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Explainable drug sensitivity 
prediction through cancer pathway 
enrichment
Yi‑Ching Tang & Assaf Gottlieb*

Computational approaches to predict drug sensitivity can promote precision anticancer therapeutics. 
Generalizable and explainable models are of critical importance for translation to guide personalized 
treatment and are often overlooked in favor of prediction performance. Here, we propose PathDSP: 
a pathway‑based model for drug sensitivity prediction that integrates chemical structure information 
with enrichment of cancer signaling pathways across drug‑associated genes, gene expression, 
mutation and copy number variation data to predict drug response on the Genomics of Drug 
Sensitivity in Cancer dataset. Using a deep neural network, we outperform state‑of‑the‑art deep 
learning models, while demonstrating good generalizability a separate dataset of the Cancer Cell Line 
Encyclopedia as well as provide explainable results, demonstrated through case studies that are in 
line with current knowledge. Additionally, our pathway‑based model achieved a good performance 
when predicting unseen drugs and cells, with potential utility for drug development and for guiding 
individualized medicine.

Tailoring drugs to patients based on their genomic and environmental factors is one of the ultimate goals of 
precision medicine. Within precision oncology, using the molecular signatures of targeted genes has been useful 
for targeted  therapy1. �e use of machine learning algorithms has signi�cantly progressed in predicting drug 
response by integrating genetic features and chemical structure information. Menden et al. derived multiple 
features from cell lines, including microsatellite instability status, mutations and copy number variations to pre-
dict drug response, and demonstrating that that chemical information improved signi�cantly the drug  models2. 
Another work, by Wang et al., used matrix factorization to predict drug response from low dimensional drug 
similarity space and cell line similarity  space3 while a work by Liu et al. performed better by including drug 
response  similarity4. Recently, Li et al.5 published a method called DeepDSC that predicts drug response by 
encoding gene expression features through an autoencoder and feeding the encodings together with chemical 
structure information into a deep neural network.

While these computational models attempt to improve performance, the focus on explainable and general-
izable models remains limited. Being able to explain the model results to oncology researchers can diminish a 
signi�cant barrier for translation of prediction models to clinical setting of precision oncology. In order to address 
this barrier, a study by Yang et al.6 built a Bayesian model for inferring the relation between drug target proteins 
and cancer signaling pathway activities. �is work assumed that if a drug pathway is activated in a tumor, then 
the tumor cells are likely to be sensitive to drugs that target genes in that pathway. Mathematically, the drug 
response variable (e.g., IC50) is factorized into drug target feature and signaling pathway feature. While gaining 
interpretability, this approach displayed low performance.

In this study, we integrated ideas of cancer pathways with deep learning constructs to develop a pathway-
based model for the prediction of drug sensitivity in cancer, called PathDSP, which both performs well and is 
also explainable. �e rationale is that drugs exert their therapeutic e�ects by a�ecting target proteins, further 
signaling downstream pathways. Activation of signaling pathways thus may indicate whether cells are sensitive 
or resistant to a drug when the activated signaling pathways are important for cell growth or death. We integrated 
drug-based pathway enrichment scores across 196 cancer  pathways7 with cell-based pathway enrichment scores 
in these pathways. Testing our model on the Genomics of Drug Sensitivity in Cancer (GDSC)8 and the Cancer 
Cell Line Encyclopedia (CCLE)  databases9, we demonstrate better performance than previously published deep 
learning approaches while case studies show that pathway features agree with current knowledge on drugs’ 
mechanism of action. To the best of our knowledge, this is the �rst pathway-based deep neural network for 
drug sensitivity prediction, and it provides a �exible framework to incorporate additional pathways using prior 
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knowledge. Demonstrating the generalizability of our approach across databases and for predicting response 
to new drugs and cell lines, our approach can thus be useful both for drug development and for guiding indi-
vidualized medicine.

Results
Model selection. We designed PathDSP for predicting drug response in cancer cell lines based on the ration-
ale that cancer pathways would represent well drug therapeutic e�ects (Fig. 1). We predicted drug responses for 
153 drugs across 319 cell lines assembled from the Genomics of Drug Sensitivity in Cancer (GDSC) with avail-
able gene expression, somatic mutation and copy number variations data (Methods). Our prediction scheme 
included predicting of the response values (log-transformed IC50) based on two drug-based data types and three 
cell line-based data types. �e drug-based features include chemical structure molecular �ngerprints (from here 
on referred as CHEM) and pathway enrichment of gene subnetwork of drug-associated genes (denoted as Drug-
Gene Network, DG-Net). �e cell-line-based features include pathway enrichment scores for gene expression 
(denoted as EXP), mutation (denoted as MUT-Net) and copy-number variation (denoted as CNV-Net) data 
(Methods).

We compared the performance of six machine learning algorithms, including ElasticNet,  CatBoost10, 
 XGBoost11, Random  Forest12, Support Vector Machine (SVM)13, and the fully connected neural network (FNN). 
We use two metrics to assess the performance, mean absolute error (MAE), which is less sensitive to outliers 
and the root mean square error (RMSE). As our error distribution is Laplacian (p < 0.001 based on Laplacian 
test with Anderson—Darling, Watson and Kolmogorov–Smirnov statistics), MAE is more appropriate but in 
order to compare to previously published methods, we need the RMSE and per Chai and Draxler  paper14, a 
combination of the metrics are o�en required to assess model performance. �e result of tenfold cross validation 
demonstrated that FNN obtained the best performance with an MAE of 0.24 ± 0.02 and RMSE of 0.35 ± 0.02 
(Table S1). �erefore, we used the FNN model throughout the study.

For the FNN model, we further compared performance of subsets of the data types. Unsurprisingly, the 
combination of all data types obtained the lowest MAE of 0.24 ± 0.02 and RMSE of 0.35 ± 0.02 (Table 1). 
Using either CHEM, EXP, MUT-Net or CNV-Net as single drug or cell-related data types performed very 
similar (0.31 < MAE < 0.33, 0.42 < RMSE < 0.44), while DG-Net without CHEM performed worst (MAE = 0.39, 
RMSE = 0.54).

Figure 1.  Illustration of the PathDSP method and validation plan. �e chemical and cell line omics data is 
processed using Morgan �ngerprints (chemical) and pathway enrichment (drugs targets, gene expression, 
mutation and CNV) is fed into FNN (A). �e trained model on GDSC is tested on CCLE data (B) and SHAP 
scores are used to identify chemical and pathway features that contribute most to the prediction scheme (C).
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We tested also whether the addition of external knowledge data would improve the prediction. We �rst exam-
ined whether adding drug class information available in GDSC as one-hot matrix improves the performance. �e 
result showed instead a decrease in performance (MAE = 0.32, RMSE = 0.43), suggesting drug class information 
may over�t the model. We next tested the e�ect of adding combined gene essentiality scoring (CES) developed to 
integrate to integrate CRISPR and shRNA gene essentiality pro�les with the molecular features of cancer  cells15. 
We tested CES pro�les in the CCLE database as it shares more drug-cell line pairs with the CES dataset than 
GDSC (6491 pairs vs. 2803 pairs with GDSC). Our results show that MAE remained the same (MAE = 0.22) with 
a minor improvement in RMSE performance (RMSEs of 0.39 vs. 0.4 without CES). Lastly, it was infeasible to 
perform cross-validation test for the integration of drug expression pro�les from the LINCS L1000 drug-induced 
expression  pro�les16 due to the low overlap between the drug-cell line sets in L1000 and either GDSC or CCLE 
(44 drug-cell line pairs shared with GDSC and 108 drug-cell line pairs shared with CCLE). We thus used the best 
performing model (without drug class information and CES) for the rest of the analysis.

Comparison with other methods. We compared PathDSP with four previously published methods, 
including DNN by Menden et al., SRMF, NCFGER, and  DeepDSC2–5. All models used the same drug response 
and provided only RMSE on the GDSC dataset. PathDSP outperformed these four models, where the next best 
performer was DeepDSC with an RMSE of 0.52 (8.5 standard deviations from our results), followed by other 
models with RMSE between 0.83 and 1.43 (Fig. 2).

Prediction of new drugs and cell‑lines. In-silico inference of drug response to a new experimental mole-
cule would be bene�cial for pharmaceutical research and drug design, reducing the high cost of large-scale drug 
screening tests. Predicting drug response for new cell lines, on the other hand, could be translated to clinical 
setting when oncologists are tasked with prioritizing treatment options for a new patient, potentially translating 
the cell-line genomic data to the patient’s genomic data. To address these scenarios, we performed leave-one-
drug-out (LODO) and leave-one-cell-out (LOCO) by removing one drug or cell line, respectively, from training 
and assessing the prediction error for that missing drug or cell line (Methods). We obtained an average MAE of 
0.83 ± 0.58 (RMSE of 0.98 ± 0.62) from LODO, and an average MAE of 0.45 ± 0.15 (RMSE of 0.59 ± 0.17) from 
LOCO. In particular, our LODO model obtained lower RMSE than DeepDSC, the only model that performed 
leave-one-drug-out out of the four previously compared models (1.24 ± 0.74).

Table 1.  �e MAE and RMSE of tenfold cross validation obtained by including di�erent subsets of the data 
types.

Prediction scheme Drug feature Cell feature MAE RMSE R2 PCC

Drug-oriented
CHEM EXP + MUT-Net + CNV-Net 0.31 0.42 0.87 0.93

DG-Net EXP + MUT-Net + CNV-Net 0.39 0.54 0.8 0.9

Cell-oriented

CHEM + DG-Net EXP 0.32 0.43 0.87 0.93

CHEM + DG-Net MUT-Net 0.31 0.42 0.88 0.94

CHEM + DG-Net CNV-Net 0.33 0.44 0.86 0.93

Reference Line CHEM + DG-Net EXP + MUT-Net + CNV-Net 0.24 0.35 0.92 0.96

Figure 2.  Comparison of PathDSP performance relative to four previously published methods based on RMSE.
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Hemopoietic and solid malignancies have signi�cantly di�erent clinical treatments. We thus tested the perfor-
mance of the model on hemopoietic cell lines (21% of the cell lines in GDSC) and solid cancer cell line separately. 
Cross-validation performance was similar across cell line types (MAE = 0.24, RMSE = 0.35 and MAE = 0.23, 
RMSE = 0.34 for haematopoietic cell lines and solid cancer cell lines, respectively). �is result is much better 
performance than when training only on each group separately (MAE = 0.32, RMSE = 0.43 for solid cancer cell 
lines and MAE = 0.31, RMSE = 0.42 for haematopoietic cell lines). Conversely, in our leave-one-cell-out experi-
ment, the performance for hemopoietic cancer cells was better (RMSE = 0.54 ± 0.13) than for solid cancer cell 
lines (0.60 ± 0.18).

Generalizability of PathDSP. We further tested the generalizability of PathDSP across di�erent data-
sets. We applied the model trained on the GDSC dataset to an independent dataset from the  CCLE9. PathDSP 
obtained an MAE of 0.93 (and RMSE of 1.15) when tested on the entire dataset of CCLE, with an MAE of 0.94 
(RMSE of 1.16) when tested on drug-cell line pairs that to do exist in GDSC and an MAE of 0.74 (and RMSE of 
0.95) when tested only on the set of drug-cell line pairs shared between GDSC and CCLE. Notably, the di�erence 
in the drug response measurements between the two datasets makes this task challenging. While GDSC tested a 
large range of IC50 values, CCLE capped their tested range at a concentration of 8 μM17,18, resulting in di�erent 
response values of the same drug-cell line combinations across the two datasets (Figs. 3, S2). To demonstrate 
the di�erence between the datasets, we computed the expected MAE and RMSE if PathDSP had perfectly mod-
eled the training data (GDSC). Computing the RMSE of the true response values of GDSC and testing against 
the response values of CCLE on the shared subset of drug-cell line pairs, the result is higher than the one we 
obtained with our algorithm (0.88 MAE and 1.13 RMSE vs. our predicted 0.74 MAE and 0.95 RMSE), suggesting 
that PathDSP is able to generalize well. Notably, despite di�erent distributions of input features between the two 
datasets (e.g. expression measurements), the pathway-enriched features of PathDSP displayed more consistent 
patterns between two datasets (Fig. 4). �ese results suggest with more consistent IC50 measurements, PathDSP 
has the potential to obtain better performance.

Explainability of the model. We computed Shapley values to identify important features underlying pre-
dictions. We focus on features that have positive contributions to drug response (i.e. the feature contributes to 
reducing IC50). �e top features are distributed across the di�erent data types, including expression, DG-Net, 
CNV and mutation, supporting our observation that the combination of these data types enables the good 
performance (�gure S1). We highlight a subset of these globally important top features (i.e. features important 
across all drugs and cell lines in the GDSC dataset): �e top feature is an enrichment of cell line expressed genes 
within the ADP-Ribosylation factor 3 (ARF3) pathway. �e main gene of this pathway, ARF3 gene, is up-regu-
lated in breast cancer and promotes breast cancer cell proliferation, representing a novel prognostic marker and 
therapeutic target for breast  cancer19 (the GDSC dataset includes 11 breast cancer cell lines).

�e second top feature is enrichment of the Histone deacetylase III (HDAC-III) pathway within the drug-
associated gene network (DG-Net). HDAC inhibitors seems to be promising anti-cancer  drugs20. Several genes 
within this pathway have established role in cancer, such as  TP5321,22 and SIRT1, which is up-regulated in cancer 
cells and may play a critical role in tumor initiation, progression, and drug resistance by blocking senescence 
and apoptosis, and promoting cell growth and angiogenesis. SIRT1 inhibitors have shown promising anticancer 
e�ects in animal models of  cancer23. �e third top feature is CNV of Glypican 1 pathway, further discussed in 
the leave-one-cell-out speci�c example below. Finally, the next two features involve enrichment of the Nuclear 
factor kappa B (NF-κB) canonical pathway within mutation data and enrichment of Fanconi Anemia pathway 

Figure 3.  Comparison of drug response distribution (histogram of drug-cell line pairs) between the GDSC 
(blue) and CCLE (orange) databases.
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by DG-Net. Indeed, mutations in the component of the core NF-κB signaling pathway have been implicated 
with relation to  cancer24 and patients with Fanconi Anemia have a higher risk of cancer, particularly for acute 
myeloid leukemia and squamous cell carcinoma followed by ongoing work to study targeting of pathways that 
are synthetic lethal with loss of Fanconi Anemia pathway with Olaparib or other  drugs25.

Next, we highlight two local feature importance predictions, one for the LODO (RVX208) and one for the 
LOCO scenario, demonstrating the drug- and cell line- speci�c explanability of PathDSP.

RVX208. �e best performing prediction of LODO is for RVX-208 drug (apabetalone, MAE = 0.26 and 
RMSE = 0.34 across all cell lines). RVX-208 is a Bromodomain and Extra-Terminal domain (BET) inhibitor. BET 
regulates the transcriptional program and plays a role in in�uencing cancer pathogenesis and  in�ammation26. 
�e Activin receptor-like kinase-1 (ALK1) pathway ranked highest out of the features with positive contribution 
to drug responses (Fig. S3). ALK1 is a receptor of TGF-beta type 1 receptor family and can regulate angiogenesis, 
which plays a critical role in the growth of cancer because solid tumors need a blood supply if they are to grow 
in size and tumors can actually cause this blood supply to form by stimulating  angiogenesis27. Correspond-
ingly, ALK1 is a well-known cancer driver which could act as a tumor suppressor or oncogene, depending on 
the cancer type, cell type, or ligand  involved28 and is an emerging target for antiangiogenic therapy of  cancer29. 
Additional genes in the ALK1 pathway include mitogen-activated protein kinase 1 and 3 (MAPK1 and MAPK3), 
where the suppression of BET inhibits vascular in�ammation by blocking MAPK  activation30.

Additional top features for RVX-208 are other pathways involved in angiogenesis, including  ALK231, Canon-
ical  Wnt32, retinoic  acid33 and bone morphogenetic proteins (BMP)31,34 pathways. One way in which these 

Figure 4.  Comparison of pathway enrichment scores distribution (histogram of drugs or cell line numbers) 
between the GDSC (blue) and CCLE (orange) databases for DG-Net, EXP, Mut-Net and CNV-Net features.
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pathways connect to the ALK1 pathway is via shared member genes, including the MAPK1 and MAPK3 genes 
that are part of both the ALK1 and the retinoic acid receptors-mediated signaling pathways; and the SMAD1/4/5 
genes included in the ALK1, ALK2 and BMP pathways, where in endothelial cells ALK1 activates the Smad1/
Smad5  pathway29,35. Another way is through cross-talk between the pathways, as in the case of canonical Wnt 
signaling that was found to skew TGF-β signaling in chondrocytes via the ALK1  pathway36.

�ere are three other BET inhibitors in the GDSC dataset: I-BET-762, OTX015 and JQ1. In two of the BET 
inhibitors, I-BET-762 and OTX015, ALK1 is also one of the top features (rank 1st in I-BET-762 and 4th in 
OTX015). Additionally, some of the other above mentioned pathways, including the BMP pathway (ranks 4th 
and 6th), the ALK2 pathway (ranks 9th and 8th) and the retinoic acid pathway only in OTX015 (rank 10). �e 
remaining BET inhibitor in our set, JQ-1, does not display the ALK1 pathway as a top feature but displays the 
Canonical Wnt signaling (rank 4th) and retinoic acid (rank  14th) pathways. Notably, JQ-1 was only tested on 
breast cancer cells, while the other three BET inhibitors were tested on multiple cancer cell types, which could 
explain the di�erences in the extracted top features.

Chronic myelogenous leukemia cell line. Our model obtained good performance when predicting drug 
response for the Chronic Myelogenous Leukemia (CML) cell line (SIDM00482) in the LOCO (MAE = 0.23 and 
RMSE = 0.31). Based on the Shapley values, gene expression enrichment of the SYNDECAN 3 pathway and 
copy number variations enrichment of the Glypican 1 (GPC-1) pathway display positive contribution to drug 
response (Figure S4). Syndecans and glypicans are membrane-bound heparan sulphate proteoglycans (HSPGs), 
they act as receptors and relate to cell growth and di�erentiation by interacting with other growth  factors37,38. 
Indeed, syndecans and glypicans have reported roles in tumorogenesis in blood  cancers39. Speci�cally, GPC1 was 
found to be overexpressed and a biomarker of certain cancers with demonstrated ability to distinguish between 
healthy controls and advanced cancer patients with 100%  accuracy40, while Syndecan-3 has not been implicated 
in cancer  yet38. However, other members of these pathways include epidermal growth factor receptor (EGFR) 
that have been implicated with regard to activation in  CML41, SRC Proto-Oncogene, Non-Receptor Tyrosine 
Kinase (SRC) that appears in both GPC-1 and syndecan-3 pathways, whose overexpression have been identi�ed 
among the known mechanisms of resistance to imatinib in  CML42 and FYN proto-oncogene, Src family tyrosine 
kinase that is up-regulated in CML as result of the BCR-ABL1  oncogene43. We note that our data includes addi-
tional �ve CML cell lines. Out of these �ve, three cell lines also have GPC-1 as one of the top important features 
(SIDMO00958 rank 2, SIDMO00346 rank 12 and SIDMO00962 rank 15). �e other two CML cells show top 
pathways that are related to GPC-1, including bone morphogenetic proteins (BMP), mitogen-activated protein 
kinase (MAPK) and Wnt pathways. Glypicans are known to regulate BMP  signaling44 and speci�cally GPC-1 
and BMP expression are correlated in certain cancers like  adenocarcinoma45, and mitogen-activated protein 
kinase (MAPK), where GPC-1 binds growth factors to facilitate their assembly for enhanced signaling in MAPK, 
among  others46 and knockdown of GPC-1 decreased growth of ESCC cells and induced apoptosis via inhibition 
of MAPK signaling pathways in vitro47. Finally, altering GPC-1 levels modulates canonical Wnt signaling during 
trigeminal placode development and an in vivo role for glypicans has been demonstrated in association with 
Wnt  signaling48.

�ese two examples demonstrate that identifying cancer pathways association with drug-associated genes 
can help identify potential mechanisms and possibly new targets within the pathway.

Discussion
In this study, we presented PathDSP, a method that integrates drug and cell line information to predict drug 
responses of cancer cell lines. We addressed the high dimensional and heterogeneous nature of the data used 
in this task by mapping it to curated pathways. By using this approach, we gained improved performance over 
current state-of-the-art methods, improved generalizability of the models across independent datasets and pro-
vided a cancer pathway-level of explainability beyond that of the single gene or single mutation level. While we 
focused on manually curated cancer pathways and on speci�c genomics data including gene expression, mutation 
and copy number variation data, our framework is �exible and can seamlessly integrate additional pathways as 
well as other data types. We predicted IC50 values instead of reframing the problem as a binary classi�cation 
problem since there is no agreed-upon threshold to determine sensitive vs. resistant cell line, owing in part to 
being drug- and cell-dependent49.

We demonstrated that integrating multiple types of data improve performance of the algorithm. Interestingly, 
for drug-related data types, relying only on engineered features from the drug-gene-network without chemical 
structure information obtained the worst performance, but the combination of the two improved performances 
over only one of them. Similarly, with regard to cell line speci�c data types, each of the individual cell-line data, 
i.e. gene expression, mutation and copy number variation, gain similar but reduced performance relative to 
their combination. Nevertheless, the reduction in performance in this case is smaller, holding a promise that 
our method could be applied even within clinical settings with only a subset of the data types measured. While 
external data, such as gene essentiality score (CES) or the L1000 gene expression pro�les for drugs holds promise 
to further improve the models and their biological interpretation, the current low overlap between these datasets 
and the drug sensitivity datasets of GDSC and CCLE limits the integration of these datasets.

�e incompleteness of drug target data poses a potential limitation on good performance of PathDSP. In 
order to address that, we expanded the list of drug targets to include drug-associated genes from curated external 
databases and additional functionally-related genes by searching close neighbors of drug target genes within a 
protein–protein interaction network, potentially capturing also cross-talking pathways. As we demonstrate, the 
di�erences in response value measurements (IC50) across databases pose a limitation on the generalizability 
of methods designed to predict the response value, including PathDSP. However, we managed to improve the 
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generalizability beyond the expected theoretical di�erence between the datasets (MAE = 0.74 and RMSE of 0.95 
vs. MAE = 0.88 and RMSE = 1.13 theoretical), demonstrating good generalization capabilities, which would be 
critical in translating this method into clinical setting.

Last, while pathway activity may be helpful in predicting drug response di�erences, biological pathway 
usually consists of several genes responsible for diverse functionality. �us, more �ne-tuned, drug and cell-line 
speci�c, experiments are necessary in order to pinpoint which gene(s) may be the ones most associated with a 
drug’s sensitivity or resistance. Additionally, while the explainable associations are good predictors, they are not 
necessarily causal, a relationship that would require additional experiments to establish.

Conclusion
Our developed method of pathway-based deep neural network for drug sensitivity prediction demonstrated 
improved performance, generalizability and exempli�ed explainability. Given the �exibility of this approach, we 
believe it provides another means in which the roles of pathways in drug response for cancers can be evaluated 
and to provide another steppingstone towards cancer precision medicine.

Methods
Data. Drug sensitivity data, cell-line gene expression, somatic mutation and copy number variation data for 
319 cancer cell lines and 153 drugs was downloaded from Genomics of Drug Sensitivity in Cancer (GDSC down-
loaded from https ://www.cance rrxge ne.org/downl oads/bulk_downl oad.) Drug sensitivity data of 24 drugs and 
478 cancer cell lines from the Cancer Cell Line Encyclopedia (CCLE) were downloaded through the DepMap 
portal (https ://depma p.org/porta l/downl oad/, release version: public 20Q1), which also include gene expression, 
mutation and copy number variation data for those cancer cell lines. Primary target data was downloaded from 
GDSC, and PID pathways were downloaded from  MSigDB50. Protein–protein network was downloaded from 
STRING  database51, including protein interactions, co-expression and text-mined interactions.

Feature engineering and normalization. Gene expression data. Gene expression data were measured 
by transcripts per million (TPM) and log-transformed. We imputed with mean for the rest of missing values. 
Enrichment score (ES) of each PID pathway in each cell line was calculated using the single-sample Gene Set 
Enrichment (ssGSEA)  algorithm52 through GSEApy (https ://gseap y.readt hedoc s.io/en/maste r/gseap y_examp 
le.html). We ran permutation test for 1000 times and normalized ES scores by the size of gene set to obtain nor-
malized ES (i.e., NES). We used the resulting pathway enrichment matrix with size of 319 cancer cell lines by 196 
pathways as the gene expression feature (EXP).

Somatic mutation data. Mutation data are in long form, in which each row consists of a cancer cell line 
and its mutated gene name. We collected all mutations for each cell line to perform network-based pathway 
enrichment analysis by the NetPEA  algorithm53, which calculates an enrichment score by measuring the close-
ness of pathway genes to a given gene set within a protein–protein interaction (PPI) network. We implemented 
the algorithm with some modi�cation. �e method is summarized as follows: First, both mutation gene and 
pathway genes were mapped to STRING PPI  network51. For each cell, its mutation gene set is then used as the 
restart nodes to di�use information through edges to their neighbors within the PPI by the Random Walk with 
Restart approach. For each pathway, a similarity score between the mutation gene set to the pathway genes is 
calculated by averaging all values on the pathway genes, where the node value represents the probability of being 
revisited (i.e., the closeness to the restart nodes). We modi�ed the similarity score by multiplying each gene 
score with its gene expression value within the cell line, forming a cell-speci�c gene co-expression-mutation 
network. �en, a permutation test was performed 1000 times by randomly selecting the same number of genes, 
resulting in 1000 association scores as the background for the pathway. Pathway signi�cance was normalized 
using z-score, resulting in pathway enrichment matrix with size of 319 cancer cell lines by 196 pathways for the 
mutation feature (MUT-Net).

Copy number variation data. Copy number variation data were represented by the GISTIC (Genomic 
Identi�cation of Signi�cant Targets in Cancer) score comprising of − 2 (deletion), − 1 (loss), 0 (diploid), 1 (gain), 
and 2 (ampli�cation), genes with GISTIC score of 0 were excluded. For each cell line, we collected a set of genes 
with copy number variations to calculate pathway enrichment score using the same procedure used for mutation 
data, resulting in the pathway enrichment matrix with size of 319 cancer cell lines by 196 pathways for the copy 
number variation feature (CNV-Net).

Drug gene network data. �e primary target genes were provided in the GDSC data, we further expanded 
the target genes by two approaches. First, we obtained o�-target genes from the DGIdb version 3  database54, a 
webserver collected curated drug-gene interaction data from literature. Second, we used the expanded gene list 
to �nd its neighbors within the STRING PPI  network51, which increases the number of related gene per drug 
from 4.71 to 876.78 on average. For each drug, we performed pathway enrichment analysis against 196 PID 
 pathways7 using its expanded target gene list. We used the original NetPEA approach described by Liu et al.53. 
i.e., we did not aggregate gene expression value to the node like we did for mutation and copy number variation 
data. As a result, we obtained the pathway enrichment scores in drug targets of size 144 drugs by 196 pathways 
for the drug gene network feature (DG-Net), excluding nine drug without target information or the target was 
missing from the PPI network.

https://www.cancerrxgene.org/downloads/bulk_download
https://depmap.org/portal/download/
https://gseapy.readthedocs.io/en/master/gseapy_example.html
https://gseapy.readthedocs.io/en/master/gseapy_example.html
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Chemical structure data. We retrieved canonical SMILE strings by searching the PubChem  database55 
with the open-source Python API, PubChemPy (https ://pubch empy.readt hedoc s.io/en/lates t/). We then con-
verted SMILE strings into Morgan �ngerprint with the open-source cheminformatics toolkit RDKit (http://
www.rdkit .org), generating the matrix of 153 drugs by 256 molecular bits for the chemical structure feature 
(CHEM).

Model fitting. We created a fully connected neural network (FNN), following an architecture suggested by 
Li et al.5 using  Pytorch56, parameters used is listed in the Table S2. We performed tenfold cross validation for the 
experiments in this study with early stopping applied to avoid over�tting, repeated �ve times with di�erent splits 
for the data for robustness veri�cation and for computing the standard deviation between runs. Before feeding 
into the FNN model, we normalized our features using z-score. For the experiment of leave-one-drug-out, we 
took out one drug from training each time (with all its cell-lines), and for the experiment of leave-one-cell-line-
out, we took out one cell-line from training (with all its drugs). We used RMSE to estimate generalization error 
of the model. For compared machine learning algorithms besides FNN, we used scikit-learn  API57 for the other 
models, including the XGBoost algorithm with hyperparameter tuning and early stopping.

Generalization assessment against CCLE. We tested the generalizability of PathDSP by training on 
GDSC and applying the trained model to the CCLE dataset. We then calculated MAE and RMSE for all samples 
and additionally for six drugs and 35 cancer cell line pairs shared between the CCLE and GDSC datasets.

Feature importance. Feature importance was measured as the amount of contribution each feature makes 
to the prediction value. We used the Shapley  value58 to estimate feature importance, which is measured by com-
paring the prediction value obtained with the feature and without  it59. �e python library SHapley Additive 
exPlanations (SHAP)60 was used to obtain global feature importance and visualization of feature importance 
at the local level. If a feature X has a positive shapely value, it indicates that feature X contributes to a higher 
predicted value, and vice-versa. �us, in this study, it is interpreted as the feature X increases/decreases drug 
responses to drug Y (i.e. increase in −log(IC50), which means decrease in IC50).

Data availability
All relevant data used in this study is publicly available and detailed in the data section of the manuscript.

Code availability
PathDSP code is available at: https ://githu b.com/TangY iChin g/PathD SP
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