Fig. 13  Screenshot of the model training dialogue. The user selects 

a coding scheme, a role and an annotator (here Gold Standard). Ses-

sions for which an according annotation exists are now displayed 

and a stream can be selected to define the input for the learning step. 

Finally, a model (here linsvm) is chosen and the training begins
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needed time and accuracy scores are important measures 

in modern machine learning, but also comprehensibility 

and transparency. The strive of making machine learn-

ing models more comprehensible for humans by provid-

ing explanations goes back to as early as the 1970s. Back 

then Shortliffe and Buchanan were stressing the need for 

explanations in rule-based expert systems [48]. During 

the CML step we introduced confidence values for the 

labels predicted by the model. Low confidence values 

highlight sections where the model is uncertain. Those 

values provide the user with a basic tool to gain insight 

about instances that the model has issues to correctly clas-

sify. However, to provide the user with a comprehensible 

machine learning experience we extended NOVA with the 

two explanation frameworks LIME [41] and iNNvestigate 

[1]. LIME is capable of providing explanations for various 

problem domains like text and image classification. The 

basic idea is to approximate an interpretable model around 

the original model. Their explanations come in the form of 

visual feedback, highlighting the sections that have been 

crucial for the prediction of a specific class. They showed 

that with the help of LIME it is easier for users to deter-

mine from a set of classifiers which one performs best for a 

given problem domain. This is especially useful when test-

accuracy scores themselves are misleading. Moreover, they 

argue that LIME not only is useful for gaining additional 

insight about a model, but also users have been able to 

improve performance of classifiers by identifying unneces-

sary features and removing them based on the explanations 

generated by LIME. INNvestigate is a library that provides 

implementations of common analysis methods for neural 

networks, e.g. PatternNet and LRP. This extension allows 

an in-depth analysis of predictions with the help of visual 

explanations. The possibility to generate explanations can 

be beneficial for several use cases. In general whenever a 

model’s prediction is wrong you can not only examine the 

prediction scores, but also take a visual explanation into 

account that has been generated by exploring the features 

most important for the classification. Moreover, this is not 

only the case for misclassifications. Explanations can also 

help to gain additional information when there are serious 

doubts on what the model really has learned. With the help 

of their explanation framework, Ribeiro et al. revealed in 

[41] that correct predictions are not necessarily based on 

semantic correct correlations.

In the previous sections we demonstrated that NOVA 

provides the possibility to complete unfinished annotations 

automatically and highlight uncertain predictions with a 

confidence score. The XAI extension allows now to further 

investigate those particular spots and gain additional insight 

Fig. 14  Visualisation of partly finished annotation (upper tier) and the results after the tier is automatically completed (middle tier). Segments 

with a low confidence are marked with a red pattern. The lower tier shows the final result after manual correction

Fig. 15  A confusion matrix provides information about the recogni-

tion accuracy of individual classes and to what extent they are con-

fused with other classes. For instance, here we see that speech frames 

are often falsely classified as fillers and vice versa. Hence, an anno-

tator should put attention to these classes while revising the predic-

tions. The REST class implicitly represents silence in this example
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on the classifier’s decision making. For example, Fig. 16 

shows the relevance scores for every feature dimension of 

the 13 MFCC features calculated for our previous classifi-

cation use case. In particular the figure displays explana-

tions generated for exemplary instances of the four classes, 

SPEECH, FILLER, BREATH and REST (Silence). The rel-

evance score describes the importance of a specific feature 

in regard to the classification. In our use case the model 

was trained on Mel-Frequency Cepstral Coefficients which 

provide a compact representation of the short-term power 

spectrum of an audio signal.

Further, explainable AI techniques are not only of use to 

visualise the relevance of particular features, but may also 

be used to explain more sophisticated models. In particular, 

NOVA is able to provide visual explanations of Deep Learn-

ing models, such as convolutional neural networks that are 

trained on raw data. In order to describe the explanation 

capabilities of NOVA, we will turn to a visual classification 

task in the following example.

Fig. 16  Explanations for exemplary instances for the four classes speech, filler, breath, rest

Fig. 17  Explanations for the top four classes generated in NOVA with 

the usage of LIME
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Figure 17 shows an Instance of the NOVA interface for 

generating explanations with LIME. In the present example 

we demonstrate a use-case for visually categorising images 

of faces into base emotions. Explanations for the top four 

predicted classes are given, however, the number of consid-

ered classes may be changed by the user. Moreover, coher-

ent with LIME, additional options can be altered like the 

number of samples or the number of features. Furthermore, 

for the generation of explanations the user can either choose 

from a list of models that have been trained with the help of 

NOVA for the given modality or drag and drop models from 

a different source.

In the displayed case in Fig. 17 the predicted top class 

has been happy, followed by anger, neutral and surprise. The 

green shapes (so called super-pixels) represent areas of the 

original image that have been important for the prediction. 

In contrast to that the red shapes describe areas that spoke 

against a particular prediction. As one would intuitively guess, 

an interesting area for recognizing whether a person is happy, 

is the space around the mouth to see if the person is smil-

ing. Moreover, the same area is a strong evidence against the 

presence of anger, neutral and surprise, which is highlighted 

by a red area in the other images. Despite the fact that the 

used model predicted the correct class with an accuracy of 

90.5% there is evidence in the explanations present that the 

model still has flaws. The fact that various areas of the back-

ground have been considered important for the prediction, 

even though there is no relevant information visible, shows 

that the model isn’t perfectly optimized for the given use case.

Alongside the explanation generated by LIME, NOVA 

also offers the possibility to create explanations with 

iNNvestigate. The corresponding NOVA interface not only 

provides a variety of algorithms implemented in iNNves-

tigate, but also allows the user to decide between different 

visualization representations. Figure 18 displays an excerpt 

of some algorithms and visualizations for different facial 

expressions. The class that has been predicted by the model 

is written above of the original images. For Fig. 18 A all 

algorithms highlighted the central area of the face—includ-

ing the eyes, nose and mouth—as important elements 

regarding the prediction. In case of the angry face (Fig. 18b) 

the visualizations 4 and 5 show a stronger emphasis on the 

forehead and eyebrow area which is what would be expected 

as the bending of the eyebrows is a common indicator for 

anger. Similar is true for Fig. 18c here especially visuali-

zation 2 and 3 highlight amongst other areas the forehead 

which displays an intensely furrowed brow. Before cover-

ing the last facial expression we want to emphasize the fact 

that similar to LIME, the algorithms used in 4 and 5 all 

highlighted to some degree areas in the background of the 

original image, which corroborates the hypotheses that the 

model isn’t fully optimized and bases the prediction to some 

extent on irrelevant information.

Figure 18d displays an interesting case in terms of pre-

diction and generated explanation. Just by visually explor-

ing the image one could easily agree that the person is sad 

because he just might have shed a tear and is trying to wipe 

it away with his hand. Also the explanations generated by 

the different algorithms stress the areas covering the hand 

and eyes. However, if one would examine the moment short 

before and after the specific frame it would become obvi-

ous that the person has not been sad at all and probably 

has just rubbed its eye. This way it becomes evident that 

for a correct interpretation it is vital to also consider con-

text information. NOVA offers, besides the generation of 

explanations through state of the art algorithms, the pos-

sibility to investigate relevant information before and after 

a specific frame being part of a video or feature stream.

Figure 19 shows a possible setup when working with 

NOVA. In the presented screenshot an annotation and the 

corresponding video is loaded. The frame of interest is 

Fig. 18  Visual explanations generated with the iNNvestigate frame-

work. Letters A to D represent the different predicted emotions noted 

above. The numbers on the right map onto the following approaches: 

1, original image; 2, guided backpropagation; 3, deep Taylor; 4, LRP 

Epsilon; 5, LRP Z; 6, LRP Alpha Beta
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the earlier discussed alleged sad facial expression. To gain 

additional insight explanations with LIME and iNNvesti-

gate have been generated.

6  Discussion and Outlook

In Sect. 3 we have presented a technical evaluation of our 

proposed Cooperative Machine Learning (CML) strategy. 

Results show that CML bears great potential to significantly 

reduce human labelling effort. However, it does not neces-

sarily mean that results gained in a simulation can be trans-

ferred to human labellers without further ado. Hence, in the 

following, we want to discuss the experiences of users who 

have been applying the CML strategies with the NOVA tool.

So, what exact gain can we expect when giving a tool like 

NOVA into the hands of human labellers? Unfortunately, 

a general answer to this question does probably not exist. 

Our experiences show that the amount of time we may save 

depends on a couple of variables, which may vary from one 

case to another.

Probably, the largest uncertainty comes from the nature 

of the annotation problem itself and the ability of the applied 

machine learning (ML) techniques to cope with it. For 

instance, let us assume the task of labelling voiced parts in 

audio. If the recordings have low background noise and speech 

is really the only prominent signal, a simple feature like loud-

ness may already allow us to train a robust model on few 

samples, yet generalizing well on unseen data. In this case, 

the time saving (compared to a completely manual approach) 

can be tremendous. On the other hand, if the speech files are 

noisy and contain other audible sounds—possibly overlapping 

with speech—the problem becomes immediately harder. As 

a consequence not only a more sophisticated feature set (and 

classification model) is needed, but more manual labelling 

effort is required to obtain a robust model. As a consequence, 

less time is saved. And we may even reckon the case where 

the problems becomes too hard to train a reliable model at all, 

so that the effort to manually revise the prediction may eat up 

initial savings. The possibility to exchange features and clas-

sifiers in NOVA is therefore an essential precondition to adapt 

to the problem at hand in the best possible way.

Another point to consider is the quality of the annotation 

that is desired. Can we live with some false prediction? Or 

do we aim for a high precision, yet do not mind a high num-

ber of false negatives? This, of course, depends very much 

on the purpose the data is labelled for. As a special flaw 

social signals often lack a ground truth. And when multiple 

raters are employed the agreement often turns out to be low. 

This makes it especially difficult to estimate the quality of 

a prediction. In the end, it depends a lot on the assessment 

of the user if he or she is pleased with the automatic com-

pletion. Here, NOVA’s feature to immediately visualise the 

results is an important tool to let raters assess the quality of 

automatic predictions. Further the integrated XAI techniques 

offer a more transparent insight in the model’s reliability.

Fig. 19  An instance of the NOVA user interface with visual explanations for a particular frame
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Finally, comparing manual with semi-manual annotations 

is not as straight forward as it may seem. When observing 

automatic predictions we observed that on- and offset of the 

labels were often more precise than that of humans, which are 

usually rather fuzzy (unless they work at a very fine granular 

time scale, which is usually too time-consuming). Likewise, 

we found that short occurrences of a behaviour are easily 

overlooked by human labellers, especially as their attention 

drops with time. Hence, since machines show no signs of 

fatigue their predictions are often more consistent throughout 

a corpus compared to those of humans. Consequently, apply-

ing CML strategies may not just help saving time, but also 

lead to more accurate and consistent annotations.

The core idea behind cooperative machine learning (CML) 

is to create a loop, in which humans start solving a task (here 

labelling social signals) and over time a machine learns to 

automatically complete the task. In conventional approaches, 

this involves at least two parties: an end-user, who has knowl-

edge about the domain, and a machine learning practitioner, 

who can cope with the learning system. However, to make the 

process more rapid and focused, Amershi et al. [2] demand 

that more control should be given to the end-user. To this 

end, our tool combines a traditional annotation interface with 

CML functions that can be applied out of the box requiring 

no knowledge on machine learning. We found it important 

to give coders the possibility to individually decide when 

and how to use them in the labelling process. And to assess 

the reliability of automatic predictions immediate visual 

feedback is provided, which gives annotators the chance to 

adapt their strategies at times. By interactively guiding and 

improving automatic predictions, an efficient integration of 

human expert knowledge and rapid mechanical computation 

is achieved. The reported experiments show that even end-

users with little or no background in machine learning are 

able to benefit from the described machine-aided techniques.

We also observed that CML strategies not only have the 

potential to speed up coding, but can also have a positive 

influence on the annotator’s coding style. Because of the 

preciseness machine-aided techniques introduce into the 

coding process the level-of-detail is improved while at the 

same time human efforts are reduced. Here, strategies to 

guide the attention of the annotator during inspection of 

the predicted labels become a crucial matter. As mentioned 

before Rosenthal et al. [42] investigated which kind of infor-

mation should be provided to the user to minimise annota-

tion errors. However, in their studies they concentrate on 

single images whereas in our case we deal with continuous 

recordings. To not overload the annotator with too many 

details we decided to uniformly highlight labels below an 

adjustable confidence threshold. Our simulations in Sect. 3 

suggest that this approach helps to significantly reduce label-

ling efforts. However, the exact gain depends highly on the 

nature and complexity of annotation problem, the applied 

machine learning techniques, and not least the expertise and 

subjective attitude of the human coder.

7  Conclusion

The goal of the presented work is to foster the application of 

Cooperative Machine Learning (CML) strategies to speed 

up annotation of social signals in large multi-modal data-

bases and additionally to give the user a better understanding 

of the trained models by incorporating explainable AI tech-

niques. Well described corpora that are rich of human behav-

iour are needed in a number of disciplines, such as Social 

Signal Processing and Behavioural Psychology. However, 

populating captured user data with adequate descriptions 

can be an extremely exhausting and time-consuming task. To 

this end, we have presented strategies and tools to distribute 

annotation tasks among multiple human raters (to bundle as 

much human efforts as possible) and automatically complete 

unfinished fractions of a database (to reduce human efforts 

where possible).

In particular, we have proposed a two-fold CML strategy 

to support the manual coding process (Sect. 2). Applied to a 

fresh database it first concentrates on completing few indi-

vidual sessions. A relatively small amount of labels is suf-

ficient to build a session-dependent model, which—though 

not strong enough to generalise well across the whole data-

base—can be used to derive local predictions. Afterwards, 

a session-independent classification model is created to fin-

ish the remaining parts of the database. During both steps, 

confidence values are created to guide the inspection of the 

predictions.

To prove the usefulness of the CML approach, we have 

presented results for a realistic use-case based on a data-

base featuring natural interactions between human dyads. 

For our experiments in Sect. 3 we picked the task of detect-

ing fillers in speech. Fillers are an important cue if one aims 

to study turn taking and interruption strategies. A fast and 

general audio detection system in combination with a linear 

classification model has been applied to more than 10 h of 

natural conversations yielding an average recognition per-

formance of almost 80% (four classes: speech, breath, filler 

and silence). In a simulation we proved that labelling efforts 

can be significantly reduced using the proposed system. If 

applied in combination with a revision of instances with a 

low confidence value, manual inspection was reduced to 
5

8
 

of the database. In our case, this corresponds to a saving of 

approximately 2.5 h (4.1 h instead of 6.6 h).

It was important to us to bring the proposed approach into 

application. To this end, in Sect. 4 we introduced NOVA
6—an 

6 http://githu b.com/hcmla b/nova.

http://github.com/hcmlab/nova
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open-source tool for collaborative and machine-aided label-

ling. Other than conventional annotation tools NOVA sup-

ports a fully collaborative workflow and allows it to distribute 

annotation tasks among multiple raters. The discussed CML 

strategies have been integrated and can be directly applied 

from the interface to speed up manual annotation. The gener-

alisability of the proposed detection system will enable other 

researchers to adopt the approach for their own databases and 

annotation tasks in the future.

Further, we described how the proposed CML workflow 

in the NOVA tool can be extended in terms of transparency 

and comprehensibility by introducing explainable AI tech-

niques into the cooperative machine learning workflow. We 

subsume this overall process as “explainable Cooperative 

Machine Learning”.

In our future work, we also plan to extent the current 

workflow by automatically generating recommendations 

in which order sessions in a database should be processed. 

Poignant et al. [39] suggest the use of hierarchical cluster-

ing to select prototypical examples and prioritise them dur-

ing the coding process. However, it is not straightforward 

to adapt their techniques to continuous recordings. Alterna-

tively, in our case we can make use of the confidence values 

generated during label prediction. Using the average value 

the following strategy is conceivable: every time a session is 

finished, a model is built to predict remaining sessions and 

pick the one with the lowest score to complete next. This 

way we ensure that manual efforts get spent on data that has 

a high potential to improve the learner in the next iteration.
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