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Abstract

Prominent theories in cognitive science propose that humans
understand and represent the knowledge of the world through
causal relationships. In making sense of the world, we build
causal models in our mind to encode cause-effect relations
of events and use these to explain why new events happen
by referring to counterfactuals — things that did not happen.
In this paper, we use causal models to derive causal explana-
tions of the behaviour of model-free reinforcement learning
agents. We present an approach that learns a structural causal
model during reinforcement learning and encodes causal re-
lationships between variables of interest. This model is then
used to generate explanations of behaviour based on coun-
terfactual analysis of the causal model. We computation-
ally evaluate the model in 6 domains and measure perfor-
mance and task prediction accuracy. We report on a study
with 120 participants who observe agents playing a real-time
strategy game (Starcraft II) and then receive explanations of
the agents’ behaviour. We investigate: 1) participants’ under-
standing gained by explanations through task prediction; 2)
explanation satisfaction and 3) trust. Our results show that
causal model explanations perform better on these measures
compared to two other baseline explanation models.

Driven by lack of trust from users and proposed regula-
tions, there are many calls for Artificial Intelligence (AI)
systems to become more transparent, interpretable and ex-
plainable. This has renewed the interest in Explainable AI
(XAI), which has been explored since the expert systems
era (Chandrasekaran, Tanner, and Josephson 1989). A key
pillar of XAI is explanation, a justification given for deci-
sions and actions of the system.

However, much research and practice in XAI pays little
attention to people as intended users of these systems (Miller
2018b). If we are to build systems that are capable of provid-
ing ‘good’ explanations, it is plausible that explanation mod-
els should mimic models of human explanation (De Graaf
and Malle 2017). Thus, to build XAI models it is essential
to begin with a strong understanding of how people define,
generate, select and evaluate explanations.

There is a wealth of pertinent literature in cognitive psy-
chology that explore the nature of explanations and how
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people understand them. As humans, we view the world
through a causal lens (Sloman 2005), building mental mod-
els with causal relationships to act in the world, to under-
stand new events and also to explain events. Importantly,
causal models give people the ability to consider counter-
factuals — events that did not happen, but could have un-
der different situations. Although this notion of causal ex-
planation is also backed by literature in philosophy and so-
cial psychology (Hilton 2007), causality and counterfactu-
als are only just becoming more prevalent in XAI. Further,
compared to the burst of XAI research in supervised learn-
ing, explainability in model-free reinforcement learning is
hardly explored.

We introduce an action influence model for model-free
reinforcement learning (RL) agents and provide a formali-
sation of the model using structural causal models (Halpern
and Pearl 2005). Action influence models approximate the
causal model of the environment relative to actions taken by
an agent. Our approach differs from previous work in ex-
plainable RL in that we use causal models to generate con-
trastive explanations for why and why not questions, which
previous models lack. Given assumptions about the direction
of causal relationships between variables, during the policy
learning process, we also learn the quantitative influences
that actions have on variables. Which enable our model to
reason approximately about counterfactual states and ac-
tions. We define how to generate explanations for ‘why?’
and ‘why not?’ questions from the action influence model.
We define minimally complete explanations taking inspira-
tion from social psychology literature (McClure and Hilton
1997).

We computationally evaluated our approach on 6 RL
benchmarks domains using 6 different RL algorithms. Re-
sults indicate that these models are robust and accurate
enough to perform task prediction (Hoffman et al. 2018,
p.12) with a negligible performance impact. We conducted
a human study using the implemented model for RL agents
trained to play the real-time strategy game Starcraft II. Ex-
periments were run for 120 participants, in which we evalu-
ated the participants’ performance in task prediction, expla-
nation satisfaction, and trust. Results show that our model
performs better than the tested baseline, but its impact on
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trust is not statistically significant.

The main contribution of this paper is twofold: 1) We in-
troduce and formalise the action influence model based on
structural causal models and present definitions to generate
explanations; 2) We conduct a between-subject human study
to evaluate the proposed model with baselines.

Related Work

There exists a substantial body of literature that explores ex-
plaining the policies and actions of Markov Decision Pro-
cesses (MDP), though most of them do not explicitly fo-
cus on reinforcement learning. Elizalde et al. (2009) gener-
ated explanations by selecting and using ‘relevant’ variables
of states of factored MDPs, evaluated by domain experts.
Taking the long term effect an action has, Khan, Poupart,
and Black (2009) proposed generating sufficient and mini-
mal explanations for MDPs using domain independent tem-
plates.

Policy explanations in human-agent interaction settings
have been used to achieve transparency (Hayes and Shah
2017) and provide summaries of the policies (Amir and
Amir 2018). Explanation in reinforcement learning has been
explored, using interactive RL to generate explanations from
instructions of a human (Fukuchi et al. 2017) and to provide
contrastive explanations (van der Waa et al. 2018). Soft de-
cision trees have been used to generate more interpretable
policies (Coppens et al. 2019), and reward decomposition
has been utilized to provide minimum sufficient explana-
tions in RL (Juozapaitis et al. 2019). However, these expla-
nations are not based on an underlying causal model.

Other work on causal explanation has focused on sci-
entific explanations (Salmon 1984) and explanations us-
ing causal trees (Nielsen, Pellet, and Elisseeff 2012). Al-
though some recent work has emphasized the importance
of causal explanation for explainable AI systems (Miller
2018b; 2018a; Madumal et al. 2019; Madumal 2019), work
on generating explanations from causal explanation models
for MDPs and RL agents have been absent.

Causal Models for Explanations

In this section, we introduce the action influence model,
which is based on structural causal models of Halpern and
Pearl (2005). We first introduce the Starcraft II domain,
a partially observable real-time strategy game environment
with a large state and action space. For the purpose of im-
plementing RL agents for explanation, we use a toned-down
version of the full Starcraft II 1v1 match (an adversarial sce-
nario) with 4 actions and 9 state variables for the agent’s
model (see Figure 1). In the following sections we use this
Starcraft II scenario accompanied by Figure 1 as our running
example.

Preliminaries : Structural Causal Models

Structural causal models (SCMs) (Halpern and Pearl 2005)
represent the world using random variables, divided into
exogenous (external) and endogenous (internal), some of
which might have causal relationships which each other.

These relationships can be described with a set of struc-
tural equations. Formally, a signature S is a tuple (U ,V,R),
where U is the set of exogenous variables, V the set of en-
dogenous variables, and R is a function that denotes the
range of values for every variable Y ∈ U ∪ V .

Definition 1. A structural causal model is a tuple M =
(S,F), where F denotes a set of structural equations,
one for each X ∈ V , such that FX : (×U∈UR(U)) ×(
×Y ∈V−{X}R(Y )

)
→ R(X) give the value of X based

on other variables in U ∪V . That is, the equation FX defines
the value of X based on some other variables in the model.

A context �u is a vector of unique values of each exogenous
variable u ∈ U . A situation is defined as a model/context
pair (M,�u). An instantiation is defined by assigning vari-
ables the values corresponding to those defined by their
structural equations. An actual cause of an event ϕ is a vec-
tor of endogenous variables and their values such that there
is some counterfactual context in which the variables in the
cause are different and the event ϕ does not occur. An ex-
planation is those causes that an explainee does not already
know. For a more complete review of SCM’s we direct the
reader to (Halpern and Pearl 2005).

Causal Models for Reinforcement Learning Agents

Our intent in this paper is not to provide explanations of ev-
idence from the environment, but to provide explanations
of the agent’s behaviour based on the knowledge of how
actions influence the environment. As such, we extend the
notion of SCMs to include actions as part of the causal rela-
tionships.

We incorporate action influence models for MDP-based
RL agents, extending SCMs with the addition of actions. An
MDP is a tuple (S,A, T ,Rγ), where S and A give state
and action spaces respectively (here we assume the state and
action space is finite and state features are described by a set
of variables φ); T = {Psa} a set of state transition functions
(Psa denotes state transition distribution of taking action a in
state s); R : S ×A → R is a reward function and γ = [0, 1)
is a discount factor. The objective of an RL agent is to find a
policy π that maps states to actions maximizing the expected
discounted sum of rewards. We define the action influence
model for RL agents as follows.

Formally, a signature Sa for an action influence model is
a tuple (U ,V,R,A), in which U , V , and R are as in SCMs,
and A is the set of actions.

Definition 2. An action influence model is a tuple (Sa,F),
where Sa is as above, and F is the set of structural equations,
in which we have multiple for each X ∈ V — one for each
unique action set that influences X . A function FX.A, for
A ∈ A, defines the causal effect on X from applying action
A. The set of reward variables Xr ⊆ V are defined by the
set of nodes with an out-degree of 0; that is, the set of sink
nodes.

We define the actual instantiation of a model M as
M�V←�S

, in which �S is the vector of state variable values from
an MDP. In an actual instantiation, we set the values of all
state variables in the model, effectively making the exoge-
nous variables irrelevant.
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Figure 1 shows the graphical representation of Definition
2 as an action influence graph of the Starcraft II agent de-
scribed in the previous section, with exogenous variables
hidden. These action influence models are SCMs except that
each edge is associated with an action. In the action influ-
ence model, each state variable has a set of structural equa-
tions: one for each unique incoming action. As an example,
from Figure 1, variable An is causally influenced by S and B
only when action Am is executed, thus the structural equa-
tion FAn.Am

(S,B) captures that relationship.

Explanation Generation

In this section, we present definitions that generate expla-
nations from an action influence model. The process of ex-
planation generation has 3 phases: 1) defining the qualita-
tive causal relationships of variables as an action influence
model; 2) learning the structural equations during RL; and 3)
generating explanans from SCMs using the definitions given
below.

We define an explanation as a pair that consist of: 1) an
explanandum, the event to be explained; and 2) an explanan,
the subset of causes given as the explanation (Miller 2018b).
Consider the example ‘Why did you do P?’ and the expla-
nation ‘Because of Q’. Here, the explanandum is P and ex-
planan is Q. Identifying the explanandum from a question
is not a trivial task. In this paper, we define explanations for
questions of the form ‘Why A?’ or ‘Why not A?’, where A is
an action. In the context of a RL agent we define a complete
explanan below.

Definition 3. A complete explanan for an action
a under the actual instantiation M�V←�S

is a tuple(
�Xr = �xr, �Xh = �xh, �Xi = �xi

)
, in which �Xr is the

vector of reward variables reached by following the causal

chain of the graph to sink nodes; �Xh the vector of variables

of the head node of action a, �Xi the vector of intermediate
nodes between head and reward nodes, and �xr, �xh, �xi gives
the values of these variables under M�V←�S

.

Informally, this defines a complete explanan for action a
as the complete causal chain from action a to any future re-
ward that it can receive. From Figure 1, the causal chain for
action As is depicted in bold edges, and the extracted ex-
planan tuple ([S = s] , [An = an] , [Du = du, Db = db]) is
shown as darkened nodes. We use depth-first search to tra-
verse the graph until all the sink nodes are reached from the
head node of the action edge.

‘Why?’ Questions

Lim, Dey, and Avrahami (2009) found that the most de-
manded explanatory questions are Why and Why not ques-
tions. To this end, we focus on explanation generation for
why and why not questions in this paper.

Minimally Complete Explanations Striking a balance
between complete and minimal explanations depend on the
epistemic state of the explainee (Miller 2018b). In this pa-
per, we assume that we know nothing about the epistemic
state of the explainee.

Rewards

State variables:
W - Worker number
S - Supply depot number
B - barracks number
E - enemay location
An - Ally unit number
Ah - Ally unit health
Al - Ally unit location
Du - Destoryed units
Db - Destroyed buildings
Actions:
As - build supply depot
Ab - build barracks
Am - train offensive unit
Aa - attack

As
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Figure 1: Action influence graph of a Starcraft II agent

Recall from the definition of explanans (Definition 3), a
‘complete’ explanation would include explanans of all the
intermediate nodes between the head and reward node of
the causal chain. Clearly, for a large graph, this risks over-
whelming the explainee. For this reason, we define mini-
mally complete explanations.

McClure and Hilton (1997) show that referring to the goal
as being the most important for explaining actions. In our
causal models, the rewards are the ‘goals’, but these alone do
not form meaningful explanations because they are merely
numbers. We define the human interpretable ‘goal’ using the
variables in the predecessor nodes of the rewards. These de-
fine the immediate causes of the reward, and therefore which
states will result in rewards. However, this alone is only a
longer-term motivation for taking an action. As such, we
also include the head node of the action edge as the immedi-
ate reason for doing the action. We use this model to define
our minimally complete explanations.

Definition 4. A minimally complete explanation is a tuple(
�Xr = �xr, �Xh = �xh, �Xp = �xp

)
, in which �Xr = �xr and

�Xh = �xh do not change from Definition 3, and �Xp = �xp

is the vector of variables that are immediate predecessors of
any variable in Xr within the causal chain, with �xp the val-
ues in the actual instantiation.

Informally, for a complete causal chain, we take the first
and last arcs of the causal chain, with their source and des-
tination nodes, omitting intermediate nodes, as the minimal
explanation. From Figure 1, for the action As, the minimally
complete explanation is just the complete explanation, as
there are no intermediate nodes.

Clearly, one could define other heuristics to decide which
intermediate nodes to use as explanations, such as the
knowledge of the explainee. However, for the purposes of
this paper, we use this simple definition.

‘Why not?’ Questions

Why not questions let the explainee ask why an event has
not occurred, thus allowing counterfactuals to be explained;
something that is known to be a powerful explanation mech-
anism (Miller 2018b; Byrne 2019). Our model generates
counterfactual explanations by comparing causal chains of
the actual event occurred and the explanandum (counterfac-
tual action). First, we define a counterfactual instantiation
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that specifies the optimal state variable values under which
the counterfactual action B would be chosen.

Definition 5. A counterfactual instantiation for a counter-

factual action B is a model M�Z← �SZ

, where �Z gives the in-

stantiation of all predecessor variables of action B with cur-
rent state values and the instantiation of all successor nodes
(of B) of the causal chain by forward simulating, using the
structural equations.

Informally, this gives the ‘optimal’ conditions (according
to the action influence model) under which we would select
counterfactual action B, simulated through structural equa-
tions. We unravel this further in the Example 1 discussion
using the Starcraft II scenario.

In the following definition, we use �X = �x to represent

the tuple
(
�Xp = �xp, �Xh = �xh, �Xr = �xr

)
, and similar for

�Y = �y for readability.

Definition 6. Given a minimally complete explanation �X =
�x for action A under the actual instantation, and a minimally

complete explanation �Y = �y for action B under the counter-
factual instantiation M�Z← �SZ

(from Definition 5), we define

a minimally complete contrastive explanation as the tuple

( �X ′ = �x′, �Y ′ = �y′, �Xr = �xr) such that �X ′ is the maximal

set of variables in �X in which ( �X ′ = �x′) ∩ ( �Y ′ = �y′) �= ∅,

where �x′ is then contrasted with �y′. That is, we only explain
things that are different between the actual and counterfac-
tual. This corresponds to the difference condition (Miller

2018a). And �Xr gives the reward nodes of action A.

Intuitively, a contrastive explanation extracts the actual
causal chain for the taken action A, and the counterfactual
causal chain for the B, and finds the differences.

Example 1. Consider the question, asking why a Starcraft
II agent built supply depots, rather than choosing to build
barracks:
Question Why not build barracks (Ab)?
Explanation Because it is more desirable to do action

build supply depot (As) to have more Sup-
ply Depots (S) as the goal is to have more
Destroyed Units (Du) and Destroyed build-
ings (Db).

First we get the actual instantiation m =
[W = 12, S = 1, B = 2, An = 22, Du = 10, Db = 7]
(instantiation should include all variables in the current
state, only the required ones are shown for readability). The
causal chain for the actual action ‘why As?’ would be as in
Figure 1, and for the counterfactual action ‘why not Ab?’,
the causal chain nodes would be B → An → [Du, Db].
We then get the counterfactual instantiation m′ =
[W = 12, S = 3, B = 2, An = 22, Du = 10, Db = 7]
using Definition 5. Applying the difference condi-
tion here, we obtain the minimally complete con-
trastive explanation (from Definition 6) as the tuple
([S = 1] , [S = 3] , [Du = 10, Db = 7]) and contrast
[S = 1] with [S = 3] to obtain the explanation of Example
1 (generated using a simple NLP template).

Learning Structural Causal Equations

Our approach so far relies on knowing the structural model,
in particular, to determine the effects of counterfactual
actions. Why not questions are inherently counterfactual
(Balke and Pearl 1995), and having just the policy of an
agent is not enough to generate explanations as counterfac-
tuals refers to possible worlds that did not happen. Con-
sider the Example 1, to generate this explanation, the op-
timal/maximum value of the state variable S is needed in
the given time instance.

However, in model-free reinforcement learning, such en-
vironment dynamics are not known. And learning a model of
the environment is a difficult problem. Though, when given a
graph of causal relations between variables, learning a set of
structural equations that are approximate yet ‘good enough’
to give counterfactual explanations maybe feasible.

To this end, we assume that a DAG specifying causal
direction between variables is given, and learn the struc-
tural equations as multivariate regression models during the
training phase of the RL agent. We perform experience re-
play (Mnih et al. 2015) by saving et = (st, at, rt, st+1) at
each time step t in a data set Dt = {e1, ..., et}. Then we up-
date the sub-set of structural equations FX.A using a regres-

sion learner L̂(s,a,r,s′)∼U(D), in that we only update struc-
tural equations associated with the specific action in the ex-
perience frame, drawn uniformly as mini-batches from D.
For example, from Figure 1, for any experience frame with
the action As, only the equation FS.As

(W ) will be updated.

Any regression learner can be used as the learning model L̂,
such as multi-layer perceptron regressors.

While this approach may seem similar to learning envi-
ronment dynamics of model-based RL methods, we only
learn the structural equations, and we are only after an ap-
proximation that is good enough for explaining instances.
Thus they can be approximate but still useful for explana-
tion. Further, specifying the assumptions about the causal
direction between variables is a much easier problem to en-
code by hand, and can be tested with the data.

Computational Evaluation

We evaluate action influence models in 5 OpenAI RL bench-
mark domains (Brockman et al. 2016) and in the Starcraft II
domain. The goal of this evaluation is to determine if learn-
ing action influence models leads to models that are faithful
to the problem. Task prediction accuracy and training time
for the structural causal equations are measured. The pur-
pose of task prediction is to evaluate if the model is accurate
enough to predict what an agent will do next, under the as-
sumption that if it is not, then the model will not be of use to
a human explainee.

We computationally simulate task prediction using Algo-
rithm 1. Here we instantiate all the equations (which are the
set of regression models L) with the values of the current
state S of the agent. We identify the equation that has max-
imum difference with the predicted state variable value and
the actual, then get the action associated with it. This is in-
formed by the reasoning that the agent will try to follow the
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Algorithm 1 Task Prediction:Action Influence Model

Input: trained regression models L, current state St

Output: predicted action a

1: �Fp ← [] ; vector of predicted difference

2: for every L̂ ∈ L do

3: Py ← L̂ · predict(Sx.t); predict variable Sy at St+1

4: �Fp ← |Sy − Py|; difference with actual Sy value
5: end for

6: return max
(
�Fp

)
· getAction()

Env - RL
Accuracy (%) Performance (s)

Size LR DT MLP LR DT MLP

Cartpole-PG 4/2 83.8 81.6 86.0 0.007 0.018 0.03
MountainCar-DQN 3/3 69.7 57.8 69.6 0.020 0.037 0.32
Taxi-SARSA 4/6 68.2 74.2 67.9 0.001 0.001 0.49
LunarLander-DDQN 8/4 68.4 63.7 72.1 0.002 0.002 0.33
BipedalWalker-PPO 14/4 56.9 56.4 56.7 0.010 0.015 0.41
Starcraft-A2C 9/4 94.7 91.8 91.4 0.144 0.025 3.33

Table 1: Action influence model evaluation in 6 benchmark
reinforcement learning domains (using different RL algo-
rithms, PG, DQN etc.), measuring mean task prediction ac-
curacy and training time of the structural causal equations in
100 episodes after training.

optimal policy, and the action with the biggest impact to cor-
rect the policy will be executed. The impact is measured by
the above mentioned difference. This is itself an approxima-
tion, but is a useful guide for task prediction.

We use linear SGD regression (LR), decision tree re-
gression (DT) and multilayer perceptron regression (MLP)
as the learners that approximate the structural equations.
We choose benchmark domains based on varying levels of
complexity, size (state features/number of actions) and train
them using various RL algorithms to demonstrate the robust-
ness of the model. Table 1 summarises the results of task
prediction and time taken to train the structural equations
given the replay data.

Overall, the results show the model did a reasonable job of
task prediction, providing evidence that this could be useful
for explanations. Domains that have a clear causal structure
(e.g Starcraft) performs best in task prediction. Considering
the performance cost it incurs, there was little gained by us-
ing MLP to approximate the equations, where in most cases
linear regression is adequate. Apart from the BipedalWalker
domain, our model performs well in task prediction with a
negligible performance hit. The bipedalWalker domain has
continuous actions, which our current model cannot handle
accurately. We plan to extend our model to continuous ac-
tions in future work.

Empirical Evaluation: Human Study

A human-grounded evaluation is essential to evaluate the ex-
plainability of a system, thus we carry out human-subject ex-
periments involving explaining RL agents. We present two
main hypotheses for the empirical evaluation; H1) Causal-

model-based explanations build better mental models of the
agent leading to a better understanding of its strategies (We
make the assumption here that there is no intermediate effect
on the mental model from other sources); and H2) Better
understanding of an agent’s strategies promotes trust in the
agent.

Methodology: We use StarCraft II, a real-time strategy
game and a popular RL environment (Vinyals et al. 2017)
as the domain. We implemented a RL agent for our experi-
ment that competes in the default map.

To evaluate hypothesis (H1), we use the method of task
prediction (Hoffman et al. 2018). Task prediction can pro-
vide a quick view of the explainee’s mental model formed
through explanations, where the task is for the participant to
predict ‘What will the agent do next?’. We use the 5-point
Likert Explanation Satisfaction Scale developed by Hoff-
man et al. (2018, p.39) to measure the subjective quality
of explanations. To evaluate hypothesis (H2), we use the 5-
point Likert Trust Scale of Hoffman et al. (2018, p.49). We
obtained ethics approval from The University of Melbourne
human research ethics committee (ID-1953619.1).

Experiment Design: We use a recording of a full game-
play video (22 min) with the RL agents playing against in-
game bot AI. The experiment has 4 phases.

Phase 1 involves collecting demographic information and
training the participants. Using five gameplay video clips,
the participant is trained to understand and differentiate the
actions of the agent.

In phase 2, a clip of the gameplay video (15 sec) is played
in a web-based UI, with a textual description of the scene.
The participant can select the question type (why/why not)
and the action, which together forms a question ‘Why/Why
not action A?’. Then, the textual explanation for the question
with a figure of the relevant sub-graph of the agent’s action
influence graph is displayed. Explanations are pre-generated
from our implemented algorithm. The participant can ask
multiple questions in a single gameplay video. After every
gameplay video, the participant completes the Explanation
Satisfaction Scale. This process is repeated so we have data
for each participant from five videos.

The third phase measures the understanding the explainee
has after seeing the gameplay and the explanations. We mea-
sure understanding using the task prediction method as fol-
lows: the participant is presented with another gameplay
video (10 sec), and presented with three selections of textual
descriptions of what action the agent will do in next step;
the participant selects an option, which includes ‘I don’t
know’. We expect the participant is projecting forward the
local strategy of the agent using their mental model. This
mental model is formed through (or helped by) explanations
seen in phase 1. This process is repeated for 8 tasks. In 4
of the task predictions, the behaviour is explainable using
a causal chain previously seen in the training, but with dif-
ferent variable values. In the other 4 tasks, the behaviour is
novel, but can be inferred by combining causal chains from
different training tasks. In the fourth phase, the participant
completes a 5-point Trust Scale.

We conducted the experiments on Amazon MTurk,

2497



0

5

10

15

N R D C

Explanation.model

S
c
o
re

Scoretype

F

N

T

Figure 2: Box plot of task prediction scores of explana-
tion models, T=total score, F=familiar score, N=novel score
(higher is better, means represented as bold dots).

a crowd-sourcing platform popular for obtaining data
for human-subject experiments (Buhrmester, Kwang, and
Gosling 2011). The experiment was fully implemented in an
interactive web-based environment. We excluded noisy data
of users in 3 ways. First, we tested participants to ensure
they had learnt about the agent’s actions by prompting them
to identify them. If the participant failed this, the experiment
did not proceed. Then, for participants who completed, we
omitted their data from analysis based on two criteria: 1) if
the threshold of the time the participant spent on viewing
explanations and answering tasks is below a few seconds,
which was deemed too short to learn anything useful; and 2)
if the participant’s textual responses to explain their task pre-
diction choice were gibberish text or a 1-2 word response, as
this indicated lack of engagement and care in the task. We
controlled for language by only recruiting participants from
the US.

Experiment Parameters: The experiment was run with 4
independent variables. We tested abstract (C) and detailed
(D) versions of our action influence models and 2 base-
line models described below: 1) Gameplay video without
any explanations (N); 2) Relevant variable explanations (R).
These explanations are generated using state relevant vari-
ables using template 1 of Khan, Poupart, and Black (2009,
p.3) and visualized through a state-action graph, e.g ‘Action
A is likely to increase relevant variable P’; 3) Detailed ac-
tion influence model explanations, where the causal graph is
augmented to include atomic actions.

We ran experiments for 120 participants, allocated evenly
to the independent variables. Each experiment ran for ap-
proximately 40 minutes. We scored each participant on task
prediction, 2 points for a correct prediction; 1 for responding
‘I don’t know’ and 0 for an incorrect prediction for a total of
16 points. Scores were tallied. We compensated each partic-
ipant with 8.5USD. Of the 120 participants, 36 were female,
82 male and 2 were not given. Participants were aged be-
tween 19 to 59 (µ = 34.2) and had an average self-rated
gaming experience and Starcraft II experience of 3.38 and
2.02 (5-point Likert) respectively.

Figure 3: Box plot of explanation quality (likert scale 1-5,
higher is better, means represented as dots).

Figure 4: Box plot of trust (likert scale 1-5, higher is better,
means represented as dots).

Results

Task Prediction: For the first hypothesis, the correspond-
ing null and alternative hypotheses are: 1) H0 : µC = µR =
µD = µN ; 2) H1 : µC ≥ µR; 3) H2 : µC ≥ µD; 4)
H3 : µC ≥ µN , where abstract causal explanations (our
model), detailed causal explanations, relevant variable ex-
planations, and no explanations are given by C, D, R, and N
respectively.

We conduct one-way ANOVA (Figure 2 illustrates the
task score variance with explanation models). We obtained
a p-value of 0.003 (µC = 10.90, µD = 10.20, µR = 8.97,
µN = 8.53), thus we conclude there are significant differ-
ences between models on task prediction scores. We per-
formed Tukey multiple pairwise-comparisons to obtain the
significance between groups. From Table 2, the differences
between the causal explanation model paired with other ex-
planation models are significant for C-R and C-N pairs with
p-values of 0.006 and 0.034. Additionally, we calculate the
effect of the number of questions on the score, and obtain
no statistical correlation using a correlation test (number of
questions vs score, p = 0.33, model C) among same mod-
els. Because participants could select “I don’t know” and
receive 8 out of 16, we also further analyse scores based on
2 = ‘correct’, 0 = ‘incorrect or ‘I don’t know’, and obtain
results that are still significant (p=0.004), means (C=10.90,
D=10.10, R=8.93, N=8.47), for model pairs (C-N p=0.005,
C-R p=0.035). We conducted Pearson’s Chi-Square as a
non-parametric test on the task prediction scores, which
showed significant results (p-value = 0.008, X-squared =
17.281).
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Model pair mean-diff lwr upr p-value

C - N 2.400 0.534 4.265 0.006
C - R 1.966 0.101 3.832 0.034
D - N 1.666 -0.198 3.532 0.097
D - R 1.233 -0.632 3.098 0.316
C - D 0.733 -1.132 2.598 0.735
R - N 0.433 -1.432 2.298 0.930

Table 2: Pairwise-comparisons of explanation models of task
prediction scores (higher positive diff is better)

Metric Mdl-pair Mean-dif Median-dif p-val

Complete
C-N 0.707 0.700 0.061
C-R 0.873 1.000 0.012

Sufficient
C-N 0.746 0.700 0.039
C-R 1.013 1.000 0.002

Satisfying
C-N 0.633 0.800 0.082
C-R 0.740 0.700 0.029

Understand
C-N 0.326 0.400 0.497
C-R 0.400 0.400 0.316

Table 3: Explanation quality (likert scale data 1-5)

Therefore we reject H0 and H2 and accept all other al-
ternative hypotheses. Our results show that causal model ex-
planations lead to a significantly better understanding of
agent’s strategies than the 2 baselines we evaluated, espe-
cially against previous models of relevant explanations. Par-
ticipants did slightly worse on tasks with novel behaviour.

Explanation Quality: Figure 3 depicts the likert scale
data of explanation metrics (understand, satisfying, suffi-
cient detail and complete) for aggregated video explanations
of explanation models. As before we performed a pair-wise
ANOVA test, results are summarised in Table 3. Our model
obtained statistically significant results and outperformed
the benchmark ‘relevant explanation’ (R) for all metrics ex-
cept ‘Understand’.

Trust: For the second main hypothesis (H2) that inves-
tigate whether explanation models promote trust, the ob-
tained p-values for trust metrics confident, predictable, re-
liable and safe were not statistically significant (using pair-
wise ANOVA). Although the difference is not significant we
can see causal models have high means and medians (see
Figure 4). We conclude that while the explanation quality
and scores are significantly better for our model, to pro-
mote trust further interaction is necessary; or perhaps our
RL agent is simply not a trustworthy Starcraft II player.

We further analysed self-reported demographic data to see
if there is a correlation between task prediction scores and
self-reported Starcraft II experience level (5-point Likert).
Pearson’s correlation test was not significant (p=0.45) thus
we conclude there is no correlation between scores and ex-
perience level. This can possibly be attributed to our Star-
craft II scenario differing from the standard game.

A limitation of our experiment is that we made a strong
linearity assumption for Starcraft II, which enabled linear

regression to learn SCMs for a relatively small number (9)
of state variables.

Conclusion

In this paper, we introduced action influence models for
model-free reinforcement learning agents. Our approach
learns a structural causal model (SCM) during reinforce-
ment learning and has the ability to generate explanations
for why and why not questions by counterfactual analysis of
the learned SCM. We computationally evaluated our model
in 6 benchmark RL domains on task prediction. We then
conducted a human study (n=120) to evaluate our model on
1) task prediction, 2) explanation ‘goodness’ and 3) trust.
Results show that our model performs significantly better in
the first 2 evaluation criteria. One weakness of our approach
is that the causal model must be given beforehand. Future
work includes using epistemic knowledge of the explainee
to provide explanations that are more targeted, and extend-
ing the model to continuous domains.
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