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Explaining among‑country 
variation in COVID‑19 case fatality 
rate
Gabriele Sorci1*, Bruno Faivre1 & Serge Morand2,3

While the epidemic of SARS‑CoV‑2 has spread worldwide, there is much concern over the mortality 
rate that the infection induces. Available data suggest that COVID‑19 case fatality rate had varied 
temporally (as the epidemic has progressed) and spatially (among countries). Here, we attempted to 
identify key factors possibly explaining the variability in case fatality rate across countries. We used 
data on the temporal trajectory of case fatality rate provided by the European Center for Disease 
Prevention and Control, and country‑specific data on different metrics describing the incidence of 
known comorbidity factors associated with an increased risk of COVID‑19 mortality at the individual 
level. We also compiled data on demography, economy and political regimes for each country. We 
found that temporal trajectories of case fatality rate greatly vary among countries. We found several 
factors associated with temporal changes in case fatality rate both among variables describing 
comorbidity risk and demographic, economic and political variables. In particular, countries with the 
highest values of DALYs lost to cardiovascular, cancer and chronic respiratory diseases had the highest 
values of COVID‑19 CFR. CFR was also positively associated with the death rate due to smoking in 
people over 70 years. Interestingly, CFR was negatively associated with share of death due to lower 
respiratory infections. Among the demographic, economic and political variables, CFR was positively 
associated with share of the population over 70, GDP per capita, and level of democracy, while it was 
negatively associated with number of hospital beds ×1000. Overall, these results emphasize the role 
of comorbidity and socio‑economic factors as possible drivers of COVID‑19 case fatality rate at the 
population level.

At the end of 2019, a novel coronavirus (SARS-CoV-2) emerged from an animal reservoir in the city of Wuhan, 
 China1,2. Having established a human-to-human transmission, the virus rapidly spread, �rst within China, and 
subsequently outside China, worldwide. On 11th March 2020 the WHO declared SARS-CoV-2 as a  pandemic3. 
�e coronavirus disease 2019 (COVID-19) produces a series of respiratory symptoms that vary in  severity4–10. 
Although in most people the infection produces an asymptomatic disease or mild symptoms that do not require 
particular medical care, in a fraction of patients the disease develops into severe respiratory distress, due to an 
overreacting in�ammatory response, requiring hospitalization in intensive care units. In the absence of speci�c 
treatments that prevent or block viral replication, a serious matter of concern is the proportion of infected 
patients that will eventually die. Current data indicate that, worldwide, case fatality rate (CFR, the ratio between 
number of deaths and number of con�rmed cases) might be around 4%. However, at the country level, CFR 
ranges from 0 to more than 20%. �ere are many possible reasons for such a  variation11. First, the epidemic has 
spread in some countries earlier than in others and therefore the di�erence in CFR might re�ect di�erent stages 
during the spread of the disease. According to this hypothesis, one might expect an increase in CFR with time 
in countries where CFR is currently low. Second, at the individual level, clinical data have reported several risk 
factors associated with a poor prognosis. Age and comorbidities (cardiovascular diseases, cancers, diabetes mel-
litus, chronic lung diseases) seem to greatly increase the mortality  risk12–15. �erefore, countries with a greater 
share of elderly in the population, or with higher incidence of recognized comorbidity factors might pay the 
highest toll to the infection. �ird, as said before, in the absence of e�ective treatments, patients that develop 
severe symptoms require hospitalization in intensive care units for respiratory assistance. A major concern is 
that, as the number of infected people increases, the healthcare system will be  overwhelmed16. Under this sce-
nario, mortality rate might re�ect the country-speci�c capacity to tackle a large number of patients requiring 
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respiratory assistance and intensive care. Finally, given that CFR is de�ned as the ratio between number of 
deaths and number of con�rmed cases, countries might simply di�er in the accuracy with which they detect 
the infection. Indeed, CFR estimates are prone to error if the actual number of infected people is much higher 
that the number of PCR con�rmed cases (producing an overestimated CFR), or if mortality occurs with a delay 
(producing an underestimated CFR). �erefore, variation in CRF might re�ect among country variation (i) in 
population screening (i.e., the number of tests performed), which a�ects the denominator of the ratio between 
number of deaths and number of con�rmed cases, (ii) in counting and communicating the actual number of 
patients that have succumbed from SARS-CoV-2 infection.

Here, we conducted an analysis of the factors that might account for the variability of COVID-19 CFR 
among countries. Using data updated to June 11th 2020, we �rst investigated if CFR signi�cantly varies between 
countries, independently from (i) the stage of the epidemic wave, (ii) the testing strategy, and (iii) the social 
distancing policies adopted by each country. Second, we used country-speci�c variables assessing the occurrence 
of comorbidities, as well as demographic, economic and political variables to uncover any association pattern 
with COVID-19 CFR.

Methods
We used data on daily number of con�rmed cases and deaths for each country reported by the European Center 
for Disease Prevention and Control (ECDC). We computed the case fatality rate as the ratio between deaths 
and con�rmed cases. We restricted the dataset to countries with at least 100 con�rmed cases to avoid spurious 
results due to small numbers. For each country, we also counted the number of days between the 100th case 
and 11th June 2020, and the number of days from the occurrence of at least one death ×1,000,000, indicating 
the progression of the epidemic.

We used the online resource https ://ourwo rldin data.org/ to retrieve data on the incidence of known comor-
bidity factors for each country, as well as information on demographics, economics and political regimes. In 
particular, we used di�erent metrics to describe comorbidities: (1) disability-adjusted life years (DALYs); (2) share 
of total disease burden; (3) age-standardized death rates per 100,000; (4) share of deaths. We focused on known 
comorbidities such as cardiovascular diseases, cancers, chronic respiratory diseases, diabetes mellitus, chronic 
kidney diseases. We also included metrics related to factors that might impinge on the severity of respiratory 
syndromes, such as smoking and air pollution. We also used https ://ourwo rldin data.org/ to retrieve information 
on demographic, economic and political indicators. Table S1, in the supplementary information, reports the list, 
description and source of the variables used here, according to the GATHER  statement17.

Statistical analyses. We �rst aimed at exploring whether CFR varied among countries while controlling 
for the di�erences in the epidemic progression. To this purpose, we run a linear mixed model (LMM) where 
CFR was the dependent variable, time since 100th case (in days) and squared time since 100th case (as to model 
non-linear variation), country and the two-way interactions were the �xed factors. Country was also included as 
a random e�ect. For computational reasons, in this model the covariance structure of the R matrix was modeled 
using variance components, and degrees of freedom were computed using the between-within method. Only 
countries for which at least 10 days had elapsed between the record of the 100th case and 11th June 2020, and 
for which number of deaths was higher than 1 per 1,000,000 inhabitants were included in this model, to allow a 
better estimate of the variation between CFR and time. �is model included 143 countries and 8441 daily values 
of CFR. In a second model, we also included the number of tests performed ×1000 as to control for di�erences in 
testing strategies among countries, and a stringency index describing the severity of the social distancing rules 
adopted by each country. �is reduced the number of countries included in the model to 72 and the number of 
total observations to 3778.

To assess the pattern of association between country-speci�c CFR and comorbidities, we ran four LMMs 
that included di�erent metrics as �xed factors. �e �rst model included DALYs lost to cardiovascular, cancer 
and chronic respiratory diseases (due to the strong correlations among variables, we summed the three DALYs 
and used the sum in the model), and DALYs lost ×100,000 for people older than 70 years. �e second model 
included share of disease burden (due to cardiovascular, cancer and chronic respiratory diseases). �e third 
model included age-standardized death rates (due to cardiovascular diseases, cancer, air pollution, ambient par-
ticulate matter pollution, and smoking for people older than 70 years). �e last model included share of deaths 
(due to cardiovascular, cancer, chronic respiratory, kidney diseases, lower respiratory infections, diabetes mellitus, 
outdoor air pollution). �e four models always included a set of covariates that described demographic, economic 
and political variables, namely population size, share of the population over 70 years, gross domestic product 
(GDP) per capita, total health care expenditure as share of GDP, number of hospital beds (×1000 inhabitants), 
political regime, stringency index, and the number of tests performed ×1000. Political regime is scored accord-
ing to the level of democracy, between − 10 (full autocracy) to + 10 (full democracy) (Polity IV as reported in 
https ://ourwo rldin data.org/). �e stringency index describes the severity of the policies implemented by each 
country to limit the spread of the virus, according to the following categories: school closure, workplace closure, 
public events cancelled, restrictions on gatherings, public transport closure, public information campaigns, stay 
at home, restriction on internal movements, international travel controls, testing policy, contact tracing. Finally, 
all models also included time since 1 death ×1,000,000 was reached (in days), and squared time as to take into 
account the progression of the epidemic in each country. In each model, we tested the interaction between the dif-
ferent comorbidity, demographic, economic factors and time. �is allowed us to ascertain whether the temporal 
changes in CFR di�ered as a function of country-speci�c comorbidity, demographic, and socio-economic factors. 
All variables were standardized with mean = 0 and standard deviation = 1 to make parameter estimates directly 
comparable (variables with asymmetrical distribution were previously log-transformed to reduce skewness). To 

https://ourworldindata.org/
https://ourworldindata.org/
https://ourworldindata.org/


3

Vol.:(0123456789)

Scientific Reports |        (2020) 10:18909  | https://doi.org/10.1038/s41598-020-75848-2

www.nature.com/scientificreports/

take into account the covariation between observations at di�erent geographical scale, the LMMs also included 
three nested e�ects as random variables: continent, geographic  region18 nested within continent, country nested 
within geographic region nested within continent. �e covariance structure of the R matrix was modeled using 
a �rst-order autoregressive structure to model the temporal autocorrelation between daily CFR values. Degrees 
of freedom were computed using the Satterthwaite approximation. In order to minimize the risk of false discov-
ery rate, we set the value of α to 0.01. �erefore, only p values lower than 0.01 were considered as indicative of 
statistically signi�cant associations.

All the analyses were conducted with SAS 14.3 (PROC MIXED).

Results
We found strong evidence for among-country di�erences in COVID-19 CFR. �e LMM showed a highly signi�-
cant interaction between time since the 100th case and country, indicating that CFR trajectories (both linear and 
quadratic components), did di�er among countries as the epidemic progressed (Table 1, Fig. 1). CFR is de�ned 
as the ratio between number of deaths and number of con�rmed cases. Since many cases of asymptomatic infec-
tion (or infections with mild symptoms) might get unnoticed, CFR is certainly an overestimate of the actual risk 
of dying when infected with SARS-Cov-2. In the light of this argument, a strategy of massive screening of the 
population (not only patients who are admitted to the hospitals, but also those with no or mild symptoms) might 
provide a more realistic estimate of the denominator of the CFR. Although the number of tests performed over 
the course of the epidemic is available for a smaller number of countries, it nevertheless varies tremendously 
among them, indicating di�erent screening strategies adopted by each country. Focusing, for instance, on day 80 
since the 100th case, and including only countries with more than 1 death per 1,000,000 inhabitants (n = 50 coun-
tries), number of tests performed per 1000 inhabitants varied from 0.9 (Indonesia) to 179 (Iceland). Interestingly, 

Table 1.  Linear mixed model exploring variation of COVID-19 case fatality rate (CFR) as a function of 
time since the 100th case for each country. �e model also included squared time since 100th case and the 
interactions between country and time. Country was also declared as a random e�ect in the model. �e model 
was restricted to countries that had 10 or more days elapsed between the occurrence of the 100th case and 11th 
June 2020 and for which number of deaths was higher than 1 per 1,000,000 inhabitants. �e analysis is based 
on 143 countries and 8441 observations. Signi�cant p-values are in bold.

Fixed e�ects F df p

Country 2484.95 142, 8012  < 0.0001

Time since 100th case (days) 0.10 1, 8012 0.7518

Squared time since 100th case 0.01 1, 8012 0.9293

Country × time since 100th case 193.48 142, 8012  < 0.0001

Country × squared time since 100th case 109.93 142, 8012  < 0.0001

Figure 1.  Time-dependent variation in COVID-19 case fatality rate (CFR) among countries. Time refers to the 
period between 30 and 90 days post 100th case. For illustrative reasons, only 20 countries are reported here.
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however, countries that better screened their population did not always su�er from the lowest CFR. At day 80 
since the 100th case, there was no correlation between number of tests per 1000 inhabitants and CFR (Pearson’s 
r = − 0.101, p = 0.4873, n = 50). Using the whole dataset, and including the number of tests ×1000, showed that 
the relationship between CFR and number of tests was country speci�c, with some countries where screening 
resulted in a decline in CFR, whereas in other the relationship was positive (interaction between country and 
number of tests ×1000:  F71,3782 = 23.17, p < 0.0001; Fig. 2). Importantly, the interaction between time and coun-
try remained highly signi�cant even when adding both the number of tests ×1000 and the stringency index in 
the model (time × country:  F69,3429 = 43.50, p < 0.0001; squared time × country:  F69,3429 = 45.88, p < 0.0001). �is 
result, therefore, suggests that variation in CFR among countries does not merely depend on the screening e�ort 
provided by each country, nor on the severity of social distancing and isolation rules.

In order to uncover the factors that might account for such among-country variation in CFR, we ran four 
LMMs that included di�erent �xed factors related to comorbidities, demographic, economic and political vari-
ables. �ese models provided evidence for several associations between country-speci�c risk factors and the 
temporal dynamics of CFR (Table 2). In particular, countries with high values of DALYs lost to cardiovascular, 
cancer and chronic respiratory diseases had high CFR (model 1, Table 2, Fig. 3A). Countries with high share of 
disease burden due to chronic respiratory diseases had high CFR (model 2, Table 2). Countries with the lowest 
death rate due to cardiovascular diseases had the lowest CFR and countries with the highest death rate due to 
smoking in people over 70 year-old had the highest CFR (model 3, Table 2, Fig. 3B). Finally, model 4 showed 
that CFR was positively associated with high share of death due to chronic respiratory, cardiovascular, kidney 
diseases and outdoor air pollution (Table 2, Fig. 3C). Interestingly, this model also showed a negative correlation 
between CFR and share of death due to lower respiratory infections (Table 2, Fig. 3D).

Among the demographic, economic and political variables, the four models consistently provided evidence 
for positive associations between the temporal dynamic of CFR and population size, GDP per capita, total health 
expenditure as share of GDP, share of the population over 70 years, stringency index (Table 3, Fig. 4A–C). As 
mentioned above, number of tests performed ×1000 showed a more complex pattern of association with CFR 
(Table 3, Fig. 4D). Two models (out of four) provided evidence for a negative association between number of 
hospital beds ×1000 and CFR (Table 3, Fig. 4E), while only one model showed a positive association between 
CFR and political regime, with democracies having the highest CFR (Table 3, Fig. 4F).

Discussion
As the SARS-CoV-2 epidemic continues to spread worldwide, the mortality induced by the disease has been a 
serious matter of concern, with some countries paying a high toll to the infection. In this light, it is important 
to understand why some countries seem to experience lower mortality rate than others and possibly to uncover 
the associated factors. Here, we showed that CFR greatly di�ers among countries (even a�er controlling for the 
number of tests and the severity of social distancing rules), and several comorbidity (DALYs lost to cardiovas-
cular, cancer and chronic respiratory diseases; death rate due to smoking in people older than 70; share of deaths 
due to cardiovascular, chronic respiratory, kidney diseases), and socio-economic factors (population size, GDP 

Figure 2.  Changes in COVID-19 CFR as a function of the number of tests performed (×1000). For illustrative 
reasons, we report some representative countries showing how the relationship between CFR and number of 
tests can vary from negative to positive.
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Fixed e�ects Estimate SE t p 95% CI

Model 1 (DALYs)

Intercept 1.243 2.000

Time  − 1.607 0.257  − 6.26  < 0.0001  − 2.110/ − 1.104

Time2 1.267 0.261 4.85  < 0.0001 0.754/1.779

DALYs lost to cardiovascular, cancer and chronic respiratory diseases  − 0.569 5.381  − 0.11 0.9161  − 11.344/10.206

DALYs lost ×100,000 for people older than 70 year-old 0.161 0.943 0.17 0.8647  − 1.728/2.051

Time × DALYs lost to cardiovascular, cancer and chronic respiratory diseases 1.691 0.876 1.93 0.0537  − 0.027/3.408

Time × DALYs lost ×100,000 for people older than 70 year-old 0.164 0.190 0.87 0.3866  − 0.208/0.537

Time2 × DALYs lost to cardiovascular, cancer and chronic respiratory 
diseases

 − 3.022 1.002  − 3.02 0.0026  − 4.986/ − 1.058

Time2 × DALYs lost ×100,000 for people older than 70 year-old 0.169 0.228 0.74 0.4604  − 0.279/0.617

Covariance parameters Estimate SE z p

Variance 7.212 1.363 5.29  < 0.0001

First-order autoregression  − 0.107 0.146  − 0.73 0.4633

Residual 0.756 0.018 41.86  < 0.0001

Model 2 (share of disease burden)

Intercept 1.498 1.417

Time  − 2.014 0.159  − 12.71  < 0.0001  − 2.324/ − 1.703

Time2 1.861 0.142 13.07  < 0.0001 1.582/2.141

Cardiovascular 0.080 0.836 0.10 0.9242  − 1.597/1.757

Cancer 2.209 1.327 1.66 0.1017 0.451/4.869

Chronic respiratory 0.314 0.602 0.52 0.6037  − 0.892/1.520

Time × cardiovascular  − 0.158 0.100  − 1.58 0.1151  − 0.354/0.039

Time × cancer 0.457 0.197 2.33 0.0201 0.072/0.843

Time × chronic respiratory 0.311 0.093 3.35 0.0008 0.129/0.493

Time2 × cardiovascular 0.183 0.110 1.67 0.0960  − 0.032/0.398

Time2 × cancer 0.048 0.215 0.22 0.8234  − 0.374/0.470

Time2 × chronic respiratory  − 0.630 0.098  − 6.43  < 0.0001  − 0.822/ − 0.438

Covariance parameters Estimate SE z p

Variance 6.978 1.330 5.25  < 0.0001

First-order autoregression  − 0.104 0.148  − 0.70 0.4835

Residual 0.738 0.018 41.84  < 0.0001

Model 3 (age-standardized death rate)

Intercept 1.192 1.250

Time  − 1.561 0.171  − 9.13  < 0.0001  − 1.896/ − 1.226

Time2 1.665 0.158 10.57  < 0.0001 1.356/1.974

Cardiovascular  − 0.941 0.784  − 1.20 0.2357  − 2.513/0.632

Cancer 0.441 0.616 0.72 0.4775  − 0.796/1.677

Air pollution  − 0.866 1.842  − 0.47 0.6402  − 4.559/2.827

Ambient particulate matter pollution 0.178 1.252 0.14 0.8877  − 2.333/2.689

Smoking in people older than 70 years 1.446 0.616 2.35 0.0226 0.211/2.681

Time × cardiovascular  − 0.349 0.108  − 3.24 0.0012  − 0.560/ − 0.138

Time × cancer 0.120 0.099 1.22 0.2244  − 0.074/0.315

Time × air pollution 0.611 0.363 1.69 0.0920  − 0.100/1.323

Time × ambient particulate matter pollution 0.089 0.253 0.35 0.7252  − 0.407/0.585

Time × smoking in people older than 70 years 0.730 0.115 6.35  < 0.0001 0.505/0.955

Time2 × cardiovascular 0.206 0.116 1.77 0.0769  − 0.022/0.434

Time2 × cancer 0.055 0.114 0.48 0.6299  − 0.169/0.279

Time2 × air pollution  − 0.285 0.439  − 0.65 0.5164  − 1.145/0.575

Time2 × ambient particulate matter pollution  − 0.125 0.316  − 0.40 0.6915  − 0.744/0.494

Time2 × smoking in people older than 70 years  − 0.860 0.127  − 6.77  < 0.0001  − 1.110/ − 0.611

Covariance parameters Estimate SE z p

Variance 6.181 1.197 5.16  < 0.0001

First-order autoregression  − 0.198 0.150  − 1.32 0.1877

Residual 0.732 0.018 41.82  < 0.0001

Model 4 (share of death)

Intercept 1.533 1.314

Continued
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per capita, share of the population over 70, number of hospital beds ×1000, political regime) were positively 
associated with COVID-19 CFR.

Assessing case fatality rate during an ongoing outbreak is particularly di�cult for, at least two  reasons11,19. 
CFR at a given time might be an underestimate of the �nal mortality rate because cumulative number of deaths 
will eventually keep increasing as some patients are still hosted in intensive care units (i.e., right censoring). 
Conversely, CFR might overestimate actual mortality if a large fraction of infected people do not develop disease 
symptoms (or develop mild symptoms), get unnoticed and are not included into the population of con�rmed 
cases. Several countries have implemented a strategy of massive screening, aiming at identifying positives and 
isolating them, as to avoid further spreading of the disease. Data on the number of tests performed per 1000 
people, therefore, allow investigating whether countries with a massive screening policy were also those with 
the lowest CFR. �e results showed no simple association between CFR and testing, with countries showing 
the expected negative relationship, while others showing a positive correlation. �is suggests that di�erences in 
population screening are not enough to explain the tremendous variation in CFR among countries. As mentioned 
above, the other possible bias when computing CFR is that some of the patients who are still in intensive care 
units may eventually die, and therefore if the total number of con�rmed cases remains unchanged, CFR might 

Fixed e�ects Estimate SE t p 95% CI

Time  − 1.994 0.168  − 11.88  < 0.0001  − 2.324/ − 1.665

Time2 2.017 0.153 13.22  < 0.0001 1.718/2.316

Cardiovascular 0.499 1.078 0.46 0.6456  − 1.667/2.664

Cancer 1.366 1.139 1.20 0.2357  − 0.920/3.652

Chronic respiratory 0.348 0.648 0.54 0.5937  − 0.953/1.648

Lower respiratory infections  − 0.085 0.596  − 0.14 0.8869  − 1.285/1.115

Kidney 0.263 0.723 0.36 0.7182  − 1.190/1.715

Diabetes mellitus 1.169 0.648 1.80 0.0771  − 0.132/2.469

Outdoor air pollution  − 0.236 0.765  − 0.31 0.7589  − 1.771/1.299

Time × cardiovascular  − 0.847 0.157  − 5.41  < 0.0001  − 1.153/ − 0.540

Time × cancer  − 0.402 0.171  − 2.34 0.0192  − 0.738/ − 0.065

Time × chronic respiratory 0.720 0.106 6.81  < 0.0001 0.512/0.927

Time × lower respiratory infections  − 0.601 0.101  − 5.94  < 0.0001  − 0.800/ − 0.403

Time × kidney  − 0.403 0.100  − 4.04  < 0.0001  − 0.599/ − 0.208

Time × diabetes mellitus  − 0.098 0.118  − 0.83 0.4066  − 0.330/0.134

Time × outdoor air pollution 0.374 0.111 3.35 0.0008 0.155/0.592

Time2 × cardiovascular 0.241 0.183 1.32 0.1870  − 0.117/0.600

Time2 × cancer 0.294 0.197 1.49 0.1355  − 0.092/0.679

Time2 × chronic respiratory  − 0.919 0.121  − 7.59  < 0.0001  − 1.156/ − 0.681

Time2 × lower respiratory infections 0.332 0.117 2.84 0.0045 0.103/0.561

Time2 × kidney 0.333 0.113 2.96 0.0031 0.112/0.554

Time2 × diabetes mellitus  − 0.068 0.134  − 0.50 0.6137  − 0.331/0.195

Time2 × outdoor air pollution  − 0.221 0.132  − 1.68 0.0937  − 0.479/0.037

Covariance parameters Estimate SE z p

Variance 6.878 1.358 5.07  < 0.0001

First-order autoregression  − 0.206 0.145  − 1.43 0.1535

Residual 0.711 0.017 41.80  < 0.0001

Table 2.  Linear mixed models investigating the association between COVID-19 case fatality rate (CFR) and 
several descriptors of comorbidities, demographics, economics and political regime for each country. Each 
model included the same demographic, economic and political regime variables (GDP per capita, population 
size, total health care expenditure as share of GDP, number of hospital beds ×1000 inhabitants, share of 
the population over 70 years, political regime, stringency index and number of tests performed ×1000). In 
addition, model 1 included DALYs lost to cardiovascular, cancer and chronic respiratory diseases, and DALYs 
lost ×100,000 for people older than 70 years. Model 2 included share of disease burden (cardiovascular, 
cancer and chronic respiratory diseases). Model 3 included age-standardized death rates ×100,000 due 
to cardiovascular diseases, cancer, air pollution, ambient particulate air pollution, and smoking over 
70 years. Model 4 included share of deaths for cardiovascular diseases, cancer, chronic respiratory diseases, 
lower respiratory diseases, diabetes, and outdoor air pollution. All models included time since number 
of deaths ×1,000,000 higher than 1 and squared time. �ree nested factors were also included as random 
factors (continent, region within continent and country within region within continent).�e table reports 
parameter estimates (with SE and 95% CI), t and p values (in bold signi�cant p-values at the 0.01 threshold) 
for the comorbidity factors. Sample size is �ve continents, 17 geographical regions, 67 countries and 3596 
observations.
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still increase. However, visual inspection of the temporal trajectories of CFR shows that values have reached 
an asymptote for the vast majority of countries (Fig. 1). �is suggests that, unless a second wave hits in the fol-
lowing weeks/months, we should not expect CFR to substantially vary as a consequence of residual mortality.

Despite the uncertainty associated with the estimation of CFR, its comparison between countries can provide 
useful insights into the heterogeneity in the burden paid to the disease. We showed that the trajectories of time 
dependent variation in CFR greatly di�ered among countries, while controlling for di�erences in testing strate-
gies and stringency index. �is quantitatively corroborates and statistically validates the intuition that some 
countries better dealt with the disease than others. �e following step was to try to understand whether such 
heterogeneity arises as the consequence of predictable factors. Previous reports on the clinical outcome of the 
disease have identi�ed two major factors associated with poor prognosis: age and the presence of comorbidities. 
Elderly people have been shown to su�er the highest mortality rate following infection with SARS-CoV-211,19. 
Similarly, previous history of cardiovascular disorders, cancer and diabetes have been reported to substantially 
increase COVID-19 mortality  risk20,21. We therefore predicted that countries with a higher share of elderly people 
and a higher incidence of known comorbidity factors might su�er from the highest CFR.

Our integrated modelling approach provided some evidence in support to these predictions. In particular, 
several metrics of comorbidity factors were positively associated with the temporal dynamics of CFR (DALYs 
lost to cardiovascular, cancer and chronic respiratory diseases; share of burden due to chronic respiratory dis-
eases; death rate due to cardiovascular diseases; death rate due to smoking in people older than 70; share of 
death due to chronic respiratory and kidney diseases). Interestingly, our model also showed that share of death 
due to lower respiratory infections was negatively associated with COVID-19 CFR. �is negative association is 

Figure 3.  Time-dependent variation in COVID-19 case fatality rate (CFR) according to comorbidity factors. 
Time refers to the number of days between the date of occurrence of 1 death ×1,000,000 and June 11th 2020. (A) 
DALYs lost to cardiovascular, cancer and chronic respiratory diseases; (B) death rate (×100,000) due to smoking 
in people over 70 years; (C) share of death due to chronic respiratory diseases; (D) share of death due to lower 
respiratory infections. �e surfaces were generated using a smoothed spline interpolation on the predicted 
values of the LMMs described in the text. Darker colors indicated higher values of CFR. X- and Y-axis are 
standardized values, allowing to have similarly scaled axis.
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intriguing, especially in the light of recent reports of possible cross-immunity that might confer partial protec-
tion to SARS-CoV-222.

All the above-mentioned associations between comorbidities and CFR hold while controlling for several 
potential confounding factors describing the socio-economic context of di�erent countries. As such, positive 
associations between comorbidities and CFR at the country level, do not merely re�ect di�erences in the struc-
ture of the age-pyramid, or the amount of resources allocated to the health care system. Actually, focusing on 
such demographic and socio-economic factors allowed us to identify several other variables that contributed to 
explain among-country variation in CFR. As predicted, countries with the highest share of elderly people (over 
70) also had the highest CFR.

Economic parameters might equally well contribute to shape COVID-19 mortality. As the number of severe 
cases increases during the epidemic, the health care system can get overwhelmed and might be unable to receive 
and treat all those who need intensive care. Mortality might therefore results from health care systems that are 
inadequate to deal with large number of cases requiring simultaneous admittance in intensive care units. We used 
several proxies describing the investment of each country into the health care system and found a negative asso-
ciation between the number of hospital beds per 1000 inhabitants and CFR. However, seemingly in contradiction 

Model 1 Model 2 Model 3 Model 4

Estimate (SE) p Estimate (SE) p Estimate (SE) p Estimate (SE) p

GDP per capita 0.427 (0.994) 0.6689  − 0.525 (1.003) 0.6028  − 0.090 (1.114) 0.9361  − 0.712 (1.050) 0.5010

Population size 3.308 (6.469) 0.6110 2.840 (0.807) 0.0009 2.815 (0.726) 0.0003 3.039 (0.894) 0.0013

Total health care expenditure as share 
of GDP

0.155 (0.602) 0.7977 0.089 (0.592) 0.8809  − 0.201 (0.609) 0.7432  − 0.138 (0.605) 0.8203

Number of hospital beds ×1000  − 1.592 (0.913) 0.0867  − 1.525 (0.942) 0.1111  − 1.712 (0.821) 0.0417  − 0.978 (0.924) 0.2950

Share of the population over 70 years 1.709 (1.274) 0.1852 0.421 (1.208) 0.7287 1.330 (1.008) 0.1929 1.465 (1.113) 0.1938

Political regime  − 0.183 (0.599) 0.761  − 0.952 (0.699) 0.1786  − 1.069 (0.735) 0.1518  − 0.989 (0.778) 0.2091

Stringency index 0.137 (0.047) 0.0033 0.127 (0.046) 0.0057 0.143 (0.046) 0.0019 0.111 (0.045) 0.0145

Number of tests performed ×1000 0.894 (0.119)  < 0.0001 1.001 (0.116)  < 0.0001 0.628 (0.123)  < 0.0001 0.948 (0.118)  < 0.0001

Time × GDP per capita 2.768 (0.168)  < 0.0001 1.874 (0.174)  < 0.0001 2.518 (0.200)  < 0.0001 2.111 (0.178)  < 0.0001

Time × population size  − 0.969 (1.046) 0.3541 1.030 (0.120)  < 0.0001 0.851 (0.121)  < 0.0001 0.466 (0.132) 0.0004

Time × total health care expenditure as 
share of GDP

0.658 (0.101)  < 0.0001 0.322 (0.097) 0.0009 0.753 (0.112)  < 0.0001 0.331 (0.098) 0.0007

Time × number of hospital beds ×1000  − 0.268 (0.101) 0.0082  − 0.148 (0.099) 0.1351  − 0.252 (0.090) 0.0054 0.265 (0.105) 0.0116

Time × share of the population over 
70 years

0.451 (0.173) 0.0091 0.706 (0.162)  < 0.0001 0.888 (0.125)  < 0.0001 0.959 (0.143)  < 0.0001

Time × political regime 0.164 (0.102) 0.1072  − 0.117 (0.110) 0.2904 0.009 (0.133) 0.9487 0.214 (0.129) 0.0990

Time × stringency index 0.188 (0.073) 0.0106 0.107 (0.073) 0.1420 0.189 (0.075) 0.0115 0.342 (0.075)  < 0.0001

Time × number of tests performed ×1000  − 1.016 (0.096)  < 0.0001  − 1.038 (0.094)  < 0.0001  − 0.954 (0.097)  < 0.0001  − 1.106 (0.097)  < 0.0001

Time2 × GDP per capita  − 2.090 (0.190)  < 0.0001  − 1.135 (0.201)  < 0.0001  − 1.804 (0.229)  < 0.0001  − 1.589 (0.209)  < 0.0001

Time2 × population size 2.397 (1.198) 0.0454  − 1.131 (0.125)  < 0.0001  − 0.985 (0.129)  < 0.0001  − 0.0646 (0.136)  < 0.0001

Time2 × total health care expenditure as 
share of GDP

 − 0.258 (0.105) 0.0146 0.079 (0.102) 0.4352  − 0.341 (0.116) 0.0033  − 0.037 (0.104) 0.7207

Time2 × number of hospital beds ×1000 0.398 (0.101)  < 0.0001 0.190 (0.096) 0.0479 0.273 (0.092) 0.0030  − 0.212 (0.109) 0.0513

Time2 × share of the population over 
70 years

0.382 (0.188) 0.0429  − 0.368 (0.182) 0.0432  − 0.193 (0.131) 0.1399  − 0.300 (0.157) 0.0557

Time2 × political regime  − 0.328 (0.108) 0.0024  − 0.157 (0.117) 0.1787  − 0.264 (0.151) 0.0809  − 0.256 (0.151) 0.0901

Time2 × stringency index  − 0.026 (0.075) 0.7331 0.109 (0.075) 0.1481  − 0.040 (0.077) 0.6042  − 0.120 (0.077) 0.1233

Time2 × number of tests performed ×1000 0.340 (0.110) 0.0020 0.386 (0.108) 0.0004 0.342 (0.112) 0.0023 0.487 (0.114)  < 0.0001

Table 3.  Linear mixed models investigating the association between COVID-19 case fatality rate (CFR) and 
several descriptors of comorbidities, demographics, economics and political regime for each country. Each 
model included the same demographic, economic and political regime variables (GDP per capita, population 
size, total health care expenditure as share of GDP, number of hospital beds ×1000 inhabitants, share of 
the population over 70 years, political regime, stringency index and number of tests performed ×1000). In 
addition, model 1 included DALYs lost to cardiovascular, cancer and chronic respiratory diseases, and DALYs 
lost ×100,000 for people older than 70 years. Model 2 included share of disease burden (cardiovascular, 
cancer and chronic respiratory diseases). Model 3 included age-standardized death rates ×100,000 due 
to cardiovascular diseases, cancer, air pollution, ambient particulate air pollution, and smoking over 
70 years. Model 4 included share of deaths for cardiovascular diseases, cancer, chronic respiratory diseases, 
lower respiratory diseases, diabetes, and outdoor air pollution. All models included time since number of 
deaths ×1,000,000 higher than 1 and squared time. �ree nested factors were also included as random factors 
(continent, region within continent and country within region within continent). �e table reports parameter 
estimates (SE), and p values for socio-economic factors in each model (in bold signi�cant p-values at the 0.01 
threshold). Sample size is �ve continents, 17 geographical regions, 67 countries and 3596 observations.
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to this view, we also found that CFR was highest in countries with high GDP per capita and high total health 
expenditure as share of GDP. While odd, this result corroborates the impression that wealthy countries in Europe 
and North America have paid a severe toll to the infection. Overall, the relationship between investment into 
health care system and CFR appear to be more complex than one might expect.

A �nal source of variation accounting for di�erences in CFR might be due to di�erential reports of number of 
deaths and/or con�rmed cases between countries. �is might re�ect di�erent counting/reporting methodology 
(e.g., testing strategy, deciding whether or not a given patient died because of COVID-19). In addition, most of 
the countries have been implementing social distancing protocols that di�ered in the severity of the restrictions 
imposed and on the timing of policy execution. Moreover, di�erent populations might follow governmental 
instructions more or less loosely, due to the perceived risk/bene�t of applying such instructions. For instance, 
social distancing and isolation might be more easily applied in countries with autocratic regimes that exert a 
more stringent control over the population. �e role of social and cultural traits in the emergence of zoonotic 
diseases has already been discussed in the past, including the idea that collectivistic societies might have built 
as a way to better control epidemic  waves23,24. We explored how political regime and the severity of isolation 
policies were associated with CFR. We found moderate evidence (1 out of 4 models) suggesting that countries 
with a democratic regime were those with the highest CFR. �e analysis of the stringency index, describing the 
severity of the restrictions implemented by each country, showed that highest values of CFR were reached for 
intermediate values of the stringency index. �is might re�ect di�erent processes. First, countries where the 
epidemic wave was relatively low (perhaps because of the factors described above) could have implemented rela-
tively mild restriction policies, compared to countries where the epidemic got out of control and that required 
imposing more stringent social distancing rules.

Although we report here some associations between comorbidities, demographic, socio-economic variables 
and COVID-19 CFR, we fully acknowledge that these factors do not perfectly explain the variation in CFR among 
countries. �is might come from the coarse grain of the analyses (country level), the error associated with the 
metrics used in our study, the role played by other factors not taken into account in our study, or the uncertain-
ties associated with the estimation of CFR while the epidemic is still ongoing. If serological tests will be used on 
a very large scale to assess the proportion of the population that has been infected by the virus, we will have a 
better estimate of the mortality rate and the possible factors explaining the among-country heterogeneity. With 
this in mind, we nevertheless believe that our results stress the role of comorbidities, socio-economic and political 
factors as potential drivers a�ecting how a country deals with globally threatening epidemics.

Data availability
�e full dataset is available in the online appendix.

Figure 4.  Time-dependent variation in COVID-19 case fatality rate (CFR) according to socio-economic 
factors. Time refers to the number of days between the date of occurrence of 1 death ×1,000,000 and June 
11th 2020. (A) share of the population over 70 years; (B) GDP per capita; (C) stringency index; (D) number 
of tests ×1000; (E) number of hospital beds ×1000; (F) political regime. �e surfaces were generated using 
a smoothed spline interpolation on the predicted values of the LMMs described in the text. Darker colors 
indicated higher values of CFR. X- and Y-axis are standardized values, allowing to have similarly scaled axis.
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