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Abstract: Explainable machine learning is an emerging new domain fundamental for trustworthy
real-world applications. A lack of trust and understanding are the main drawbacks of deep learning
models when applied to real-world decision systems and prediction tasks. Such models are consid-
ered as black boxes because they are unable to explain the reasons for their predictions in human
terms; thus, they cannot be universally trusted. In critical real-world applications, such as in medical,
legal, and financial ones, an explanation of machine learning (ML) model decisions is considered
crucially significant and mandatory in order to acquire trust and avoid fatal ML bugs, which could
disturb human safety, rights, and health. Nevertheless, explainable models are more than often less
accurate; thus, it is essential to invent new methodologies for creating interpretable predictors that are
almost as accurate as black-box ones. In this work, we propose a novel explainable feature extraction
and prediction framework applied to 3D image recognition. In particular, we propose a new set of
explainable features based on mathematical and geometric concepts, such as lines, vertices, contours,
and the area size of objects. These features are calculated based on the extracted contours of every
3D input image slice. In order to validate the efficiency of the proposed approach, we apply it to a
critical real-world application: pneumonia detection based on CT 3D images. In our experimental
results, the proposed white-box prediction framework manages to achieve a performance similar to
or marginally better than state-of-the-art 3D-CNN black-box models. Considering the fact that the
proposed approach is explainable, such a performance is particularly significant.

Keywords: medical and health applications; pneumonia detection; explainable machine learning;
deep learning; 3D convolutional neural networks; 3D image classification

1. Introduction

The concept of explainable machine learning (ML) has recently attracted a lot of
interest [1–3] because it is considered as a very significant and essential property for
every ML model applied to real-world applications [4], especially in medical [5,6] and
social–human-involved applications [7], which can affect human health, finance, and safety.
Therefore, it is becoming necessary to invent and develop state-of-the-art, explainable ML
models. However, there is a trade-off between explainability and accuracy, meaning that
explainable models are often less accurate compared to non-explainable ones [8,9]. This
means that the invention of explainable prediction models being almost as accurate as
non-explainable ones is a very challenging task.

ML classification models can be separated into two main categories: black-box (unin-
terpretable) (BB) and white-box (interpretable) (WB) models [10]. In general, a BB model is
an ML model, the decision function of which is not transparent and not interpretable in
contrast to a WB model. A WB ML model can be considered any model that is intrinsically
interpretable, meaning that its decision function is totally transparent, such as a linear or a
decision tree model.
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Nevertheless, a WB model is not necessarily explainable by default; an explainable
model must also be able to make reasoning and explain its predictions relying on rea-
sons/features, which are also understandable to humans. Explaining a WB prediction
model’s decision relying on BB features (non-explainable features) is obviously meaning-
less. The term, BB features, means that the extraction procedure of these features is not
transparent, while they are also not understandable by humans. In contrast, WB features
(explainable features) can be considered features whose extraction procedure is transparent,
while they are also understandable and meaningful in human terms. For example, the
features “SEX”, “AGE”, and “GENDER” can be considered as WB features. Therefore, an
explainable ML model can be considered any WB model that relies on WB features.

The initial features (initial representation) of an image instance are single-pixel points;
thus, a feature extraction procedure leading to a new robust representation (latent repre-
sentation) is essential. In recent years, convolutional neural networks (CNNs) [11] have
flourished in many real-world image processing applications [12–14], mainly because of
their ability to learn features during training (the concept of deep representation learning),
achieving remarkable classification performance [15,16]. However, the features extracted
by a CNN model are BB features and, thus, meaningless in human terms, while their
extraction and creation procedure is not interpretable and transparent because this process
is too complicated computationally.

The explanations of CNN models rely on pixel-based post hoc local explanations [3,17],
highlighting the most significant regions of the input image. However, such explanations
are incomplete and cannot be fully trustworthy [1,2]. The main problematic issue of
CNN models lies in the fact that they create non-explainable representations (BB features),
while they also utilize, in their output, a non-explainable fully connected neural network
component. This implies that current state-of-the-art CNN classification models can be
considered as BB predictors that rely on BB features in order to make predictions, leading
to the fact that they are doomed to be non-explainable.

Furthermore, even if a CNN model is used as a feature extractor [18] (by removing
the output black-box neural network component) for feeding a white-box model, such
as decision tree (DT), such an approach is still considered as non-explainable because a
DT will make predictions based on BB features, which are meaningless in human terms.
Therefore, in order to build a totally explainable model in image recognition tasks, it is
essential to create a WB predictor that will rely only on WB features.

For this task, it is necessary to invent transparent feature extraction functions leading
to human-meaningful features. Such transparent latent image representations are mainly
created based on hand-crafted (HC) feature extraction approaches [1,2,19,20]. However,
applying a white-box model to WB HC features rarely leads to a higher classification
performance [2] compared to an end–end CNN approach. Thus, the invention of a WB
feature extraction approach that leads to accuracy performance similar to a CNN is a very
difficult and challenging task.

Additionally, another significant disadvantage regarding CNN models concerns the
rotation invariance property. CNNs, in general, are not invariant to image rotations [21],
which can lead to unstable prediction outcomes and poor performance when the input is
rotated. By the term “rotation invariance”, we refer to the property of a feature extraction
model to maintain unchanged the output representation (final extracted features) of input
images due to rotation operations.

In this work, we propose a new hand-crafted transparent feature extraction frame-
work, which creates explainable-to-human features, for 3D image classification [18]. It
is worth mentioning that our methodology was initially inspired by a recent HC feature
extraction approach [2], where the authors introduced a set of explainable features based
on simple mathematical concepts such as average and standard deviation values of pixels’
intensity. However, we drastically augmented their proposed feature extraction framework
by introducing a new set of explainable features, which are mainly based on fundamentally
explainable mathematical and geometric concepts, such as vertices, lines, curves, contours’



Electronics 2023, 12, 2663 3 of 15

areas, and perimeters, which are extracted via the object’s contours of an image. Further-
more, these features are also fundamentally rotation invariant due to the fact that they
rely on the geometric properties of the extracted contours, and thus, rotations would not
affect these ones (for example, the number of lines and the shape of contours will remain
invariant). These features can then be fed into a common WB ML model, such as logistic
regression (LR), resulting in a totally explainable and transparent prediction model (feature
extraction component and output prediction model).

In order to demonstrate the generalization efficiency of our proposed framework, we
applied it to the pneumonia detection problem (3D spatial images based on CT scans).
The pneumonia detection problem has recently attracted very high interest [22,23], mainly
due to the COVID-19 [24] pandemic. ML decisions, applied to such crucial real-world
applications, can affect human health, safety, and financial situations; thus, the property of
explainability is of high significance in those application cases.

The main contributions of this research work are described as follows:

• We propose an interpretable rotation-invariant feature extraction framework, formally
defining and introducing a set of explainable features for 3D images.

• This contributes to explainable ML by providing an interpretation for ML decisions
in critical real-world applications, such as pneumonia detection, through the incor-
poration of efficient and explainable latent image representations in order to build
interpretable, trustful, and accurate prediction models.

• We propose the idea of extracting contours in order to create and employ features,
which are based on mathematical and geometric concepts, such as the number of
contours, average contour area, average perimeter, the contour center of gravity,
vertices, and edges. Such features are universally easy to understand and accepted as
explainable.

• We propose an explainable 3D image classification framework that exhibits high per-
formance when applied to pneumonia detection, managing to achieve a performance
similar to or marginally better than state-of-the-art 3D-CNN black-box models. Con-
sidering the fact that the proposed approach is explainable, such a performance is
particularly significant and noteworthy.

It is worth mentioning that, in this work, we only emphasize creating WB features
for 3D images. The creation of an efficient and explainable feature extraction framework
on 3D images is much more complicated compared to 2D images because of the increased
complexity that is due to the extra dimension. To the best of our knowledge, such an
accurate and interpretable feature extraction and prediction framework for 3D image
recognition applications does not exist in the literature.

The rest of this paper is organized as follows: Section 2 presents the main approaches
in 3D image recognition; Section 3 describes the proposed framework in detail; Section 4
presents our application case study scenarios; Section 5 reports and discusses our experi-
mental results and conclusive remarks.

2. Related Work

Image classification is an area in machine learning and computer vision in which
deep convolutional neural networks (CNNs) have flourished [15,16,25], mainly because
they have achieved exceptional classification performance. Deep learning (DL) models are
trained on millions of images and composed of a large variety of various CNN architecture
combinations, such as ResNet [26] and Inception [27], which constitute state-of-the-art
approaches for solving image recognition problems. In fact, these networks are utilized
as pretrained feature extraction models, transferring their knowledge into new smaller
untrained networks (the main transfer learning approach) in order to specialize in new
specific image classification problems.

In 3D image classification, the initial volumetric image can be sliced into discrete
2D image slices. Next, a 2D convolutional (2D-CNN) neural network model can extract
features [28] for every image slice, and finally, these features are aggregated in order to
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train an ML model, such as SVM [29] or LSTM [30]. However, the main disadvantage of
these approaches lies in the fact that they initially process each image slice independently;
thus, they cannot correlate volumetric context from adjacent slices. On the other hand,
3D-CNN models utilize 3D convolutional kernels in order to extract volumetric feature
context from the initial 3D image at once. Thus, the state-of-the-art approach to address 3D
image recognition tasks is based on the development of 3D convolutional neural networks
adjusting well-known 2D topologies (such ResNet and Inception) into 3D ones [31].

The 3D ResNet (R3D) is based on traditional 2D ResNet topology. ResNet networks
utilize identity connections that take the input directly to the end of each residual block.
The main contribution of these connections is that they manage to address the degradation
problem. The degradation problem is caused when setting an overly large network depth,
such as for over 20 layers. In fact, as the network depth increases, accuracy becomes satu-
rated and highly degraded. However, based on experimental results, setting an exceedingly
high number of layers (over 1000), the residual network starts to exhibit low performance,
which is probably caused due to overfitting, as stated in [26]. In the R3D model, the 2D
convolutional kernels, and every other 2D operation, such as max pooling, are replaced
with the corresponding 3D operations.

The 3D Inception (I3D) [31] is based on the traditional 2D Inception topology. Inception
is a network whose main architectural topology philosophy is based on finding an optimal
local construction and repeating it spatially. This network is capable of exploiting its
computing resources in an efficient way by a crafted design that allows an increase in the
depth and width of the network, maintaining, at the same time, the computational cost
constant. Furthermore, in order to further improve the model, the architectural decisions
were based on the intuition of multi-scale processing. Similar to R3D, the I3D replaces
every 2D operation with the corresponding 3D ones.

Nevertheless, as already mentioned, the main disadvantages of CNN approaches
are their lack of interpretability and explainability. Instead, an HC feature extraction
approach [2,19,32] can be considered as explainable because it relies on human-interpretable
features based on well-known mathematical concepts. However, the quality of explanation
depends heavily on the utilized mathematical formulae [1]; thus, an HC approach cannot
be considered widely explainable to every human. For instance, an HC approach that relies
on discrete Fourier transform (DFT) [19] can be interpreted only by an audience familiar
with the specific knowledge domain. Instead, in our approach, we create features that are
based on widely known mathematical and geometric concepts, such as vertices and edges
characteristics of input image objects, which are universally accepted as explainable.

3. Proposed Methodology

A high-level architectural description of the proposed 3D image feature extraction
framework is depicted in Figure 1. The proposed framework is described as follows:

In the first step (Image Threshold Filters component), we apply simple thresholding
and Otsu and Canny algorithms [33,34] to every image slice of the initial 3D input image.
This step is essential in order to simplify the initial complicated input into a binary image
(BI) and then extract the contour objects and spatial features. The BI is a 1-channel image,
composed of two intensity pixel values, 0 or 1. The reason for choosing these filters
is because we envisioned creating an interpretable and transparent feature extraction
framework. Every algorithm utilized in our framework has to be interpretable. The
algorithms used in this step are interpretable because they are based on well-defined
transparent mathematical formulae. In the second step (Feature Vectors Extraction), based
on the extracted contours of every BI, we extract the proposed explainable features. These
features are initially extracted for every BI slice, creating sequence feature vectors. Finally,
we average every feature sequence and create the final WB feature vector, which can be
used as input for WB ML models, such as LR and DT.
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Figure 1. High-level presentation of the proposed explainable feature extraction framework.

3.1. Proposed Framework Mathematical Description

To describe the functionality of our framework in more detail, assume a 3D input
image ID×H×W×Ch, where H and W are the number of pixels corresponding to the height
and width of every 2D image slice, respectively; D (depth) corresponds to the total number
of slices; and Ch is the number of channels of every image slice (Ch = 3, in common
RGB images). It is essential to mention that in order to apply the specific filters (simple
thresholding, Otsu, and Canny), the initial multi-channel image I has to be transformed
into a one-channel image (gray image: GI). This is simply performed by averaging the pixel
values of all channels; thus, the GID×H×W is created.
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Next, the filters are applied to every GI’s image slice given by the following general
formulae:

BIH×W
i = F

(
GIH×W

i

)
, (1)

where GIi and BIi are the gray and binary image slices, respectively, ∀i ∈ {1, . . . , D}; F is
the corresponding function of the applied filter. GIi is represented as:

GIi =



p11 . . . p1w . . . p1W
...

. . .
... . . . ...

ph1 . . . phw . . . phW
... . . . ...

. . .
...

pH1 . . . pHw . . . pHW


i

, (2)

where phw represents the pixel intensity values. The general filter function is defined as follows:

F(phw) =

{
1, phw > thF
0, phw ≤ thF

(3)

where thF represents the thresholding function regarding the applied filter F (simple, Otsu,
or Canny).

Assume, in general, M totals 3D binary images, BID×H×W
j ∀j ∈ [1, . . . , M], which are

created after applying M total filters. In the next step, we extract the contours, Ci,j, for
every BIH×W

i,j slice. Ci,j is the set of pixel coordinates for every identified object in each

BIH×W
i,j slice (the term “object” refers to the image’s sub-regions, which form a discrete area

of pixels with a value of 1). Then, based on the extracted contours, the proposed features:

Xi,j = [x1, x2, . . . , xk]i,j (4)

as presented in Equations (8)–(26), are extracted for every BIH×W
i,j slice; thus, a set of

sequence feature vectors, XD×k
j , is created and represented as:

XD×k
j =

[
X1,j, . . . , Xi,j, . . . , XD,j

]T . (5)

This feature extraction can be formalized as follows:

XD×k
j = FE(BID×H×W

j , Cj),
Cj =

[
C1,j, . . . , Ci,j, . . . , CD,j

]
,

BID×H×W
j =

[
BIH×W

1,j , . . . , BIH×W
i,j , . . . , BIH×W

D,j

]
,

(6)

where the term FE represents the set of feature extraction formulae, as presented in
Equations (8)–(26). Lastly, the final feature vector is computed by averaging the sequence
vector, as described below:

XAv,j =
1
D

D

∑
i=0

Xi,j,XAv,j = [xAv1, xAv2, . . . , xAvk]j (7)

3.2. Feature Vectors Extraction Component

The following proposed mathematical formulae, (8)–(26), are applied to every binary
image (BI) slice, which extracts the XD×k

j -explainable features. A BI is a 1-channel image,
composed of intensity pixel values, 0 or 1 (a toy example is presented in Figure 2). We have
also distinguished the proposed explainable features via six feature families/categories
regarding the type of the extracted feature characteristics, namely, “Whole Image”, “Contours
Number”, “Contours Perimeter Size”, “Contours Area Size”, “Contours Vertices Number”, and
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“Contours’ Gravity”. These feature categories were carefully selected and created in order to
guarantee explainability, and the rotation invariance properties of the proposed framework
were also followed by a high final accuracy performance. These categories are described
as follows:
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Figure 2. Presentation of feature extraction for a toy example.

The Whole Image category extracts features based on the whole BI region and, thus,
provides very abstract and compact total information.

The Contours Number category concerns features based on the number of extracted
contours of each BI. This category fundamentally provides an easily explainable set of
features, exploiting information regarding the population of the objects within the BI.

The Contours Perimeter Size category extracts shape characteristics of the extracted con-
tours based on their perimeter size, providing information regarding the boundary region
size of the underlying contours. The Contours Area Size category extracts shape attributes of
the extracted contours based on their area size, providing information regarding the inner
region size of the underlying contours.

The Contours Vertices Number category creates features based on the number of vertices
of every extracted contour of each BI. These features provide more specific information
regarding the objects’ morphology and also lead to more synthetic contour representation
(combined with the “size” family features). For instance, a large in size contour followed by
a small number of vertices number leads to the fact that the contour has few angles, reaching
square contour types, and, in general, indicates a less complicated shape morphology object.
In contrast, a large in size contour followed by also a large number of vertices number indicates
that the underlying contour has a more complicated and complex shape morphology.
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Finally, the Contours’ Gravity extracts feature is based on the center of gravity of every
contour. These features provide a robust and compact representation of the BI’s objects,
exploiting information regarding the mass of the underlying objects.

All these feature categories are also fundamentally invariant to rotations. For instance,
the rotation of an image will not affect the number of vertices and the size of contours. The
proposed feature extraction is mathematically described as follows:

The first feature family is the “Whole Image” category, where the features are extracted
by utilizing all the pixel values of the BI, which are described as follows:

E(BI) =
1

H ×W

H,W

∑
h,w=1,1

phw (8)

VAR(BI) = E
(

BI2
)
− E(BI)2 (9)

where E(BI) measures the average intensity value of the BI slice. A high value indicates
that the extracted contour objects are compact and cover a higher area compared to the
image’s background. VAR(BI) measures the variance of the intensity values of the BI. A
high value indicates that the extracted contour objects are very irregular.

The second feature family is the “Contours Number” category constituted by the fea-
tures, the number of contours (NuCs), and the number of lines (NuLs). These features measure
the total number of extracted contour objects and the total number of extracted lines,
respectively (a toy example is presented in Figure 2).

The third feature family is the “Contours Perimeter Size” category constituted by the
features, average contours’ perimeter (AvCPer), variance of contours’ perimeter (VarCPer), and
max/min of contours’ perimeter (Max, MinCPer) defined as:

AvCPer =
1

NuC

NuC

∑
i=0

Pi (10)

VarCPer =
1

Nc

NuC

∑
i=0

(Pi − AvCPer)2 (11)

Max, MinCPer = MAX, MIN(Pi) (12)

where AvCPer measures the representative/average perimeter size of the identified con-
tours of the BI. The term Pi represents the perimeter size of contour i. VarCPer measures
the variance of the perimeter’s sizes for the identified contours. Max, MinCPer measures
the maximum/minimum perimeter size of the identified contours.

The fourth feature family is the “Contours Area Size” constituted by the features, average
Contours’ Area (AvCAr), variance of Contours’ Area (VarCAr), and max/min of Contours’ Area
(Max, MinCAr) defined as:

AvCAr =
1

NuC

NuC

∑
i=0

Ai (13)

VarCAr =
1

NuC

NuC

∑
i=0

(Ai − AvCAr)2 (14)

Max, MinCAr = MAX, MIN(Ai) (15)

where AvCAr measures the representative/average area size of the identified contours
of the BI. The term Ai represents the area size of every contour i. VarCAr measures
the variance of the area sizes for the identified contours. Max, MinCAr measures the
maximum/minimum area size of the identified contours.
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The fifth feature family is the “Contours Vertices Number” constituted by the fea-
tures, average of Contours’ Vertices Number (AvCVNu), variance of Contours’ Vertices Number
(VarCVNu), and max/min of Contours’ Vertices Number (Max, MinCVNu) defined as:

AvCVNu =
1

NuC

NuC

∑
i=0

NuVi (16)

VarCVNu =
1

NuC

NuC

∑
i=0

(NVi − AvCVNu)2 (17)

Max, MinCVNu = MAX, MIN(NuVi) (18)

where AvCVNu measures the average value of the number of vertices of every identified
contour of the BI. The term NuVi represents the total number of vertices of contour i.
VarCVNu measures the variance of the NuVi values, and Max, MinCVNu measures the
maximum/minimum of the NuVi values.

The sixth and final feature family is “Contours’ Gravity” constituted by the features,
average contours’ center of gravity (AvCCG), variance of contours’ center of gravity (VarCCG),
max/min of contours’ center of gravity (Max, MinCCG), average contours’ irregularity (AvCIrr),
variance contours’ irregularity (VarCIrr), and max/min of contours’ irregularity (Max, MinCIrr)
defined as:

CGi =
1

2NuV

NuV

∑
j=0

(Xj + Yj)i (19)

AvCCG =
1

NuC

NuC

∑
i=0

CGi (20)

VarCCG =
1

NuC

NuC

∑
i=0

(CGi − AvCCG)2 (21)

Max, MinCCG = MAX, MIN(CGi) (22)

Irri =

NuV
∑

j=0

((
Xj − CGi

)2
+ (Yj − CGi)

2
)

2NuV
(23)

AvCIrr =
1

NuC

NuC

∑
i=0

Irri (24)

VarCIrr =
1

NuC

NuC

∑
i=0

(Irri − AvCIrr)2 (25)

Max, MinCIrr = MAX, MIN(Irri) (26)

where the terms Xj and Yj represent the vertices’ coordinates. The term CGi represents the
center of gravity of every contour i.

Figure 2 presents a toy example in order to further explain, in a more understandable
way, some of the proposed features. Assume the following extracted contours (A, B) and
curved lines (C, D), given a BI, as presented in Figure 2. In this specific toy example, one can
easily observe and understand the calculation and the meaning of some feature examples
based on the proposed formulae.
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4. Experimental Setup and Results
4.1. Pneumonia Detection Problem

The pneumonia detection problem has recently attracted very high interest [22,23],
mainly due to the COVID-19 [24] pandemic. Therefore, early and accurate detection of
pneumonia cases and healthy patients is of vital significance.

The dataset used in our experiments is based on the MosMedData dataset [35], which
was provided by medical hospitals in Moscow, Russia, and collected at the Center of
Diagnostics and Telemedicine. It is composed of 3D-CT lung volumes from anonymized
human lung computer tomography (CT) scans with COVID-19-related findings.

More specifically, the dataset includes 44% males and 56% females of ages between 18
and 97 years old with a median of 47 years old. The utilized dataset is constituted of 425 CT
scans, comprising 254 healthy and 171 ill patient subjects, respectively. Each scan instance
has 80 image slices in total, while each slice has 300×300 height and width pixel resolution.

4.2. Presentation of Results

In this section, we present and discuss our experimental results (Table 1) regarding
the proposed framework, applying it to the pneumonia detection dataset. Table A1 in
Appendix A presents a comprehensive summary of the main characteristics of all pre-
diction frameworks utilized in our experimental simulations. Finally, in Figure A1 in
Appendix A, we present an application of the proposed features for a case study pneu-
monia instance example. The whole implementation code can be found in the following
link: https://github.com/EmmanuelPintelas/Novel-Explainable-Feature-Extraction-from-
3D-Images-applied-on-Pneumonia-Detection (accessed on 1 June 2023).

Table 1. Performance results for the pneumonia detection dataset.

3D Image
Dimension

Sizes

Val.
Metrics

HC Features
(Explainable)

2D-CNN Features
(Non-Explainable)

3D-CNN Features
(Non-Explainable)

HC1
(Proposed) HC2 HC3 R2D I2D R3D I3D

LR DT LR DT LR DT LSTM SVM LSTM SVM E-E SVM E-E SVM

80× 300× 300
GM 0.816 0.728 0.586 0.519 0.706 0.673 0.707 0.737 0.807 0.790 0.755 0.767 0.835 0.840
Sen 0.824 0.765 0.471 0.412 0.647 0.588 0.765 0.706 0.706 0.706 0.706 0.765 0.824 0.706
Spe 0.808 0.692 0.731 0.654 0.769 0.769 0.654 0.769 0.923 0.885 0.808 0.654 0.846 1.0

80× 150× 150
GM 0.883 0.737 0.669 0.638 0.605 0.689 0.638 0.688 0.804 0.822 0.673 0.707 0.840 0.824
Sen 0.882 0.706 0.647 0.588 0.529 0.824 0.588 0.647 0.647 0.765 0.588 0.765 0.706 0.706
Spe 0.885 0.769 0.692 0.692 0.692 0.577 0.692 0.731 1.000 0.885 0.769 0.654 1.000 0.962

80× 75× 75
GM 0.723 0.622 0.620 0.638 0.638 0.656 0.688 0.673 0.761 0.737 0.723 0.773 0.737 0.761
Sen 0.647 0.529 0.588 0.529 0.588 0.588 0.647 0.588 0.941 0.882 0.647 0.706 0.882 0.941
Spe 0.808 0.731 0.654 0.769 0.692 0.731 0.731 0.769 0.615 0.615 0.808 0.846 0.615 0.615

80× 50× 50
GM 0.804 0.688 0.642 0.638 0.654 0.659 0.755 0.740 0.760 0.807 0.737 0.790 0.790 0.822
Sen 0.765 0.647 0.765 0.706 0.529 0.471 0.706 0.647 0.882 0.706 0.706 0.706 0.706 0.765
Spe 0.846 0.731 0.538 0.577 0.808 0.923 0.808 0.846 0.654 0.923 0.769 0.885 0.885 0.885

40× 50× 50
GM 0.822 0.712 0.642 0.659 0.631 0.602 0.673 0.706 0.706 0.688 0.718 0.718 0.740 0.721
Sen 0.765 0.824 0.824 0.706 0.471 0.588 0.588 0.647 0.647 0.647 0.706 0.824 0.647 0.588
Spe 0.885 0.615 0.500 0.615 0.846 0.615 0.769 0.769 0.769 0.731 0.731 0.615 0.846 0.846

The validation of our experimental simulations was based on the geometric mean
(GM) [36] performance metric. Compared to the common accuracy metric, GM is more suit-
able in unbalanced datasets and biased predictions because it is based on the multiplication
of the true positive and true negative prediction values. Thus, it can be considered as a
reliable and robust validation metric, in general. In addition, we have also included the
validation metrics: sensitivity (Sen) and specificity (Spe). It is worth mentioning that GM,
along with the balance of Sen and Spe, highlights the information provided by a confusion
matrix in compact form [37,38]; thus, they constitute the proper performance metrics to
evaluate a classification model, especially in the case of imbalanced data.

https://github.com/EmmanuelPintelas/Novel-Explainable-Feature-Extraction-from-3D-Images-applied-on-Pneumonia-Detection
https://github.com/EmmanuelPintelas/Novel-Explainable-Feature-Extraction-from-3D-Images-applied-on-Pneumonia-Detection
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In both 3D topologies, the 2D operations (convolutions and pooling layers) are replaced
with the corresponding 3D operations and initialized based on ImageNet and Kinetics
weights [31]. The CNN models’ output feature maps were vectorized based on the global
averaging pooling (GAP) operation followed by the output block. All CNN models were
implemented in Keras and fine-tuned regarding the new case study datasets. Moreover, the
specifications of the CNN output blocks’ technical parameters (such as fully connected (FC)
and dropout components) were set in order to gain maximum performance results. During
the training procedure, the Adam optimizer [39] was used with a small initial learning
rate (10−4). The reason for choosing a small initial learning rate is that we already used
pretrained CNN models; hence, it is not appropriate to drastically change and “destroy”
the initially saved weights of every model. Additionally, we used a reduce-learning-rate-
on-plateau scheduler during the training phase in order to upgrade the learning rate with
respect to the validation score. In particular, for every three epochs in which there was
no validation accuracy improvement, learning was decreased by a factor of 0.5 until a
minimum learning rate (10−7) was achieved.

The main observations of our experimental results can be summarized as follows:

• Overall, the proposed framework exhibits better performance compared to other WB
approaches when applied to the pneumonia detection problem.

• It also managed to outperform most of the other BB approaches. In particular, it
slightly outperformed the best-identified BB approach (the I3D-SVM model managed
to deliver the best results among the other BB approaches). However, it also managed
to achieve the best geometric mean score of 0.883, surprisingly surpassing the I3D-
SVM model. Considering the fact that the proposed approach is interpretable, such a
performance is particularly significant.

• The Inception model produced the best results compared to ResNet for both their 2D
and 3D versions.

• Among the ML models, the SVM classifier achieved, on average, the best results for
all feature representation approaches.

• The best results, in general, were achieved for high compression sizes for the pneumonia
dataset, while for lower compression sizes, rapid performance degradation was observed.

5. Discussion and Conclusions

In this work, we proposed an advanced explainable feature extraction and prediction
framework for 3D image recognition applied to pneumonia detection. Based on our exper-
imental results, our method outperformed every other utilized 3D prediction approach
(both white- and black-box approaches), validating the efficiency and effectiveness of the
proposed approach. Considering the fact that the proposed model is a white-box model
and interpretable, such a performance can be considered particularly noteworthy and re-
markable. In summary, the advantages of the proposed feature extraction and classification
framework are presented as follows:

• The whole feature extraction and classification procedure of the entire ML framework
is totally transparent and interpretable.

• The final extracted features are explainable and meaningful in human terms.
• Last but not least, the final extracted features are invariant to image rotations.

Nevertheless, because the proposed features are computed independently for every
image slice of a given 3D image, the main limitation of the proposed framework inevitably
lies in the long feature extraction computation time. Therefore, a parallel implementation
that simultaneously computes the proposed explainable feature set for batches of image
slices instead would be essential in order to drastically boost the total computation speed
performance. On the other hand, the main advantage of the proposed framework (except for
the explainability/interpretability one) is that it requires extremely low memory resources
because only the final extracted features and the weights of an LR white-box model have to
be stored, which is in contrast to CNN models, where millions of weight parameters have
to be stored.
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In future work, further investigation and experimentations should be performed. In
particular, we aim to further improve the proposed framework by inventing even more
interpretable and explainable features that are meaningful in human terms. Moreover, we also
intend to apply our proposed methodology to other, more image-intensive application tasks,
such as image segmentation and image similarity problems, in order to further investigate its
feature extraction efficacy in a much wider range of image representation tasks.

Additionally, we intend to explore dependencies between adjacent slices of the ex-
tracted features in order to remove possible redundant features and further improve the
reliability of the proposed framework.

Finally, we intend to upgrade the proposed framework by incorporating ensemble-
based methods [10] based on XGBoost and random forest models in order to further
improve the final prediction performance.
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published version of the manuscript.
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Appendix A

Table A1. Summary of the key characteristics of the 3D prediction frameworks utilized in our
experimental setup.

Frameworks Brief Description Abstract Architecture

H
C

Fe
at

ur
es

(E
xp

la
in

ab
le

/W
B)

HC1 (Proposed),
HC2 [19],
HC3 [2]

In the first phase, an HC approach
extracts features for every 2D
image frame of the 3D image
input. In the second phase, the
extracted feature vectors are
averaged and finally fed into an
ML model, which performs the
classification task.
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2D-CNN–ML [28]

In the first phase, a 2D-CNN
model extracts features for every
2D image frame/slice of the 3D
image input. In the second phase,
the extracted features are
aggregated and fed into an ML
model, which performs the
classification task.
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2D-CNN-LSTM [30]

Similar to the above approach, in
the first phase, a trained 2D-CNN
model extracts features for every
2D image frame/slice of the 3D
image input. However, in the
second phase, an LSTM layer is
fed with the 2D-CNN features
ordered in the time/spatial
domain, followed by the final
output layer, which performs the
classification task.
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Table A1. Cont.

Frameworks Brief Description Abstract Architecture

3D
C

N
N

Fe
at

ur
es

(N
on

-E
xp

la
in

ab
le

/B
B)

3D-CNN E-E [31]

End–end (E-E) CNN approach. A
3D-CNN model, such as I3D and
R3D, followed by an output block
is trained with respect to a 3D
classification task.
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3D-CNN-ML [29,31]

The output block is discarded,
while the 3D-CNN features are
used for training a ML
classification model, such as SVM.
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Table A2. List of main acronyms and abbreviations.

ML Machine Learning
CNN Convolutional Neural Network
HC Hand Crafted
WB White Box
BB Black Box
LR Logistic Regression
DT Decision Tree
I3D 3D Inception
R3D 3D ResNet
GAP Global Averaging Pooling
FC Fully Connected
BI Binary Image

As presented in Figure A1, in the frames F0 and F1, the instance seems to appear normal;
however, in frame F2, the pneumonia signs seem to appear. It can be easily observed that
our proposed explainable features for this case study instance possess distinguishable values
between the “normal” F0 and F1 frames and the F3 one, detecting the pneumonia presence
and, thus, revealing the efficiency of the proposed features for this case study instance.
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