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Abstract: Background: We aimed to develop and validate an automated machine learning (autoML)
prediction model for cardiac surgery-associated acute kidney injury (CSA-AKI). Methods: Using
69 preoperative variables, we developed several models to predict post-operative AKI in adult
patients undergoing cardiac surgery. Models included autoML and non-autoML types, including
decision tree (DT), random forest (RF), extreme gradient boosting (XGBoost), and artificial neural
network (ANN), as well as a logistic regression prediction model. We then compared model perfor-
mance using area under the receiver operating characteristic curve (AUROC) and assessed model
calibration using Brier score on the independent testing dataset. Results: The incidence of CSA-AKI
was 36%. Stacked ensemble autoML had the highest predictive performance among autoML models,
and was chosen for comparison with other non-autoML and multivariable logistic regression models.
The autoML had the highest AUROC (0.79), followed by RF (0.78), XGBoost (0.77), multivariable
logistic regression (0.77), ANN (0.75), and DT (0.64). The autoML had comparable AUROC with RF
and outperformed the other models. The autoML was well-calibrated. The Brier score for autoML,
RF, DT, XGBoost, ANN, and multivariable logistic regression was 0.18, 0.18, 0.21, 0.19, 0.19, and 0.18,
respectively. We applied SHAP and LIME algorithms to our autoML prediction model to extract an
explanation of the variables that drive patient-specific predictions of CSA-AKI. Conclusion: We were
able to present a preoperative autoML prediction model for CSA-AKI that provided high predictive
performance that was comparable to RF and superior to other ML and multivariable logistic regres-
sion models. The novel approaches of the proposed explainable preoperative autoML prediction
model for CSA-AKI may guide clinicians in advancing individualized medicine plans for patients
under cardiac surgery.

Keywords: acute kidney injury; cardiac surgery-associated acute kidney injury; AKI;
preoperative; cardiac surgery; machine learning; artificial intelligence; individualized medicine;
personalized medicine

1. Introduction

Cardiac surgery-associated acute kidney injury (CSA-AKI) is a common and serious
complication with incidence ranging from 17% to 49% [1–3]. Compared to patients without
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CSA-AKI, those with CSA-AKI carry increased risks of mortality, prolonged length of
hospital stay, and high healthcare costs [4–8]. Previous risk prediction models for CSA-AKI
by multivariable logistic regression analysis have been developed with great initiative to
help assess perioperative risk of CSA-AKI [9–18]. However, there are limitations of particu-
lar risk scores, such as generalizability (pre-specified type of elective cardiac surgery [9],
coronary artery bypass grafting (CABG) [15], or only CKD patients [14]) and the need
to include intraoperative factors in the models that are not available for preoperative
risk assessment (such as intraoperative inotrope use, intraoperative intra-aortic balloon
pump insertion, or cardiopulmonary bypass time [13]). In addition, several risk scores
have been developed specifically to predict severe AKI requiring kidney replacement ther-
apy (KRT) after cardiac surgery [10–12,16]. However, even milder degrees of CSA-AKI
carry increased risks of CKD and progression to end-stage kidney disease (ESKD) and are
clinically relevant [3,19,20]. Therefore, there is a need to develop accurate, reliable, and
clinically meaningful preoperative risk prediction models for CSA-AKI to assist providers
in counseling patients undergoing cardiac surgery.

Artificial intelligence (AI) and machine learning (ML) have been increasingly ap-
plied to individualized medicine [21–26], including the prediction of AKI in various
settings [27–35]. ML algorithms can handle nonlinear, complex, and multidimensional
data [36,37], and recent studies have shown high predictive performance from ML algo-
rithms that outperform traditional statistical analyses [38,39]. Recently, automated ML
(autoML) has emerged as a growing field to minimize human input and effort on repetitive
tasks in ML pipelines, such as optimal algorithm selection and hyperparameter optimiza-
tion to achieve optimal performance [40], by replacing manual trial-and-error approaches
with systematic data-driven decision making [41,42]. In addition, autoML uses automation
to efficiently identify the algorithms or models that work best for each dataset and improves
accuracy using the ensemble method of algorithms [43]. Thus, autoML has been shown to
be very effective, with high predictive performance comparable to human hyperparameter
optimization (identification of hyperparameters that returns an optimal model) with a more
time-efficient workflow and less human assistance [41,43]. In the present era of utilizing
electronic health records (EHRs), where additional data is continuously added and updated,
rapid adjustment of the scoring systems in autoML real-world applications is more feasible
than traditional ML approaches [40]. Despite the growing research in the field of autoML
there has been little work applying autoML to the healthcare field, despite demonstrated
need [44].

In this study, we aimed to: (1) develop a preoperative autoML prediction model
for CSA-AKI; (2) compare model performance among autoML, various other ML-based
prediction models, and traditional statistical (multivariable logistic regression) models in
predicting AKI after cardiac surgery in CSA-AKI; and (3) obtain explanations of the features
in the ML-based prediction model that drive patient-specific predictions of CSA-AKI.

2. Methods
2.1. Patient Population

This was a single-center observational study conducted at a tertiary referral hospital.
We studied all consecutive adult patients (≥18 years old) who underwent open-heart
surgery at Mayo Clinic Hospital, Rochester, MN, from 1 January 2014 to 31 December 2020.
To avoid assessment of multiple outcomes for a single patient, we analyzed only the first
heart surgery during the study period for patients with multiple heart surgeries. We
excluded (1) patients who had end-stage kidney disease or received any dialysis modalities
within 7 days before the surgery, (2) patients who did not have known baseline serum
creatinine before surgery, (3) patients who underwent solely right or left ventricular assist
device placement, and (4) moribund patients who died during surgery or within 24 h
after surgery. The Mayo Clinic Institutional Review Board approved this observational
study (IRB number-21-004248) and waived informed consent due to the minimal risk
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nature of this study. The study was conducted in accordance with the relevant guidelines
and regulations.

2.2. Data Collection

The primary outcome was post-operative AKI. We defined and staged AKI based
solely on the serum creatinine criterion of the Kidney Disease Improving Global Out-
comes (KDIGO) foundation [45]; AKI was defined as an increase in serum creatinine of
≥0.3 mg/dL within 48 h after surgery or relative increase of ≥50% from the baseline within
7 days after surgery. We used the most recent outpatient serum creatinine within 1 year
prior to the surgery as the baseline value. If the outpatient baseline serum creatinine was
not available, we used the lowest in-hospital serum creatinine prior to the surgery as the
baseline instead. AKI severity was classified into three stages, as follows: stage 1 was
an increase of ≥0.3 mg/dL or an increase to ≥1.5- to 1.9-fold from baseline, stage 2 was
an increase to ≥2- to 2.9-fold from baseline, and stage 3 was an increase to >3-fold from
baseline, an increase to ≥4.0 mg/dL, or the initiation of renal replacement therapy.

We used our institutional electronic database to abstract cardiac surgery information,
patient demographics, comorbidities, echocardiographic findings, vital signs, medications,
and laboratory data. Comorbidities were identified according to the Elixhauser Comorbid-
ity index using previously defined ICD-9 and ICD-10 diagnosis codes. As our goal was
to develop and assess a prediction model for CSA-AKI based on the available data before
cardiac surgery, we only used the preoperative data that were present within 7 days before
cardiac surgery for analysis. When multiple values existed, we selected the most recent
vital signs or laboratory values prior to cardiac surgery. We excluded laboratory results
with more than 10% missing data. Otherwise, we imputed missing data through a multiple
imputation approach using Random Forest (RF).

2.3. Feature Selection

Spearman’s rank correlation was applied to assess the separate correlation of variables
in the dataset and demonstrated no significant correlations (Supplementary Figure S1).
Subsequently, a recursive feature elimination (RFE) approach with RF was completed using
the Caret R package. The optimal number of variables (69 variables) were identified by
the most optimal accuracy and kappa metrics using five times repeated ten-fold cross-
validation (Supplementary Figure S2).

2.4. Model Development

In order to utilize ML models to predict the risk of AKI after cardiac surgery, we fol-
lowed TRIPOD (Online Supplementary) to build automated ML and various ML models [46].
Numerical data were normalized to have a standard deviation of 1 and a mean of 0 [47].

H2O.ai was used to develop autoML models [44]. The H2O autoML platform has been
validated and provides very stable performance [48]. It includes a number of advanced
ML algorithms, including distributed RF (DRF), generalized linear model (GLM), gradient
boosting machine (GBM), deep learning (a fully-connected multi-layer neural network), and
extremely randomized trees (XRT). In addition, H2O-AutoML builds two stacked ensemble
models, one using all the trained models and the other using just the best performing
model from each algorithm family [49]. Detailed autoML algorithms and hyperparameter
optimization processes by H2O autoML are provided in the Online Supplementary Materials.

The overall study cohort was randomized into training (70%), validation (15%), and
testing (15%) datasets. The training dataset was used to develop autoML, ML, and tradi-
tional multivariable logistic regression analysis models. After model development, autoML
models were ranked by evaluation metrics (area under the receiver operating character-
istic curve (AUROC) and log loss) on a leaderboard using the validation dataset. The
autoML model with highest predictive performance (top-ranked on the leaderboard) was
subsequently chosen for comparison with various other ML and traditional multivariable
logistic regression analysis models. The testing dataset was blinded to all methods until the



J. Clin. Med. 2022, 11, 6264 4 of 16

final evaluation. As a reference model, we used multivariable logistic regression analysis.
We included variables with p-value < 0.05 in univariate analysis into the multivariable
model and subsequently selected the final multivariable model using a backward stepwise
approach with p-value < 0.05 as the pre-specified threshold for model retention.

ML (non-automated) models included decision tree (DT), RF, extreme gradient boost-
ing (XGBoost), and deep learning. We utilized deep learning based on a multi-layer
feedforward artificial neural network (ANN) trained with stochastic gradient descent us-
ing back-propagation. For DT analysis, the number of terminal nodes was determined
considering the scree plot revealing the relationship between the tree size and coefficient
of variance. The decision tree was pruned based on cross-validated error results utilizing
the complexity parameter associated with the minimal error (Supplementary Figure S3).
For the RF model, the number of trees was 500, which yielded the lowest error rate
(Supplementary Figure S4), and the mtry value was calculated by the square root of the
number of variables [50]. For XGBoost and ANN, we created a hyperparameter tuning
grid to identify the best combination of hyperparameters using cross-validation methods
(Online Supplementary Data) [51].

2.5. Model Evaluation and Calibration

The performance of the autoML, ML, and multivariable logistic regression analysis
models was assessed with AUROC, accuracy, precision, error rate (ERR), Matthews cor-
relation coefficient (MCC), and F1 score in the testing dataset [52–54]. The DeLong test
was used to compare AUROCs [55]. Two-sided p values less than 0.05 were considered
significant. The formula for each measure is provided in the Online Supplementary Data.
The Brier score was used to evaluate model calibration [56].

2.6. Explanations of the Variables in the autoML-Based Prediction Model That Drive
Patient-Specific Predictions of CSA-AKI

Model-agnostic approaches, including Shapley additive explanations (SHAP) algo-
rithm and Local Interpretable Model-Agnostic Explanations (LIME), were applied to our
autoML prediction model in order to extract an explanation of the variables that drive
patient-specific predictions to mitigate the issue of black-box predictions [57,58].

SHAP is a model-agnostic demonstration of variable importance where the effect of
each aspect on a specific prediction is represented through the use of Shapley values [57,58].
The Shapley value indicates how much one singular variable contributes to the difference
between the true prediction and the average (mean) prediction in the context of its interac-
tion with other features. In addition, LIME focuses on training local surrogate models to
explain individual predictions by building a white-box local surrogate model [58,59].

2.7. Statistical Analysis

All analyses were performed using R version 4.0.3 (RStudio, Inc., Boston, MA, USA;
http://www.rstudio.com/, accessed on 15 July 2021). We used the“h2o” package for
autoML and ANN, “rpart” package for DT, “randomForest” and “randomForestExplainer”
for RF, “caret” package for RFE variable selection, XGBoost, and grid search, and the
“missForest” package for missing data imputation [60].

3. Results
3.1. Clinical Characteristics

A total of 13,158 cardiac surgery patients were eligible for analysis. The mean age was
65 ± 15 years, and 66% were male. Eighteen percent had coronary bypass graft (CABG),
60% had valve surgery, 19% had CABG and valve surgery, 1% had heart transplant, and 2%
had pericardiectomy. The mean baseline creatinine was 1.1 ± 0.7 mg/dL and the estimated
glomerular filtration rate was 69± mL/min/1.73 m2 (Table 1). Thirty-six percent (n = 4745)
developed CSA-AKI, with 30% in stage 1, 3% in stage 2, and 3% in stage 3. Two percent
(n = 284) required postoperative renal replacement therapy.

http://www.rstudio.com/
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Table 1. Patient characteristics in the datasets.

Characteristics All Training Validation Testing p-Value
(n = 13,158) (n = 9244) (n = 1967) (n = 1947)

Age (years) 65 ± 15 65 ± 15 65 ± 15 65 ± 15 0.67

Male sex 8642 (66) 6066 (66) 1335 (68) 1241 (64) 0.02

Race

0.49
White 12,460 (95) 8753 (95) 1857 (94) 1850 (95)
Black 164 (1) 112 (1) 23 (1) 29 (2)
Asian 213 (2) 155 (2) 29 (2) 29 (1)
Other 321 (2) 224 (2) 58 (3) 39 (2)

Body mass index (kg/m2) 29.7 ± 6.5 29.7 ± 6.5 29.6 ± 6.3 29.9 ± 6.8 0.31

Admission type

0.72
Elective 11,020 (84) 7728 (83) 1659 (84) 1633 (84)
Urgent 1396 (11) 988 (11) 195 (10) 213 (11)

Emergent 742 (5) 528 (6) 113 (6) 101 (5)

Cardiac surgery type

0.11

CABG 2308 (18) 1592 (17) 357 (18) 359 (18)
Valve surgery 7920 (60) 5575 (60) 1145 (58) 1200 (62)

CABG + valve surgery 2503 (19) 1765 (19) 408 (21) 330 (17)
Heart transplant 109 (1) 79 (1) 16 (1) 14 (1)
Pericardiectomy 318 (2) 233 (3) 41 (2) 44 (2)

Comorbidity
Congestive heart failure 9658 (73) 6804 (74) 1429 (73) 1425 (73) 0.67

Arrhythmia 10,370 (79) 7279 (79) 1535 (78) 1556 (80) 0.34
Valvular disease 11,144 (85) 7854 (85) 1649 (84) 1641 (84) 0.39

Peripheral vascular disease 6281 (48) 4456 (48) 903 (46) 922 (47) 0.17
Hypertension; uncomplicated 2643 (20) 1857 (20) 418 (21) 368 (19) 0.19

Hypertension; complicated 5334 (40) 3806 (41) 740 (38) 788 (40) 0.01
Paralysis 182 (1) 130 (1) 24 (1) 28 (1) 0.79

Neurological disorders 390 (3) 281 (3) 65 (3) 44 (2) 0.11
COPD 3049 (23) 2139 (23) 443 (22) 467 (24) 0.55

Diabetes; no complications 2573 (20) 1807 (19) 392 (20) 374 (19) 0.85
Diabetes; complications 2011 (15) 1412 (15) 292 (15) 307 (16) 0.72

Hypothyroidism 2025 (15) 1417 (15) 294 (15) 314 (16) 0.57
Liver disease 663 (5) 482 (5) 87 (4) 94 (5) 0.31

Peptic ulcer disease 77 (1) 51 (1) 15 (1) 11 (1) 0.53
Lymphoma 132 (1) 89 (1) 19 (1) 24 (1) 0.55
Solid cancer 285 (2) 202 (2) 43 (2) 40 (2) 0.93

Connective tissue disease 639 (5) 448 (5) 78 (4) 113 (6) 0.03
Coagulopathy 5651 (43) 4035 (44) 849 (43) 767 (39) 0.003

Obesity 3713 (28) 2585 (28) 559 (28) 569 (29) 0.52
Weight loss 263 (2) 167 (2) 50 (2) 46 (2) 0.04

Blood loss anemia 152 (1) 112 (1) 20 (1) 20 (1) 0.65
Anemia 600 (5) 415 (4) 95 (5) 90 (5) 0.8

Drug abuse 200 (1) 146 (2) 26 (1) 28 (1) 0.66
Psychosis 57 (0) 39 (0) 12 (1) 6 (0) 0.34

Depression 1683 (13) 1175 (13) 258 (13) 250 (13) 0.88

Echo finding
LVEF 57.8 ± 9.4 57.8 ± 9.5 57.8 ± 9.5 57.9 ± 9.3 0.85
RVSP 38.5 ± 10.9 38.5 ± 11.0 38.3 ± 10.9 38.4 ± 10.7 0.54

Systolic blood pressure (mmHg) 130.4 ± 17.4 130.3 ± 17.6 130.0 ± 16.9 130.9 ± 17.3 0.14

Diastolic blood pressure (mmHg) 72.8 ± 11.8 72.8 ± 11.8 72.9 ± 11.7 72.8 ± 11.7 0.9

IABP use 242 (2) 173 (2) 33 (2) 36 (2) 0.84
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Table 1. Cont.

Characteristics All Training Validation Testing p-Value
(n = 13,158) (n = 9244) (n = 1967) (n = 1947)

Medications
Aspirin 2257 (17) 1565 (17) 351 (18) 341 (17) 0.56

Beta-blockers 2739 (21) 1914 (21) 436 (22) 389 (20) 0.22
Digoxin 180 (1) 123 (1) 27 (1) 30 (1) 0.77

Anti-anginal medications 1666 (13) 1163 (13) 254 (13) 249 (13) 0.91
Anti-arrhythmic medications 7296 (55) 5154 (56) 1075 (55) 1067 (55) 0.55

Statins 1843 (14) 1282 (14) 293 (15) 268 (14) 0.46
ACEIs 695 (5) 499 (5) 117 (6) 79 (4) 0.02
ARBs 300 (2) 212 (2) 44 (2) 44 (2) 0.99

NSAIDs 868 (7) 626 (7) 114 (6) 128 (7) 0.28
Benzodiazepine 7990 (61) 5658 (61) 1172 (60) 1160 (60) 0.22

Vancomycin 11 (0) 8 (0) 2 (0) 1 (0) 0.85
Contrast 730 (5) 518 (6) 113 (6) 99 (5) 0.61
Diuretics 1569 (12) 1105 (12) 230 (12) 234 (12) 0.94

Calcium channel blockers 886 (7) 620 (7) 136 (7) 130 (7) 0.94
Vasopressors/inotropes 9232 (70) 6488 (70) 1401 (71) 1343 (69) 0.31

Insulin 3899 (30) 2756 (30) 580 (29) 563 (29) 0.21

Laboratory data
Sodium (mEq/L) 137.6 ± 3.7 137.6 ± 3.7 137.4 ± 3.7 137.7 ± 3.7 0.04

Potassium (mEq/L) 4.2 ± 0.6 4.3 ± 0.6 4.3 ± 0.6 4.3 ± 0.6 0.96
Chloride (mEq/L) 101.7 ± 3.0 101.7 ± 3.0 101.7 ± 3.0 101.9 ± 3.0 0.18

Bicarbonate (mEq/L) 25.3 ± 2.5 25.3 ± 2.5 25.3 ± 2.4 25.2 ± 2.5 0.5
BUN (mg/dL) 20.2 ± 10.0 20.2 ± 10.0 19.8 ± 9.3 20.5 ± 10.6 0.09

Ionized calcium (mmol/L) 4.4 ± 0.4 4.4 ± 0.4 4.4 ± 0.4 4.4 ± 0.4 0.96
Glucose (mg/dL) 117.8 ± 32.5 117.5 ± 32.4 118.6 ± 33.1 118.3 ± 32.5 0.32
Albumin (g/dL) 4.1 ± 0.3 4.1 ± 0.4 4.1 ± 0.4 4.1 ± 0.4 0.82

pH 7.4 ± 0.1 7.4 ± 0.1 7.4 ± 0.1 7.4 ± 0.1 0.84
pO2 (mmHg) 275.2 ± 98.4 275.2 ± 98.2 274.3 ± 98.2 276.4 ± 99.4 0.8

hemoglobin (g/dL) 11.5 ± 2.0 11.5 ± 2.0 11.5 ± 2.0 11.5 ± 2.0 0.9
WBC (109 cells/L) 7.1 ± 3.4 7.1 ± 3.4 7.1 ± 2.7 7.2 ± 3.7 0.34

Platelet (109 cells/L) 214.0 ± 70.2 213.7 ± 70.7 212.5 ± 68.1 216.6 ± 70.1 0.16
INR 1.2 ± 0.3 1.2 ± 0.3 1.2 ± 0.3 1.2 ± 0.3 0.43

Lactate (mmol/L) 1.2 ± 0.6 1.2 ± 0.6 1.2 ± 0.6 1.2 ± 0.7 0.9
eGFR (mL/min/1.73 m2) 69.2 ± 21.2 69.1 ± 21.3 69.8 ± 20.8 68.7 ± 21.2 0.24

positive blood culture 59 (0) 46 (0) 9 (0) 4 (0) 0.21

Outcome
Acute Kidney Injury 4745 (36) 3342 (36) 716 (36) 687 (35) 0.73

Abbreviations: ACEI, angiotensin-converting enzyme inhibitors; ARBs, Angiotensin II receptor blockers;
BUN, blood urea nitrogen; CABG, coronary artery bypass graft surgery; COPD, chronic obstructive pulmonary
disease; eGFR, estimated glomerular filtration rate; IABP, intra-aortic balloon pump; INR, international normalized
ratio; LVEF, left ventricular ejection fraction; NSAIDs, non-steroidal anti-inflammatory drugs; pH, potential of
hydrogen; pO2, partial pressure of oxygen; RVSP, right ventricular systolic pressure; WBC, white blood cell.

Of these eligible cardiac surgery patients, 9244, 1967, and 1947 were randomly in-
cluded in the training, validation, and testing dataset, respectively. Table 1 shows the
clinical characteristics of patients in the training, validation, and testing datasets. Clinical
characteristics among the training, validation, and testing datasets were mostly comparable.
The incidence of CSA-AKI was similar among the three datasets (36% in training vs. 36%
in validation vs. 35% in testing; p = 0.73).

3.2. AutoML Prediction Models for CSA-AKI

AutoML models for CSA-AKI were developed in the training dataset and were ranked by
AUROC and log loss on the leaderboard using the validation dataset (Supplementary Table S1).

Table 2 demonstrates the top 20 autoML models for CSA-AKI. The top autoML
(Stacked ensemble model ID: StackedEnsemble_AllModels_3_AutoML_1_20211031_170047)
shows the highest predictive performance on the leaderboard (AUROC = 0.78), and thus
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was subsequently chosen for comparison with other various ML and traditional multivari-
able logistic regression analysis models.

Table 2. Leaderboard of top 20 autoML models for CSA-AKI ranked by evaluation metrics using
validation dataset.

Rank Model ID AUROC Log loss

1 StackedEnsemble_AllModels_3_AutoML_1_20211031_170047 0.777477459373283 0.546459347839992

2 StackedEnsemble_AllModels_2_AutoML_1_20211031_170047 0.773762554202448 0.541472780910445

3 StackedEnsemble_AllModels_1_AutoML_1_20211031_170047 0.773350035055754 0.541923951699646

4 StackedEnsemble_BestOfFamily_1_AutoML_1_20211031_170047 0.773241741802089 0.541880114043628

5 StackedEnsemble_BestOfFamily_3_AutoML_1_20211031_170047 0.772737675781163 0.543015006080206

6 StackedEnsemble_BestOfFamily_2_AutoML_1_20211031_170047 0.772442939503146 0.542787093883418

7 GBM_1_AutoML_1_20211031_170047 0.771870771539193 0.545029939918007

8 GBM_grid_1_AutoML_1_20211031_170047_model_2 0.77171223914723 0.544501614697186

9 GBM_grid_1_AutoML_1_20211031_170047_model_11 0.770116309187287 0.546966245682808

10 GBM_grid_1_AutoML_1_20211031_170047_model_16 0.769074126173921 0.545687661410384

11 GBM_grid_1_AutoML_1_20211031_170047_model_6 0.768387524617178 0.546875946078973

12 GBM_5_AutoML_1_20211031_170047 0.767743347221664 0.547846265522666

13 GBM_grid_1_AutoML_1_20211031_170047_model_14 0.765551804366563 0.55048346881313

14 GBM_grid_1_AutoML_1_20211031_170047_model_7 0.764637452049534 0.551072950563168

15 GBM_3_AutoML_1_20211031_170047 0.763708027991015 0.549131275569399

16 GBM_grid_1_AutoML_1_20211031_170047_model_1 0.763258108596921 0.549864223764978

17 GBM_2_AutoML_1_20211031_170047 0.761695113183196 0.553063273816373

18 GBM_grid_1_AutoML_1_20211031_170047_model_10 0.75964423991533 0.553470882528734

19 GBM_grid_1_AutoML_1_20211031_170047_model_9 0.759394718861782 0.554178650562614

20 GBM_grid_1_AutoML_1_20211031_170047_model_12 0.757099906666845 0.555638148301273

Abbreviation: AUROC, area under the receiver operating characteristic curve; autoML, automated machine
learning; CSA-AKI, cardiac surgery-associated acute kidney injury; GBM, gradient boosting machine.

3.3. Traditional Logistic Regression Prediction Model for CSA-AKI

In the final multivariable logistic regression, the predictors for CSA-AKI included age,
sex, race, cardiac surgery type, history of cardiac arrhythmia, peripheral vascular disease,
hypertension with and without complications, liver disease, coagulopathy, obesity, right
ventricular systolic pressure, systolic blood pressure, the use of aspirin, beta-blockers, anti-
arrhythmic medications, benzodiazepine, vasopressor/inotropes, insulin, serum sodium,
albumin, hemoglobin, and eGFR. (Supplementary Table S2).

3.4. Model Comparison among the Different Models

The ERRs, accuracy, precision, MCC, F1 score, and AUROCs of the top autoML,
all ML models, and the multivariable logistic regression model for CSA-AKI prediction
in the test dataset are shown in Table 3 and Figure 1. DT showed the highest ERR
(29.6%) and the lowest accuracy (0.70), MCC score (0.30), F1 score (0.36), and AUROC
(0.64, 95% confidence interval (CI): 0.62–0.66). AUROCs were comparable among autoML
(0.79 (95%CI: 0.77–0.81)) and RF model 0.78 (95%CI: 0.76–0.80), p = 0.07. The autoML
model outperformed DT (AUROC 0.64 (95%CI: 0.62–0.66), p < 0.01), XGBoost (AUROC
0.77 (95%CI: 0.75–0.79), p < 0.01), ANN (AUROC 0.75 (95%CI: 0.72–0.77), p < 0.01), and mul-
tivariable logistic regression model (AUROC 0.77(95%CI: 0.75–0.79) p = 0.01). The autoML
model was well-calibrated (Figure 2). The Brier scores for autoML, RF, DT, XGBoost, ANN,
and multivariable logistic regression were 0.18, 0.18, 0.21, 0.19, 0.19, and 0.18, respectively.
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Table 3. Comparison of evaluation metrics and calibration among the different models.

Model Error Rate of
Test Data Set Accuracy Precision MCC F1 Score AUROC in

the Test Set Brier Score

AutoML (StackedEnsem-
ble_AllModels_3_AutoML

_1_20211031_170047)
27.6% 0.72 0.71 0.35 0.49 0.79

(0.77–0.81) 0.18

Random forest model 26.4% 0.74 0.71 0.39 0.54 0.78
(0.76–0.80) 0.18

Decision tree 29.6% 0.70 0.75 0.30 0.36 0.64
(0.62–0.66) 0.21

XGBoost 27.8% 0.72 0.65 0.36 0.53 0.77
(0.75–0.79) 0.19

ANN 29.1% 0.71 0.78 0.32 0.37 0.75
(0.72–0.77) 0.19

Multivariable logistic
regression 27.0% 0.73 0.67 0.38 0.54 0.77

(0.75–0.79) 0.18

Abbreviation: ANN, artificial neural network; AUROC, area under the receiver operating characteristic curve;
MCC: worst value −1 and best value +1. F1 score, accuracy, and precision: worst value 0 and best value 1. The
Brier score is a combined measure of discrimination and calibration that ranges between 0 and 1, where the best
score is 0 and the worst is 1.

Figure 1. Comparison of AUROC among autoML model, different ML models, and logistic regression
model. AUROC, area under the receiver operating characteristic curve; ML, machine learning.
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3.5. Explanations of the Variables in the autoML-Based Prediction Model That Drive
Patient-Specific Predictions of CSA-AKI

To identify the features that influenced the autoML prediction model the most, we applied
the SHAP algorithm to our autoML prediction model in order to extract an explanation of the
variables that drive patient-specific predictions for CSA-AKI. As the SHAP algorithm could
be utilized for the ensemble model, it was applied to GBM_1_AutoML_1_20211031_170047
(rank number 7 on the leaderboard Table 2), which was one of the key models in the component
of our top autoML model (Stacked ensemble model ID: StackedEnsemble_AllModels_3_ Au-
toML_1_20211031_170047). The SHAP summary plot of GBM_1_AutoML_1_20211031_170047
model and the top 20 features of the prediction model are shown in Figure 3. This plot
depicts how high and low the feature values were in relation to the SHAP values in the
testing dataset. According to the prediction model, the higher the SHAP value of a feature,
the higher probability of CSA-AKI occurring. Top 3 features that influenced predictions of
CSA-AKI included baseline eGFR, cardiac surgery type, and coagulopathy, respectively.

Additionally, we applied LIME into autoML model to illustrate the impact of key
variables at the individual level (Figure 4). For each patient and individual risk assessment
of CSA-AKI a LIME plot was generated depicting the top five variables that support
(increase the risk of CSA-AKI) or contradict (decrease the risk of CSA-AKI) the prediction
of CSA-AKI for each patient.

Figure 2. Calibration plot autoML. Brier: Brier score; C (ROC), AUC for discrimination;
D, discrimination index; Dxy, Somer’s rank correlation; Emax/E90/Eavg: Maximum/90th quantile,
average absolute difference in predicted and smoothed calibrated probabilities; Q, quality index;
R2: Nagelkerke-Cox-Snell-Maddala-Magee R-squared index; S:z/S:p the z and two-sided p-value of
the Spiegelhalter test for calibration accuracy; U, unreliability index.
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Figure 3. SHAP summary plot of the top 20 features of the GBM autoML (model ID:
GBM_1_AutoML_1_20211031_170047), which is one of the key models in the component of our
top autoML model. The higher the SHAP value of a feature, the higher the probability of CSA-AKI.
Abbreviations: BMI, body mass index; BUN, blood urea nitrogen; eGFR, estimated glomerular fil-
tration rate; pO2, partial pressure of oxygen; RVSP, right ventricular systolic pressure; SBP, systolic
blood pressure.
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Figure 4. Local interpretable model explainer (LIME) of top autoML (model ID: StackedEnsem-
ble_AllModels_3_AutoML_1_20211031_170047) for six individual cases (case# 1 to 6) from the testing
dataset. Label “1” means prediction of CSA-AKI and label “0” means prediction of no CSA-AKI.
Probability shows the probability of the observation belong to the label “1” or “0”. The five most
important features that best explain the linear model in that observation’s local region are demon-
strated along with whether the features influence an increase in the probability (blue bar/supports or
a decrease in the probability (red bar/contradicts). The x-axis demonstrated how much each feature
added or subtracted to the final probability value for the patient. Abbreviations: BUN, blood urea
nitrogen; eGFR, estimated glomerular filtration rate.
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4. Discussion

Significant efforts have been invested in the development of predictive risk models
of CSA-AKI. Traditional statistical models such as logistic regression analysis have been
previously utilized to construct such prognostication tools [9–17]. In recent years, ML
predictive algorithms have emerged as a method to handle high-dimensional, unstructured,
and complex structured data including hospitalized patient with AKI [27–31]. While au-
toML has been shown to be very effective, with high predictive performance comparable to
human hyperparameter optimization and with higher time-efficient workflow when com-
pared to non-automated ML [41,43], autoML has never been utilized in the development
of AKI prediction models. In this study, we successfully developed preoperative autoML
prediction models for CSA-AKI and compared the predictive performances of autoML
models with unautomated ML, and conventional multivariable logistic regression models.

Previous traditional risk prediction models using multivariable logistic regression
for CSA-AKI have been developed [9–18], including those with risk scores that included
only subgroups of patients undergoing cardiac surgery, such as elective cardiac surgery [9],
CABG [15], or only patients with CKD [14]. While the inclusion of intraoperative variables
in the risk scores helps to improve predictive performances [13], the utilization of these
models is limited in real clinical practice of preoperative risk assessment of CSA-AKI. In ad-
dition, several risk scores have been developed specifically to predict severe AKI requiring
KRT after cardiac surgery [10–12,16]. Considering that CSA-AKI, even with milder severity
of AKI, involves increased risks of CKD and ESKD [3,19,20], in the current era of individu-
alized medicine and advanced EHR the development of preoperative ML risk prediction
models for CSA-AKI can be clinically meaningful to assist providers in the counseling
of each individual patient prior to cardiac surgery. Recently, there has been increasing
interest in the utilization of supervised non-automated ML algorisms to predict the risk of
CSA-AKI [32,33,61,62]. While these ML models provide excellent discrimination of cases
with CSA-AKI [32,33,61] and higher predictive performances than traditional multivari-
able logistic regression analyses, these non-automated ML predictive models for CSA-AKI
include intraoperative data in order to achieve high predictive performance [32,33,61]. Thus,
the utilizations of these ML models for preoperative risk assessment are limited.

Our study solely used preoperative data in the development of CSA-AKI prediction
models. Additionally, for the first time we utilized the autoML approach in the devel-
opment of preoperative prediction models for CS-AKI. Furthermore, we demonstrated
that the top autoML from the leader board (stacked ensemble model ID: StackedEnsem-
ble_AllModels_3_AutoML_1_20211031_170047) achieved optimal predictive performance,
as demonstrated in non-automated RF, and outperformed the DT, XGBoost, ANN, and
multivariable logistic regression model. In addition to high predictive performance, the
autoML approach requires less human assistance and reduces human biases in optimal
algorithm selection and hyperparameter optimization of model development [43]. With
the rapid changes in novel treatment patterns, demographics, and patient populations,
data shifts have been increasingly recognized and have significantly affected predictive
performance over time [63,64]. The rapid adjustment of autoML predictive performance
with new data is more feasible than non-automated ML models [40], and can improve
time-efficient workflow in the model maintenance phase.

One issue that has received considerable visibility and has often been cited as a
limitation on the use of ML and autoML in clinical applications is a lack of transparency
and interpretability in ML-derived recommendations [57,58]. When provided two models
of equal performance, one a black box model and one an interpretable model, most users
opt for the interpretable model [65]. Gaining user trust has frequently been referenced as
one reason for interpretability [66]. In this study, to obtain explanations of the variables that
drive patient-specific predictions of CSA-AKI, we applied model-agnostic approaches to
our autoML prediction models using the SHAP and LIME algorithms [57,58]. While SHAP
cannot be used with our top autoML model, as it is an ensemble model that combines
several base models in order to produce one optimal predictive model, we applied the
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SHAP algorithm to explain the top 20 variables that played the most important roles in
predicting of CSA-AKI in GBM autoML (model ID: GBM_1_AutoML_1_20211031_170047),
which is one of the key models in the component of our top autoML model. The LIME
algorithm can be utilized for ensemble models, and thus we successfully applied it to our
top autoML prediction model. Through the adoption of the LIME approach, we were able
to explain variables driving patient-specific predictions of CSA-AKI for each individual
patient and reduce the black box concern of our preoperative autoML prediction model
for CSA-AKI.

There are several limitations of our study. First, our study cohort represents a majority
Caucasian population, and thus the autoML prediction model may need further adjustment
with more data including other patient populations. Second, our autoML included only
preoperative data in order to make it applicable in real clinical practice for preoperative
assessment. While incorporation of intraoperative factors such as operative time and
cardiopulmonary bypass time may additionally improve model predictive performance of
CSA-AKI, and may be beneficial for interventional research during or after cardiac surgery,
this is not the main focus of our current study. Lastly, a future validation study and external
validation studies of preoperative autoML prediction models for CSA-AKI are needed.

5. Conclusions

In conclusion, we presented a preoperative autoML prediction model for CSA-AKI
(available online as a shiny app at https://wisitc.shinyapps.io/autoML-CSA-AKI/, created
on 21 July 2022)) that provided high predictive performance comparable to non-automated
ML approaches, and superior to the multivariable logistic regression model. In addition, we
demonstrated the explainability of our preoperative autoML prediction model for CSA-AKI.
These novel approaches involving an explainable preoperative autoML prediction model
for CSA-AKI may guide clinicians in advancing individualized medicine plans for patients
under cardiac surgery.
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yielded the lowest error rate; Figure S5: Simple decision tree model showing the classification of
patients who had CSA-AKI (1) and did not (0) have CSA-AKI. Supplementary Table S1 Leaderboard
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kidney injury after cardiac surgery using stepwise variable selection in the training dataset. TRIPOD
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