
Citation: Ullah, F.; Alsirhani, A.;

Alshahrani, M.M.; Alomari, A.;

Naeem, H.; Shah, S.A. Explainable

Malware Detection System Using

Transformers-Based Transfer

Learning and Multi-Model Visual

Representation. Sensors 2022, 22, 6766.

https://doi.org/10.3390/s22186766

Academic Editor: Zahir M. Hussain

Received: 19 August 2022

Accepted: 5 September 2022

Published: 7 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Explainable Malware Detection System Using
Transformers-Based Transfer Learning and Multi-Model
Visual Representation
Farhan Ullah 1,* , Amjad Alsirhani 2,3 , Mohammed Mujib Alshahrani 4, Abdullah Alomari 5 ,
Hamad Naeem 6 and Syed Aziz Shah 7

1 School of Software, Northwestern Polytechnical University, 127 West Youyi Road, Beilin District,
Xi’an 710072, China

2 College of Computer and Information Sciences, Jouf University, Sakaka 72388, Aljouf, Saudi Arabia
3 Faculty of Computer Science, Dalhousie University, Halifax, NS B3H 4R2, Canada
4 College of Computing and Information Technology, University of Bisha, Bisha 61361, Saudi Arabia
5 Department of Computer Science, Albaha University, Albaha 65799, Saudi Arabia
6 School of Computer Science and Technology, Zhoukou Normal University, Zhoukou 466001, China
7 Faculty Research Centre for Intelligent Healthcare, Coventry University, Coventry CV1 5RW, UK
* Correspondence: farhan@nwpu.edu.cn or farhankhan.cs@yahoo.com

Abstract: Android has become the leading mobile ecosystem because of its accessibility and adapt-
ability. It has also become the primary target of widespread malicious apps. This situation needs the
immediate implementation of an effective malware detection system. In this study, an explainable
malware detection system was proposed using transfer learning and malware visual features. For
effective malware detection, our technique leverages both textual and visual features. First, a pre-
trained model called the Bidirectional Encoder Representations from Transformers (BERT) model was
designed to extract the trained textual features. Second, the malware-to-image conversion algorithm
was proposed to transform the network byte streams into a visual representation. In addition, the
FAST (Features from Accelerated Segment Test) extractor and BRIEF (Binary Robust Independent
Elementary Features) descriptor were used to efficiently extract and mark important features. Third,
the trained and texture features were combined and balanced using the Synthetic Minority Over-
Sampling (SMOTE) method; then, the CNN network was used to mine the deep features. The
balanced features were then input into the ensemble model for efficient malware classification and
detection. The proposed method was analyzed extensively using two public datasets, CICMalDroid
2020 and CIC-InvesAndMal2019. To explain and validate the proposed methodology, an interpretable
artificial intelligence (AI) experiment was conducted.

Keywords: malware analysis; transfer learning; malware visualization; explainable AI; cybersecurity;
malicious; network behavior

1. Introduction

The Internet of Things (IoT) platform was established to be the most user-friendly app
in the industry. We can remotely access the actuators, seamlessly connect sensors, monitor
smart devices in real time, and examine the information gathered via the cloud. While
many of our existing devices rely on cloud computing, the IoT and app vendors are starting
to investigate the benefits of using processing power from the devices themselves. This
connectivity has one shortcoming: it is bidirectional. The cloud can make contact with a
device that sends data there. Security over cloud sensors is a major concern because many
IoT devices are made to be managed online. Chaos results if an IoT hacker has control over
the devices [1,2]. With the growth of digital gadgets, we have entered the “mobile era,”
with smartphones becoming increasingly popular. Powerful mobile technologies such as
smartphones and tablets are replacing authoritative computational platforms, executing

Sensors 2022, 22, 6766. https://doi.org/10.3390/s22186766 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22186766
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-1030-1275
https://orcid.org/0000-0001-8145-2575
https://orcid.org/0000-0003-3866-3048
https://orcid.org/0000-0003-1511-218X
https://orcid.org/0000-0003-2052-1121
https://doi.org/10.3390/s22186766
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22186766?type=check_update&version=3

Sensors 2022, 22, 6766 2 of 22

desktop computers. Apps that were previously only available on sophisticated computers
are now available on these mobile devices. Android is the most popular smartphone
operating system in the world, with over 80% of the market share [3]. Because of their
popularity and ease of use, Android apps have seen a huge increase in the number of
malware and security assaults directed against them. Android handsets are the most
regularly attacked by malware, according to Nokia’s Threat Intelligence Report 2019 [4]. In
the mobile service, the survey [5] discovered that Android was targeted by 47% of malware
samples, while Windows was targeted by only 35.82%. The problem of identifying and
combating malicious attacks must be given attention in light of the massive growth in the
number of Android smartphones and Android malware.

Malicious apps employ a variety of techniques to circumvent the current detection
systems supplied by the Android platform and existing anti-virus tools. Dynamic execution,
code obfuscation, repackaging, and encryption are examples of evasion techniques [6].
These methods mostly work when dealing with APK meta-information (execution file,
source code, permission, manifest files, etc.). However, these methods should be re-
designed when dealing with network-based malware. A recent study [7] investigated
a wide range of malicious activities and categorized current malware detection systems
into two categories: static analysis and dynamic analysis. Static analysis is vulnerable to
malicious code polymorphism and encryption [8,9], which are used to create versions of
malware to avoid detection. Dynamic analysis techniques change the operating database
of the device in real-time to control and access sensitive data. This idea is promising, but it
requires a large enough set of actions to encompass app behavioral patterns. As a result,
the dynamic analysis of smart devices with limited resources is challenging.

Problem Statement

Several malware detection techniques [10] concentrate on the network traffic produced
by Android apps. The goal of network traffic-based approaches is to uncover distinguishing
features that can be used to classify malicious apps effectively. To harm a target Android
app, network malware may use multiple malicious scripts. Text-based feature analysis
can uncover potentially harmful scripts in terms of behavioral segmentation. Figure 1
shows malicious network behaviors using adware and SMS malware. Some malicious
software connects directly to an IP address without resolving the address. This is also
commonly regarded as a malicious indication. In part a, the IP with 10.42.0.1 is malicious
as it works without Address Resolution Protocol (ARP). However, the IP with 10.42.0.151
used the domain resolution, which indicates that this is a valid address. In part b, the
SMS malware continuously sends malicious scripts to the server for authorized access and
payment. Such behaviors cannot be interpreted solely by image representation. However,
the text-based analysis may encounter challenges such as code obfuscation, insertion, re-
ordering, etc. Image-based malware identification is frequently utilized because it can
capture various forms of structural data, including storage, processes, headers, etc. As a
consequence, malware images can be used to extract any kind of dynamic or obfuscated
data. However, this alters the entire design of network data packets, making it difficult
to identify a particular script, including a malicious IP, script, URLs, etc. Additionally,
this method is completely reliant on image properties. Therefore, an attacker can target
the malware image, compromising the overall classification accuracy. To address these
challenges, we integrated text-based features to detect potentially malicious scripts with
image features to detect other potentially harmful behaviors such as storage or resource
use. A hybrid strategy facilitates the appropriate classification and usage of malware and
benign data [11].

Sensors 2022, 22, 6766 3 of 22

Figure 1. Malicious network patterns using adware and SMS malware: (a) malicious unresolved IP
using adware; (b) malicious scripts using SMS malware.

In this paper, we proposed a novel and innovative approach to finding and evaluating
network malware. We combined the trained textual and texture features to achieve the
benefits of both. We demonstrated that these two types of features complement one another
and that integrating them can improve malware detection results. The main contributions
of the paper are as follows:

1. The BERT-based transfer learning approach was utilized to extract trained features
from HTTP and TCP flows. BERT employs transformers and an attention method that
discovers contextual relationships between features and generates trained matrices.

2. The malware-to-image transformation method was developed to convert the network
byte streams into a visual representation. Further, the FAST extractor and the BRIEF
descriptor were used to locate and mark essential features quickly and easily.

3. The trained textual and texture features were combined for accurate Android malware
classification.

4. To explain and validate the proposed approach, an interpretable AI approach was used.

The remaining part of the paper includes the following: Section 2 describes the related
work, and Section 3 describes the proposed method. Section 4 thoroughly discusses the
experiments and discussions, and Section 5 concludes the work.

2. Literature Review

Numerous research studies [12,13] show how the Android operating system uses sev-
eral security procedures, particularly authorization processes, to safeguard compromised
target devices. To the advantage of admin rights, people must be sufficiently knowledge-
able about security vulnerabilities. Android malware can infect and spread via mobile
devices due to the limitations created by overreliance on the client. Internet connection
is increasingly reliant on smartphones. Network management tasks are made easier by
analyzing mobile app traffic. Several malware detection algorithms focus on the network
traffic generated by Android apps. The purpose of network traffic-based techniques is to
find distinctive characteristics that may be utilized to efficiently classify harmful apps.

By monitoring the app’s uses-permission and utilizing metadata, Sanz et al. [14]
created a static-based technique that effectively identified malware. The planned work had
a classification performance of 86.41 %. Using the Drebin dataset, Puerta et al. [15] utilized a
similar technique to identify security attacks and found a 96.05% classification performance.
A two-phase malware analysis approach was presented by Liu et al. [16]. The first step is to

Sensors 2022, 22, 6766 4 of 22

examine the app’s Manifest.xml file, which contains the rights that have been sought. The
second step is to use APK utilities to segment the file and retrieve the Smali code. Details
regarding stated rights, particularly API calls, may be found in the Smali code, which
can be utilized to identify suspicious behavior. The predictive accuracy of the proposed
methodology is 98.6 %. For irregular network analysis, Shanshan et al. [10] suggested
an HTTP and TCP-based malware detection method. The data flow of the handy app is
replicated by the access point. All data acquisition and malware detection take place via the
internet, using the possible available resources. Mobile malware is identified with a 97.89%
accuracy using network-based traits and stochastic gradient descent. Aresu et al. [17]
looked into HTTP-based datagrams generated by Android apps when they interface with
remote harmful services. It also employs a grouping mechanism for creating profiles from
many malware strains. These identifiers are then used to identify anomalous activities.

Malware visualization is a well-studied topic that encompasses a wide range of
methodologies in various applications. Nataraj et al. [18] initially visualized malware as
gray-scale images in the range [0, 255], where 0 is black and 255 is white. They noticed
that the images contained multiple parts that reflected different malicious content. The
image descriptor was utilized to quantify malware texture characteristics and K-NN for
classification. Wang et al. [19] created the TextDroid approach, which splits the text of
an HTTP flow into special symbols and then generates n-gram sequencing to investigate
the pattern of the resultant properties. The detection score for this text-based approach
is 76.99%. Wang et al. [20] transformed network traffic into 2D images, and then a CNN
network was utilized to classify the malware based on the visualized data. It did not
derive attributes from traffic but used raw traffic patterns as images to conduct malware
classification. The proposed technique has a classification accuracy of 99.9%. The Falcon [21]
approach was proposed for malware classification based on network-to-image. Each
network packet is treated as a 2D image for classifying network traffic. They employed a
bidirectional LSTM network to process 2D images to obtain meaningful vectors for malware
classification. The proposed method provides the malware classification of 97.16%.

A malware image reflects the malicious characteristics of each variant. However,
image-based malware classification is limited to image attributes. As a result, a hacker
can assault the malware image, altering the overall classification performance. Similarly,
utilizing a text-based approach for malware classification alone may result in identifier
renaming, re-ordering, and obfuscation issues. To address these concerns, we combined
textual and visual features to design an efficient network-based malware classification and
detection system.

3. Proposed Methodology

Android malware has grown to be a major issue in recent years. Current approaches
can identify malicious apps reliably by observing the activities of mobile apps. However,
mobile devices are often resource-constrained. By mining network traffic features, cloud
services can be utilized to detect Android malware. Thus, it can help minimize the burden
on mobile devices. The proposed method employs transfer learning, i.e., transformers, to
extract the most meaningful features from network traffic. This reduces the training time
required to train the model on large datasets. Furthermore, the development of a network-
based malware detection system is less complicated. For instance, such a technique can
be installed on a cloud server, relieving the unnecessary strain on mobile devices. These
solutions are based solely on consumer data over cloud servers, ensuring access to mobile apps.
The network communication traces enable the tracking and detection of various malware
types [22]. Figure 2 describes the explainable malware detection system using transfer learning
and texture features analysis. The Android network traffic was analyzed, and the encoded
information was retrieved in the form of packet capture files. We analyzed data traffic in two
directions: textual and visual feature analysis. The most prominent features were extracted
from a large volume of hybrid features. In addition, the CNN model was intended to extract
deep features. The parameters were fine-tuned to use the most efficient number of input and

Sensors 2022, 22, 6766 5 of 22

output layers, hidden layers, neurons, dropout layers, and activation and output functions.
This procedure can assist us in lowering the computational cost of the CNN model and
obtaining the most effective deep features for the ensemble model.

Figure 2. Explainable malware detection system using transformer-based transfer learning and visual
features.

3.1. Textual Features Analysis
3.1.1. Network Data Pre-Processing

HTTP traffic was utilized since it is the most popular protocol for global communi-
cation. The information contained in HTTP headers can be utilized to detect suspicious
attacks. Mobile apps, on the other hand, communicate via encoded HTTP, making it im-
possible to obtain confidential content. To tackle this limitation, we used a combination of
HTTP flows and TCP streams for collecting effective features from PCAPs. PCAP files are
the primary records that are created during network data transmission. These documents
contain network traffic used to evaluate the malicious node communication process. They
also aid in network traffic planning and activity sensing. HTTP traces include source, desti-
nation, port, host, source info, bytes, packet length, frame length, and TTL. GET, POST, and
URLs such as “www.google.com” are in the source info. TCP flows include transmitted and
received data and overall session counts throughout conversations. Valuable information
can be filtered to preserve semantics. To prevent redundant data, attributes from input
sequences that were consecutively similar were eliminated. Short patterns were removed
because they may not provide enough data to recognize network activity. Unifying se-
quence is crucial for detecting attacks because distinct pattern dimensions mislead neural
network algorithms. To adjust the dimension, this method employs a predefined sequence
length L. Sequences longer than L retain their first L names, whereas those shorter than L
are unified by zero-padding.

3.1.2. Transfer Learning with BERT

BERT is an Apache 2.0 licensed Natural Language Processing (NLP) machine learning
framework. It is a pre-trained model used to decipher the meaning of long and complex
texts. BERT employs transformers, a deep learning model in which each outcome element is
connected to each input and the attention head between them is computed dynamically [23].
It analyzes the document as a whole instead of chronologically. The BERT bidirectional
model is named after the fact that it can compute the right and left contexts of words in
this way. Non-contextual models generate only a word description, irrespective of how
the term is used in the document. For instance, the term “match” may have the same

www.google.com

Sensors 2022, 22, 6766 6 of 22

interpretation as the phrases “match the words” and “light the match.” BERT, a contextual
model, generates various interpretations for terms that are connected to other terms in the
phrase [24]. We employed a BERT-based model for word embedding and transfer learning
from network traffic. It employs 12 layers of transformer blocks, has a hidden size of 768,
12 self-attention heads, and approximately 110M trainable parameters. The BERT-based
mapping of the features is depicted in Figure 3. A sequence of embedded network features
(w1, w2, etc.) are processed by the BERT-based neural network. Each of the resultant
H-dimensional vectors corresponds to an input feature with the same index. Before feeding
each feature sequence into BERT, 15% of the features were replaced with [MASK] tokens.
The relevance of the non-masked features was used by the model to forecast the current
value of the masked features. We used the following parameters for the BERT output
feature prediction [25]:

• A classification layer was added on top of the encoder output.
• By multiplying the output vectors by the embedding matrix, the lexical dimension

was made from the output vectors.
• The probability of each feature in the vocabulary was calculated with the help of the

softmax method.

Figure 3. Feature mapping with BERT.

Figure 4 shows the visualization of features for the corresponding attention head using
the BERT model. Part a shows the head view visualization with different layers. Part b
shows the neuron view visualization of query q and key k. Individual neurons in the q
and k vectors are visualized in the neuron view, which demonstrates how they are utilized
to evaluate attention. Before entering the model, the input was processed to assist with it
discriminating between the two network flows.

• A [CLS] token begins the first network flow and a [SEP] token ends each network flow.
• Each feature has a network flow embedding signifying network flow A or network

flow B. Network flow embeddings are conceptually similar to word embeddings with
a vocab of 2.

• Each feature is given a positional embedding to denote its place in the sequence.

Sensors 2022, 22, 6766 7 of 22

Figure 4. Visualization attention for network traffic data using the BERT pre-trained model: (a) head
view visualization attention with different layers using Tensor2Tensor; (b) neuron view visualization
between Query q and Key k.

3.2. Visual Features Analysis

We examined a malware detection method based on visual features because malware
is often updated to evade static and dynamic classification. In this method, the malware
file is turned into an image, and the texture characteristics are extracted. It does not require
malware signatures or reverse engineering. Anti-detection methods such as signature
manipulation and dynamic feature extraction evasion can be effectively combated with this
strategy [26]. The PCAP is explored to collect the byte stream about each malware variant.
We designed a malware-to-image transformation method capable of retrieving images from
byte streams. The 8-bit vectors from network-based byte streams are processed to produce
gray-scale malware images. After that, the image sizes are all set to 25T56 pixels. Figure 5
shows a selection of 256 × 256 malware images for botnets, premium SMS, ransomware,
and scareware. It was revealed that a huge PCAP size is reduced to a smaller image size.
For instance, the PCAP is transformed from megabytes to kilobytes in the image. As a
result, it may be possible to reduce computing power.

Figure 5. Malware images extracted from network traffic with a size 256 × 256: (a) Botnet;
(b) Premium SMS; (c) Ransomware; (d) Scareware.

Sensors 2022, 22, 6766 8 of 22

The texture features were then extracted from malware images using the combination
of FAST extracted and BRIEF descriptor [27]. The FAST extractor has efficient real-time
computation. First, it circles a pixel (p) with 16 pixels, termed the Bresenham circle, to
detect corners. Here, we identified pixels from 1 to 16 and checked random N labels in the
circle if the labeled pixel was brighter than the 16-pixel selection. BRIEF is only a feature
descriptor; therefore, the FAST corner extractor was used for feature extraction, and BRIEF
was utilized for feature description. The implementation process was divided into 3 steps
for ease. To begin, the image was loaded into memory, and a copy was created that was
unchanged in terms of scaling and rotation. Then, the FAST extractor and BRIEF descriptor
were used to mark features. After, feature points between images were tracked, as shown
in Figure 6.

Figure 6. Tracking of features between train and test malware images: (a) train and test images (scale
and rotation invariant); (b) train key points with the best matching points.

3.3. Class Balancing Using SMOTE

A problem of class imbalance could arise because we are dealing with two distinct
types of features, text and images. We encountered a problem of class imbalance in the
combined features of textual and texture during the training. The combined dataset
included a wide range of characteristics in text and images. When one class dominates
another, it can be challenging to train the classifier for each class equally. It has a substantial
impact on the evaluation criteria and classification accuracy. During training, the classifier
may learn enough about the major class and ignore the lower, resulting in improved
accuracy for major but poor accuracy for lower. We used the Synthetic Minority Over-
Sampling (SMOTE) technique to oversample minority classes to fix class imbalance [28]. It
incorporates new minority class samples based on their similarity to the original minority
class samples. This causes the influence of minor classes to approach that of major classes.
SMOTE works as follows:

Sensors 2022, 22, 6766 9 of 22

• It calculates the k-nearest neighbor value for each minority class xi ∈ Smin using
Euclidean distance.

• It chooses a random closest neighbor xj in a group of the k-nearest neighbor xi. A new
sample was produced based on Equation (1).

xnew = xi +
∣∣xi + xj

∣∣+ δ (1)

where δ [0, 1] is a random factor that controls the placement of newly generated samples.

3.4. CNN-Based Deep Features Extraction

CNN mines a huge number of features to extract deep and significant features that
reduce the classification model load and processing capability. To perform this, CNN sup-
plied trained textual and visual texture information. CNN is employed in several malware
studies [29,30]. CNN’s model works best with text, graphics, and video. We employed a
one-dimensional CNN network with convolutional layers, pooling layers, dropout layers,
and a fully connected layer. Convolution acts as a filter, cycling over combined features
and producing the optimal feature interpretations. Each filter creates a feature map. Hyper-
parameter changes are used to identify the ideal number of filters. Three convolution layers
were utilized, each having 64, 128, and 256 filters. Max-pooling minimizes the size of the
feature space, the range of features, and the computation complexity. This layer also creates
a feature map using the most important features from the previous set. In addition, we
used the batch normalization layer from the Keras framework with the CNN network. The
resultant mean and standard deviation were kept close to 0 and 1 via batch normalization.
It also reacted differently during training and validation. The learning process was thus
stabilized, and the number of training epochs required by deep networks was reduced.
Softmax and dropout layers in the proposed CNN network combatted overfitting. The
output of the CNN network is represented by Equation (2).

o1
k = f(c1

k + ∑Nl−1
i=1 Con1D

(
Xl−1

ik , tl−1
i

)
) (2)

where c1
k is the parameter bias of the kth neuron in the first layer, tl−1

i is the outcome of the
ith neuron in layer l−1, Xl−1

ik is the kernel strength from the ith neuron in layer l−1 to the kth
neurons in layer l, and “f()” is the activation function. After studying the detailed information,
we selected the 400 most prevalent features for appropriate malware classification.

3.5. Voting-Based Ensemble Learning

For effective malware classification, the deep and prominent features were input into
a soft voting-based ensemble model. The ensemble was a powerful model produced by me-
thodically combining base techniques. In soft voting, each independent classifier provides
a statistically significant indication that a given data point belongs to a particular class
label. This enables more progressive and decentralized decision-making. The predictions
were summed after being weighted by the importance of the classification model. The vote
was then given to the target class label with the highest sum of normalized probabilities.
The ensemble model can handle classification and regression challenges that individual
models are unable to [31]. The suggested study employed a soft polling ensemble method.
To begin, we used training data to construct the basic models of the Gaussian Naive Bayes
(GNB), Support Vector Machine (SVM), Decision Tree (DT), Logistic Regression (LR), and
Random Forest (RF) classification approaches. After that, the efficacy of these models
was confirmed by employing test data, with each model delivering a unique assessment.
Ensemble learning utilizes the estimations of several different procedures as supplemen-
tal information to achieve the desired level of final classification performance [32]. The
complete process of the proposed method is given in Algorithm 1. It describes the overall
procedure for the proposed study. The network traffic was provided as input in the form
of PCAPs, and the malware classification was delivered as output. The PCAP file was
filtered for the required TCP and HTTP information. The BERT-base model was intended

Sensors 2022, 22, 6766 10 of 22

to extract train features from the combination of TCP and HTTP. PCAP bytes were mined
and converted to images to extract texture features using FAST and BRIEF. Textural and
texture features were combined and fed into the soft-based voting ensemble model for
effective malware detection and classification.

Algorithm 1: Malware Classification Using Transfer Learning and Texture Features

Input PCAP
Output Malware Classification
Step 1: Set P= {p1, p2, . . . , pn}s, where is P is a Packets
Step 2: Decrypt (P) = P′

Compute PCAP from P′, where P′ = (IP, TCP, HTTP, . . . , n)
Selects NF from PCAP, where NF is the required Network Flows
Display/Select HTTP + TCP

Step 3: Select HTTP traces and TCP flows
Step 4: Tokenize and filter HTTP and TCP flows = Clean features
Step 5: Apply word embedding

BERT transformers = Train feature
Extraction = Textual trained features

Step 6: Trained files = Trained features as T
Step 7: Compute B = {B1, B2,, Bn } from PCAP, where B for Bytes

Compute I, where I is Image
Decomposed I in SS1, where SS1 = 256 × 256
Apply FAST extractor & BRIEF descriptor on SS1

Step 8: Generate texture features from the combination of FAST and BRIEF
Step 9: Get Texture features as T′

Step 10: Combine T, T′ (Textual and texture features)
Step 11: Apply SMOTE classing balancing on T, T′

Compute BT, BT′ from T, T′, where BT, BT′ are Balanced Textural
and Texture features
BT = CNN(T), to apply CNN technique of trained features
BT′ = CNN

(
T′
)
, to apply CNN technique of texture features

Step 12: Calculate Deep Features as DF
Step 13: Apply Voting-based ensemble learning on DF
Step 14: Result: Malware or Benign
Step 15: Finish

4. Results and Discussions
4.1. Dataset

We collected and prepared two datasets from the Canadian Institute for Cybersecurity
(https://www.unb.ca/cic/datasets/index.html, accessed on 6 September 2021). The first
dataset is the Investigation of the Android Malware (CIC-InvesAndMal2019) [33], which
contains adware, botnet, premium SMS, ransomware, SMS, and scareware. They used
real devices to install 5000 of the obtained samples (426 malware and 5065 benign). These
samples were obtained from 42 distinct families of malware. Table 1 shows the first dataset.
Table 2 shows the second dataset. The second dataset, CICMalDroid 2020 [34,35], contains
17,341 Android samples from VirusTotal, Contagio, AMD, and MalDozer. The samples
were taken from 2017 to 2018. Further, the number of adware, banking, riskware, SMS, and
benign are 1253, 2100, 2546, 3904, and 1795, respectively.

https://www.unb.ca/cic/datasets/index.html

Sensors 2022, 22, 6766 11 of 22

Table 1. CIC-InvesAndMal2019 dataset (dataset 1).

Apps Families Description

Malware

Adware There are ads concealed within malware-infected programs

Botnet Performs DDoS attacks, steals data, and provides access to the device

Premium SMS SMS fraud exploits mobile premium service billing

Ransomware Restricts computer files until the ransom is paid

Scareware Scares users into visiting fake sites or installing malware

SMS Conducts attacks through the SMS alert

Benign Benign Clean apps (not malicious)

Table 2. CICMalDroid 2020 dataset (dataset 2).

Apps Families No. of Apps Description

Malware

Adware 1253 There are ads concealed within malware-infected programs

Banking 2100 Authenticates their internet banking services

Riskware 2546 Can be any legitimate app that, if exploited, can bring harm

SMS 3904 Conducts cyberattacks through an SMS alert

Benign Benign 1795 Clean apps (not malicious)

4.2. Results Analysis

Figure 7 depicts the epoch curves for malware classification, utilizing training and
testing data in terms of accuracy, loss, precision, and recall. Parts a, b, c, and d depict the
proposed model training and testing employing both datasets. The training curves for
accuracy, loss, precision, and recall are represented by the colors blue, red, yellow, and green,
respectively. Additionally, the same colors are utilized for testing curves employing the
same performance metrics. In part a, precision begins at 60% and subsequently increases to
98% before becoming more or less constant for the model training using dataset 1. The recall
curve begins at 70% and grows to 99% before becoming more or less constant with each
epoch. The loss curve begins at 75% and gradually decreases until the 10th epoch. There is a
tiny increase in the 18th epoch, but it is more or less consistent after that. It can be seen that
the recall curve performs the best when compared to accuracy and precision. Part b depicts
epoch curves for model testing with dataset 1. The accuracy, precision, and recall for test
data range from 72% to 99%, respectively. While utilizing dataset 1, the largest and lowest
testing loss is 75% and 8%, respectively. Part c depicts the model training for dataset 2. The
three performance measures, namely accuracy, precision, and recall, perform similarly in
the range of 70% to 99.4%. When compared to the other two metrics, the accuracy curve
marginally rises on the 30th epoch. The model loss performance ranges from 70% to 5%.
Part d depicts the model testing using dataset 2. The three performance measures begin at
73% and grow with each epoch. On the 15th and 30th epochs, performance suffers slightly.
Following that, they exhibit more or less consistent behavior. The testing curve exhibits
behavior ranging from 52% to 8%. The loss increases in the 5th, 15th, and 32nd epochs.

Figure 8 depicts the epoch curves for malware detection using the two datasets.
Accuracy, precision, recall, and loss were used to demonstrate the efficacy of the proposed
model. In part a, the accuracy, precision, and recall start at 78%, 28%, and 8%, respectively.
On the 10th epoch, the accuracy and precision behave similarly, with a 99% accuracy.
However, recall grows to 77% on the epoch and thereafter remains constant against each
epoch. The loss curve starts at 82% and then drops to 8%. In part b, the accuracy and
behavior range from 70% to 99.3%, while the recall ranges between 10% and 76%. Precision
decreases slightly on the 4th epoch but increases again on the 10th. In comparison to the
other two metrics, recall performed the worst. The testing loss begins at 85% and gradually

Sensors 2022, 22, 6766 12 of 22

increases to 90% in the 5th epoch. Following that, it drops with each epoch, with the lowest
number being 15%. Part c depicts the training of the model for dataset 2. The three matrices
exhibit behavior ranging from 48% to 99.2%. The recall begins at 48%, whereas the other
two metrics begin at 75% and grow until the 12th epoch. Following that, the three curves
remained relatively constant. The loss begins at 97% and gradually decreases from the 5th
to the 38th epoch with a 3% loss. Recall performed the lowest when compared to the other
two metrics. Similarly, part d depicts the model testing curves for dataset 2.

Figure 7. Dynamic epoch curves (accuracy, precision, recall, loss) for malware classification using
training and testing data: (a) dataset 1 (model training); (b) dataset 1 (model testing); (c) dataset 2
(model training); (d) dataset 2 (model testing).

Figure 8. Dynamic epoch curves (accuracy, precision, recall, loss) for malware detection using training and
testing data: (a) dataset 1 (training); (b) dataset 1 (testing); (c) dataset 2 (training); (d) dataset 2 (testing).

Sensors 2022, 22, 6766 13 of 22

Table 3 shows the performance measures for malware detection using dataset 1. The
precision, recall, and f1-score values of malware and benign classes were extracted. The
ensemble model outperformed both classes, with a classification rate of 99%. The RF
and DT performed better in both classes. The RF and DT metrics for malware class had
98%, 99%, 99%, 98%, 98%, and 99%, respectively. Similarly, the RF and DT had 99%, 98%,
99%, and 99%, 98%, 97%, respectively, for the benign class. However, GNB, SVM, and LR
performed comparably for malware classes, while SVM and LR offered the worst results
for benign classes. Overall, the ensemble model delivered the highest classification rates
for malware classification using dataset 1 in terms of precision, recall, and f1-score. The
malware detection using dataset 2 is shown in Table 4. It can be observed that the ensemble
model delivered excellent classification rates for all three performance measures. Likewise,
the RF and DT provided better classification results for both classifications, i.e., malware
and benign, while the LR performed the worst.

Table 3. Performance measures for malware detection using dataset 1.

Methods Precision (%) Recall (%) F1-Score (%)

Malware

GNB 100 84 91

SVM 84 100 91

DT 98 98 99

LR 84 100 91

RF 98 99 99

Ensemble 99 99 99

Benign

GNB 86 100 92

SVM 100 81 89

DT 99 98 97

LR 100 81 89

RF 99 98 99

Ensemble 99 99 99

Table 4. Performance measures for malware detection using dataset 2.

Methods Precision (%) Recall (%) F1-Score (%)

Malware

GNB 99 80 89

SVM 85 100 92

DT 97 97 98

LR 85 100 92

RF 97 98 98

Ensemble 97 99 98

Benign

GNB 85 100 92

SVM 100 84 91

DT 98 97 98

LR 100 84 91

RF 98 98 98

Ensemble 99 98 98

To better understand the effectiveness of the proposed approach, we investigated
performance measures such as precision, recall, and f1-score for each class. Figure 9 depicts
the three malware classification performance measures using dataset 1. The colors blue,

Sensors 2022, 22, 6766 14 of 22

orange, and grey represent precision, recall, and f1-score, respectively. For all six malware
families, the GNB, SVM, and LR performed the lowest. For instance, GNB and SVM
had precision and f1-score values of 58% and 77%, respectively, while the recall rate for
adware was 100%. Similarly, the precision, f1-score, and recall for the adware class using
the LR method were 58%, 79%, and 100%, respectively. For all six malware families, the
ensemble model outperformed, while, after the ensemble model, the DT and RF performed
the second-best malware detection rates. Figure 10 depicts the malware classification
performance measures using dataset 2. Precision provided the lowest performance for
adware and banking, i.e., 60%, 62%, and 65% when using SVM, GNB, and LR, respectively,
while recall performed the lowest values for banking, riskware, and SMS utilizing LR, GNB,
and SVM, respectively. Overall, the ensemble model delivered the highest classification
results for all malware families, whereas DT and RF were the second-best techniques.

Figure 9. Performance measure (precision, recall, f1-score) comparisons for malware detection dataset 1.

Figure 10. Performance measure (precision, recall, f1-score) comparisons for malware detection
dataset 2.

The malware classification accuracy for each approach utilizing both datasets is shown
in Table 5. When compared to the other approaches, the ensemble model had the highest
classification and detection rates. The detection and classification accuracy of the ensemble
model for dataset 1 was 98.44% and 99.16%, respectively. In dataset 2, these values were
97.76% and 98.91%, respectively. DT and RF provided the second-best performance. Overall,
SVM was the worst performer, while GNB and LR were about average. Figure 11 depicts
the confusion matrices for malware detection using both datasets. The parts from a to
f represent dataset 1, while the parts from g to I represent dataset 2. The classification
and misclassification rates are shown by the diagonal and off-diagonal values. In the

Sensors 2022, 22, 6766 15 of 22

first dataset, the GNB, SVM, DT, LR, RF, and ensemble classified malware and benign as
(83.55%, 100%), (99.74%, 81.07%), (98.29%, 98.52%), (99.08%, 98.26%), and (99.08%, 99.19%),
respectively. Similarly, using dataset 2, the malware and benign classification rates were
(80.24%, 99.59%), (99.85%, 83.63%), (98.5%, 97.97%), (99.85%, 83.63%), (98.80%, 98.65%),
and (98.95%, 98.78%), respectively. Figure 12 depicts the confusion matrices for the top
three malware classification methods. Parts a to c depict dataset 1, while parts d to f depict
dataset 2. Part a, adware, botnet, premium SMS, ransomware, scareware, and SMS malware
detection rates were 98.56%, 98.07%, 97.82%, 97.2%, 98.71%, and 97.55%, respectively. In
part c, using dataset 2, the detection rates for adware, banking, riskware, and SMS were
98.22%, 96.44%, 96.65%, and 97.83%, respectively. Using both datasets, we observed that
the ensemble model provided the best detection rates.

Table 5. Malware detection and classification accuracy using both datasets.

Methods Detection (%) Classification (%)

Dataset 1

GNB 87.21 91.55

SVM 87.34 90.12

DT 97.94 98.36

LR 88.1 90.08

RF 98.2 98.54

Ensemble 98.44 99.16

Dataset 2

GNB 86.92 89.99

SVM 87.1 91.80

DT 97.2 98.34

LR 87.58 91.76

RF 97.34 98.69

Ensemble 97.76 98.91

Figure 11. Confusion matrices for malware detection using both datasets: (a) GNB; (b) SVM; (c) DT;
(d) LR; (e) RF; (f) Ensemble; (g) GNB; (h) SVM; (i) DT; (j) LR; (k) RF; (l) Ensemble.

Sensors 2022, 22, 6766 16 of 22

Figure 12. Confusion matrices for malware classification using both datasets for the top three
algorithms: (a) DT; (b) RF; (c) RF; (d) DT; (e) RF; (f) Ensemble.

4.3. Comparisons with Previous Methods

Table 6 compares precision, recall, f1-score, and accuracy to the current state of the
approaches. The dataset was evaluated using four state-of-the-art algorithms, namely RNN,
LSTM, DNN, and GRU, and the results were compared to the proposed approach. The
RNN approaches had the lowest classification performance metrics, whereas the proposed
approach had the highest. For instance, the proposed approach had precision, recall, f1-
score, and accuracy rates of 99%, 99%, 99%, and 99.16%, respectively, while the RNN had

Sensors 2022, 22, 6766 17 of 22

85%, 85%, 87%, and 85.34%, respectively. For instance, the precision, recall, f1-score, and
accuracy of the proposed approach were 99%, 99%, 99%, and 99.16%, respectively, whereas
the RNN had 85%, 85%, 87%, and 85.34%, respectively. The DNN was the second-best
strategy for producing better classification results.

Table 6. Comparisons with state-of-the-art methods.

Method Precision (%) Recall (%) F1-Score (%) Accuracy (%)

RNN 85 85 87 85.34

LSTM 82 80 81 80.02

DNN 88 87 85 86.16

GRU 80 78 80 78.62

Our Approach 99 99 99 99.16

Table 7 shows the performance comparison with recently published works. These
studies mostly made use of network traffic to classify Android malware. The botnet
malware was classified using HTTP traffic [17]. It analyzes network traffic to build malware
groups. This approach can detect new clustered malware with 98.66% precision. Droid
Classifier automatically develops numerous models over labeled malicious apps [20]. Each
model uses network-traffic IDs. Automatic threshold parameters are intended to properly
describe various malware features with a 94.66% accuracy. In the [36] study, URLs were
used to locate malicious programs. For malware analysis, multi-view neural networks
provide depth and breadth. It develops and distributes soft attention-weighting elements
for data with an accuracy of 95.74%. The static and dynamic methods are used to monitor
and examine infected Android apps. Overall, the Android malware detection rate is 98.86%.
URLs are used to detect Android malware [37]. Malware detection models with deep
features are built with multi-view neural networks. The feature weights are spread across
inputs and provide an accuracy of 98%. In the study [38], seven supervised learning
strategies were investigated and compared to determine how the method works. CNN
classifiers include two-layer CNN, four-layer CNN, VGG16, LR, SVM, and K-NN. In
experiments, the SVM classifier reached a 94% accuracy. The proposed ensemble technique
outperformed with a malware detection accuracy of 99.16%.

Table 7. Comparisons with published works.

Work Year Methods Accuracy (%)

Aresu et al. [17] 2015 Signature-based clustering 96.66

Li et al. [39] 2016 Droid classifier 94.66

Shanshan et al. [36] 2018 Skip-gram with neural network 95.74

Shanshan et al. [10] 2019 C4.5 decision tree 97.89

Shyong et al. [4] 2020 Random forest 98.86

Shanshan et al. [37] 2020 Multi-view neural network 98.81

Rania et al. [38] 2021 Machine learning with CNN 94

Our approach 2022 BERT-based transfer learning
and visual representation 99.16

The presented method was carefully compared with other approaches that have
already been used with the same datasets, as shown in Table 8. Malware can be classified
using texture-based, text-based, or a combined effect of both. Alani et al. [40] presented
AdStop, a machine learning-based technique for detecting vulnerabilities in network data.
The proposed technique classified malware with a 98.2% accuracy using AAGM2017 word

Sensors 2022, 22, 6766 18 of 22

embeddings and a deep neural network. The framework suggested by Saket et al. [41]
uses hierarchical and Latent Dirichlet Allocation techniques to extract clusters. They
classified malware using the CNN model, which has a precision of 98.3%, without using
any specialized features. The [41–44] classified malware utilized texture characteristics
using CNN and Temporal Convolutional Network models. The suggested models classify
malware using images without utilizing descriptors to identify their unique features. The
studies [34,40,45] used deep neural networks, gradient boosting, and ensemble learning
to classify malware based on text-based features. We proposed a technique for classifying
malware that integrated text-based and texture-based features from both datasets. Our
proposed method surpassed state-of-the-art approaches with a classification result of 99%.

Table 8. Performance comparison with state-of-the-art methods using the same datasets.

Work Dataset Strategy Method Accuracy (%)

Alani et al. [40] AAGM2017 Text-based Deep neural network 98.02

Saket et al. [41] AAGM2017 Texture-based Convolutional neural network 98.3

Raden et al. [45] MalDroid 2020 Text-based Gradient boosting 96.35

Fawareh et al. [42] MalDroid 2020 Texture-based Convolutional neural network 96.4

Wenhui et al. [43] MalDroid 2020 Texture-based Temporal convolutional network 95.44

Samaneh et al. [34] MalDroid 2020 Text-based Ensemble learning 97.84

Tao et al. [44] MalDroid 2020 Texture-based Convolutional neural network 98.6

Our proposed AAGM2017 &
MalDroid 2020 Text and Texture BERT-based transfer learning and

visual representation 99

4.4. Model Interpretation and Validation Using Explainable AI

To interpret and validate the proposed approach, an explainable AI approach can be
used. We used the Local Interpretable Model-agnostic Explanation (LIME) and Shapley
Additive exPlanations (SHAP) libraries to describe the impact of each feature on the
accuracy of the model [46]. SHAP values indicate how much evidence a feature provides
to the output of a model. Figure 13 shows the SHAP values of each feature shift model
output from our initial expectation to the final model prediction. The features are ordered
according to their SHAP values, with the smallest values placed together at the bottom of
the maximum display being exceeded. The red and blue colors represent the contribution
of malware and benign features, respectively. We had a total of 32 features, with the
influence of the top nine features highlighted. The F27 with a SHAP value of 209 was
the most important feature that contributed to the malware class, while F22 contributed
to the benign class with a SHAP value of 90. It demonstrated that F27 and F22 features
were the most important contributors to malware and benign classes. Figure 14 depicts
the relative impact of features on obtaining an outcome of 1 (benign) from an aggregate of
observations with a threshold value of 0 (malware). The threshold of 1.01 splits the impact
of features into two categories, namely malware and benign. The colors red and blue
represent the contribution of features to malware and benign. We discovered that the F27
feature contributed significantly to malware, while the F22 feature contributed significantly
to the benign class. This allows us to readily mine those features that contribute significantly
to the model’s performance.

We utilized absolute values to avoid having positive and negative SHAP values cancel
each other out. Figure 15 depicts the primary effects and interaction effects of the first ten
features. For example, we can observe that the average main effect for F1, F2, F3, F8, and
F9 is high. This indicates that these features are more likely to have significant positive
or negative main effects. In other words, these characteristics have a big influence on
the model’s results. Similarly, the F1, F2, F3, F8, and F9 interaction effects are also large.
Figure 16 depicts the interaction of features concerning the model’s output. The SHAP

Sensors 2022, 22, 6766 19 of 22

values for the primary impacts are presented on the diagonals, while the interaction impacts
are shown on the off-diagonals. This can provide insight into absolute mean values by
highlighting main and interaction effects. For instance, the high SHAP values correspond
to high absolute mean values. Additional information can be gained by examining the
relationships depicted in the interaction values. For instance, we can observe that the F1,
F2, F3, F8, and F9 all have favorable major effects.

Figure 13. Waterfall plot shows how SHAP values of each feature affect model output compared to
the data distribution.

Figure 14. Contribution of features to a specific class depending on a threshold level.

Figure 15. Absolute mean of main and interaction effects for first 10 features.

Sensors 2022, 22, 6766 20 of 22

Figure 16. Interaction of features for the model output.

5. Conclusions

Android has quickly become the most popular mobile operating system due to its
versatility and user-friendliness. The majority of persistent malicious attackers make it
their main target as well. This calls for the immediate implementation of a robust malware
detection system. This study proposed an Android malware detection method that makes
use of BERT-based transfer learning and graphical malware features. The PCAP file contains
extensive information about Android network communication. This folder contains files
that are used to record HTTP and TCP network traffic. Using the pre-trained BERT model,
the trained features are extracted from a large number of textual features. To extract visual
features, the byte stream of a PCAP file is converted into a standard 256 × 256 image.
Furthermore, the FAST extractor and BRIEF descriptor are used to extract and label key
features efficiently. The deep feature representations are then collected using the CNN
network. We encountered a class imbalance issue because of the mix of textual and texture
features. The SMOTE approach is utilized to balance the features, which are then input into
the ensemble model for malware detection and classification. The proposed work provided
malware detection and classification rates of 98.44% and 99.16%, respectively, using dataset
1. The results were similar using dataset 2. The malware detection and classification rates
were 97.76% and 98.91%, respectively. Using an explainable AI methodology, the proposed
method was interpreted and validated.

In the future, GloVe and Fast-text trained models would be used to mine the trained
features. Furthermore, advanced deep learning models such as multi-head and reinforce-
ment learning can be utilized to evaluate malware detection performance.

Author Contributions: F.U. proposed the study, simulated it, and wrote the manuscript. A.A. (Amjad
Alsirhani) made writing suggestions. M.M.A., A.A. (Abdullah Alomari), H.N. and S.A.S. reviewed
and analyzed the proposed research. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Sensors 2022, 22, 6766 21 of 22

Data Availability Statement: The data that support the findings of this study are openly available
in Canadian Institute for Cybersecurity-CIC-InvestAndMal2019 and CICMalDroid2020 at https:
//www.unb.ca/cic/datasets/invesandmal2019.html (accessed on 6 September 2021), and https:
//www.unb.ca/cic/datasets/maldroid-2020.html (accessed on 6 September 2021), respectively.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kumar, R.; Zhang, X.; Wang, W.Y.; Khan, R.U.; Kumar, J.; Sharif, A. A Multimodal Malware Detection Technique for Android IoT

Devices Using Various Features. IEEE Access 2019, 7, 64411–64430. [CrossRef]
2. Liu, X.; Du, X.; Zhang, X.; Zhu, Q.; Wang, H.; Guizani, M. Adversarial Samples on Android Malware Detection Systems for IoT

Systems. Sensors 2019, 19, 974. [CrossRef] [PubMed]
3. Liu, P.; Li, L.; Zhao, Y.; Sun, X.; Grundy, J. Androzooopen: Collecting large-scale open source android apps for the research

community. In Proceedings of the 17th International Conference on Mining Software Repositories, Seoul, Korea, 29–30 June 2020.
4. Shyong, Y.-C.; Jeng, T.-H.; Chen, Y.-M. Combining Static Permissions and Dynamic Packet Analysis to Improve Android Malware

Detection. In Proceedings of the 2020 2nd International Conference on Computer Communication and the Internet (ICCCI),
Nagoya, Japan, 26–29 June 2020; pp. 75–81. [CrossRef]

5. Qamar, A.; Karim, A.; Chang, V. Mobile malware attacks: Review, taxonomy & future directions. Future Gener. Comput. Syst. 2019,
97, 887–909.

6. Abusitta, A.; Li, M.Q.; Fung, B.C. Malware classification and composition analysis: A survey of recent developments. J. Inf. Secur.
Appl. 2021, 59, 102828. [CrossRef]

7. Afianian, A.; Niksefat, S.; Sadeghiyan, B.; Baptiste, D. Malware dynamic analysis evasion techniques: A survey. ACM Comput.
Surv. 2019, 52, 1–28. [CrossRef]

8. Vinod, P.; Jaipur, R.; Laxmi, V.; Graur, M. Survey on malware detection methods. In Proceedings of the 3rd Hackers’ Workshop on
Computer and Internet Security (IITKHACK’09), Kanpur, India, 17–19 March 2009.

9. Naeem, H.; Ullah, F.; Naeem, M.R.; Khalid, S.; Vasan, D.; Jabbar, S.; Saeed, S. Malware detection in industrial internet of things
based on hybrid image visualization and deep learning model. Ad Hoc Netw. 2020, 105, 102154. [CrossRef]

10. Wang, S.; Chen, Z.; Yan, Q.; Yang, B.; Peng, L.; Jia, Z. A mobile malware detection method using behavior features in network
traffic. J. Netw. Comput. Appl. 2019, 133, 15–25. [CrossRef]

11. Ullah, F.; Ullah, S.; Naeem, M.R.; Mostarda, L.; Rho, S.; Cheng, X. Cyber-Threat Detection System Using a Hybrid Approach of
Transfer Learning and Multi-Model Image Representation. Sensors 2022, 22, 5883. [CrossRef] [PubMed]

12. Talha, K.A.; Alper, D.I.; Aydin, C. APK Auditor: Permission-based Android malware detection system. Digit. Investig. 2015, 13,
1–14. [CrossRef]

13. Ullah, F.; Rashid Naeem, M.; Bajahzad, A.S.; Al-Turjman, F. IoT-based cloud service for secured android markets using PDG-based
deep learning classification. ACM Trans. Internet Technol. 2021, 22, 1–17. [CrossRef]

14. Sanz, B.; Santos, I.; Laorden, C.; Ugarte-Paderto, X.; Garcia Bringas, P.; Alvarez, G. Puma: Permission usage to detect malware in
android. In Proceedings of the International Joint Conference CISIS’12-ICEUTE 12-SOCO 12 Special Sessions, Ostrava, Czech
Republic, 5–7 September 2012; Springer: Berlin/Heidelberg, Germany, 2013.

15. Liu, X.; Liu, J. A two-layered permission-based android malware detection scheme. In Proceedings of the 2014 2nd IEEE
International Conference on Mobile Cloud Computing, Services, and Engineering, Oxford, UK, 8–11 April 2014.

16. De la Puerta, J.G.; Sanz, B.; Santos Grueiro, I.; Garciz Bringas, P. The evolution of permission as feature for Android malware
detection. In Proceedings of the Computational Intelligence in Security for Information Systems Conference, Bilbao, Spain, 22–24
September 2015; Springer: Berlin/Heidelberg, Germany, 2015.

17. Aresu, M.; Ariu, D.; Ahmadi, M.; Maiorca, D.; Giacinto, G. Clustering android malware families by http traffic. In Proceedings of the
2015 10th International Conference on Malicious and Unwanted Software (MALWARE), Fajardo, PR, USA, 20–22 October 2015.

18. Nataraj, L.; Karthikeyan, S.; Jacob, G.; Manjunath, B.S. Malware images: Visualization and automatic classification. In Proceedings
of the 8th International Symposium on Visualization for Cyber Security, Pittsburgh, PA, USA, 20 July 2011.

19. Wang, W.; Zhu, M.; Zeng, X.; Ye, X.; Sheng, Y. Malware traffic classification using convolutional neural network for representation
learning. In Proceedings of the 2017 International Conference on Information Networking (ICOIN), Da Nang, Vietnam, 11–13
January 2017; pp. 712–717. [CrossRef]

20. Wang, Y.; An, J.; Huang, W. Using CNN-based representation learning method for malicious traffic identification. In Proceedings of
the 2018 IEEE/ACIS 17th International Conference on Computer and Information Science (ICIS), Ningbo, China, 18–21 August 2018.

21. Xu, P.; Eckert, C.; Zarras, A. Falcon: Malware Detection and Categorization with Network Traffic Images. In Proceedings of
the 30th International Conference on Artificial Neural Networks, ICANN 2021, Bratislava, Slovakia, 14–17 September 2021;
pp. 117–128. [CrossRef]

22. He, G.; Xu, B.; Zhang, L.; Zhu, H. On-Device Detection of Repackaged Android Malware via Traffic Clustering. Secur. Commun.
Netw. 2020, 2020, 1–19. [CrossRef]

23. Gao, Z.; Feng, A.; Song, X.; Wu, X. Target-Dependent Sentiment Classification With BERT. IEEE Access 2019, 7, 154290–154299.
[CrossRef]

https://www.unb.ca/cic/datasets/invesandmal2019.html
https://www.unb.ca/cic/datasets/invesandmal2019.html
https://www.unb.ca/cic/datasets/maldroid-2020.html
https://www.unb.ca/cic/datasets/maldroid-2020.html
http://doi.org/10.1109/ACCESS.2019.2916886
http://doi.org/10.3390/s19040974
http://www.ncbi.nlm.nih.gov/pubmed/30823597
http://doi.org/10.1109/iccci49374.2020.9145994
http://doi.org/10.1016/j.jisa.2021.102828
http://doi.org/10.1145/3365001
http://doi.org/10.1016/j.adhoc.2020.102154
http://doi.org/10.1016/j.jnca.2018.12.014
http://doi.org/10.3390/s22155883
http://www.ncbi.nlm.nih.gov/pubmed/35957440
http://doi.org/10.1016/j.diin.2015.01.001
http://doi.org/10.1145/3418206
http://doi.org/10.1109/icoin.2017.7899588
http://doi.org/10.1007/978-3-030-86362-3_10
http://doi.org/10.1155/2020/8630748
http://doi.org/10.1109/ACCESS.2019.2946594

Sensors 2022, 22, 6766 22 of 22

24. Yesir, S.; Soğukpinar, I. Malware Detection and Classification Using fastText and BERT. In Proceedings of the 2021 9th International
Symposium on Digital Forensics and Security (ISDFS), Elazig, Turkey, 28–29 June 2021.

25. Sun, C.; Qiu, X.; Xu, Y.; Huang, Y. How to fine-tune bert for text classification? In Proceedings of the China National Conference on
Chinese Computational Linguistics, Kunming, China, 18–29 October 2019; Springer: Berlin/Heidelberg, Germany, 2019.

26. Ni, S.; Qian, Q.; Zhang, R. Malware identification using visualization images and deep learning. Comput. Secur. 2018, 77, 871–885.
[CrossRef]

27. Galvez-López, D.; Tardos, J.D. Bags of Binary Words for Fast Place Recognition in Image Sequences. IEEE Trans. Robot. 2012, 28,
1188–1197. [CrossRef]

28. Fernandez, A.; Garcia, S.; Herrera, F.; Chawla, N.V. SMOTE for Learning from Imbalanced Data: Progress and Challenges,
Marking the 15-year Anniversary. J. Artif. Intell. Res. 2018, 61, 863–905. [CrossRef]

29. Lee, W.Y.; Saxe, J.; Harang, R. SeqDroid: Obfuscated Android Malware Detection Using Stacked Convolutional and Recurrent Neural
Networks; Springer: Berlin/Heidelberg, Germany, 2019; pp. 197–210. [CrossRef]

30. Vasan, D.; Alazab, M.; Wassan, S.; Safaei, B.; Zheng, Q. Image-Based malware classification using ensemble of CNN architectures
(IMCEC). Comput. Secur. 2020, 92, 101748. [CrossRef]

31. Ahmed, U.; Lin, J.C.-W.; Srivastava, G. Mitigating adversarial evasion attacks of ransomware using ensemble learning. Comput.
Electr. Eng. 2022, 100, 107903. [CrossRef]

32. Sagi, O.; Rokach, L. Ensemble learning: A survey. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2018, 8, e1249. [CrossRef]
33. Taheri, L.; Kadir, A.F.A.; Lashkari, A.H. Extensible Android Malware Detection and Family Classification Using Network-Flows

and API-Calls. In Proceedings of the 2019 International Carnahan Conference on Security Technology (ICCST), Chennai, India,
1–3 October 2019; pp. 1–8. [CrossRef]

34. Mahdavifar, S.; Kadir, A.F.A.; Fatemi, R.; Alhadidi, D.; Ghorbani, A.A. Dynamic Android Malware Category Classification using
Semi-Supervised Deep Learning. In Proceedings of the 2020 IEEE International Conference on Dependable, Autonomic and
Secure Computing, Calgary, AB, Canada, 17–22 August 2020; pp. 515–522. [CrossRef]

35. Mahdavifar, S.; Alhadidi, D.; Ghorbani, A.A. Effective and Efficient Hybrid Android Malware Classification Using Pseudo-Label
Stacked Auto-Encoder. J. Netw. Syst. Manag. 2022, 30, 1–34. [CrossRef]

36. Wang, S.; Chen, Z.; Yan, Q.; Ji, K.; Wang, L.; Yang, B.; Conti, M. Deep and Broad Learning Based Detection of Android Malware
via Network Traffic. In Proceedings of the 2018 IEEE/ACM 26th International Symposium on Quality of Service (IWQoS), Banff,
AB, Canada, 4–6 June 2018; pp. 1–6. [CrossRef]

37. Wang, S.; Chen, Z.; Yan, Q.; Ji, K.; Peng, L.; Yang, B.; Conti, M. Deep and broad URL feature mining for android malware detection.
Inf. Sci. 2019, 513, 600–613. [CrossRef]

38. El-Sayed, R.; El-Ghamry, A.; Gaber, T.; Hassanien, A.E. Zero-Day Malware Classification Using Deep Features with Support
Vector Machines. In Proceedings of the 2021 Tenth International Conference on Intelligent Computing and Information Systems
(ICICIS), Cairo, Egypt, 5–7 December 2021.

39. Li, Z.; Sun, L.; Yan, Q.; Srisa-An, W.; Chen, Z. DroidClassifier: Efficient Adaptive Mining of Application-Layer Header for
Classifying Android Malware. In Proceedings of the International Conference on Security and Privacy in Communication
Systems, Orlando, VA, USA, 24–25 October 2017; pp. 597–616. [CrossRef]

40. Alani, M.M.; Awad, A.I. AdStop: Efficient flow-based mobile adware detection using machine learning. Comput. Secur. 2022, 117,
102718. [CrossRef]

41. Acharya, S.; Rawat, U.; Bhatnagar, R. A Low Computational Cost Method for Mobile Malware Detection Using Transfer Learning
and Familial Classification Using Topic Modelling. Appl. Comput. Intell. Soft Comput. 2022, 2022, 1–22. [CrossRef]

42. Al-Fawa’reh, M.; Saif, A.; Jafar, M.T.; Elhassan, A. Malware detection by eating a whole APK. In Proceedings of the 2020 15th
International Conference for Internet Technology and Secured Transactions (ICITST), London, UK, 8–10 December 2020.

43. Zhang, W.; Luktarhan, N.; Ding, C.; Lu, B. Android Malware Detection Using TCN with Bytecode Image. Symmetry 2021, 13, 1107.
[CrossRef]

44. Peng, T.; Hu, B.; Liu, J.; Huang, J.; Zhang, Z.; He, R.; Hu, X. A Lightweight Multi-Source Fast Android Malware Detection Model.
Appl. Sci. 2022, 12, 5394. [CrossRef]

45. Hadiprakoso, R.B.; Kabetta, H.; Buana, I.K.S. Hybrid-Based Malware Analysis for Effective and Efficiency Android Malware
Detection. In Proceedings of the 2020 International Conference on Informatics, Multimedia, Cyber and Information System
(ICIMCIS), Jakarta, Indonesia, 19–20 November 2020; pp. 8–12. [CrossRef]

46. Mathews, S.M. Explainable artificial intelligence applications in NLP, biomedical, and malware classification: A literature review. In
Proceedings of the Intelligent Computing Conference, London, UK, 16–17 July 2019; Springer: Berlin/Heidelberg, Germany, 2019.

http://doi.org/10.1016/j.cose.2018.04.005
http://doi.org/10.1109/TRO.2012.2197158
http://doi.org/10.1613/jair.1.11192
http://doi.org/10.1007/978-3-030-13057-2_9
http://doi.org/10.1016/j.cose.2020.101748
http://doi.org/10.1016/j.compeleceng.2022.107903
http://doi.org/10.1002/widm.1249
http://doi.org/10.1109/ccst.2019.8888430
http://doi.org/10.1109/dasc-picom-cbdcom-cyberscitech49142.2020.00094
http://doi.org/10.1007/s10922-021-09634-4
http://doi.org/10.1109/iwqos.2018.8624143
http://doi.org/10.1016/j.ins.2019.11.008
http://doi.org/10.1007/978-3-319-59608-2_33
http://doi.org/10.1016/j.cose.2022.102718
http://doi.org/10.1155/2022/4119500
http://doi.org/10.3390/sym13071107
http://doi.org/10.3390/app12115394
http://doi.org/10.1109/icimcis51567.2020.9354315

	Introduction
	Literature Review
	Proposed Methodology
	Textual Features Analysis
	Network Data Pre-Processing
	Transfer Learning with BERT

	Visual Features Analysis
	Class Balancing Using SMOTE
	CNN-Based Deep Features Extraction
	Voting-Based Ensemble Learning

	Results and Discussions
	Dataset
	Results Analysis
	Comparisons with Previous Methods
	Model Interpretation and Validation Using Explainable AI

	Conclusions
	References

