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Background
Highly multiplexed, spatially resolved data is becoming available at an increasing pace 
thanks to recent and ongoing technical developments. In contrast to dissociated sin-
gle-cell data, this data informs us on the cell-to-cell heterogeneity in tissue slices while 
conserving the arrangement of cells [1]. Therefore, each cell can be studied in its micro-
environment. We can observe the spatial distribution of the expression of markers of 
interest, their interactions within the local cellular niche and at the level of tissue struc-
ture. All these aspects provide an excellent platform to gain better insight into multicel-
lular processes, in particular cell-cell communication.

The proliferation of spatial technologies leads to the generation of large amounts of 
data. Different technologies allow for measuring different types of molecules with vary-
ing resolution, capturing different areas of tissue with diverse numbers of readouts. 
Immunofluorescence-based methods allow detection of the expression of tens to hun-
dreds of proteins at subcellular resolution [2–4] and hundreds to potentially thousands 
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of RNA species at single-cell resolution [5]. Mass spectrometry-assisted methods ena-
ble detection of the expression of a high number of proteins at the resolution of tissue 
patches [6, 7] and tens of markers at subcellular resolution [8, 9], and over hundred 
metabolites at cellular and subcellular resolutions [10, 11]. Finally, barcoding-based 
approaches [12] facilitate the measurement of genome-wide expression at a resolution 
of hundreds of microns, i.e., several cells, and are being further developed to increase 
the resolution to below ten microns [13, 14]. Complementally, we are also witnessing 
the rapid development of methods for spatial localization that combine limited amounts 
of spatially resolved data with richer, but dissociated single-cell data [15–19], which can 
alleviate the various shortcomings of the technologies. Therefore, there is a need for 
methods to analyze large amounts of rich and spatially resolved data in order to discover 
patterns of expression, interaction, and cell functions. In fact, this has been identified as 
one of the grand challenges in single-cell data science [20]. These methods should ide-
ally be able to handle the variety of produced data and scale well with future technology 
improvements.

Currently, there is a limited number of computational methods available for the analy-
sis of high-resolution spatially resolved data [21]. One group of methods focuses on the 
analysis of the significant patterns and the variability of expression of individual markers 
[22–25] to describe the landscape of expression within a tissue. Another group of meth-
ods considers, more broadly, the analysis of the interactions between the markers within 
different spatial contexts, that is the expression in the directly neighboring cells or the 
effect of the expression of a marker in the broader tissue structure. The methods within 
the latter group focus mainly on identifying interactions in the local cellular niche, by 
establishing the statistical significance of the distribution of automatically identified 
cell types in the neighborhood of each cell [26–31]. These methods assume a fixed form 
of nonlinear relationship between markers or have a predefined set of spatial contexts 
which can be explored. Spatial variance component analysis (SVCA) [32], for example, 
goes a step further by examining contributions of different spatial context to the expres-
sion of markers by decomposing the source of variation to three fixed spatial contexts: 
intrinsic, environmental, and intercellular effects.

We introduce here a Multiview Intercellular SpaTial modeling framework (MISTy), 
an explainable machine learning framework for knowledge extraction and analysis of 
highly multiplexed, spatially resolved data. MISTy facilitates an in-depth understanding 
of marker interactions by profiling the intra- and intercellular relationships. MISTy is a 
flexible framework able to build models to describe the different spatial contexts, that is, 
the types of relationship among the observed expressions of the markers, such as intra-
cellular regulation or paracrine regulation. For each of these contexts, MISTy builds a 
component in the model, called a view. MISTy allows for a hypothesis-driven and flex-
ible definition and composition of views that fit the application of interest. The views can 
also capture functional relationships, such as pathway activities and crosstalk, cell-type-
specific relationships, or focus on relations between different anatomical regions. Each 
MISTy view is considered as a potential source of variability in the measured marker 
expressions. Each view is then analyzed for its contribution to the total expression of 
each marker. The measured contribution points to the relevance of a potential source 
of interactions coming from the different spatial contexts and is estimated from the 
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view-specific models. Our approach is modular, easily parallelizable, and thus scalable to 
samples with millions of cells and thousands of measured markers.

While inspired by other approaches [22–25, 26–28] to explicitly model the spatial 
component of the data, MISTy’s approach is unique: First, it models the complete meas-
ured expression profile and interactions instead of analyzing spatial patterns of single 
markers. Second, it is not limited to fixed predefined sources of variation, aggregation, 
or representation of the data, but allows for the flexible construction of models to ana-
lyze spatial data. Third, it does not require to annotate the cell type, state, or any other 
feature of the spatial unit (cell or spot). We show a more detailed comparison of MISTy 
with related methods in Additional file 1: Table S1.

Therefore, MISTy is not directly comparable to existing related methods. MISTy does 
not consider the expression of markers or their patterns individually. MISTy takes into 
account simultaneously the entire expression profile coming from different spatial or 
functional contexts assumed to explain the overall expression, as described by the mod-
eled views. In principle, MISTy does not require annotation of cells or any other exter-
nal information to describe the influence of the local niche (immediate neighborhood) 
or the broader tissue structure. Instead, it is agnostic to potential sources of bias and 
operates at the level of the available expression profile. MISTy does not assume linear 
or other fixed types of relationship between individual markers. Instead, it constructs 
a nonparametric and nonlinear model of the expression of each available marker as a 
function of the expression of all other markers at the same time (intrinsically) or the 
expression of other markers or features captured in the available views. Finally, unlike 
related approaches, MISTy is able to not only estimate the contribution of the available 
views, but also infer the importance of relations that can explain their contribution.

We validated MISTy on in silico data generated by a custom algorithm. We further 
applied our framework on two different imaging mass cytometry (IMC) datasets con-
sisting of 46 and 720 breast cancer biopsies respectively. On these data sets, we dem-
onstrated how MISTy outperforms available methods by recapitulating previous results 
and at the same time adding interpretation and new insights. This enabled us to dis-
cover intra- and intercellular features in triple negative breast cancer that are associated 
with clinical outcomes. To our knowledge, this is the first method available to connect 
spatially resolved single-cell measurements to the clinical outcomes without the use of 
cell type annotation. Finally, MISTy can extract knowledge about the interactions among 
signaling pathways and ligands expressed in the microenvironment from different spa-
tial views. We demonstrate this on spatial transcriptomics data of breast cancer. These 
case studies illustrate the flexibility of MISTy as a framework to define exploratory and 
hypothesis-driven workflows for the analysis of diverse types of spatial omics data in 
basic and translational research.

Results
MISTy: Multiview intercellular spatial modeling framework

MISTy is a late fusion multiview framework for the construction of a domain-specific, 
explainable model of the expression of markers (Fig. 1, Additional file 1: Fig. S1). For each 
marker of interest in a sample, we can model cell-cell interactions coming from different 
spatial contexts as different views. For example, the first and main view, containing all 
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markers of interest, is the intraview, where we relate the expression of other markers to 
a specific marker of interest within the same location. To capture the local cellular niche, 
we can create a view that relates the expression from the immediate neighborhood of 
a cell to the observed expression within that cell; we call this view a juxtaview. To cap-
ture the effect of the tissue structure, we can create a view that relates the expression 
of markers measured in cells within a radius around a given cell, and we call this view 
a paraview (see “Methods”). Importantly, MISTy is not limited to the abovementioned 
views. Other views can be added to the workflow that can offer insight about relations 
coming not only as a function of space. For example, views can focus on interactions 
between different cell types, interactions within specific regions of interest within a sam-
ple, or a higher-level functional organization.

Formally, we consider a matrix [Y]u, i where each column represents a marker (i = 1. . 
n) and each row is a spatial location (u = 1. . L). Y., iis the vector made by all observations 
of the marker i. MISTy models its expression as

where 
∼

Y = Y·,∀k �=i , i.e., all markers except the target marker. Fv are models con-
structed by a machine learning algorithm for each view v. G are domain-specific func-
tions that transform the data to generate informative variables (features) from the 
expression Y at the corresponding spatial localization X. Optionally, G can depend 
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Fig. 1  MISTy: An explainable multiview framework for modeling intercellular interactions from highly 
multiplexed spatial data. MISTy models marker relationships coming from different spatial views: intrinsic 
(intraview), local niche view (juxtaview), the broader, tissue view (paraview), or others, based directly on 
marker expressions or derived typology or functional characterizations of the data. At output, A MISTy 
extracts information about the contribution of different views to the expression of markers in each 
spatial unit. B MISTy also estimates the markers’ interactions coming from each view that explains those 
contributions. C These results can be described qualitatively as communities of interacting markers for each 
view
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on other specific properties T, such as prior knowledge expressed as annotated func-
tions, regions, or cell types. The G functions can be used to generate alternative views 
that can be inputs to the model function F. Finally, α are the late fusion parameters of 
the meta-model that balances the contribution of each view to the prediction.

MISTy always models a fixed, intraview F0
(

∼

Y

)

 as a baseline view that is independ-

ent of the spatial localization of the cell. Recall that the intraview is modeling the 
expression of a target marker as a function of the expression of all other markers in 
the same location. It is biologically expected that this intraview will be able to capture 
most of the variance of the expression of the measurements: the effects on the meas-
ured markers from outside of the cell are normally lower than the effects of the inter-
actions and regulation coming from within the cell itself [33]. By design, our focus is 
to distinguish the non-intrinsic effects from the intrinsic baseline and estimate 
important interactions that supplement the explanation of the overall expression. To 

this end, other intercellular views are then added to F0
(

∼

Y

)

 . The user can add a num-

ber v of additional, intercellular views and separate the effect of each view for each 
marker on the improvement in the predictive performance of the multiview model. 
We use the improvement in the predictive performance of the models as a proxy to 
estimate their potential as sources of interactions that can be further explored by 
extracting feature importances, as outlined in the following. The contribution of each 
view is captured by the late fusion parameters α of the meta-model. The intercept on 
the other hand captures (implicitly) the environmental effects on the mean expression 
of the targets, specific to the analyzed slide. For determining the contribution of the 
views, the fusion parameters (except for the intercept) are normalized such that they 
sum up to one ∼αv = αv

∑V
i=0 αi

.

The above model is trained in two steps. First, the models for each view are trained 
independently. Second, we estimate α parameters of the meta-model after training the 
view-specific models independently, by regularized linear regression (ridge regression), 
to address potential issues of multicollinearity of the view-specific model predictions. 
The regularization parameter is determined automatically [34]. The performance of the 
meta-model is estimated by a 10-fold cross validation.

In terms of the choice of algorithm for training models, MISTy is a general framework 
and can construct models for the functions F with any algorithm that fulfills two require-
ments. First, the algorithm should construct ensemble models, with constituents trained 
on a bootstrap sample (bag) from the data. Second, they should be or consist of explain-
able models. The first criterion guarantees the unbiased use of the measurements in 
both steps of model training. The predictions of the constituents of an ensemble model 
can be made on portions of the data (out-of-bag) that were not used for their training. 
The second criterion means that a global explanation of the model or the feature impor-
tances can be obtained post hoc from the trained models. As proof of principle, in the 
implementation used in this manuscript, we consider F to be Random Forest [35] with 
100 full, unpruned decision trees with (rounded) square root of the number of variables 
selected at every split. Random forests are well known, robust, and flexible models fit-
ting the two criteria outlined above and have been shown to achieve good performance 
in various application areas. The feature importances for Random Forest models can be 
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explained by the total reduction of variance achieved as the result of splitting by each of 
the variables in all constituent trees.

At the first level, the meta-model can be interpreted in two different ways. First, to 
answer the question of how much the intercellular views improve the prediction of the 
expression in addition to the intracellular view. This can be achieved by comparing the 
predictive performance of a single intracellular view vs all views combined in a meta-
model. Second, by comparing the values of the fusion parameters, we can investigate 
how much the individual views contribute to explaining the marker expression that led 
to the aforementioned improvement in predictive performance (Fig. 1A).

At a second level, given this information, we can further analyze the feature impor-
tances. For each target marker, we can inspect each view-specific model and analyze how 
important is the contribution of each marker in that view to the prediction of the expres-
sion of the target marker (Fig. 1B). Thus, we estimate the interactions among the mark-
ers from the individual marker and view-specific models. However, for every marker, the 
statistical significance of the contribution of the view-specific models in the meta-model 
is explicitly taken into account when calculating the importances (see “Importance 
weighting and result aggregation”). These importances correspond to potential relation-
ship between the predictor and the target marker in the specific spatial or other context 
modeled by the corresponding view. MISTy outputs the estimated importances of signif-
icant marker relations. Since these relations are based on the importance of a marker in 
predicting the target, they cannot be assumed to be directly causal nor directional. The 
relations between markers may occur through a network of intermediate interactions 
in the specific biological context, which can be further explored by enrichment of these 
relationships using curated databases of intra- and intercellular interactions (Fig.  1C). 
Finally, if multiple samples are available during the analysis, the relationships from indi-
vidual samples are aggregated to produce robust results (see “Methods”). By aggregation, 
we accentuate consistently inferred interactions from individual samples and reduce 
the number of false positive interactions. We show a more detailed visual overview of 
MISTy in Additional file 1: Fig. S1.

The interpretation of the estimated relationships (interactions) is dependent on the 
view composition and the biological contexts of the available markers. As we show in 
this paper, MISTy can capture (i) a structural relationship, such as the spatial organiza-
tion of cell types based on cell type identities or the expression of cells based on cell type 
markers, and (ii) a functional relationship between the markers, such as aspects of regu-
latory programs or communication-driven interactions. MISTy is designed as a method 
for efficient data exploration and robust hypothesis generation.

In silico performance

Recovering structural relationships in in silico generated tissues

We first assess the ability of MISTy to recover purely structural relationships decoupled 
from the influence of functional relationships. To this end, we generated three in silico 
tissues with specified spatial interactions between four cell types [36]. The number of 
cells belonging to each of the cell types is approximately equal, to remove the potential 
confounding effect of abundance. Cells in the generated in silico tissues are arranged in 
space such that the different cell types exhibit different patterns (Fig. 2A). In Tissue 1, 
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the cell types do not show any preference to any other cell type, i.e., they are arranged 
randomly. This is a control tissue, where MISTy is expected to find no relationships from 
the spatial context. In Tissue 2, cell type 1 (ct1) exhibits preference to co-localize with 
itself (self-preference), while the other cell types do not have any preferences. In Tissue 
3, cell type 1 and cell type 3 show mutual preference, while the other cell types have no 
preferences.

For each spatial pattern generated, we simulated 100 gene expression markers to cre-
ate a synthetic dataset (Methods). Of the 100 markers, the distributions of 75 markers 
were distinguishable between cell types (“informative markers”). The simulated expres-
sion of the remaining 25 markers did not differ between cell types (“uninformative mark-
ers”). To our knowledge, this represents the most comprehensive in silico tissue model 
to simulate spatial interactions with continuous cell type markers.

Fig. 2  Recovery of structural relationships in the in silico tissues. A Voronoi diagram representation of the 
generated in silico tissue structures: Tissue 1—random structure, Tissue 2—structure with self-preference of 
a single cell type and Tissue 3—structure with mutual preferences of two cell types. B Amount of variance 
explained (percentage points) of the identity of the cell type when taking into account the information about 
the distribution of cell types in the immediate neighborhood. C Estimated importance of the relationships 
from the cell type distribution in the immediate neighborhood. Tissue 1 is missing as there was no 
information captured about the structure of the random tissue. Some of the target cell types are missing as 
the heatmaps contain only those targets with gain of variance explained of more than 5% and importances 
larger than 1 (one standard deviation above the mean importance of all predictors for that target). D 
Estimated importances of the expression of genes in Tissue 3 coming from the immediate neighborhood 
as predictors of the expression of the target gene. Shown are target genes with variance explained above 
4%, highlighted are the interaction with estimated importance of 2 and higher. The genes shown in bold 
are either top 10 markers of ct0 or ct2. There is only one gene (gene_33) that is in the top 10 markers of the 
other two cell types. E Distributions of the estimated importance of the predictor-target relationship from 
the juxtaview of the top 10 markers of the individual cell types to the markers of cell types 1 (above) and 3 
(below) in Tissue 3
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This model only considers cell type preferences in the immediate neighborhood. 
Accordingly, we created view compositions in the MISTy workflows consisting of intra-
view and juxtaview only. The juxtaview threshold was set to the 75th percentile of all 
Euclidean distances between first neighbors to simulate potential errors of determining 
the correct threshold when applied to real data.

We considered two types of workflows: (i) The first workflow uses only information 
about the cell type identity and focuses on reconstructing directly the cell type composi-
tion of the tissue. (ii) The second workflow uses only information about the expression of 
the cell type markers and focuses on reconstructing the composition of the tissue based 
on the interaction of gene markers without the information about the actual cell types.

For the first workflow, the identity of the cells is captured in the intraview by one-hot 
encoding. In particular, each cell is described by a vector of length of the total number of 
cell types (4), where all values are equal to zero except for the value of the variable repre-
senting the type that the cell belongs to, which is set to one. The juxtaview then captures 
the distribution (total number) of the different cell types in the immediate neighborhood 
of each cell. For the second workflow, the intraview for each cell is represented by the 
expression of the 100 marker genes. The juxtaview in this workflow captures the total 
expression of all marker genes in the immediate neighborhood of each cell.

By modeling the interactions coming from the intraview, we would capture trivial 
results of prediction of identity by exclusion or co-occurrence of a large number of 
unique cell-type markers. While the target expressions to be modeled remain in the 
intraview, to avoid the aforementioned issues and to allow for modeling of self-prefer-
ences, we excluded the intraview-specific model from the meta-model in these work-
flows. As a result, the baseline to compare the multiview model is a model with an 
intercept only, i.e., a model that always predicts the mean value of the target variable.

When we applied the first workflow, since the structure of Tissue 1 is random, MISTy 
did not capture any information (Fig. 2B). For Tissue 2 and Tissue 3, we observed notice-
able increase of variance explained for ct1 and the pair ct1 and ct3, respectively. The 
estimated interactions for Tissues 2 and 3 (Fig. 2C) uncover the true preferences in the 
tissue structure.

When we applied the second workflow to Tissue 3, we obtained the estimated interac-
tions of the markers with high importance in the immediate neighborhood as captured 
by the juxtaview (Fig. 2D). For each cell type, we first ordered the gene markers by the 
absolute value of the difference in the mean of expression to other cell types (differen-
tially expressed markers). We took the top 10 markers for each cell type as representative 
markers of that cell type. We compared the distribution of the importances of the rep-
resentative markers per cell type as predictors of the representative markers of a target 
cell type. The mutual preference of cell types 1 and 3 is captured unambiguously by the 
distribution of the importances of their respective markers as predictors with significant 
importance (Fig. 2E).

In summary, both workflows converge on the same results—interaction between cell 
types 1 and 3—yet the second workflow provides a much more detailed view of the indi-
vidual markers involved with the caveat of added complexity. With the two workflows, 
we demonstrated that MISTy is able to reconstruct the structural relationships based on 
annotated cell types and by the expression of cell type marker genes independently.
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Of note, in a workflow similar to the first one several related approaches, for example 
univariate spatial pattern identification and immediate neighborhood analysis methods, 
would be able to capture the self-preference structure of Tissue 2. Only the latter group 
of methods would be able to capture the true structure of Tissue 3. In a workflow simi-
lar to the second one, only immediate neighborhood analysis methods would be able 
to detect marker interactions. Some of them would require preprocessing of the data 
(such as clustering) before they can be applied. In the following, we introduce an in silico 
experiment that these groups of methods cannot be applied to.

Recovering functional relationships from in silico generated mechanistic interaction networks

We next assessed the performance of MISTy to reconstruct functional relationships 
in in silico intra- and intercellular interaction networks, decoupled from the influence 
of structural relationships. To estimate the robustness of MISTy to infer mechanistic 
molecular interactions, we created a tissue simulator that can mimic the interactions of 
different cell types through ligand binding and subsequent signaling events (Fig. 3A; see 
“Methods”) and simulated two tissue samples. The dynamic model simulates the pro-
duction, diffusion, degradation, and interactions of 29 molecular species including 5 
ligands, 5 receptors, and 19 intracellular signaling proteins (see Methods). The model 
considers four cell types (Additional file 1: Fig. S2) arranged on a two-dimensional lat-
tice, where ligands diffuse and activate cells. The simulated values for every molecular 
species (except ligands) at every location are recorded and these images are passed as 
input to MISTy (Additional file 1: Fig. S3).

We compared two scenarios, one with no information on the cell types: in this case all 
the measured cells are treated equivalently; and another scenario where cell type infor-
mation is considered: in this case a MISTy model is built for each cell type. The MISTy 
workflow consists of two views, intracellular view and broader tissue structure view 
(paraview). The intraview for each cell is represented by the expression of the molecular 
species. The paraview captures the weighted expression of all molecular species in the 
broader tissue structure with radius of significance of 10.

Overall, the intraview alone (Additional file 1: Fig. S4) explains a large amount of vari-
ance of the nodes that appear only in the intracellular space and that are expressed and 
regulated by other intracellular nodes. The paraview module increases the model accu-
racy mostly for receptors, which are activated by diffusing molecules in the intercellular 
space (Fig. 3B). For example, the increase in explained variance was the largest for R3, 
R4, and R5, which are the receptors that are expressed in cell type 1 (Sup. Fig. 2). We 
obtained similar results for all other cell types (Sup. Fig. 3 and Sup. Fig. 4). When we 
compare the predictive performance of this model to a model with a single intraview, we 
see the highest improvement in predictive performance for the expressed receptors (R3, 
R4, R5) in cell type 1 (Fig. 3C). Markers that were not affected by environmental interac-
tions showed, as expected, no improvement in the paraview. It is also clear that when cell 
type information is considered, the model explains more variance of the targets (Fig. 3B) 
and the paraview contributions are generally higher (Fig. 3C).

MISTy derives an importance score for each pair of markers (see “Methods”). Using 
this score, we can infer intracellular and intercellular molecular interactions. To test 
this, we evaluated the performance of MISTy to recover interactions among markers. 
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Fig. 3  Evaluating MISTy on mechanistic in silico data. A MISTy was evaluated on the task of reconstruction 
of simulated interaction networks. Models of intra- and intercellular interactions of four different cell types 
(cell type specific intracellular networks are shown in Sup. Fig. 2), arranged on a grid representing a tissue, 
were used to simulate measurements of 29 molecular species. We considered two pipelines, (1) in which cell 
type information is available and (2) where cell types are not considered. B Increase in explained variance by 
adding the paraview contribution to the intraview model. Only variables with positive paraview contribution 
are shown. C Contribution of each view to the prediction of the marker expressions in the meta-model. 
The stacked barplot represents normalized values of the fusion coefficients of the respective views for each 
marker. D Receiver operating characteristic (ROC) depicting the aggregate performance of MISTy on the 
samples for the intraview and paraview, for the two cases with and without cell type information. The dashed 
lines represent the expected performance of an uninformed classifier, the gray iso-lines represent points in 
ROC space with informedness (Youden’s J statistic) equal to 0.1, 0.2, 0.5, and 0.8. E Predicted importance of 
the interactions for the intraview and paraview models for the case with cell type information (for cell type 
1) together with the direct interactions from the in silico model (red crosses). Some targets had very low 
variance and therefore filtered out
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First, we defined the ground truth interactions from the in silico model. The 24 molecu-
lar species in the model give rise to 552 potentially interacting pairs. We considered an 
intracellular interaction correct if there is a direct interaction between the markers in 
the in silico model’s networks (Sup. Fig. 2). Further, an intercellular interaction is cor-
rect between two markers, if one marker is directly responsible for a ligand production 
and the other marker is activated by the same ligand. For example, X14 produces ligand 
L1 and L1 is activating receptor R1, thus X14 -> R1 is considered as real intercellular 
interaction. Between the two samples, we observed small variance in MISTy’s perfor-
mance, in both the area under the receiver operating characteristic curve (AUROC) 
and the area under the precision-recall curve (AUPRC) (Additional file 1: Fig. S5). We 
aggregated the results from both samples (see “Methods” section for details) and cal-
culated the performance for cell type 1 (Fig.  3D) and all other cell types (Additional 
file 1: Fig. S5). The average AUROC across the four cell types are 0.851 and 0.715 for 
the intrinsic and paraview, which strongly exceeds the performance of a random clas-
sifier (AUROCrandom of 0.5). Further, the method also outperformed random classifier 
with respect to the AUPRC: the obtained AUPRC for the four cell types ranged between 
0.581 and 0.737 for the intraview (number of true interactions 34–40; AUPRCintra,random 
0.062–0.065) and between 0.022 and 0.053 for the paraview (number of true interactions 
10–16; AUPRCpara,random 0.018–0.025). The low AUPRC baseline is due to the sparsity of 
true intercellular interactions in contrast to the total number of interactions between the 
cells. The sparsity of these interactions, which is also inherent in real biological systems, 
adds high complexity to the task of reconstruction of the direct connections. In sum-
mary, MISTy is able to reliably extract interactions in the in silico case study.

In particular, MISTy accurately captured the downstream intracellular signaling cas-
cades of receptors (Fig. 3E, left). Most of the false positive interactions are the results of 
inferring indirect or higher-order interactions, while false negative hits are likely because 
of the lack of perturbation: for example, node X10 in cell type 1 has no incoming edge 
(Supp Fig. 2), which results in a slowly decaying value in simulation. Finding the interac-
tion partner of these types of nodes would be challenging or rather impossible for any 
data-driven inference method. Finding the mechanistic intercellular interactions is par-
ticularly challenging because we are looking for 10–16 real interactions among the 552 
possible interactions. Most of the interactions found by MISTy correctly involve recep-
tors (Fig. 3E, right); however, we found higher false positive rates.

With these workflows, we demonstrated the extent MISTy is able to reconstruct the 
mechanistic relationships in general and focused on a cell type of interest in a complex 
and fully observable. These results also outline the limitations of the approach, such as 
those caused by the presence of confounders and indirect interactions, whose effect 
becomes more prominent when reconstructing mechanistic intercellular relationships.

Unfortunately, the performance cannot be directly compared to other related 
approaches, due to their limitation to infer interactions without additional sources of 
information. The comparison with the most related approach, SVCA, is limited and at 
best only qualitative at the level of estimated contributions of the fixed views provided 
by SVCA. SVCA does not provide information about the potential interactions that 
explain the estimated contributions. Note also that the computational resources needed 
to construct models even on the in silico data by SVCA are orders of magnitude larger 
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than those needed by MISTy. For a single layout with 4000 locations, on a standard con-
figuration using 4 processor cores, SVCA took 24 h of computation time and 2.5 GB of 
memory, while MISTy took 18 s of computation time (4800 fold decrease) and 900 MB 
of memory (2.5 fold decrease).

Application to imaging mass cytometry breast cancer datasets

Analyzing the importance of the tissue structure

As a first real-data case study, we applied MISTy to an Imaging Mass Cytometry data-
set consisting of 46 samples of breast cancer across three tumor grades coming from 
26 patients, with measurements of 26 protein markers [28]. We processed each sam-
ple independently, with 944 cells on average per sample, or 43,434 single cells in total. 
We designed the exploratory MISTy workflow for this task to include three different 
views capturing different spatial contexts and providing a foundation for comparison 
with SVCA: In addition to the intraview, we considered creating views by aggregating 
the available spatial and expression information in two ways. We created a view that 
describes the local cellular niche (juxtaview) and a view that describes the broader tissue 
structure (paraview). In order to avoid ambiguity, we set the zone of indifference for the 
paraview to the cutoff threshold for the juxtaview. In this way, there is no overlap in the 
information captured by the juxtaview and the paraview. The following results illustrate 
the importance of the various sources of spatial information and how MISTy can reca-
pitulate previous findings without the need for single-cell clustering and cell type anno-
tation using prior knowledge [28].

We aggregated the MISTy results from all samples and we found that the multiview 
model resulted in significant improvements in the absolute value of variance explained 
of up to 20.1% over using the intraview alone, which accounted for an average of 31.8% 
of overall variance explained across all markers (Additional file 1: Fig. S6A). This is con-
sistent with results obtained with SVCA, on the same data [32]. The highest improve-
ment was detected for the markers pS6 (4.63% ± 4.99), CREB (4.07% ± 3.08), and SMA 
(3.83% ± 3.19) (Fig. 4A). This is expected since these three markers have distinct spa-
tial distributions: pS6 represents “active” stroma present in distinct regions of the 
tumor microenvironment, SMA represents smooth muscle Actin, which is expressed 
in ductal structures and blood vessels; and CREB is a transcription factor commonly 
overexpressed and activated in tumor regions. The highest change in variance explained 
(20.1%) in a single sample was observed for Erk12. All top ranked markers by improve-
ment found by MISTy are consistent with the highest improvement due to environmen-
tal effect in the results of SVCA.

We next analyzed the contribution of each view to the prediction of the multiview 
model (Fig. 4B). With MISTy, unlike SVCA, we were able to dissect the effect of the jux-
taview and paraview. We find that a significant contribution (higher value of the fusion 
parameter in the meta-model) comes from the paraview compared to the juxtaview. 
This suggests a stronger effect from the broader tissue structure than from the immedi-
ate neighbors. The mean fraction of contribution to the prediction of the intraview was 
69.5%, of the juxtaview 5.3%, and of the paraview 25.1%.

To investigate the importance of tissue structure for the modeling of spatially 
resolved single cell data, we performed a spatial permutation-based analysis and 
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Fig. 4  R2 signature and permutation analysis of IMC data from 46 breast cancer samples. A Imaging mass 
cytometry example image from a breast cancer sample (HH3 in blue, CD68 in gray, E. cadherin in red and 
Vimentin in green) and improvement in the predictive performance (variance explained) for all samples 
when considering multiple views in contrast to a single, intraview (in absolute percentage points). B The 
relative contribution of each view to the prediction of the expression of the markers. C Distribution of 
improvement in variance explained when considering multiple views in contrast to a single intraview across 
all markers and samples with original cell locations and 10 random permutations. The p-value is calculated 
by a one-sided Wilcoxon rank-sum test. D Distribution of the relative contribution of the intraview, juxtaview, 
and the paraview to the prediction of the markers across all markers and samples with original cell locations 
and 10 random permutations. The p-values are calculated by a one-sided Wilcoxon rank-sum test. E First 
two principal components of the R2 signature of the samples colored by grade and clinical subtype, and the 
importance of the variables of the signature in the principal component analysis. The naming of the variables 
is in the form Marker_Measure. The measures taken into account are variance explained by the intraview only 
(intra. R2), total variance explained by the multiview model (multi. R2), and the gain in variance explained 
(gain. R2)
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compared the results obtained by MISTy. The coordinates of each cell in each sam-
ple were permuted 10 times. Subsequently, we ran the aforementioned MISTy work-
flow on the resulting 10 new datasets. The mean gain in variance explained for the 
permuted data across all samples and markers was 0.5% with 49.8% of values of the 
gain of variance explained less or equal to 0 (Fig. 4C). The availability of true tissue 
structure improves the performance of the mode significantly. The estimated contri-
bution of the juxtaview and paraview for the permuted datasets was much lower than 
for the original dataset, and often nearly absent. In addition, there were significantly 
higher contributions of the intraview than for the original dataset (Fig. 4D, Additional 
file 1: Fig. S6B). For the permuted dataset, the mean baseline variance explained over 
all samples and markers by using only the intraview was found to be consistent, i.e., 
remained the same as for the original dataset (31.8%).

Subsequently, we analyzed our results by the spatial variance signature (R2 signa-
ture) of each sample. We defined the R2 signature of the MISTy results for each sam-
ple by concatenating the estimated values of the variance explained using only the 
intraview, the variance explained by the multiview model, and the gain in variance 
explained for each marker. Note that the signature relates only to the results pro-
duced by MISTy for each sample and can capture different aspects of them. In this 
case of the R2 signature, the performance achieved by MISTy per target for each sam-
ple. These signatures are not related to a signature composed of biological markers for 
the samples and thus does not provide any insights into specific marker relationships. 
Here, we use the R2 signature representation to group the samples by similarity of the 
results. The use of R2 signature allows us to compare the results of MISTy to SVCA as 
reported in the manuscript describing SVCA.

The maximum length of the signature vector for each sample in this dataset is 78 
(26 markers × 3 measures) dimensional, when using the information for all markers. 
From our signature vectors and in the following analyses, we removed the results of 
the performance of the markers that have less than 2% of gain in variance explained. 
This resulted in signature vectors of length 27 (9 markers × 3 measures).

Using the first two components of the principal component analysis (PCA) of the 
R2 signature, we identified a weak but visible structure in the samples driven by the 
tumor-grade and clinical subtypes, which is consistent with the findings of SVCA 
(Fig. 4E). The two first principal components of the R2 signatures of MISTy captured 
50.8% of the variance of the samples compared to 30% with the spatial variance signa-
ture of SVCA. Inspecting the importance of the R2 signature components for the PCA 
analysis (Fig. 4E), we observed that the structure of the results can be explained by the 
gain in variance explained, which points again to the relevance of the spatial compo-
nent of the data. In particular, the gain for markers CD68, ki67, and SMA were found 
to be the highest, suggesting that proliferation, presence, or absence of CD68 and 
changes in vascularization in different grades and clinical subtypes are significantly 
affected by the change in regulation as a result of intercellular interactions. Collec-
tively, these results support the importance of the tissue structure for the expression 
of proteins at the single-cell level and overall overlap with results from SVCA and the 
initial performed single-cell analysis.
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Since the output of SVCA only includes fractional contributions of fixed views, com-
parison beyond this point is not possible. As shown in the following, MISTy significantly 
extends the scope of possible analyses to be performed on the data.

While the R2 signature allows us to analyze the differences between the samples 
based on predictive performance only, more insights into the relationships between 
the markers can be obtained by a more detailed signature at the level of the estimated 
importances. The importance signature is generated by concatenating the estimated 
importance for each predictor-target marker pair from all views. The aggregated impor-
tances are weighted by the estimated relevance of the results (see “Methods”). In this 
case, we created a 26-marker × 26-marker vector for 3 views (2028 dimensions). Same 
as before, we removed the results of the importance of the target markers that have less 
than 2% of gain in variance explained. This resulted in signature vectors of length 702 (9 
target markers × 26 predictor markers × 3 views). The signature vector for each sample 
is, therefore, still large but more informative and focused on interactions. The structure 
in the results, driven by the tumor grade, can also be observed when visualizing the first 
two principal components of the importance signature (Fig. 5A). Due to richer informa-
tion, they account for less (16%) of the variance of the samples compared to the R2 signa-
ture. By inspection of the importance of the signature components, we observed that in 
the two first principal components the most significant interactions that can account for 
the observed structure and differences among the samples come from the broader tissue 
view.

To confirm that the structure of the samples can be observed complementary as the 
result of accounting for the spatial component of the data and is not simply a result of the 
intrinsic expression of the markers, we performed PCA on the samples as represented by 
the mean expression of the markers across all cells. While the separation of the samples 
by grade is observable when visualizing the first two principal components (account-
ing for 63.9% of the sample variance), the importance of the markers that account for 
this separation is more uniform and different from the components of the R2 signature 
(Additional file 1: Fig. S6C). More importantly with the R2 and importance signatures, 
we were able to identify a clearer and more informative relationship between the avail-
ability of information coming from the different spatial contexts and tumor progression. 
This information can be then used to focus on exploratory and comparative analysis of 
more homogeneous groups, with lower variance of performance among samples.

Highlighting intergroup differences

By grouping the samples by tumor grade, we further analyzed the robust intercellular 
features of tumor samples. Since only a small number of samples came from grade 2 
tumors, we considered only grade 1 and grade 3 tumor samples. In grade 1 samples, 
we observed the highest gain of variance explained for markers Cytokeratin 7 (4.92% ± 
4.43), SMA (3.96% ± 3.09), and CREB (3.8% ± 2.31). In grade 3 samples, we observed 
the highest gain of variance explained for pS6 (6.95% ± 5.09), SMA (4.43% ± 3.39), and 
CREB (4.26% ± 3.52).

We further compared the aggregated results by contrasting the important interactions 
between the same views intragroup and intergroup. Due to the higher overall contri-
bution of the paraview compared to the juxtaview (Fig. 4B), we analyzed the important 
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interactions that can be extracted from the paraview model that have not been found as 
significant for the intraview model, i.e., capture interactions coming only from the con-
text of the broader tissue structure. In grade 1 samples, we observed predictor markers 
with high importance for many target markers: the transcription factor markers CREB 

Fig. 5  Importance signature and contrasts of IMC data from 46 breast cancer samples. A First two principal 
components of the importance signature of the samples colored by grade and clinical subtype, and 
importance of the variables of the signature in the principal component analysis (10 variables with the 
highest square cosine shown). The naming of the variables is in the form View_Predictor_Target, representing 
the estimated importance of the interaction between the predictor and target markers for the specific spatial 
context (view). B Intragroup contrast of importances of marker expression as predictors of the expression 
of each target marker between the intraview and paraview for grade 1 samples and between the intraview 
and paraview for grade 3 samples. C Change of the total number of estimated important interactions per 
grade (Importance ≥ 0.5). D Intergroup contrast of importances of marker expression as predictors of the 
expression of each target maker for the intraview and for the paraview between grade 1 and grade 3 samples
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and GATA3, the immune cell marker CD68, and the myoepithelial marker SMA. In 
grade 3 samples, we observed a pronounced decline of the number of important interac-
tions coming from the paraview compared to grade 1 samples, with the most important 
predictor markers being Cytokeratin 7 and SMA (Fig. 5B). This is likely representing the 
loss of luminal cell types (Cytokeratin 7) interacting with myoepithelial cells (SMA) in 
ducts and alveoli, leading to the loss of normal tissue architecture in grade 3 samples. In 
other words, normal tissues are highly structured, and the underlying tissue structure is 
critical to perform tissue relevant functions. Advanced tumors create tissue structures 
that are dominated by tumor cells and thus are not as dependent on cellular crosstalk 
and organization.

The loss of signaling during tumor progression is apparent when comparing the results 
view by view for the different tumor grades. The intergroup and view focused contrasts 
outline the interactions that were estimated as important in grade 1 samples and not 
important in grade 3 samples. While we observed a loss of a number of important inter-
actions from the intraview, the loss of important interactions from the paraview is higher 
(Fig. 5C, D).

Linking estimated interactions to clinical features

To highlight the ability to associate MISTy results with clinically relevant features, we 
analyzed a breast cancer imaging mass cytometry dataset with outcome data, based on 
415 samples from 352 patients (see “Methods” section for sample selection) [37]. As with 
the previous dataset, we processed each sample with MISTy independently and used the 
exploratory MISTy workflow with three views capturing different spatial contexts: intra-
view, juxtaview, and paraview.

The number of important interactions, as with the previous breast cancer data set, 
decreased with tumor progression based on grading (Fig. 6A) across all three views. The 
highest median improvements were detected for similar markers as shown in the previ-
ously described breast cancer data set showing reproducibility across multiple sample 
cohorts (Additional file  1: Fig. S7A and B). Visualization of the network communities 
based on the estimated importance of the predictor—target pairs from the juxtaview for 
grades 1 and 3, highlights the rewiring of the tumor microenvironment during breast 
cancer progression. While CK14 and CK5 (green pair; top right corner) consistently 
interact with each other representing the basal and luminal cell compartment, immune 
cells seem to increase their interaction with other immune cells (e.g., B cells (CD20+)) 
and with cells potentially undergoing epithelial-mesenchymal-transition (EMT) (e.g., 
Twist+) (Fig. 6B). Next, we plotted the first two components of the PCA of the results 
represented by their importance signatures to visualize how tumor grade (Fig. 6C) and 
clinical subtypes (Fig. 6D) are distributed.

We decided to focus our further analysis on grade 3 tumors only since grade 1 
and 2 samples are mostly annotated with HR+HER2− clinical subtypes (96% and 
81% respectively) and the distribution of clinical subtypes for grade 3 samples is 
more balanced (47.6% HR−, 52.4% HR+ (out of 185), with the HR− group contain-
ing mostly triple negative subtype (79% out of 88 samples) and in the HR+ group 
58,7% out of 97 samples are HR+HER2−). We next asked whether there are specific 
predictor-target interactions with high importance that could be linked to survival 



Page 18 of 31Tanevski et al. Genome Biology           (2022) 23:97 

overall and for the different clinical subtypes. The performance MISTy achieved 
and the view contributions for the group 3 samples specifically are shown in Addi-
tional file 1: Fig. S7C and D. The predictor-target interactions that were estimated 
as important and are specific to the juxtaview and paraview are shown in Additional 

Fig. 6  MISTy signatures can uncover clinically relevant features in IMC data from 415 breast cancer samples. 
A Change of the total number of estimated important interactions per grade (Importance ≥ 0.5). B Changes 
in the tumor microenvironment can be visualized by network community plots representing the juxtaview 
for tumor grades 1 and 3. For example, the green cluster represents a constant link in the juxtaview between 
luminal- (CK8/18+) and basal-like (CK5+) cell types across all tumor grades, while the yellow cell cluster 
shows an increased interaction with tumor progression of immune cells (CD68+/CD45+), B cells (CD20+) 
and T cells (CD3+) with cells potentially undergoing EMT (Twist+). C Importance signatures visualized as the 
first two components of a PCA highlight the separation of grade and D clinical subtype. Kaplan-Meier curves 
and p-values of a log rank test based on stratification by estimated importance of MISTy predictor-target 
interactions that were found to be correlated with the patient outcome: E CC3.cPARP and EGFR in the 
intraview; F SMA and pHH3 in the juxtaview, and G Vimentin and EGFR in the paraview



Page 19 of 31Tanevski et al. Genome Biology           (2022) 23:97 	

file 1: Fig. S7E and F respectively. Finally, the first two principal components of the 
importance signature of the samples, where we did not see further strong grouping 
according to clinical subtype.

To associate MISTy results with clinical outcome, we calculated the Spearman rank 
correlation coefficients between the estimated importance of target-marker pairs to 
the overall survivability in months, selecting only pairs that contain at least 30% pos-
itive importance values. Samples from patients with multiple samples were treated 
as independent. Next, we performed the analysis accounting for clinical subtypes by 
running analysis on those samples independently. In the group of HR+HER2+ sam-
ples (n = 8), the estimated importance of 24 predictor-target pairs (6 intraview, 12 
juxtaview, 6 paraview) is significantly correlated to the overall survival (p < 0.05). In 
the group of HR+HER2− samples (n = 20), the estimated importance of 51 predic-
tor-target pairs (16 intraview, 14 juxtaview, 21 paraview) is significantly correlated to 
the overall survival and in the group of HR-HER2+ samples (n = 11), the estimated 
importance of 39 predictor-target pairs (7 intraview, 17 juxtaview, 15 paraview) is 
significantly correlated to the overall survival. Importantly, we recover many inter-
actions, without the need of single-cell annotation, that were previously shown to be 
linked to poor prognosis. For example, pan-cytokeratin and ER as one of the strong-
est correlations.

For our analysis, we focused specifically on the triple negative samples (n = 26), 
since currently no biomarkers are available that could be linked to outcome, where 
the estimated importance of 64 predictor-target pairs (26 intraview, 18 juxtaview, 20 
paraview) is significantly correlated to the overall survival. We picked from the top 
predictor-target pairs correlated with overall survival for each view as an example for 
further analysis, but we provide all results for further experimental validation (Addi-
tional file 1: Table S2). We grouped the samples by the estimated importance of the 
selected predictor-target interaction. If the estimated importance for that predictor-
target interaction in that sample is larger than 0.5, we consider that sample to be in 
the positive group; otherwise, we consider the sample to be in the negative group. 
We then plotted the Kaplan-Meier curves and performed a log rank test to estimate 
the significance of the difference in overall survivability between the two groups. We 
found cleaved caspase 3 and cPARP, which are both markers of cell death, when esti-
mated to interact (predictor-target) with EGFR in the intraview, are linked to worse 
overall survival (Fig. 6E). In the juxtaview, we found that the absence of interaction 
of cells expressing myoepithelial marker SMA and pHH3, which represents cells in 
the cell cycle (mitosis), is linked to worse overall survival (Fig. 6F). This could hint to 
the importance of the distance to a blood vessel. As the last example, we also found 
that estimated interactions between stromal cells (Vimentin+) and cells with active 
RTK signaling (EGFR) to be linked to better overall survival (Fig. 6G).

In summary, we could successfully link MISTy results and signatures to clini-
cal features and survival outcomes. The provided list of features can be used as a 
resource for future experimental validations, and with an increasing amount of pub-
lished spatial omics datasets linked to clinical data, we expect similar studies across 
various disease types and experimental technologies.
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Application to a spatial transcriptomics breast cancer dataset

Key features of MISTy are that it is technology agnostic and flexible to analyze differ-
ent spatially resolved data. Even more, the properties of the data obtained from different 
technologies can be leveraged to create different explanatory views.

To illustrate this, we analyzed the spatial gene expression profiles of two sections of a 
sample of invasive ductal carcinoma in breast tissue profiled with 10x Visium [38]. The 
10x Visium slides contain 4992 total spots of 55 μm in diameter per captured area that 
enable the profiling of up to 10 cells per spot. With this technology, thousands of spa-
tially resolved genes can be profiled simultaneously within a sample, allowing for the 
characterization of molecular processes.

Previously, we have shown the utility of the footprint-based method PROGENy to 
robustly estimate the activity of signaling pathways, in both bulk and single-cell tran-
scriptomics [39–41]. PROGENy estimates the pathways’ activity by looking at the 
expression changes in downstream target genes, rather than on the genes that constitute 
the pathway itself. Due to the resolution and the gene coverage of 10x Visium slides, the 
same approach can be applied to spatial transcriptomics datasets to enhance the func-
tional view of the data. We estimated pathway activities for two reasons: (1) to reduce 
the dimensions of the data of each spot into interpretable and functionally relevant fea-
tures, while still using the information of as many genes as possible, and (2) to provide a 
set of features that are more stable than the sparse expression of marker genes.

For each sample section, we estimated the activities of 14 cancer relevant signaling 
pathways of each spot using PROGENy [39, 41] (Fig.  7A). While pathway crosstalk 
mechanisms are expected within a spot, we hypothesized that the local pathway activity 
could also be regulated by neighboring cells in other spots to coordinate cellular pro-
cesses. Therefore, we identified a set of 377 expressed genes in both sections annotated 
as ligands (Fig. 7A) in the meta-resource OmniPath [42] (see “Methods”) and designed 
a MISTy pipeline to model pathway activities using three different views: An intraview 
of pathway activities and two functional paraviews focusing on pathway activity a para-
view using the estimated pathway activities at each patch and a paraview using the meas-
ured expressions of a set of ligands. Improvement in the prediction of pathway activities 
by this multiview model would provide evidence of the relevance of spatial relation-
ships in the regulation and maintenance of the functional state of a spot. Moreover, the 
traceable importances of each view may suggest possible mechanisms of intercellular 
communication.

The multiview model improved significantly the variance explained of 12 of the 
14 pathway activities (t-test on cross validation folds, mean adjusted p-value < 0.1), 
with improvements of up to 24% compared to the intraview model in the case of the 
estrogen and hypoxia pathways (Fig.  4B). We found a mean contribution of 55% of 
the intraview, 24% of the ligand expression paraview, and 21% of the pathway activ-
ity paraview to the prediction of pathway activities in the multiview model (Fig. 7B). 
We compared these results to the model performance in five iterations of slides with 
permuted layouts to provide further evidence of the importance of spatial infor-
mation in the prediction of marker pathway activities (see “Methods,” Additional 
file  1: Fig. S9A,B). As expected, in these random slides, we observed no improve-
ments in variance explained when fitting models with spatially contextualized views 
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(Additional file 1: Fig. S9A). Moreover, when we compared the view’s contributions 
of the models fitted to random and original slides, lower contributions of the para-
views were recovered for the random models (Additional file  1: Fig. S9B, Wilcoxon 
test log10p <  − 10). These results confirmed that MISTy models are able to extract 

Fig. 7  Application of MISTy to a spatial transcriptomics dataset. A Schematic of the MISTy pipeline used in 
Visium 10x slides. Each visium spot profiles the gene expression of up to 10 cells. Pathway activities were 
estimated with PROGENy and a MISTy model was built to predict them using two spatially contextualized 
views. B Changes in R2 observed in each predicted pathway after using the multiview model, reflecting the 
importance of the spatial context (upper panel). Contribution of each view to the prediction of the pathway 
activities in the meta-model. The stacked barplot represents normalized values of the fusion coefficients of 
the respective views for each pathway (lower panel). C Variable importances for the intraview. D Intrinsic 
associations of pathway activity scores of NFkB and TNFa, and p53 and MAPK. Spatial distribution of pathway 
activities from the first section. Circled areas exemplify niches where coordinated activities were observed. 
Scatterplots show the within-spot relationship between each pair of pathways. E Variable importances for the 
pathway paraview. F Spatial distribution of estrogen pathway activities and scaled gene expression of SCT1 
(top predictor of Estrogen in the ligand paraview) and TNF
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informative spatial relationships between markers in tissue samples where spatial 
organization is expected.

The importances of the features used as predictors in each view are consistent with 
biological processes. In the intraview (Fig.  7C), we recovered, among others, associa-
tions between NFkB and TNFa, and P53 and MAPK that have been reported previ-
ously [39]. These results capture pathway crosstalks within a spot as illustrated in the 
spatial distribution of pathway activities shown in Fig.  7D. Predictor importances in 
the pathway paraview captured similar associations as the ones captured by the path-
way intraview (Fig.  7E). The paraview importances, however, reflect patterns of tissue 
organization in which multiple neighboring spots share similar cellular states in larger 
areas. If a relationship between two pathways A and B is observed within a spot and a 
coordinated local activity of these pathways is happening, then the activity of pathway 
A of the neighbors of a given spot indirectly explains its pathway B activity. For exam-
ple, the obtained paraview relationship between NFkB and TNFa, and P53 and MAPK 
(Fig. 7E) explained the regions where a collection of spots showed coordinated higher or 
lower activities of these pathways (Fig. 7D, circled areas). Additionally, new associations 
between pathways became relevant when taking into account the functional state of the 
neighbors of each spot (Fig. 7E). In hypoxia, where the contribution of the para pathway 
view to the multiview model was 35%, estrogen, PI3K, p53, and WNT pathway activi-
ties had the highest importances, besides EGFR and TGFb that were recovered from 
the intraview importances too (Additional file 1: Fig. S9C). The local expression of puta-
tive ligands contributed mostly to the prediction of estrogen, WNT, and hypoxia (para 
ligand view contribution ≥ 34%, Fig. 7B). We annotated each ligand-pathway interaction 
using Omnipath. We recovered the potential target receptors of all predictor ligands and 
assigned them to one of the 14 pathways in PROGENy based on the whole collection of 
annotations stored in Omnipath. Additionally, we annotated each predictor ligand as a 
direct byproduct of a pathway if they belonged to one of the transcriptional footprints 
in PROGENy. From the 195 most important ligand-pathway interactions (importance 
≥ 2), 130 could be annotated as described above. The 65 unannotated interactions could 
represent novel context-dependent intercellular processes and show how MISTy could 
be used as a hypothesis generation tool. Among the top annotated interactions observed 
between the pathway activities and ligands (Additional file 1: Fig. S9D), we recovered the 
relationship between STC1 and estrogen pathway activities (Fig. 7F). STC1 is a glycopro-
tein hormone that is secreted into the extracellular matrix and has been discussed in the 
literature as a promising molecular marker in breast cancer [43]. TNF, STC1’s reported 
receptor, showed similar spatial patterns in the slide (Fig.  7F), suggesting a potential 
intercellular mechanism that mediates estrogen pathway activity. High importances to 
predict estrogen pathway activity were observed for other estrogen-receptor-dependent 
genes such as EFNA1 and EDN1, as well as for the estrogen responsive gene TFF1 (Addi-
tional file 1: Fig. S9E). Interestingly, we observed that ligand importances clustered path-
ways that shared para pathway interactions, such as p53, MAPK, and TGFb. Altogether, 
our results showed that MISTy was able to improve the prediction of pathway activities 
by incorporating their spatial context. Moreover, we were able to identify known and 
novel spatial dependencies between pathway activities and ligands that reflect the func-
tional organization of the tissue.
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Discussion
Here we present MISTy, an explainable framework for the analysis of highly multi-
plexed spatial data without the need of cell type annotation. It can scale and is tech-
nology agnostic enabling the analysis of increasingly complex data generated by recent 
and upcoming technologies. MISTy complements other methods that leverage spatial 
information to explore intercellular interactions. The current approaches focus mainly 
only on the local cellular niche, i.e., the expressions measured in the immediate neigh-
borhood of each cell [26–29, 31]. Other methods that consider the broader tissue 
structure are relatively inflexible [30, 32]. They consider a fixed form of nonlinear rela-
tionship between markers at predefined spatial contexts (e.g., fixed distance), and they 
do not scale well due to their high computational complexity. In contrast, MISTy offers 
a flexible range of spatial analyses in a scalable framework. We present a selected set of 
workflows for the analysis of spatial data, using not only the marker expressions but also 
derived features, such as pathway activities.

We established a performance baseline for MISTy on in silico data before applying 
MISTy to real-world data. We showed that MISTy achieves high performance on the 
task of reconstructing the intra- and intercellular networks of interactions.

We then applied MISTy to three real-world spatial omics data sets from breast cancer 
samples. We applied MISTy on imaging mass cytometry data, capturing dozens of pro-
tein markers at (sub) cellular resolution. The results show that we were not only able to 
recapitulate results from the literature without prior-knowledge-based cell type annota-
tion, but to also generate new hypotheses. Our results show that the information that is 
available from the expression of markers in the broader tissue structure is often more 
important than their expression in the local cellular niche. Of note, this result, which 
is biologically intuitive, could not be found with previous methods that do not distin-
guish between para- and juxtaview. This highlights that not only cellular niches but also 
the tissue structure has a direct impact on cellular states and should be included in the 
“microenvironment” definition. Furthermore, we show how MISTy finds interactions 
that are associated with clinical features.

Finally, we applied MISTy on a spatial transcriptomics data set measured with 10x 
Visium. Here, thousands of transcripts are measured in spots containing several cells. 
Given the richness of the data, we were able to go a step further and consider the analy-
sis of functional features, in the form of pathway activities that were inferred from the 
data. In particular, we showed the crosstalk between pathways and the ligand-pathway 
interactions in the context of the broader tissue structure in breast cancer. Our results 
showed that MISTy in combination with functional transcriptomics tools and prior 
knowledge can be used in spatial transcriptomics to uncover coordinated functions that 
are maintained in niches of the tissue. Moreover, the explanatory component of the mul-
tiview model provides relevant predictors that could become the base of mechanistic 
models.

Although the interactions extracted by MISTy cannot be considered directly as causal, 
they can facilitate the downstream analysis of biological systems at the tissue level in 
several directions: (i) to predict the behavior of systems under perturbations, by using 
the MISTy model to generate marker expressions based on the new conditions; (ii) to 
guide the reconstruction of multicellular causal signaling networks, using databases to 
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identify mechanisms giving rise to the extracted interactions; and subsequently (iii) to 
construct mechanistic models of the dynamical behavior of the system constrained by 
the extracted explanations.

The work we presented lays the foundation for further exploration of MISTy in several 
directions. One direction is to address the scalability of MISTy to millions of cells and 
thousands of markers per sample, which is beyond what the available technologies can 
offer, but is likely to come in the near future. To do this, we are exploring approximate 
but accurate methods to replace the computationally expensive step of generating views 
where the pairwise distances between all cells need to be calculated. Another direction is 
the exploration of the performance that can be achieved by MISTy with different ensem-
ble approaches using various types of explainable constituent models. Furthermore, 
MISTy can be used to generate more specific views. In particular, views that capture the 
spatial expression of specific cell types, so that we can dissect the spatial interactions 
between different cell types, or views that focus on regions of the tissue, for example, 
healthy vs pathological, where we would model the interactions between the functionally 
different regions. Of special interest is also the specialization of MISTy workflows that 
focus on the analysis of ligand-receptor interactions while taking into account the spa-
tial context. To this end, we look towards combining MISTy with complementary tools, 
such as GCGN [30], MESSI [31], cell2cell [44] and Tensor-cell2cell [45]. In particular, we 
plan to explore the integration of databases of intercellular signaling as modeling bias 
as in GCGN, focusing workflows on the communication between pairs of cell types as 
in MESSI. In another direction, cell2cell results can be used to inform ligand-receptor 
analysis with MISTy, or use MISTy’s importance signatures as the input communication 
score matrices for Tensor-cell2cell. Finally, MISTy generates a model for each marker of 
interest that can be readily used to make predictions of marker expressions under dif-
ferent conditions. For example, we can increase or reduce the expression of a certain 
marker in silico and explore the effects of the new condition.

Conclusions
In summary, we believe that MISTy is a valuable tool to analyze spatially resolved data, 
adaptable to multiple data modalities and biological contexts, that will also evolve as 
experimental techniques improve. An implementation of MISTy as an R package named 
mistyR (https://​saezl​ab.​github.​io/​mistyR/) is fully documented and freely available from 
GitHub, Bioconductor, and as a Docker image.

Methods
In silico tissue structure

We simulated the data distribution for each cell type by sampling from a multivariate 
normal distribution, where each marker had a randomly chosen mean expression with a 
narrow variance. To create informative markers between cell types, we randomly adjust 
the mean of a marker for each cell type, such that the distributions of a given marker 
expression for each cell type are likely to be non-overlapping. For uninformative mark-
ers, mean expression is the same between cell types. After choosing marker-wise mean 
expression and adjusting the means for informative markers, a synthetic dataset is gen-
erated by sampling from this distribution. Cells of specific types are matched with their 

https://saezlab.github.io/mistyR/
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corresponding spatial location from the in silico tissue generation to construct a syn-
thetic spatial dataset.

In silico mechanistic model

The mechanistic in silico model is a two-dimensional cellular automata model that 
focuses on signaling events; therefore, cell growth, division, motility, and death are 
neglected. First, we created two random layouts. To account for cellular heterogeneity 
in the tissue, we assigned one of four different cell types CT1, …CT4, to each spot of 
the layout or left it empty (intercellular space). Each of these cell types has a distinct set 
of receptors expressed and distinct intracellular wiring (Sup. Fig. 2). To keep the model 
simple, we considered 29 biological species S = {ligands: L1-L5; receptors: R1-R5 intra-
cellular proteins: X10-X29}. The intracellular processes involve the ligand activation of 
receptors and downstream signaling nodes, and ligand production/secretion (Fig. 3A). 
The model simulates the production, diffusion, degradation, and interactions of these 29 
molecular species on a 100-by-100 grid. Ligands are produced in each cell type based on 
the activity level of their production nodes and then freely diffuse, degrade, or interact 
with other cells on the grid. Other molecular species involved in signaling are localized 
in the intracellular space and their activity depends on ligand binding and intracellular 
wiring.

The model is formally stated by the following partial differential equations for each 
species:

This equation describes the diffusion, the production/activation, and the degradation 
of the species. We made the following assumptions: cs(x, y, t) is the concentration of spe-
cies s ∈ S at the grid point (x, y) at time t. The diffusion is homogenous across the image, 
the diffusion coefficient of species s is ds. Only ligands are diffusing, and other intracel-
lular molecules cannot leave the cell.

The production term includes the generation of ligands and the activation of intracel-
lular proteins and receptors. Production depends on the cell types and the activity of 
the production node: the ligand production depends linearly on the nodes above them 
(supp Fig. 2): Pi(x, y, t) = αi, ctXi(x, y, t) for i ∈ {L1, L2, L3, L4, L5} and ct ∈ CT, the αi, ct coef-
ficient defines which cell type produces which ligands and how strongly the production 
depends on the activity of the production node.

Ligands are specific and activate only the corresponding receptors, e.g., L1 activates 
R1, L2 activates R2, etc. The activation of the receptor depends on the concentration of 
the ligand at the location of the cell.

For intracellular proteins, the protein activity depends on the activity of upstream 
nodes. An interaction Xi -> Xj is translated to the equation: Pj

(

x, y, t
)

= βj,i
ct
ci(x,y,t)

 , 

where βj, i
ct encodes the strength of interactions between the nodes in cell type ct.

Degradation is proportional to the concentration of ligands, intracellular proteins, and 
ECM, Ds(x, y, t) = γscs(x, y, t), where γs is a constant degradation coefficient.

The above model was simulated from a randomized initial condition, and the activ-
ity distribution (Additional file  1: Fig. S3) was achieved. We considered all markers 

(2)
∂cs

(

x, y, t
)

∂t
= ds∆cs

(

x, y, t
)

+ Ps
(

x, y, t
)

− Ds

(

x, y, t
)
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except the ligands as available measurements for the MISTy workflow. In contrast to the 
included measurements, our assumption is that the expression of ligands would be more 
difficult to capture in a real experiment and therefore excluded them.

We aggregated the interactions from the mechanistic model for the different cell types 
in joint binary matrices of directed ground truth interactions for the different views. To 
compare the matrices to the importance matrices from the output of MISTy, we trans-
formed the joint matrices into undirected matrices Au =  sgn (A + AT). We then quanti-
fied the performance of MISTy for the task of reconstruction of intra- and intercellular 
networks from the true and the extracted interaction matrices.

Data acquisition and processing

Imaging mass cytometry

The first imaging mass cytometry dataset consists of 46 samples from 26 breast cancer 
patients with varying disease grades [28]. The original data consisted of 50 samples, from 
which we removed samples coming from normal tissue. The raw data was segmented 
and single cell features were extracted with histoCAT. The samples contain between 267 
and 1455 cells with measured expression of 26 proteins/protein modifications. The cell-
level data was preprocessed as defined in Arnol et al. [32] in order to assure the validity 
of direct comparison of results.

The second imaging mass cytometry dataset consists of 720 samples from 352 breast 
cancer patients from two cohorts, with long-term survival data available for 281 of those 
patients [37]. The samples contain measurements of 37 proteins/protein modifications. 
The raw data was segmented, and single-cell features were extracted with histoCAT. The 
cell-level data was preprocessed as in the original study. To ensure robustness of the 
results, we filtered samples containing less than 1000 cells, samples coming from a nor-
mal or control tissue, and samples without annotated tumor grade or clinical subtype, 
resulting in a total of 415 samples for our analysis.

Spatial transcriptomics

The data and sample information were obtained from 10x Genomics [38]. The data 
consists of spatial transcriptomic measurements of two sections of a sample analyzed 
with 10x Genomics Visium. The sections come from tissue from a patient with grade 2 
ER+, PR−, HER2+, annotated with ductal carcinoma in situ, lobular carcinoma in situ, 
and invasive carcinoma. The mean sequencing depths were reported to be 149,800 and 
137,262 reads per spot for a total of 3813 and 4015 spots per section respectively. The 
median UMI counts per spot were reported as 17,531 and 16,501, and the median genes 
per spot as 5394 and 5100 respectively. The raw data was preprocessed and count matri-
ces were generated with spaceranger-1.0.0. Individual count matrices were normalized 
with sctransform implemented in Seurat 3.1.2 [46]. For each spot, we estimated signaling 
pathway activities with PROGENy’s model matrix using the top 1000 genes of each tran-
scriptional footprint. We retrieved from Omnipath [42] all proteins labeled as ligands 
and in each dataset, we filtered all ligands whose expression was captured in at least 5% 
of the spots.
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View generation

We consider a dataset D = [X(n × s)  Y(n × k)], represented as a matrix of dimensions 
n × (s + k) of spatially resolved highly multiplexed measurements of a sample, where n 
is the number of measured units (pixels, cells, patches) available in the sample, s is the 
number of spatial dimensions in the geometry matrix X, and kis the number of meas-
ured markers in the expression matrix Y.

The juxtaview was generated by summing the expressions of its direct neighboring 
cells, i.e., Gc =

∑

j∈Nc

∼

Y j,· , where Ncrepresents the set of neighboring cells of cell c. The 
neighboring cells for each cell can be determined either during image segmentation, for 
example by setting a threshold of membrane-to-membrane distance, or, as in the case 
for the application of MISTy on IMC data, by post hoc neighborhood estimation. For the 
application of MISTy on IMC data, the neighborhood of each cell in a sample was esti-
mated by constructing a cell graph by 2D Delaunay triangulation followed by removal of 
edges with length larger than the 25th percentile of all pairwise cell distances across all 
samples, which corresponded to 11.236 microns from the cell centroid.

The paraview was generated by weighted aggregation of the expressions of all cells 
(patches) from the sample Gc =

∑n
j=11

(

dcj ≥ z
)

w
(

dcj , l
)

∼

Yj,. , where w is a weighing func-
tion, dcjis the Euclidean distance between cells c and j, calculated from matrix X, l is a 
parameter controlling the shape of the weighting function w, and z is a parameter con-
trolling the zone of indifference. A juxtaview and a paraview with no zone of indifference 
will both contain the expression of the markers in the neighboring cells. Considering 
a zone of indifference larger than the immediate neighborhood would ensure that only 
the juxtaview will capture the immediate neighborhood, while the paraview will capture 
only the broader tissue structure excluding the immediate neighborhood.

We can assume the cells that are closer affect the expression within the cell more than 
cells that are farther away to various degrees. The weighing function w controls the con-
tribution of the expression coming from the broader tissue structure as a function of 
the distance and a parameter l that captures the radius around the cell where we con-
sider the cells in the broader tissue structure to be significantly contributing to explain-
ing the expression in the cell. Examples of weighting functions in MISTy are the families 
of radial basis 

w = e
− d2

l2
 , exponential w = e−

d
l  , linear w = 1− d

l
 , and constant functions 

w = 1(d ≤ l).
For the application of MISTy to both IMC and spatial transcriptomics data, we con-

sidered the family of radial basis functions for weighting and optimized the value for 
the parameter l. For each IMC sample, we constructed models for each marker, with 
parameter l ∈ {25, 50, 100, 200, 400}. This corresponds to an effective radius of influence 
of 25 to 400 pixels or micrometers. The mean values of the parameter l across all sam-
ples for all markers are shown in Additional file 1: Fig. S8. Given the resolution of 10x 
Visium, MISTy models for spatial transcriptomics were built for each pathway activity 
considering in the paraview the family of radial basis functions for weighting with values 
of parameter l ∈ {2, 5, 10}, corresponding to a radius of influence of up to 10 spots. Then, 
for each marker, we selected the value for l such that the estimated improvement in pre-
dictive performance by using the multiview model in contrast to the intraview model is 
maximized. For each model (Random Forest), we estimate the predictive performance 
by measuring the variance explained on out-of-bag samples.
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Importance weighting and result aggregation

To calculate the interaction importances from a sample, we used information from 
the two layers of interpretability and explainability: the values of the fusion param-
eters (αvin Eq. (1)) in the meta-model and their respective p-values pk

(v) for each tar-
get marker k and the importances Ikj

(v)of features j for the prediction of each target 
marker extracted from the predictive model for view v yields the MISTy interaction 
importance:

Since the importances Ikj
(v)extracted from a Random Forest model (used for the 

current instance of MISTy) represent the amount of variance reduction in the target 
expression, the MISTy interaction importances correspond to the standardized value 
(by mean ¯Ikj

(v) and variance σIk (v)
2 ) of the variance reduction weighted by the quantile 

1 − pk
(v) of the statistic under the null hypothesis of zero contribution of the fusion 

coefficient for view v for target kin the linear meta-model.
MISTy is conceived to be a framework applicable to any type of omics data. The per-

formance measures and the estimated relationships are independent from the proper-
ties of the variables used to describe the data. The machine learning models (Random 
Forest) trained on the specific views are invariant to the scale of the predictor or the 
target variables. The measure of the performance of the model (variance explained) is 
also chosen such that issues with scale are avoided during training and interpretation.

MISTy infers the interactions between the variables by the proxy task of predicting 
the expression, abundance, activity, or any other quantity of the target variables and 
estimating the importance of each of the predictor variables for this task. The esti-
mated relationships/importances are related to the amount of reduction of variance 
and not to absolute values. The importance derived from variance reduction can be 
generalized to any measure of impurity or values extracted by other feature impor-
tance estimation methods, given the model constituents of MISTy. Since the MISTy 
importances are standardized, importances from multiple samples can then be aggre-
gated by simple averaging, while their interpretation remains the same.

For views that contain the same set of predictors as targets, we also identified the 
communities of interactions from the estimated importances. For this, we trans-
formed the square matrix A of estimated predictor-target interactions to an undi-
rected graph adjacency matrix as Ap = A + AT. We then extract the community 
structure from the graph using the Louvain algorithm [47], a commonly used algo-
rithm for community detection by grouping nodes, such that the modularity of the 
graph is maximized.

Permutation of the slides

To evaluate the performance of MISTy models in samples with no spatial organiza-
tion, we generated random samples for both the IMC and spatial transcriptomics data 
and ran the same pipeline as for the original data. We permuted the coordinates of 

(3)Mkj
(v) =

Ikj
(v) − ¯Ik

(v)

σIk (v)
2

(

1− pk
(v)
)
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each spatial unit (cell or spot) for each slide ten times for the IMC data and five times 
for the spatial transcriptomics data. Results were grouped and compared to the ones 
obtained in the slides with the original spot layout.

Annotation of predictive ligands from the spatial transcriptomics pipeline

To facilitate the interpretation of the paraview ligand importances observed in the spa-
tial transcriptomics models, we assigned each ligand to a PROGENy pathway in two 
ways: (1) as a byproduct of pathway activation or (2) as a potential activator of a path-
way. A ligand was considered as a byproduct of a PROGENy pathway if it was part of 
its top 1000 footprint genes. A ligand was considered as a putative activator of the path-
way it predicted if at least one of its possible receptors could be assigned to it. We used 
OmnipathR to annotate each receptor using the import_omnipath_annotations function 
and regular expressions to filter annotations associated with the PROGENy pathway of 
interest. Only ligands with a paraview importance ≥ 2 were considered in this annota-
tion (Additional file 1: Fig. S9D).
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