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Abstract

The paper proposes an explainable Artificial Intelligence model that can be used in 

credit risk management and, in particular, in measuring the risks that arise when 

credit is borrowed employing peer to peer lending platforms. The model applies 

correlation networks to Shapley values so that Artificial Intelligence predictions are 

grouped according to the similarity in the underlying explanations. The empirical 

analysis of 15,000 small and medium companies asking for credit reveals that both 

risky and not risky borrowers can be grouped according to a set of similar financial 

characteristics, which can be employed to explain their credit score and, therefore, to 

predict their future behaviour.

Keywords Credit risk management · Explainable AI · Financial technologies · 

Similarity networks

1 Introduction

Black box Artificial Intelligence (AI) is not suitable in regulated financial services. 

To overcome this problem, Explainable AI models, which provide details or reasons 

to make the functioning of AI clear or easy to understand, are necessary.
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To develop such models, we first need to understand what “Explainable” 

means. Recently, some important insitutional definitions have been provided. For 

example, Bracke et al. (2019) states that “Explanations can answer different kinds 

of questions about a model’s operation depending on the stakeholder they are 

addressed to and Croxson et  al. (2019)” ‘interpretability’ will be the focus will 

be the focus—generally taken to mean that an interested stakeholder can compre‑

hend the main drivers of a model‑driven decision".

Explainability means that an interested stakeholder can comprehend the main 

drivers of a model‑driven decision; FSB (2017) suggests that “lack of interpret‑

ability and auditability of AI and Machine Learning (ML) methods could become 

a macro‑level risk”; Croxson et al. (2019) establishes that “in some cases, the law 

itself may dictate a degree of explainability.”

The European GDPR EU (2016) regulation states that “the existence of auto‑

mated decision‑making should carry meaningful information about the logic 

involved, as well as the significance and the envisaged consequences of such 

processing for the data subject.” Under the GDPR regulation, the data subject is 

therefore, under certain circumstances, entitled to receive meaningful information 

about the logic of automated decision‑making.

Finally, the European Commission High‑Level Expert Group on AI presented 

the Ethics Guidelines for Trustworthy Artificial Intelligence in April 2019. Such 

guidelines put forward a set of seven key requirements that AI systems should 

meet in order to be deemed trustworthy. Among them three relate to the concept 

of “eXplainable Artificial Intelligence (XAI)” , and are the following.

• Human agency and oversight: decisions must be informed, and there must be a 

human‑in‑the‑loop oversight.
• Transparency: AI systems and their decisions should be explained in a manner 

adapted to the concerned stakeholder. Humans need to be aware that they are 

interacting with an AI system.
• Accountability: AI systems should develop mechanisms for responsibility and 

accountability, auditability, assessment of algorithms, data and design pro‑

cesses.

Following the need to explain AI models, stated by legislators and regulators of 

different countries, many established and startup companies have started to embrace 

Explainable AI models. In addition, more and more people are searching informa‑

tion about what “Explainable Artificial Intelligence” means.

In this respect, Fig. 1 represents the evolution of Google searches for explainable 

AI related terms.

From a mathematical viewpoint, it is well known that “simple” statistical learning 

models, such as linear and logistic regression models, provide a high interpretability 

but, possibly, a limited predictive accuracy. On the other hand, “complex” machine 

learning models, such as neural networks and tree models, provide a high predictive 

accuracy at the expense of a limited interpretability.

To solve this trade‑off, we propose to boost machine learning models, that are 

highly accurate, with a novel methodology, that can explain their predictive output. 
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Our proposed methodology acts in the post processing phase of the analysis, rather 

than in the preprocessing part. It is agnostic (technologically neutral) as it is applied 

to the predictive output, regardless of which model generated it: a linear regression, 

a classification tree or a neural network model.

The machine learning procedure proposed in the paper processes the outcomes 

of any other arbitrary machine learning model. It provides more insight, control and 

transparency to a trained, potentially black box machine learning model. It utilises a 

model‑agnostic method aiming at identifying the decision‑making criteria of an AI 

system in the form of variable importance (individual input variable contributions).

A key concept of our model is the Shapley value decomposition of a model, a 

pay‑off concept from cooperative game theory. To the best of our knowledge this 

is the only explainable AI approach rooted in an economic foundation. It offers a 

breakdown of variable contributions so that every data point (e.g. a credit or loan 

customer in a portfolio) is not only represented by input features (the input of the 

machine learning model) but also by variable contributions to the prediction of the 

trained machine learning model.

More precisely, our proposed methodology is based on the combination of net‑

work analysis with Shapley values [see Lundberg and Lee (2017),  Joseph (2019), 

and references therein]. Shapley values were originally introduced by  Shapley 

(1953) as a solution concept in cooperative game theory. They correspond to the 

average of the marginal contributions of the players associated with all their possible 

orders. The advantage of Shapley values, over alternative XAI models, is that they 

can be exploited to measure the contribution of each explanatory variable for each 

point prediction of a machine learning model, regardless of the underlying model 

itself [see, e.g. Lundberg and Lee (2017)]. In other words, Shapley based XAI mod‑

els combine generality of application (they are model agnostic) with the personalisa‑

tion of their results (they can explain any single point prediction).

Our original contribution is to improve Shapley values, improving the interpretation 

of the predictive output of a machine learning model by means of correlation network 

models. To exemplify our proposal, we consider one area of the financial industry in 

which Artificial Intelligence methods are increasingly being applied: credit risk man‑

agement [see for instance the review by Giudici (2018)].

Correlation networks, also known as similarity networks, have been introduced 

by  Mantegna and Stanley (1999) to show how time series of asset prices can be 

clustered in groups on the basis of their correlation matrix. Correlation patterns 

between companies can similarly be extracted from cross‑sectional features, based 

on balance sheet data, and they can be used in credit risk modelling. To account for 

such similarities we can rely on centrality measures, following Giudici et al. (2019) 

, who have shown that the inclusion of centrality measures in credit scoring models 

does improve their predictive utility. Here we propose a different use of similarity 

networks. Instead of applying network models in a pre‑processing phase, as in Giu‑

dici et  al. (2019) , who extract from them additional features to be included in a 

statistical learning model, we use them in a post‑processing phase, to interpret the 

predictive output from a highly performing machine learning model. In this way we 

achieve both predictive accuracy and explainability.
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We apply our proposed method to predict the credit risk of a large sample of 

small and medium enterprises. The obtained empirical evidence shows that, while 

improving the predictive accuracy with respect to a standard logistic regression 

model, we improve, the interpretability (explainability) of the results.

The rest of the paper is organized as follows: Sect.  2 introduces the proposed 

methodology. Section 3 shows the results of the analysis in the credit risk context. 

Section 4 concludes and presents possible future research developments.

2  Methodology

2.1  Statistical Learning of Credit Risk

Credit risk models are usually employed to estimate the expected financial loss that 

a credit institution (such as a bank or a peer‑to‑peer lender) suffers, if a borrower 

defaults to pay back a loan. The most important component of a credit risk model is 

the probability of default, which is usually estimated statistically employing credit 

scoring models.

Borrowers could be individuals, companies, or other credit institutions. Here we 

focus, without loss of generality, on small and medium enterprises, whose financial 

data are publicly available in the form of yearly balance sheets.

For each company, n, define a response variable Y
n
 to indicate whether it has 

defaulted on its loans or not, i.e. Y
n
= 1 if company defaults, Y

n
= 0 otherwise. And 

let X
n
 indicate a vector of explanatory variables. Credit scoring models assume that 

the response variable Y
n
 may be affected (“caused”) by the explanatory variables X

n
.

The most commonly employed model of credit scoring is the logistic regression 

model. It assumes that

where p
n
 is the probability of default for company n; �

n
= (x

i,1,… , x
i,J) is a J‑dimen‑

sional vector containing the values that the J explanatory variables assume for com‑

pany n; the parameter � represents an intercept; �j is the jth regression coefficient.

Once the parameters � and �j are estimated using the available data, It the prob‑

ability of default can be estimated, inverting the logistic regression model, from:

(1)ln

(

pn

1 − pn

)

= � +

J
∑

j=1

�jxnj

(2)pn =

(

1 + exp

(

� +

J
∑

j=1

�jxnj

))−1
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2.2  Machine Learning of Credit Risk

Alternatively, credit risk can be measured with Machine Learning (ML) models, 

able to extract non‑linear relations among the financial information contained in the 

balance sheets. In a standard data science life cycle, models are chosen to optimise 

the predictive accuracy. In highly regulated sectors, like finance or medicine, mod‑

els should be chosen balancing accuracy with explainability (Murdoch et al. 2019). 

We improve the choice selecting models based on their predictive accuracy, and 

employing a posteriori an algorithm that achieves explanability. This does not limit 

the choice of the best performing models.

To exemplify our approach we consider, without loss of generality, the Extreme 

Gradient Boost model, one of the most popular and fast machine learning algorithms 

[see e.g. Chen and Guestrin (2016)].

Extreme Gradient Boosting (XGBoost) is a supervised model based on the com‑

bination of tree models with Gradient Boosting. Gradient Boosting is an optimisa‑

tion technique able to support different learning tasks, such as classification, ranking 

and prediction. A tree model is a supervised classification model that searches for 

the partition of the explanatory variables that best classify a response (supervisor) 

variable. Extreme Gradient Boosting improves tree models strengthening their clas‑

sification performance, as shown by Chen and Guestrin (2016). The same authors 

also show that XGBoost is faster than tree model algorithms.

In practice, a tree classification algorithm is applied successively to “training” 

samples of the data set. In each iteration, a sample of observations is drawn from the 

available data, using sampling weights which change over time, weighting more the 

observations with the worst fit. Once a sequence of trees is fit, and classifications 

made, a weighted majority vote is taken. For a more detailed description of the algo‑

rithm see, for instance (Friedman et al. 2000).

2.3  Learning Model Comparison

Once a default probability estimation model is chosen, it should be measured in 

terms of predictive accuracy, and compared with other models, so to select the best 

one. The most common approach to measure predictive accuracy of credit scoring 

models is to randomly split the available data in two parts: a “train” and a “test” set; 

build the model using data in the train set, and compare the predictions the model 

obtains on the test set, Ŷ
n
 , with the actual values of Y

n
.

To obtain Ŷ
n
 the estimated default probability is rounded into a “default” or “non 

default”, depending on whether a threshold is passed or not. For a given threshold T, 

one can then count the frequency of the four possible outputs, namely: False Posi‑

tives (FP): companies predicted to default, that do not; True Positives (TP): com‑

panies predicted to default, which do; False Negatives (FN): companies predicted 

not to default, which do; True Negatives (TN): companies predicted not to default, 

which do not.

The misclassification rate of a model can be computed as:
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and it characterizes the proportion of wrong predictions among the total number of 

cases.

The misclassification rate depends on the chosen threshold and it is not, therefore, 

a generally agreed measure of predictive accuracy. A common practice is to use the 

Receiver Operating Characteristics (ROC) curve, which plots the false positive rate 

(FPR) on the Y axis against the true positive rate (TPR) on the X axis, for a range 

of threshold values (usually percentile values). FPR and TPR are then calculated as 

follows:

The ideal ROC curve coincides with the Y axis, a situation which cannot be realisti‑

cally achieved. The best model will be the one closest to it. The ROC curve is usu‑

ally summarised with the Area Under the ROC curve value (AUROC), a number 

between 0 and 1. The higher the AUROC, the better the model.

2.4  Explaining Model Predictions

We now explain how to exploit the information contained in the explanatory vari‑

ables to localise and cluster the position of each individual (company) in the sam‑

ple. This information, coupled with the predicted default probabilities, allows a very 

insightful explanation of the determinant of each individual’s creditworthiness. In 

our specific context, information on the explanatory variables is derived from the 

financial statements of borrowing companies, collected in a vector �
n
 , representing 

the financial composition of the balance sheet of institution n.

We propose to calculate the Shapley value associated with each company. In this 

way we provide an agnostic tool that can interpret in a technologically neutral way 

the output from a highly accurate machine learning model. As suggested in Joseph 

(2019), the Shapley values of a model can be used as a tool to transfer predictive 

inferences into a linear space, opening a wide possibility of applying to them a vari‑

ety of multivariate statistical methods.

We develop our Shapley approach using the SHAP Lundberg and Lee (2017) 

computational framework, which allows to estimate Shapley values expressing pre‑

dictions as linear combinations of binary variables that describe whether each single 

variable is included or not in the model.

More formally, the explanation model g(x�) for the prediction f(x) is constructed 

by an additive feature attribution method, which decomposes the prediction into a 

linear function of the binary variables z� ∈ {0, 1}M and the quantities �
i
∈ ℝ:

(3)
FP + FN

TP + TN + FP + FN

(4)FPR =
FP

FP + TN

(5)TPR =
TP

TP + FN
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In other terms, g�(z�) ≈ f (hx(z
�)) is a local approximation of the predictions where 

the local function h
x
(x�) = x maps the simplified variables x′ into x, z� ≈ x and M is 

the number of the selected input variables.

Indeed, Lundberg and Lee (2017) prove that the only additive feature attribution 

method that satisfies the properties of local accuracy, missingness and consistency 

is obtained attributing to each feature x′
i
 an effect �

i
 called Shapley value, defined as

where f is the trained model, x the vector of inputs (features), x′ the vector of the M 

selected input features. The quantity fx(z
�) − fx(z

�⧵i) is the contribution of a vari‑

able i and expresses, for each single prediction, the deviation of Shapley values from 

their mean.

In other words, a Shapley value represents a unique quantity able to construct an 

explanatory model that locally linearly approximate the original model, for a spe‑

cific input x,(local accuracy). With the property that, whenever a feature is locally 

zero, the Shapley value is zero (missingness) and if in a second model the contribu‑

tion of a feature is higher, so will be its Shapley value (consistency).

Once Shapley values are calculated, we propose to employ similarity networks, 

defining a metric that provides the relative distance between companies by applying 

the Euclidean distance between each pair (�i, �j) of company predicted vectors, as 

in Giudici et al. (2019).

We then derive the Minimal Spanning Tree (MST) representation of the compa‑

nies, employing the correlation network method suggested by Mantegna and Stanley 

(1999). The MST is a tree without cycles of a complex network, that joins pairs of 

vertices with the minimum total “distance”.

The choice is motivated by the consideration that, to represent all pairwise cor‑

relations between N companies in a graph, we need N ∗ (N − 1)∕2 edges, a number 

that quickly grows, making the corresponding graph not understandable. The Mini‑

mal Spanning Tree simplifies the graph into a tree of N − 1 edges, which takes N − 1 

steps to be completed. At each step, it joins the two companies that are closest, in 

terms of the Euclidean distance between the corresponding explanatory variables.

In our Shapley value context, the similarity of variable contributions is expressed 

as a symmetric matrix of dimension n × n, where n Is the number of data points in 

the (train) data set. Each entry of the matrix measures how similar or distant a pair of 

data points is in terms of variable contributions. The MST representation associates 

to each point its closest neighbour. To generate the MST we have used the EMST 

Dual‑Tree Boruvka algorithm, and its implementation in the R package “emstreeR”.

The same matrix can also be used, in a second step, for a further merging of the 

nodes, through cluster analysis. This extra step can reveal segmentations of data 

points with very similar variable contributions, corresponding to similar credit scor‑

ing decision making.

(6)g(z�) = �
0
+

M
∑

i=1

�iz
�

i
.

(7)𝜙i(f , x) =
∑

z�⊆x�

|z�|!(M − |z�| − 1)!

M!

[
fx(z

�) − fx(z
�⧵i)

]
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3  Application

3.1  Data

We test our proposed model to data supplied by European External Credit Assess‑

ment Institution (ECAI) that specializes in credit scoring for P2P platforms focused 

on SME commercial lending. The data is described by Giudici et al. (2019) to which 

we refer for further details. In summary, the analysis relies on a dataset composed 

of official financial information (balance‑sheet variables) on 15,045 SMEs, mostly 

based in Southern Europe, for the year 2015. The information about the status (0 = 

active, 1 = defaulted) of each company one year later (2016) is also provided. The 

proportion of defaulted companies within this dataset is 10.9%.

Using this data, Giudici et al. (2019) have constructed logistic regression scoring 

models that aim at estimating the probability of default of each company, using the 

available financial data from the balance sheets and, in addition, network centrality 

measures that are obtained from similarity networks.

Here we aim to improve the predictive performance of the model and, for this pur‑

pose, we run an XGBoost tree algorithm [see e.g. Chen and Guestrin (2016)]. To explain 

the results from the model, typically highly predictive, we employ similarity network 

models, in a post‑processing step. In particular, we employ the cluster dendrogram repre‑

sentation that corresponds to the application of the Minimum Spanning Tree algorithm.

3.2  Results

We first split the data in a training set (80%) and a test set (20%), using random sam‑

pling without replacement.

We then estimate the XGBoost model on the training set, apply the obtained 

model to the test set and compare it with the best logistic regression model. The 

ROC curves of the two models are contained in Fig. 1 below.

From Fig. 1 note that the XGBoost clearly improves predictive accuracy. Indeed 

the comparison of the Area Under the ROC curve (AUROC) for the two mod‑

els indicate an increase from 0.81 (best logistic regression model) to 0.93 (best 

XGBoost model).

We then calculate the Shapley value explanations of the companies in the test 

set, using the values of their explanatory variables. In particular, we use TreeSHAP  

method (Lundberg et  al. 2020) [see e.g. Murdoch et  al. (2019); Molnar 2019)] in 

combination with XGBoost. The Minimal Spanning Tree  (a single linkage cluster) 

is used to simplify and interpret the structure present among Shapley values. We can 

also "colour" the MST graph in terms of the associated response variables values: 

default, not default.

Figures 2 and 3 present the MST representation. While in Fig. 3 company nodes 

are colored according to the cluster to which they belong, in Fig. 4 they are colored 

according to their status: not defaulted (grey); defaulted (red).

In Fig. 2, nodes are colored according to the cluster in which they are classified. 

The figure shows that clusters are quite scattered along the correlation network.
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Fig. 1  Receiver Operating Characteristic (ROC) curves for the logistic credit risk model and for the 

XGBoost model. In blue, we show the results related to the logistic models while in red we show the 

results related to the XGBoost model

Fig. 2  Minimal Spanning Tree representation of the borrowing companies. Companies are colored 

according to their cluster of belonging
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Fig. 3  Minimal Spanning Tree representation of the borrowing companies. Clustering has been per‑

formed using the standardized Euclidean distance between institutions. Companies are colored according 

to their default status: red = defaulted; grey = not defaulted

Fig. 4  Contribution of each explanatory variable to the Shapley’s decomposition of four predicted 

default probabilities, for two defaulted and two non defaulted companies. The more red the color the 

higher the negative importance, and the more blue the color the higher the positive importance
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To construct the colored communities in Fig.  2, we used the algorithm imple‑

mented in the R package “igraph” that directly optimizes a modularity score. The 

algorithm is very efficient and easily scales to very large networks (Clauset  et al. 

2004).

In Fig. 3, nodes are colored in a simpler binary way: whether the corresponding 

company has defaulted or not.

From Fig. 3 note that default nodes appear grouped together in the MST rep‑

resentation, particularly along the bottom left branch. In general, defaulted insti‑

tutions occupy precise portion of the network, usually to the leafs of the tree, 

and form clusters. This suggests that those companies form communities, char‑

acterised by similar predictor variables’ importances. It also suggests that not 

defaulted companies that are close to default ones have a high risk of becoming 

defaulted as well, being the importance of their predictor variables very similar 

to those of the defaulted companies.

To better explain the explainability of our results, in Fig.  4 we provide the 

interpretation of the estimated credit scoring of four companies: two that actu‑

ally defaulted and two that did not.

Figure 4 clearly shows the advantage of our explainable model. It can indicate 

which variables contribute more to the prediction of default. Not only in general, 

as is typically done by statistical and machine learning models, but differently 

and specifically for each company in the test set. Indeed, Fig.  4 clearly shows 

how the explanations are different (“personalised”) for each of the four consid‑

ered companies.

The most important variables, for the two non defaulted companies (left 

boxes) regard: profits before taxes plus interests paid, and earnings before 

income tax and depreciation (EBITDA), which are common to both; trade 

receivables, for company 1; total assets, for company 2.

Economically, a high proficiency decreases the probability of default, for both 

companies; whereas a high stock of outstanding invoices, not yet paid, or a large 

stock of assets, helps reducing the same probability.

On the other hand, Fig.  4 shows that the most important variables, for the 

two defaulted companies (right boxes) concern: total assets, for both companies; 

shareholders funds plus non current liabilities, for company 3; profits before 

taxes plus interests paid, for company 4.

In other words, lower total assets coupled, in one case, with limited share‑

holder funds and, in the other, with low proficiency, increase the probability of 

default of these two companies.

The above results are consistent with previous analysis of the same data: 

both Giudici et al. (2019) select, as most important variables in several models, 

the return on equity, related to both EBITDA and profit before taxes plus inter‑

ests paid; the leverage, related to total assets and shareholders’ funds; and the 

solvency ratio, related to trade payables.

We remark that Fig. 4 contains a “local” explanation of the predictive power 

of the explanatory variables, and it is the most important contribution of Shap‑

ley value theory. If we average Shapley values across all observations we get 

an “overall” or “global” explanation, similar to what already available in the 
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statistical and machine learning literature. Figure  5 below provides the global 

explanation in our context: the ten most important explanatory variables, over 

the whole sample.

From Fig. 5 note that total assets to total liabilities (the leverage) is the most 

important variable, followed by the EBITDA, along with profit before taxes 

plus interest paid, measures of operational efficiency; and by trade receivables, 

related to solvency, in line with the previous comments.

4  Conclusions and Future Research

The need to leverage the high predictive accuracy brought by sophisticated 

machine learning models, making them interpretable, has motivated us to intro‑

duce an agnostic, post‑processing methodology, based on correlation network 

models. The model can explain, from a substantial viewpoint, any single predic‑

tion in terms of the Shapley value contribution of each explanatory variables.

For the implementation of our model, we have used TreeSHAP, a consistent 

and accurate method, available in open‑source packages. TreeSHAP is a fast 

algorithm that can compute SHapley Additive exPlanation for trees in polynomial 

time instead of the classical exponential runtime.  For the xgboost part of our 

model we have used NVIDIA GPUs to considerably speed up the computations. 

In this way, the TreeSHAP method can quickly extract the information from the 

xgboost model.

Our research has important policy implications for policy makers and regula‑

tors who are in their attempt to protect the consumers of artificial intelligence ser‑

vices. While artificial intelligence effectively improve the convenience and acces‑

sibility of financial services, they also trigger new risks. Our research suggests 

that network based explainable AI models can effectively advance the under‑

standing of the determinants of financial risks and, specifically, of credit risks. 

Fig. 5  Mean contribution of each explanatory variable to the Shapley’s decomposition. The more red the 

color the higher the negative importance, and the more blue the color the higher the positive importance
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The same models can be applied to forecast the probability of default, which is 

critical for risk monitoring and prevention.

Future research should extend the proposed methodology to other datasets and, 

in particular, to imbalanced ones, for which the occurrence of defaults tends to be 

rare, even more than what observed for the analysed data. The presence of rare 

events may inflate the predictive accuracy of such events [as shown in  Bracke 

et al. (2019)]. Indeed, Thomas and Crook (1997) suggests to deal with this prob‑

lem via oversampling and it would be interesting to see what this implies in the 

proposed correlation network Shapley value context.
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