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Explainable machine learning in materials science
Xiaoting Zhong 1✉, Brian Gallagher2, Shusen Liu 2, Bhavya Kailkhura2, Anna Hiszpanski 1 and T. Yong-Jin Han 1✉

Machine learning models are increasingly used in materials studies because of their exceptional accuracy. However, the most
accurate machine learning models are usually difficult to explain. Remedies to this problem lie in explainable artificial intelligence
(XAI), an emerging research field that addresses the explainability of complicated machine learning models like deep neural
networks (DNNs). This article attempts to provide an entry point to XAI for materials scientists. Concepts are defined to clarify what
explain means in the context of materials science. Example works are reviewed to show how XAI helps materials science research.
Challenges and opportunities are also discussed.
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INTRODUCTION
Traditional materials science studies depend heavily on the
knowledge of individual experts. Expert knowledge is highly
useful, especially for advancing physical understanding and
generating new scientific hypotheses. However, the traditional
expert knowledge approach has clear limitations in terms of
prediction accuracy and efficiency. Progress in technology often
requires new materials with specific properties, but it can take a
long research cycle to accumulate enough knowledge about one
material system. Advances in experimental and computational
tools are producing data with increased volume, speed, and
complexity1–3, but the amount of information a human expert can
process is limited. New research tools are needed to design better
materials at a faster speed.
One promising tool that attracts an increasing amount of

research interest is machine learning (ML). ML models are efficient
compared to human individuals. They follow a data-driven
approach and can analyze a large amount of data without
requiring profound domain knowledge or ingenious domain
insights. ML models are flexible. Both traditional materials state
variables (e.g., temperature and pressure) and raw materials
characterization data (e.g., spectrum and image) can serve as ML
model inputs. ML models are also accurate. They have shown
exceptional prediction accuracy for various material properties at
different scales. Examples include atomic properties like potential
energy4,5 and crystal structure6,7, microscopic properties like strain
distribution8, and macroscopic properties like mechanical com-
pressive strength9, electronic conductivity10, and thermal
stability11.
Modern ML methods are accurate, but their great predictive

power often comes at the price of explainability. There is usually a
tradeoff between model accuracy and model explainability12,13.
The most accurate ML models (e.g., deep neural networks, or
DNNs) are usually difficult to explain and are often known as black
boxes. This lack of explainability has restrained the usability of ML
models in general scientific tasks, like understanding the hidden
causal relationship, gaining actionable information, and generat-
ing new scientific hypotheses. Many materials scientists also find
black-box ML models difficult to trust. After all, recent ML studies
show that even the most advanced ML models are not always
logically reliable14,15 and may show poor extrapolation perfor-
mance. There is a general desire for ML explainability in the

materials science community. For example, many materials
science machine learning studies evaluate some version of feature
importance using different methods (e.g., filter, wrapper,
embedded methods)16,17. Feature importance explanations are
useful, but tradition feature importance explanations are limited
to tabular input data and are often inaccurate or inefficient. There
have been many new ML explanation techniques in recent years.
EXplainable Artificial Intelligence (XAI) is an emerging field in

which the explainability of advanced machine learning models is
intensively studied. The term XAI is brought up by DARPA in 2017
and has become popular in many fields like healthcare,
transportation, legal, finance, military, and scientific research12.
Limited by the advanced in general AI, the current focus of XAI is
the interpretability of ML models. In other words, at the core of
XAI is a rich set of model explanation techniques that achieve
explainability from different perspectives. Note that explainability
is a highly general concept and means different things to different
audiences. Concept definition is thus an important topic in XAI as
proper definitions help establish the context of the discussion.
Then XAI also addresses explanation evaluation since model
explanations can be misleading.
There is an increasing interest to apply XAI in scientific

studies18,19. Some XAI techniques are also being applied in
materials ML studies20–22 but XAI as a comprehensive field
remains unfamiliar to the mainstream materials science commu-
nity. Oviedo et al.23 recently presented a materials science and
chemistry XAI review, but their examples are heavy on chemistry
and model evaluation is not discussed in detail. Here we present a
systematic review of important XAI concepts and useful techni-
ques with representative materials science application examples.
By doing so, we hope to provide an entry point for materials
scientists who desire explainability in addition to prediction
accuracy when building ML models for material applications.
The paper is organized as follows. The background and

concepts section discusses important XAI concepts and defines
what constitutes a model explanation within the context of
materials science. The machine learning explainability in materials
science section reviews XAI techniques with recent materials
science application examples. Many of the model explanation
techniques we discuss work with image data and convolution
neural networks (CNNs), but other data types (e.g., tabular data,
spectral, and crystal graphs) and other ML models (e.g., multi-layer
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perceptrons, graph neural networks, and general ML models) are
also covered. The explanation evaluation section discusses the
necessity of the criteria for explanation evaluation. Finally, the
challenges and opportunities section identifies some challenges
and opportunities in applying XAI techniques for materials science
understanding.

BACKGROUND AND CONCEPTS
Machine learning models have different explainability. Simple
models like linear/logistic regression, decision trees, k-nearest
neighbors, Bayesian models, rule-based learners, and general
additive models are usually considered transparent and can be
examined directly24,25. On the other hand, complicated models
like tree ensembles, supported vector machines, and neural
networks are often considered as black boxes and are difficult to
explain24,26. Indeed, there is usually a trade-off between model
complexity and model explainability25,27. While high complexity is
usually necessary for ML models to achieve high accuracy on
difficult problems, the same complexity also poses challenges in
explainability. Most examples discussed in this paper concern
deep neural networks (DNNs), but the general principles described
here apply to different ML models and explanation techniques.
Clarifying the scope of an explanation is important. Many

modern ML models (e.g., DNNs) are often so complicated that a
simple crisp explanation for the entire ML model is not possible
with current technology. Luckily, one can aim to explain part of an
ML model. Lipton28 introduced three levels of model explain-
ability: simulatability, decomposability, and algorithm explainabil-
ity. Simulatability is achieved if the entire model (e.g., a simple
linear regression model) is easily comprehensible to a human user.
Decomposability is achieved if part of the model (e.g., model
parameter) is explainable. Algorithm explainability is satisfied if
the learning algorithm is simple to understand and always
converges to the same unique solution.
An explanation can be post-hoc or ante-hoc. Post-hoc explana-

tions provide decision-level explanations by referring to external
data or proxy models. Post-hoc explanations usually take a
practical perspective. Ante-hoc explanations address the overall
working logic on a model level and usually take a theoretical
perspective. In other words, ante-hoc explainability is intrinsic to
the model of interest while post-hoc explainability depends on
tools extrinsic to the model of interest (e.g., input data or
surrogate models). Most explanation techniques we discuss in the
next section (e.g., salience maps, feature importance, explanation
by example, surrogate models, concept visualization, and transfer
learning) belong to post-hoc explanations. Both ante-hoc and
post-hoc explainability can be achieved on different levels:
globally for the entire model and full input space, or locally for
part of the model (e.g., functional form, parameters, calculations)
or part of the input space (e.g., a given data instance).
We summarize different scopes of explainability in Fig. 1 and

propose to define some basic XAI concepts for materials science
applications in the following way. A model is transparent if all
model components are readily understandable. A model is
intrinsically explainable if part of the model (e.g., functional
form, parameters, calculations) is explicitly understandable or
physically grounded. One can explain a non-transparent model
extrinsically by simplifying its working logic or providing (data)
evidence to support its reasoning. In other words, explanations do
not have to address the entire model as a whole and can focus on
part of the model. Moreover, explanations do not have to address
the original black-box model itself. Explanations can focus on
other components in the same learning pipeline (e.g., input and
learning process) or a simpler proxy model that behaves similarly
to the original black-box model, though such explanations are not
intrinsic to the original black box.

The same concepts (transparent, explainable, explain) are
sometimes defined differently in the literature. Indeed, no
definition is accepted by all communities because explanations
are abstract and mean different things to different users. Some XAI
researchers differentiate interpret (interpretability) from explain
(explainability) but we propose not to do so to avoid unnecessary
jargon for materials scientists. Some alternative concept defini-
tions (of explain, explainability, interpret, interpretability, trans-
parent) are summarized in the Supplementary Material for readers
who find the topic interesting.
Finally, it is probably essential to understand what characterizes

a good explanation in general. Miller29 summarized four important
characteristics of good explanations, including (1) contrastive,
meaning that counterfactual explanations which address not only
why the model made decision X but also why the model did not
make decision Y are useful; (2) selectivity, meaning that a good
explanation should be simple and reveal only the main causes; (3)
causal, meaning that probabilities are not as effective as causal
links though probabilities may allow more accurate predictions;
and (4) social, meaning that an explanation is a social interaction,
in which the social convention and the people in interaction are
important. Specifically for explanations in ML, Alvarez-Melis et al.30

defined three requirements for explanations, including (1) fidelity,
meaning that interpretable representations should preserve
important information within the original data/model; (2) diversity,
meaning that interpretable representations should be constructed
from a few non-overlapping concepts; and (3) grounding, mean-
ing that what claims to be interpretable should be readily human-
understandable.

MACHINE LEARNING EXPLAINABILITY IN MATERIALS SCIENCE
This section introduces some representative XAI techniques with
recent materials science application examples. An overview is
presented in Fig. 2. The techniques and examples are organized
according to whether they provide post-hoc explainability
(explaining DNNs) or ante-hoc explainability (explainable DNNs).
Post-hoc explanations are usually more handy as there are many
off-the-shelf choices. Ante-hoc explainability often requires more
significant model design efforts.
Figure 2 organization is inspired by the machine learning

explainability taxonomy defined by Gilpin31, and is motivated by
two fundamental questions: (1) ‘Why does this particular input
lead to that particular output?’ (addressed by explaining model
processing), and (2) ‘What information does the network contain?’
(addressed by explaining model representations)31. Note that
different perspectives of explainability are not orthogonal and one
explanation technique can belong to different leaves in Fig. 224,25.
Nevertheless, we try to discuss the different perspectives
separately following the map in Fig. 2.

Fig. 1 Different scopes and aspects of explainability. Explainability
is not a binary property. In other words, not all explanations address
the ante-hoc global explainability of the entire model. Post-doc/
local explanations are also acceptable.
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Most models we discuss belong to the deep neural network
(DNN) family, such as convolution neural networks (CNNs) and
graph neural networks (GNNs), though some XAI model explaining
techniques are model agnostic and can be applied to all ML
models. The examined input data types include 2D images, 3D
images, spectral, tabular data, and molecular graphs.

Explaining DNN model processing
Feature importance (heat map). Feature importance is a highly
popular model processing explaining approach within the materials
science community16,17,32–34. Feature importance techniques explain
how a model processes its input data by answering questions like
‘What distinctive features of this input make it representative of that
output?’13. Such answers are usually presented as weights of the
input data features. The larger the weight, the more important the
corresponding feature is from the perspective of the model. In
complicated or novel materials systems where the physics is poorly
understood, feature importance weights can help materials
scientists understand the system and its underlying physics. In
materials systems where the physics is already understood, feature
importance weights can help materials scientists gain trust in the
model prediction (if the feature weights agree with physical laws) or
improve model performance (if the feature weights reveal reasons
for why the model fails).
Feature importance weights are associated with input features. In

traditional ML models where the inputs are tabular data of relatively
small dimension (101–102), feature importance weights are often
presented as bar plots16,35. In DNNs where the inputs are images or
pseudo-images, feature importance weights are often presented as
heat maps (also known as salience maps)13,36.
An example that uses heat maps to understand semantic

features from microstructure images is the work of Kondo et al.21.
The authors predict the ionic conductivity of a solid electrolyte
ceramic material (yttria-stabilized zirconia, or YSZ) from image
quality (IQ) maps using a CNN. They generate heat maps following
a technique similar to class activation map (CAM)36 and gradient-
weighted class activation mapping (Grad-CAM)37. Specifically, they
design their CNN in a way that the top convolution layer is
connected to the first fully connected layer via global average
pooling (GAP)36,38, which allows clear one-to-one correspondences
between the top convolution filters and the first fully connected
layer (g) neurons (Fig. 3a). The vector g (and its corresponding
convolution filter output) is approximately linearly correlated with
the prediction target y (or ionic conductivity in this task) with a
weight vector a. The authors group the convolution filters
according to the sign of its weight ai. A weight ai < 0 means that
the filter contributes to low ionic conductivity and a weight ai > 0

means that the filter contributes to high ionic conductivity. A mask
is then computed for each filter group (i.e., low/high ionic
conductivity group) by averaging filter outputs within the group
and thresholding the averaged filter outputs. Finally, the filter
group masks are resized to match the input image size via bicubic
interpolation and overlaid with the input image (Fig. 3b). These
masks are a special kind of heat map. They show that the CNN
considers voids as a signature for low ionic conductivity and
flattened defect-free areas as a signature for high ionic con-
ductivity (Fig. 3b). These heat map explanations are consistent with
experimental evidence, which shows that ionic conductivity
decreases with decreasing sintered density (and increasing
voids)39,40. The heat maps thus help the authors confirm that
their CNN model captures physically reasonable features and
increase their confidence in the CNN model. The heat maps also
help the authors investigate the optimal representative volume
element (RVE) size for their material, which provides guidance for
further materials characterization and data collection experiments.
An example of using heat map explanations to diagnose model

mistakes is the work of Oviedo et al.22. The authors predict the
space group and the crystallographic dimensionality of thin-film
materials from X-ray diffraction (XRD) spectral inputs using an in-
house CNN. The CNN architecture consists of three 1D convolution
layers followed by a global average pooling (GAP) layer and a final
dense layer with softmax activation. This CNN handles XRD
diffraction pattern inputs as 1D pseudo image inputs. Its design
idea is similar to the idea of regular image CNNs, although
spectrum data seems very different from image data. The authors
generate heat maps following a CAM technique36, which is
conceptually similar to that used by Kondo et al.21 but with
different design details (e.g., value grouping and thresholding).
They first generate heat maps for individual XRD patterns and then
average heat maps within each space group class to get the heat
map of the class. With these heat maps, the authors investigate the
causes of model misclassification by comparing heat maps of
individual input patterns and average heat maps of space group
classes. Two examples are shown in Fig. 4. The heat map of a
correctly classified input (Fig. 4c) is similar to the average heat map
of its space group class (Fig. 4a). The heat map of an incorrectly
classified input (Fig. 4d) is more similar to the average heat map of
its predicted space group class (Fig. 4a) than to the average heat
map of its true space group class (Fig. 4b). These explanations help
the authors confirm the lack of discriminative features in some
input data. The authors then further examine the experiment
samples and the collected additional data. Turns outs out that the
number of data points in different space-group classes is
imbalanced and there is a mixture of phases in the sample. Based
on these identified root causes, the authors propose to improve

Fig. 2 Overview of approaches to achieving explainability within DNNs. This framework is extended from the machine learning
explainability taxonomy presented by Gilpin et al.31 and the format is inspired by the work of Arrieta et al.25.
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the data collection process by increasing the phase purity during
the sample preparation stage and by collecting more data for the
poorly classified space-group classes. This work of Oviedo et al.22 is
an example of explaining model processing to achieve better

performance. It shows that sometimes poor model performance is
rooted in the data, not the model. Heat map explanations can help
identify the root cause of model mistakes, which is the first step
toward improving the model performance.

Fig. 4 Example heat map explanations for a CNN with spectral input. The task is to predict sample space groups from XRD spectral.
a, b Averaged CAM heat maps of space group Class 2 (P21/a) and Class 6 (Pm3m). c, d CAM heat map and input spectrum of a correctly classified
sample and an incorrectly classified sample. Comparing the heat map explanation of each prediction (a, b) to the average heat map explanation
of each class (c, d) helped the authors identify the root cause of model mistakes. Figure reprinted from ref. 22 under the CC BY 4.0 license156.

Fig. 3 Example heat map explanations for a CNN with image inputs. The task is to predict the ionic conductivity of a ceramic material from
its image quality maps. a CNN model architecture. The last convolution layer is connected with the first fully connected layer via global
average pooling (GAP), which allows the tracking of implicit attentive response weights from the top fully connected layers to pixel locations
on the original image. b Heat map masked input images. The blue and red regions hide image features that were ignored by the CNN when
predicting low and high ionic conductivities. Figure reprinted from ref. 21 with permission. Copyright 2017 Elsevier.
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Heat maps can explain a wide range of materials ML problems.
In the two examples we discussed, CAM36 based techniques are
applied to explain CNNs with image and spectrum inputs. Heat
map explanations can also handle other input data types (e.g.,
diffraction images41 and molecule graphs42–44) and other DNN
models (e.g., graph convolutional neural networks and recurrent
neural networks, or GCNNs45 and RNNs46). Except for CAM, there
are also other techniques that can generate heat maps for DNNs,
such as guided backpropagation (GBP)47, integrated gradient-
s(IG)48, layer-wise relevance propagation (LRP)49, and many
more50–52. The main logic of these heat map techniques is
usually either maximum activation (i.e., what directly contributes
to the output) or maximum sensitivity (i.e., what changes affect
the output the most)31 though each technique takes a different
path. Note that none of these heat map explanation techniques is
guaranteed to give the best explanation so it may be interesting
to try several techniques and compare the results with domain
knowledge. Also, there are important caveats about applying
DNN heat map explanation techniques, which will be discussed in
more detail in the next section (explanation evaluation).
Finally, general model agnostic feature importance explanation

techniques can also be applied to explain DNNs. For example,
Local interpretable model-agnostic explanations (LIME)53 is a
feature importance explanation technique popular in the
machine learning community. It explains model predictions
locally by generating a locally perturbed dataset and building
linear surrogate models using the perturbed dataset. SHapley
Additive exPlanations (SHAP)54 is another famous model agnostic
explanation technique with good theoretical bounds. LIME and
SHAP have been compared empirically in some financial
prediction tasks55,56. SHAP does not always show better empirical
performance despite its better theoretical bounds55,56. LIME and
SHAP have been applied to explain materials problems
recently35,57,58 but have not been thoroughly compared in
materials contexts.

Explanation by example. The second approach to explain DNN
model reasoning is by showing illustrative data examples. Studies

of human reasoning show that the use of examples is essential for
strategic decision-making59. A few examples are sometimes more
expressive than a long paragraph of description or a complicated
set of predefined equations and coefficients12,60. One common
use case of data example explanations is the evaluation of ML
model trustworthiness. The trustworthiness of ML models is
usually evaluated by test accuracy, which reflects the model
performance on new data instances not shown to the model
during training. However, test accuracy is not perfect because not
all new data instances are the same. For example, new data
instances can be classified into in-distribution instances, which
follow the same distribution as the training data, and out-of-
distribution instances, which do not follow the training data
distribution. ML models usually perform very differently on new
in-distribution and out-of-distribution instances. This problem is
known as distribution shift and is very common in all kinds of real-
world ML problems. For example, Zhong et al.61 recently showed
that instrument-induced intensity variations within scanning
electron microscopy (SEM) images can deviate ML predictions of
material ultimate compressive strength (UCS). The authors
evaluated five popular ML models and four image intensity
normalization methods on hundreds of well-controlled experi-
mental SEM images of a molecular solid material. Six example SEM
images, one image normalization method (histogram equaliza-
tion), and one machine learning model prediction results are
shown in Fig. 5. The results show that darker images are
consistently associated with larger predictions. The machine
learning model in Fig. 5 is a random forest and the image
featurization is binarized statistical image features (BSIF). Other
machine learning models and image normalization methods show
similar results61. These results signify the limitation of ML model
robustness. Accuracy numbers only carry a limited amount of
information. It is important to really understand the data instances
and explanation by example can help in this direction.
One can avoid over estimating model accuracy by explaining

model predictions with data examples. If the new data instance is
reasonably similar to a considerable amount of training data
examples, then the model prediction on this new data instance is

Fig. 5 Example of data distribution shift resulted machine learning model mistakes. The task is to predict material mechanical strength
from feedstock material SEM images. The authors take different scans of the same microstructure using different microscope settings. Ideally,
ML model predictions should only depend on the microstructure content, not the microscope settings. However, results show that darker
images are consistently predicted to have bigger ultimate compressive strength (UCS) values, even with image normalization61. The x-axis
shows experiment id. The first row shows example images from the given experiment. The second row illustrates the effect of one image
normalization method (i.e., histogram equalization).
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likely reliable. Following this idea, Kailkhura et al.26 design a
general-purpose explainable ML framework for materials predic-
tions. The authors explain a previously unseen compound by
referring to training compound data instances that are highly
similar to the new compound in a customized feature space.
Data example explanations can also help examine data sets.

Kim et al.62 design a technique (MMD-critic) to efficiently identify
prototypes and criticisms within a data set. Prototypes are
representative data instance examples, and criticisms are abnor-
mal data instances that do not quite fit the ML model62. The
authors demonstrated the effectiveness of the technique with
some relatively simple images of handwritten digits (Fig. 6). The
identified criticisms in this hand-written digit set tend to have
bolder lines and irregular shapes while the identified prototypes
tend to have regular shapes, which align with human intuitions.
Criticisms can be helpful for cleaning the data and prototypes can
be helpful for simplifying and understanding the data. Though the
hand-written digit task is simple, the same technique can be
applied to materials science problems and help build high-quality
materials data sets with the minimum human inspection.

Surrogate models. The third approach to explain the data
processing of black-box models is by building simple surrogate
models that behave similarly to the original black box but are
easier to explain. Note that the first two data processing
explanation approaches (heat maps and data examples) aim at
explaining specific decisions of the original black box. The
surrogate model approach takes a slightly different perspective
and uses the original black box only to train the surrogate model.
In other words, explanations are derived from the surrogate model
rather than from the original black box. The implicit assumption is
that similar behaviors of the original model and the surrogate
model suggest that they have learned a similar set of knowledge.
One interesting example that generates new scientific hypoth-

eses by inspecting a decision tree surrogate model is the work of
Raccuglia et al.20. The task is to predict the formation reaction
success of inorganic-organic hybrid materials from tabular
experimental notes and material atomic/molecular properties.
The authors first build an SVM model and achieved a reaction
recommendation success rate notably higher than human
intuition (89% vs. 78%). The SVM is difficult to explain, so the
authors build a surrogate decision tree to explain the original SVM
model results. Specifically, they train a C4.5 decision tree63,64 using
SVM model predictions (Fig. 7). When interpreting the surrogate
decision tree, the authors first identify tree leaves that contain the
majority of successful reactions and then track upward along the
decision tree path to identify reaction conditions/parameters that
facilitate formation successes, as shown in Fig. 7. Inspection of
these promising reaction conditions/parameters reveals previously
unknown chemical insights and generates testable new chemical

hypotheses about amine properties and crystal formation success.
Such new scientific insights and scientific hypotheses are valuable
and go beyond the specific model and data set.
Decision trees are suitable for building surrogate models

because of their high flexibility and natural compatibility with
human-readable rules. The reverse decision tree inference
approach is general and has been followed to form new scientific
hypotheses for other materials systems65. Surrogate decision trees
can be built and visualized easily with modern ML libraries like
scikit-learn66 and XGBoost67. There are also several techniques
that specialize in building relatively simple surrogate decision
trees for DNNs63,68–70. However, DNN surrogate trees may still end
up being large and complicated due to the extremely large model
capacity of DNNs. Note that many subtrees are excised even in the
SVM surrogate decision tree of Raccuglia et al. (Fig. 7 triangles). If
the surrogate tree is too complicated, users may need to trade off
accuracy for explainability. In other words, users can either
simplify the original model (e.g., perform feature selection) or
simplify the surrogate model (e.g., limit the size of the surrogate
tree) to ensure the explainability of the surrogate decision tree.
Finally, rule extraction techniques71,72 can also be used to build
surrogate models and extract knowledge but are less
commonly used.
Many materials scientists are interested in deriving simple

analytical equations73–79, which can also be considered as one
kind of surrogate model. Simple analytical equations are usually
less accurate than their black-box counterparts. Nevertheless,
simplicity is valuable as suggested by Occam’s razor principle80.
Many scientists believe that fundamental natural laws are simple,
though their exact forms are unknown. Moreover, simple
analytical equations usually behave robustly on different material
systems and are easy to refer to in scientific discussions and
education activities. One can derive analytical equations by trying
to fit the results of a black-box ML model or apply ML to assist the
equation derivation directly. Deriving an analytical equation takes
three steps: (1) identify the relevant state variables, (2) decide the
equation functional form (e.g., linear or exponential), and (3)
determine the coefficients. ML can help with each of the three
steps. State variables can be found by performing feature
selection or dimension reduction on the original data73–76,81.
Functional forms can be screened automatically using tools like
Eureqa78,79 and SISSO32,82. Variable coefficients can be predicted
directly from an ML model or estimated by performing a least
square fit73–75.
One example of machine learning-assisted analytical equation

design is the work of Rovinelli et al.78. The objective is to describe the
growth of small cracks in terms of the direction and speed of crack
propagation. The authors collect a multi-fidelity dataset from crystal
plasticity simulations and an in situ crack propagation experiment.
The dataset can be described by multiple micromechanical and

Fig. 6 Example of prototype and criticism explanations. Kim et al.62 found random subsets of prototypes and criticisms of the USPS
handwritten digits data set157 by applying the MMD-critic technique62. Prototypes and criticisms are interesting because prototypes can
benefit data understanding while criticisms can benefit data cleaning. Figure reprinted from ref. 62 with permission.
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microstructure features but the quality of these domain knowledge
tabular features have not been thoroughly evaluated. The authors
build a Bayesian network (BN) for the prediction task and identify
relevant features by examining correlations produced by the BN. The
identified relevant features serve as variables in a new analytical
equation. The functional form of the analytical equation is
determined by searching a large number of possible functional
forms automatically using Eureqa79. This new analytical equation is
reasonably simple and performs better than traditional fatigue
metrics from the literature (Fig. 8).

Explaining DNN model representations
DNNs usually follow highly organized structures. For example, the
vast number of neurons in a CNN are organized first as channels
and then as layers. The input data transforms systematically in a
hierarchical way as it passes along the network and different CNN
components tend to learn different information83,84. Two exam-
ples are shown in Fig. 9. Figure 9a shows that different network
components (neuron, channel, and layer) tend to learn different
concepts. Figure 9b shows that the complexity of CNN filter
(channel) representations increases gradually as filter positions
move deeper into the network. Because of the hierarchical

representation in CNN components, the convolution layers of a
CNN are sometimes considered to perform feature learning and
the final fully connected layers are considered to perform
prediction85. This section summarizes approaches for under-
standing the knowledge (e.g., data representation) learned in
DNN models and the functionality of intermediate DNN compo-
nents. Example approaches include parameter and activation
inspection, concept visualization, and transferability test. They can
help users examine the information contained in a well-learned
network and answer questions like ‘What information does the
network contain?’31 or ‘What abstract concepts did the network
learn from the input data?’.

Parameter and activation inspection. A DNN learns by optimizing
its parameters with respect to the training data. Do the network
parameters contain useful information? This question can be
answered by interpreting network parameters directly within the
context of materials science domain knowledge. For example,
Cecen et al.86 train a 3D CNN to predict the structure-property
relationship in a synthetic 3-D high-contrast material dataset. The
prediction targets are material effective elastic properties (e.g., the
C�
11 component of the stiffness tensor) and the target data labels

are obtained by running finite element (FE) simulations. The 3D

Fig. 7 Example surrogate decision tree model. The task is to predict reaction successes from tabular input data, for which a SVM model
achieves good accuracy. A surrogate tree is then built using original SVM model predictions to help understand the original model. The
surrogate tree is shown above. Ovals represent decision nodes. Rectangles represent reaction-outcome bins. Triangles represent excised
subtrees. Each reaction-outcome bin contains a reaction-outcome value (3 or 4) and the number of reactions assigned to that bin (shown in
parenthesis). Bins containing the most successful reactions and their associated synthesis paths are identified and colored. The authors
generate the following new testable chemical hypotheses by inspecting the green, blue and red subtrees: (1) Small, low-polarizability amines
require the absence of competing Na+ cations and longer reaction times. (2) Spherical, low projection-size amines require V4+-containing
reagents such as VOSO4. (3) Long tri- and tetramines require oxalate reactants. Figure reprinted from ref. 20 with permission. Copyright 2016
Springer Nature.
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CNN contains a convolution layer of 32 convolution filters, a
rectified layer, an average pooling layer, and a linear regression
layer. The authors analyze convolution filters of the 3D CNN from
three different perspectives. First, from a theoretical perspective,
they show that CNN convolution filters are connected to the
classic n-point spatial correlation theory87,88. A 2-point and a 1000-
point statistics are derived to illustrate the point. Then, they argue
that CNN filters describe a weighted set of important material
structural patterns. Visual evidence is provided to demonstrate the
point (Fig. 10). Finally, they report that some important filters are
learned stably across different folds of a 10-fold cross-validation
experiment, which confirms that these filters are not random.
These analyses show that CNN convolution filters can learn
physically sound information about the underlying microstructure.
In a different study, Yang et al.8 also argue that CNN convolution
filters are intrinsically suitable for learning microstructure neigh-
borhood details and CNNs are suitable for microstructure
localization problems.
Another common practice is to inspect network activations (or

intermediate outputs of specific network components). One
activation inspection example is the work of Jha et al.89. Jha
et al. build an in-house DNN (ElemNet) to predict material
properties from elemental composition inputs89. ElemNet consists
of 17 layers, which include fully connected layers (with ReLU
activation) and dropout layers. The prediction target is the DFT
computed lowest formation enthalpy and a mean absolute error
(MAE) of 0.050 ± 0.0007 eV/atom (or 9% mean absolute deviation)
is achieved on a test dataset containing 2 × 104 compounds
(training data contains 2 × 105 compounds). The performance of
ElemNet is better than its physical-attributes-based conventional
ML counterparts even in terms of generalization. In two general-
ization tests, ElemNet achieves generalization MAEs of 0.138 and
0.122 eV/atom, while the best physical-attributes-based conven-
tional ML model (a random forest) only achieves 0.198 and 0.179
eV/atom MAEs. The authors examine intermediate data represen-
tations within the ElemNet to explain its good performance. They
provide various inputs to the network and measure intermediate

network layer outputs (or activations) associated with these inputs.
For easy interpretability, the authors further compress the
activations via principal component analysis (PCA) and plot the
first two principal components (PCs) (Fig. 11). Figure 11 shows that
the network layers can learn to capture essential chemical
information from raw composition element inputs. Moreover,
successive layers learn the information incrementally. The early
layers tend to learn information directly based on the input data
(i.e., the presence of certain elements). The later layers tend to
learn more complex interactions between the input elements (e.g.,
charge balance). This kind of simple to complicated data
representation within ElemNet is comparable to the hierarchical
learning observed in CNNs (Fig. 9b), though ElemNet is not a CNN
and consists of only fully connected layers and drop-out layers.
More recently, Wang et al.90 propose a Transformer91 based
network, Compositionally Restricted Attention-Based network
(CrabNet), which shows better prediction accuracy than ElemNet
for structure-agnostic materials properties on 28 datasets.
CrabNet also provides heat map style explanations and is discussed
in detail in the explainable processing/representation section.
If the network architecture follows an encoder-decoder style

(e.g., auto-encoders) then the network bottleneck layer activations

Fig. 8 Performance comparison for different models. The task is to
predict crack growth directions. Performances of a Bayesian network
model, a machine learning designed analytical equation surrogate
model, and some traditional analytical fatigue metrics are given in
receiver operative characteristic (ROC) curves. Curves further away
from the diagonal indicate better performances. Figure reprinted
from ref. 78 under the CC BY 4.0 license156.

Fig. 9 Illustration of the hierarchical feature representation
within CNNs. a Comparison of concepts contained in different
network levels (neuron, channel, and layer)158. Figure reprinted from
ref. 158 under the CC BY 4.0 license156. b Visualization of CNN filters
from different layers of an imageNet96 pretrained VGG16 network97.
Note that the filter representations become more and more
complicated as filter positions move deep along the network. The
early layer filter representations are relatively primitive, while the top
layer filter representations are highly complicated. The VGG16
architecture is plotted using the plot neural net159 library. Filter
representations are visualized using the convolutional neural
network visualizations150 library.
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are sometimes referred to as latent data representations. DNN
latent representations attract research interests because of their
low dimensionality and high expressiveness. DNN latent data
representations sometimes outperform their traditional linear
dimension reduction counterparts92,93, though not for all pro-
blems94. The optimal compression method depends on the data of
interest. DNN compression usually works the best with highly non-
linear data while traditional linear dimension reduction methods
(e.g., principal component analysis, or PCA) usually perform better
on relatively simple data. Kadeethum et al.94 recently proposes that
a visual comparison between PCA and t-SNE compressed data
representations can indicate the type of compression that works
the best for a given data set. This kind of visual prescreening is
likely helpful since DNNs are generally computationally expensive
to try.

Concept visualization. One can also visualize different concepts
learned in individual network components. The idea is that the
concept learned in a network component can be represented by a
prototypical input that highly activates this network component.
One interesting technique to find such prototypical inputs is
activation maximization83, which starts with a random input and
optimizes the input iteratively with gradient descent until the
network component of interest is highly activated. Activation
maximization is taken by Ling et al.95 to explain important CNN
filters in a microstructure classification task. The authors perform
the classification task in two steps. Step one is to pass input
microstructure images through an ImageNet96 pretrained CNN
(VGG1697) and compute mean texture features by averaging CNN
filter activations. Step two is to predict the material class with
these mean texture features and a random forest classifier. The

Fig. 10 CNN model parameter direct inspection example. The authors design a simple 3D CNN to predict effective elastic properties of high
contrast composites from synthetic microstructures. a 3D microstructure data, colored by material phase. b CNN filter weights, colored
according to their sign (near zero values are rounded to zero). Positive weights in the CNN filters (red) suggest a preference for a structural
pattern and negative weights (blue) penalty deviations. A comparison between input microstructures and CNN filter weights shows that CNN
filters can learn simplified characteristics of the input microstructure. Figure reprinted from ref. 86 with permission. Copyright 2018 Elsevier.

Fig. 11 Network intermediate output (activation) inspection example. The authors predict material property from elemental composition
inputs with a fully connected neural network. They then examine network activations by compressing the activations of different materials
with PCA and plotting the first two PCs. Results show that intermediate network layers can learn essential chemical information. Early network
layers tend to learn the presence of elements and later network layers tend to learn the interaction between elements (e.g., charge balance).
Figure reprinted from ref. 89 under the CC-BY 4.0 license156.
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authors then examine the mean texture features and their
corresponding CNN filters to explain the predictions. They first
identify the most important CNN filters by examining the random
forest model feature importance. Prototypical images are then
generated for the important CNN filters by performing activation
maximization. Results show that synthetic prototypical images
returned by activation maximization provide interesting abstractions
for the corresponding input microstructures (Fig. 12). These
synthetic prototypical images are interesting because they may
disentangle concepts (e.g., textures) in complicated microstructures
and shed light on their roles in the structure-property relationship.
Other techniques to generate similar synthetic prototypical images
include modified activation maximization98–100 and generative
adversarial network (GAN)101.
Note that prototypical images from concept visualization are

related to heat maps as both of them can be generated from
network activations. The difference is that heat maps aim to find
discriminative features within the inputs, while concept visualization
aims to find representative inputs. Concept visualization is also
closely related to explanation by example. However, examples in
concept visualization can be generic (rather than real data examples),
and the purpose of the concept examples is not to explain the
model decision but to understand the model component function-
ality or a data prototype. CNN filters are especially interesting to
materials scientists as they usually correspond to textures102, which
correspond naturally to microstructure textures103. Nevertheless,
prototypical images can also be generated for other CNN
components like neurons and layers (Fig. 9a).

Transferability test. Finally, a third way to interpret network
component representations is to test their functionality with a
different task. For example, CNN layers trained in one task can be
used to generate features for a different task. This reusing of well-
trained CNN parameters is known as transfer learning104,105. The

microstructure classification research by Ling et al.95 is an example
of transfer learning. Remember that Ling et al. compute image
features using an ImageNet pretrained CNN. The feature extrac-
tion CNN is not trained on microstructure images but can
generate high-quality features for various classes of microstructure
images (titanium, steel, and powder). Specifically, Ling et al.
computed image features from convolution layer activations of a
VGG16 network97. In a different work, Kitahara et al.106 computed
image features from fully connected layer activations of the same
VGG16 and also achieved remarkable accuracy (98.3% and 88.4%)
in two unsupervised microstructure classification tasks.
The reasoning for the explainability of transfer learning is similar

to that of zero knowledge proof107. Although we are not sure
about what information a network layer contains, the fact that it
performs well in multiple different tasks suggests that it must have
learned a way to capture key characteristics of the input data.
Transfer learning is an important approach in materials science
machine learning problems. In addition to the explainability it
enables, a more important benefit is that it can greatly reduce the
amount of required training data108. Both Ling and Kitahara
examined VGG1697, but there is no constraint on the network
choice and transfer learning applies to most CNNs. Also, note that
neither Ling nor Kitahara used the raw CNN activations directly.
There are no rules about how CNN activations should be used and
further featurization can often help reduce the feature size and
improve the model performance.

Designing explainable DNNs
The techniques discussed until now explain black-box DNNs in a
post-hoc manner. It is also possible to achieve intrinsic ante-hoc
explainability for DNNs to some extent. Based on existing literature
we identified three ways to achieve intrinsic explainability. A DNN
is explainable to some extent if (1) the way it processes data is
explainable or its internal data representation is explainable, or; (2)
its design choice roots in domain knowledge, or; (3) it produces
explainable output.

Explainable processing/representation. Transformer91 is a deep
neural network designed from an explainable self-attention
mechanism and has shown remarkable success in many different
fields in recent years109–113. Transformer is probably underused in
materials science problems currently so we introduce its main idea
here in detail. At the core of Transformer is an explainable data
processing design called self-attention114,115. The intuition of self-
attention is that the network is likely to succeed if it can search for
relevant information efficiently. Modern search processes usually
work with three key components: query, key, and value. For
example, to search for a paper about machine learning in
materials science, we would enter a query ‘machine learning in
materials science’ in a search engine. The search engine compares
our query to keys of all papers and returns a relevance ranking. We
then check the paper details (values) based on the relevance
ranking. Of course, in DNN prediction problems we only know the
prediction input and output, not the appropriate queries, keys, or
values. The ML solution is to implement three numerical matrices
that correspond to queries, keys, and values and then let the
network learn these matrices automatically. One attention block
from the Compositionally Restricted Attention-Based network
(CrabNet), a Transformer based material property prediction
network, is illustrated in Fig. 13. Transformer outperforms LSTM
and many other sequential data models for two reasons. First, the
self-attention mechanism allows better capture of long-range
dependencies. Second, Transformer allows easy parallelization of
sequence data due to a positional encoding design. Moreover, the
position-aware feature design allows Transformer to provide heat
map style explanations in addition to its explainable data
processing. A detailed example is presented in the next paragraph

Fig. 12 Concept visualization example. The first row shows SEM
images of two different steels and the second row shows their
characteristic textures patterns generated from a CNN. Specifically,
these synthetic texture patterns illustrate concepts learned in CNN
filters through activation maximization. Results suggest that
important synthetic texture patterns show interesting abstractions
of the corresponding material microstructure. Figure reprinted from
ref. 95 with permission. Copyright 2017 Elsevier.
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to illustrate the positional encoding and the heat map explana-
tion. We highly recommend readers to check the Transformer
paper91 because the self-attention idea is powerful and goes
beyond sequential data. Recent research shows that the self-
attention mechanism can also be combined with, or even replace,
convolution operations in image-based tasks116,117. The attention
mechanism may be useful for materials tasks where the truly
important features are sparse or long-term interactions play an
important role.
CrabNet is a recent Transformer style network that achieves

highly accurate structure-free material property predictions and
provides heat map style explanations (Fig. 14a). CrabNet predicts
material properties based solely on the material chemical formula.
One chemical formula is separated into a vector of atomic
numbers and a vector of atomic fractions (e.g., [8, 13] and [0.4, 0.6]
for Al2O3). The atomic number vector and the atomic fraction

vector are padded with zero to the required size, embedded (or
featurized) separately, and then combined to generate the full
feature matrix, which is called element-derived matrix (EDM) in
CrabNet. The separation between element embeddings (i.e.,
atomic numbers) and positional embeddings (i.e., atomic frac-
tions) allows a unique chemical-environment-aware embedding
for each element. EDM is then passed into the CrabNet for further
refinement and material property predictions. The CrabNet
architecture consists of an encoder and a predictor (Fig. 14b).
The CrabNet encoder improves EDMs based on other elements in
the current chemical formula and other training chemical
formulas. The refined EDM (or EDM” in Fig. 14b) is then passed
into a residual network (i.e., the predictor) to make material
property predictions. CrabNet is highly accurate. Wang et al.
evaluated CrabNet on 28 structure-agnostic material property
datasets and CrabNet consistently shows better accuracy than the

Fig. 13 Illustration of an attention block from CrabNet90. a The input position-aware features (i.e., EDM) are first mapped to query (Q), key
(K), and value (V) matrices by the corresponding fully connected layers. b Q and K are multiplied to give the interaction matrix. This matrix
multiplication operation is inspired by the fact that dot product shows the distance between vectors. c The interaction matrix is scaled and
normalized to give the self-attention matrix, which is then combined with V to generate the refined feature representation Z. Z is further
refined by passing through a shallow feed-forward network, which is not shown here. Figure reprinted from ref. 90 under the CC BY 4.0
license156.

Fig. 14 CrabNet heat map explanation example and model architecture. a An element importance heat map from CrabNet. The colors
indicate the average amount of attention that Si pays to other elements. This heat map shows that its corresponding attention head (i.e., the
first attention head from the first attention layer of CrabNet) attends to common n-type dopants. Here CrabNet is trained with the aflow_Egap
dataset160 in which many compounds contain Si. b Illustration of the CrabNet architecture, which includes the EDM embedding, the encoder
(shown in the gray square), and the predictor (ResidualNetwork). The attention block design is shown in Fig. 13. One attention block has
multiple attention heads. Z1, …, ZH are generated from different attention heads in the same attention layer. FC stands for fully connected
layer, which corresponds to a small feed-forward network. × Nmeans that the attention layer is repeated N times to form the encoder network.
Figure reprinted from ref. 90 under the CC BY 4.0 license156.
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benchmarks (i.e., random forest and ElemNet89). The explanations
provided by CrabNet also give chemical insights (Fig. 14a).
CNNs with explainable data processing/representation are not

yet widely used in materials science research. An example from
natural image prediction tasks is the interpretable CNN designed
by Zhang et al.118. The architecture of the interpretable CNN is
different from mainstream CNNs as there is an additional loss for
each convolution filter. These additional filter losses encourage
individual filters to encode distinct object parts (e.g., animal faces),
as shown in Fig. 15. In other words, the interpretable CNN contains
disentangled object representations within its internal filters and
predicts image classes by referring to these disentangled
representations. The network thus becomes explainable due to
its explainable representation. Similar disentangled representation
ideas are also seen in other explainable CNNs (e.g., ProtoPNet119)
with different technical details. These explainable CNNs are
interesting because the possibility of representation disentangle-
ment is exciting. However, one common problem with applying
explainable CNNs to materials science data is that currently
available explainable CNNs usually reason based on prototypical
parts of real objects (e.g., animal face in Fig. 15). In materials data,
isolated objects are usually not meaningful and statistical
distributions are often important88,120 For the explainable CNNs
to be useful for materials science applications, they need to reason
based on statistical distributions rather than individual objects.
This is likely an interesting research opportunity.

Explainable model design. A black-box DNN can have some
explainable design choices. Just like physics-aware kernels121 are
sometimes considered to be more explainable than default linear/
Gaussian kernels19, DNNs with materials science domain

knowledge inspired design choices are more explainable than
off-the-shelf DNNs designed for general purposes.
An example of domain knowledge-inspired DNN architecture

design is SchNet122. SchNet is a DNN customized to predict
quantum properties and potential energies for atomistic material
systems. The authors are inspired by the great success of DNNs in
commercial applications and intend to achieve high-accuracy high-
efficiency computation for atomistic systems with DNNs. They
summarize a few rules of thumb frommaterials domain knowledge
and designed the DNN (i.e., SchNet) accordingly. First, the
fundamental building blocks of atomistic systems are atoms, so
the network input is a matrix of atom-type features and the first
network layer is an atom embedding layer, which constructs a
latent representation of the original atomic system within the
network. Second, the interaction between atoms is important, so
the following network layers are interaction blocks, which
gradually improve the latent representation. The key design in
the interaction blocks is a filter-generating network, which takes in
atomic position inputs and generates continuous convolution
filters that work on the latent representation. Note that the
continuous convolutions in the interaction blocks of SchNet are
generalizations of discrete convolutions in normal CNNs. This idea
may look surprising at first glance since atomic position inputs and
image inputs seem vastly different. However, it becomes reason-
able once one realizes that the essence of a CNN is the capture of
local neighborhood information at different scales, which makes
sense in both pixel neighborhoods of images and atomic
neighborhoods of molecules/crystals. Note that other researchers
working on microstructure analysis problems also comment that
CNNs are suitable for microstructure analysis for a similar reason
(i.e., the capture of neighborhood information at different
scales)8,86. However, while image pixels sit on discrete pixel grids,
atom positions are arbitrary and continuous. That is why SchNet
adapts the filter-generating network design rather than the normal
CNN filters. These domain knowledge-inspired architecture designs
(i.e., embedded layer followed by interaction blocks of continuous
convolution) help SchNet achieve supreme accuracy on many
different atomic scale prediction tasks for various material
systems123–125 and are explainable to some materials scientists.
Another successful domain knowledge-inspired network exam-

ple is physics-informed neural networks (PINNs)126. More related
works can be found in a recent review by Karniadakis et al.127,
which discusses physics-informed machine learning with a focus
on partial differential equation solutions.

Explainable output. Finally, some DNNs can produce explainable
outcomes despite highly complicated data processing within the
network itself. These DNNs can help address the lack of ground
truth challenge in materials science problems. For example, in a
study of ferroelectric domain wall transportation behavior, Holstad
et al.128 apply a sparse Long Short-Term Memory (LSTM)
autoencoder to disentangle I(V)-spectroscopy measurements into
three components. The authors find that the three disentangled
components correspond to two intrinsic signals from domain wall
transport behavior and an extrinsic signal from tip-sample contact
conduction contribution. These separated output signals allow the
authors to better analyze the physical problem of interest though
the network architecture and its internal data processing are
difficult to understand.
Another example is the work of Liu et al.129. The authors trained

an attribute editing GAN (attGAN)130 that can modify scanning
electron microscopy (SEM) images based on desired microstruc-
ture characteristics. The model can generate synthetic images of
smaller/larger particle sizes or more/fewer pores based on an
experimental SEM image. Some examples are shown in the first
row of Fig. 16, in which the model modifies the average particle
size within the image by removing small particles. The authors
also trained a material strength (i.e., peak stress) prediction model

Fig. 15 Illustration of the interpretable CNN designed by Zhang
et al.118. The top four rows show example filer feature maps from
the interpretable CNN and the bottom two rows show example filter
feature maps from an ordinary CNN. Note that feature maps from
the interpretable CNN filters tend to be meaningful (animal heads in
this example) while feature maps from ordinary CNN filters are
usually meaningless. These filter feature maps are computed from
filter receptive fields following a technique proposed by Zhou
et al.161. Figure reprinted from ref. 118 with permission. Copyright
2018 IEEE.
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using experimental SEM images and strength measurements.
When synthetic SEM images from the attGAN are fed into the
(experimental data trained) strength prediction model, results
agree with domain knowledge (i.e., an inverse correlation between
particle size and material strength, which is also known as the
Hall-Petch rule131–133). The attGAN is interesting as it provides a
new approach to understand abstract but important materials
science concepts. The authors showcase their model with particle
size and porosity, which are relatively well-understood in the
materials science community. Nevertheless, this framework itself is
general and can handle less-understood abstract materials
concepts. Also, note that Liu et al. trained the model with only
30 unique labels for each concept, which is attainable for many
material problems.

EXPLANATION EVALUATION
Explanations should not be blindly trusted. Some explanations,
especially post-hoc explanations, may not be faithful to their initial
design purpose. For example, Adebayo et al.134 showed that
several popular CNN heat map explanation techniques do not
depend on the parameters of the model being explained. The
authors conducted a simple model randomization experiment in
which heat maps produced by a well-trained CNN are compared
to those produced by a randomly initialized CNN of the same
architecture. The results show that some heat maps (e.g., guided
GradCAM) are basically unaffected by the model parameter
randomization. The authors then conducted another data
randomization experiment in which a CNN is trained and tested
on a normal dataset, and then trained and tested on the same
dataset again but with permuted data labels. On the normal
dataset, the model achieved high training and high test accuracy,

suggesting that the model was able to learn the underlying
structure of the data. On the label-randomized data set, the model
achieved over 95% training accuracy but no better than random
guess test accuracy. In other words, the model memorized the
training labels of the randomized dataset without being able to
truly exploit the underlying structure of the data. Interestingly,
some heat maps from the two models are highly similar though
the second model was not able to truly learn the underlying
structure of the data (Fig. 17). These results suggest that the
model architecture alone imposes a heavy prior on the learned
network representation and some heat maps are mainly
dominated by this model architecture prior. Such heat maps act
as edge detectors and do not carry information about the training
status of the model being explained. As a result, these heat maps
cannot be used for purposes like model debugging. While they
can still convey useful information, their limitations must be kept
in mind to avoid over interpretation.
Before diving into model evaluation, one should first follow

proper model training and evaluation processes to ensure that the
model being explained has high quality. One common caveat of
model training is overfitting. Overfitting is seen in the randomized
data label experiment of Adebayo et al.134, in which the model
simply memorized the training data to achieve high training
accuracy (95%) and failed to generalize well on the test data (i.e.,
no better than random guessing). To identify overfitting, it is
important to follow an appropriate model evaluation convention
(e.g., vanilla train/test split, k-fold cross validation, leave-one-out
cross validation) and make sure that no data leakage happened
during the training. Another important caveat is the multiplicity of
good models135 and the statistical significance of an explanation.
If there are many different ways to model the problem with similar
accuracy and the explanation is valid only under specific

Fig. 16 Example explanation generating network. Material attribute aware visual explanations (i.e., synthetic images) are generated from an
image editing GAN129. The top row shows synthetic SEM images generated with increasing average particle size input. The lower row shows
predictions from an experimental data trained material strength prediction model, in which the x-axis shows the normalized size attribute
value. These prediction results agree with materials domain knowledge (i.e., the Hall-Petch rule). The material attribute aware image
generation model together with the forward property prediction model form a general framework that can explain the effect of abstract
material attributes. Figure reprinted from ref. 129 with permission. Copyright 2022 ACS.
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circumstances (e.g., specific hyperparameters), then the validity of
the explanation needs to be checked. One example is the recent
research of Griffin et al.136, in which the authors highlighted the
importance of proper physical constraints and unbiased model
hyperparameter choice. They show that some ferroelectric
switching experiments data in PbZr0.2Ti0.8O3 thin films can lead
one to conclude either exotic mechanisms or classic ferroelectric
switching mechanisms depending on the ML model being
explained. The exotic mechanisms should be double checked in
this case. After all, explanation quality depends on the model and
serious scientific conclusions should not be drawn by explaining a
poor model.
Evaluating different explanations on the same ground, as done by

Abedayo et al.134, is desirable but very difficult to achieve in general.
Explanations are motivated by different purposes (e.g., trust,
causation, discovery), function from different perspectives (e.g.,
ante-hoc/post-hoc, global/local), and exist in different forms (e.g.,
visual, numerical, and rules). It is difficult to compare explanations
that serve different purposes with different approaches. Moreover,
as discussed in the previous paragraph, explanations depend on the
model being explained and the available training data. Different
explanation techniques are rarely compared to each other due to
the above reasons. One exception is heat map explanations, which
are highly popular for explaining CNNs. Several studies have
compared different heat map explanations side by side134,137–141.
Though there is no magic evaluation recipe that works for all

explanations, a few core principles should be considered when
designing evaluations for materials science explanations. We
summarized the principles and present them in Fig. 18. First, an
explanation should always be evaluated on a simplified task
whenever possible. This principle is simple but highly useful. Take
the work of Adebayo et al.134 (Fig. 17) as an example. The authors
compared different heat map explanation techniques using
simple images of hand-written images and natural objects. The
simplicity of the input images allowed the authors to focus on the
explanation techniques. The same conclusion would be less clear
if the authors had started with some complicated materials
images (e.g., those in Fig. 16). Then when it comes to the actual
evaluation of explanations, we identified four basic attributes of
good explanations: (1) usefulness, (2) robustness, (3) sensitivity,
and (4) simplicity. The work of Doshi et al.142, Alvarez et al.30, and
Montavon et al.13 were referred to when summarizing these four
attributes.
Usefulness means that an explanation should be checked with

respect to its intended goal. For example, if an explanation is
made to identify relevant features in the input data, then the

determined important features should actually affect model
predictions. This can be tested by removing/replacing important
features gradually and observing how the model prediction
changes, as in the works of Samek et al.140,143. Robustness means
that explanations should be robust with respect to small noises in
data. In other words, if two input data instances are highly similar
and have similar (or identical) labels, then explanations for these
two instances should also be similar. This requirement can be
tested via input perturbation. For example, several researchers
perturbed input images, by adding small noises137,141 or by
introducing small shift vectors13,138, and measured the change/
similarity in resulting explanations to test the explanation
robustness (also referred to as continuity or reliability). Sensitivity
means that explanations should be sensitive to non-trivial
perturbations in both the data under investigation and the model
being explained. The work of Adebayo et al.134 on explanations
independent of model parameter randomization and data label
randomization is an example of undesirable invariance that
violates the sensitivity attribute. Simplicity means that simpler
explanations should be reasonably favored when multiple
explanations are available. Too much information is distracting.
Good explanations should be selective29 and reveal only the
relevant information. The simplicity of different explanations can
sometimes be compared quantitatively. One example is the
research of Samek et al.143, in which the simplicity of visual
explanations is measured by the explanation image file size and
the image entropy.

Fig. 17 Illustration for explanation invariance to data label randomization. A CNN is trained on two different datasets separately. The first
dataset is normal. The second dataset contains the same data entries as the first dataset but the data labels are permutated randomly. The
true-labels dataset trained model achieves high training and high test accuracy. The random-labels dataset trained model achieves high
training and no better than random accuracy. Heat maps generated from the two CNNs are shown above. The training dataset is indicated in
the row label and the explanation technique is indicated in the column label. Surprisingly, heat maps from the two models can be highly
similar despite the dramatically different model generalization (i.e., test) performance. Figure reprinted from ref. 134 with permission.

Fig. 18 Graphic summary of explanation evaluation core ideas. An
explanation should first be evaluated with a simple use case where
the ground truth is clear and the explanation quality can be easily
determined. A good explanation should be useful, robust, simple,
and sensitive.
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CHALLENGES AND OPPORTUNITIES
Following the recent success of ML, there has been an increasing
interest in applying XAI techniques to address real-world
challenges in various fields (e.g., healthcare, finance, transporta-
tion, legal). This rising research interest is distilling into the
materials science community. We have presented several recent
materials science research examples that applied XAI techniques
to understand the underlying physics, generate new scientific
hypotheses, and ensure trust in the predictive ML model. Many of
the materials XAI examples we found deal with offline prediction
tasks using image data. Applying/Designing XAI techniques for
other input data types and other application fields would be a
research opportunity. After all, XAI is still in its infancy. Many
challenges and opportunities exist.
One common challenge in applying current XAI techniques for

materials science problems is the lack of clear ground truth. Many
XAI techniques were initially designed for natural data, which
contain explicit ground truth (e.g., animal classes). Such XAI
techniques usually have an implicit assumption of data explicit-
ness/clarity, and model explanations are derived accordingly. One
example is the interpretable CNN118 in the explainable processing/
representation section. The interpretable CNN can disentangle
data representations learned by different filters, but its interpret-
ability is based on the fact that natural objects are composed of
easily identifiable parts (e.g., all birds have heads, bodies, wings,
and claws). Materials data rarely enjoy the same level of data
explicitness. As a result, many existing XAI techniques do not work
well for materials science problems. Remedies to this lack of
ground truth challenge probably lie in materials science domain
knowledge. Experimental materials scientists, computational
materials scientists, and machine learning scientists need to
collaborate to consolidate abstract materials science domain
knowledge into explicit forms (e.g., numerical equations, simple
rules, or visual signatures), and then approach explainability by
making use of such explicit knowledge. One example study in this
direction is the counterfactual image editing GAN129 in the
explainable output section (Fig. 16), in which high-quality
synthetic visual example images are generated by referring
domain knowledge (i.e., relevant microstructure attributes of
interest).
Another challenge is the evaluation of explanations. As of now,

many materials XAI explanations are not carefully evaluated. This
lack of evaluation is understandable since explanation evaluation
can be highly difficult. Nevertheless, evaluation is an important
component of XAI and should not be ignored. More research
efforts are needed in three directions: (1) formalizing sanity checks
to compare explanations of similar kinds, like the evaluations of
heat maps134,137–141; (2) designing new customized explanation
evaluation pipelines, like the network representation disentangle-
ment evaluation framework by Bau et al.144; and (3) incorporating
more human interactions to maximize the flexibility of explanation

evaluations. Vilone et al.145 recently summarized the various ways
to achieve human-involved explanation evaluation in a detailed
XAI review, which can be useful for designing materials science
explanation evaluations.
A third challenge is addressing the misbehavior of ML models

and XAI explanations. Note that ML models and XAI explanations
can behave illogically even when proper data cleaning and model
training procedures are followed. For example, many DNNs of
natural images are brittle (i.e., sensitive to small perturbations) due
to the pervasive existence of non-robust features (i.e., features are
that meaningless to humans and illogically sensitive to small
noises)15. This model performance problem, and its associated
explanation problems, can be solved with advanced training
techniques like adversarial training15. This has been shown in the
recent work of Loveland et al.44. The authors applied adversarial
training to train a graph neural network (GNN) for a molecule
classification task (i.e., classify explosive and pharmaceutical
molecules). They found that adversarial training forced the GNN
to make stronger use of the model’s learned representations and
improved the quality of heat maps explanations (Fig. 19).
Moreover, the improvements in model explanation quality do
not result in a significant degradation in prediction accuracy
(within 2% accuracy difference).
Apart from various theoretical and technical challenges,

practical aspects like dissemination and implementation are also
important. XAI is a relatively new field to the materials science
community. We expect more systematic tutorials with hands-on
materials examples will benefit the community. It would also be
highly rewarding to build a comprehensive code library and
gather different XAI techniques that are most relevant to materials
science problems. There are already several general-purpose XAI
code libraries (e.g., AI Explainability 360146, XAI147, explainerdash-
board148, eli5149, and convolutional neural network visualiza-
tions150). These libraries are useful but each of them only covers a
limited number of XAI techniques for now. Moreover, these
libraries are not tailed for materials science use cases. For a code
library to benefit the materials science community the most, its
user interface needs to be simple since most users with materials
science problems do not have strong coding backgrounds. The
library should also allow for easy incorporation of domain
knowledge and user/instrument inputs for maximum design
flexibility. Such a library will greatly promote the usage of XAI
and the understanding of materials machine learning problems.
Finally, XAI is not the only useful ML approach for materials

science. For example, materials science domain knowledge/insight
can boost ML model explainability and performance in materials
problems, as we have seen in the SchNet122 example. Physics-
informed machine learning is a blooming research field127. Related
to the topic are general informed machine learning151 and theory-
guided data science152. Uncertainty quantification is another
interesting field that can help ensure trust in ML model

Fig. 19 Example of improved explanation quality due to adversarial training. Molecule attribution heat maps are generated using the
vanilla gradients technique. Yellow indicates higher importance and pink indicates lower importance. Note that the molecular importance
explanations are sparse before adversarial training (left) and become more compact and physically meaningful after adversarial training
(right). Figure reprinted from ref. 44 with permission.
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predictions. A common reason that a well-trained ML model
behaves poorly on new test data is distribution shift153. If the
distribution of the test data does not match the distribution of the
training data, then the model is likely to fail. One solution to this
problem is to detect distribution shifts before trying to predict.
Zhang et al.154 recently presented an interesting work in this
direction. They leveraged predictive uncertainty from deep neural
networks to detect real-world shifts in materials data (e.g. material
synthesis condition changes and SEM imaging condition drifts).
This technique can be applied to raise warnings in case of
confusing samples and prevent ML models from making
unreliable predictions. Last but not least, visualization (of the data
or the ML model) is an important approach to achieve
explainability. Several explanation techniques we discussed make
heavy use of visualization (e.g., heat maps and concept visualiza-
tion). Note that visualization by itself is an active research field and
there are many interesting visualization techniques that we do not
have the time to discuss in this article. Readers can refer to review
articles about visual analytics and information visualization for
more information155.
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