
Explaining an increase in predicted risk for clinical alerts
Michaela Hardt∗

Amazon
milaha@amazon.com

Alvin Rajkomar
Google, UCSF

Gerardo Flores
Google

Andrew Dai
Google

Michael Howell
Google

Greg Corrado
Google

Claire Cui
Google

Moritz Hardt∗
UC Berkeley

ABSTRACT
Much work aims to explain a model’s prediction on a static input.
We consider explanations in a temporal setting where a stateful
dynamical model produces a sequence of risk estimates given an
input at each time step. When the estimated risk increases, the
goal of the explanation is to attribute the increase to a few relevant
inputs from the past.

While our formal setup and techniques are general, we carry out
an in-depth case study in a clinical setting. The goal here is to alert
a clinician when a patient’s risk of deterioration rises. The clinician
then has to decide whether to intervene and adjust the treatment.
Given a potentially long sequence of new events since she last saw
the patient, a concise explanation helps her to quickly triage the
alert.

We develop methods to lift static attribution techniques to the dy-
namical setting, where we identify and address challenges specific
to dynamics. We then experimentally assess the utility of different
explanations of clinical alerts through expert evaluation.
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1 INTRODUCTION
Routinely framed as a static prediction task, statistical risk assess-
ment is often a dynamic problem. Risk estimates evolve over time
as new measurements arrive and additional data become available.
Alerts may be triggered once the risk or the increase in risk has
reached a critical threshold. An alert can depend on numerous
events in the past, making it difficult to quickly understand which
events contributed to the increase in risk. The goal of our work is
to provide tools to quickly assess an increase in predicted risk in
dynamical risk assessment scenarios.
∗work done at Google
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Ourmain application is a clinical earlywarning system that alerts
physicians to the deteriorating health of a hospitalized patient [1, 2].
Such a system can decrease mortality and length-of-stay [3]. It
combines events such as measured vital signs, laboratory tests, and
notes from doctors into a patient risk score. Once the risk score
exceeds a threshold, an alert notifies the doctor. Alerts should have
high precision – too many false alerts can lead to fatigue [4]. Alerts
should also be informative; a clinician must be able to quickly assess
what factors are contributing to the patient’s increase in risk to
identify interventions. This is not an easy task as there may have
been dozens or hundreds of new events since the clinician last
saw the patient. Simply reporting abnormal lab results or vitals
is unhelpful in situations where abnormalities are common. For
example, in the case of critically ill patients, abnormal lab results
may be unrelated to the alert and are often nonspecific [5].

While much work on model interpretability has focused on iden-
tifying important features of a static input, these works do not
address salient temporal effects, such as how the relevance of input
changes over time as newer data become available. A recent survey
of clinicians [6], describes temporal explanations as desirable by
clinicians, yet unexplored in the ML literature. Our work begins to
address these important questions with a detailed use case in the
medical domain.

Our contributions. We broadly study explanations of an in-
crease in risk in a dynamic setting. This is a departure from the
predominantly studied static setting and we hope that it will spark
more interest in the future. Within this broader context, we dive
deep into an application and use our methods to explain alerts in a
clinical early warning system, where we see our results as provid-
ing a set of valuable baselines for future work. More specifically,
we make the following contributions towards explaining changes
in prediction over time.

• Developmethods to lift commonly used static gradient-based
attribution techniques [7–10] to the dynamical risk assess-
ment setting.

• Analyze our methods in the simplified theoretical model of
a linear dynamical system with a quadratic risk function to
form an analytic understanding of the semantics and chal-
lenges.
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• Implement our methods in the context of an early warning
system to explain alerts, and open-source our code1, see
supplementary material.

• Evaluate our methods through expert judgment by medi-
cal students and an ICU doctor who were asked to assess
the clinical utility and compare them to attention [11] and
statistical methods [12, 13].

Organization. We describe the problem setup and its applica-
tion to a clinical early warning system in Sec. 2. Related work is
reviewed in Sec. 3. We then present our methods in Sec. 4 and
analyze them theoretically in Sec. 5 in a simplified linear dynamical
system gaining insights into the challenges that motivate some
refinements. Sec. 6 details our experiments. We conclude in Sec. 7.

2 PROBLEM STATEMENT
We now introduce the general problem we address. At each time
step 𝑡 with 𝑡 = 0, 1, 2, . . . ,𝑇 , a real-valued vector, 𝑥𝑡 ∈ R𝑑 , is pro-
vided as input to a stateful model to produce an updated risk es-
timate 𝑝𝑡 ∈ R. We denote by ℎ𝑡 the hidden state of the model at
time 𝑡 . We then phrase the problem of explaining an increase in
predicted risk as the identification of a few values in the sequence
of inputs that are relevant to a risk increase. Clearly, the whole
sequence of inputs perfectly explain the prediction, however, there
may be too many inputs for a human to make sense of. Also some
inputs may rather be indicative of a decrease in risk and would
not make good explanations. The notion of relevancy is domain
specific and depends on the consumers [14]. We therefore assess it
through human evaluation in our experiments.

Notation. In this paper we consider attribution weights, 𝑎 ∈
R𝑑×𝑇 , over all inputs and the explanations are then simply the input
values with the highest weights. The weights may vary depending
on which risk increase from 𝑝𝑡0 to 𝑝𝑡1 we are trying to explain. This
can be made explicit with a superscript 𝑎𝑡0→𝑡1 . For instance, we
may expect weights from the future 𝑡 > 𝑡1 to be zero. Extending
explanations to chains of events is an open problem.

2.1 Use case of an early warning system
One promise of digital health is that electronic health record (EHR)
data of hospitalized patients could be continuously monitored by
electronic systems that alert physicians when a patient’s health
is worsening [1, 2]. Early warning systems for deterioration have
already been shown to decrease mortality and length-of-stay [3].
Since many patients are hospitalized because they are at high risk,
repeated alerts for persistently elevated risk may induce alarm
fatigue, a known clinical problem. Instead, alerts are likely more
relevant when a patient’s risk has increased, especially over a short
period of time, where there may exist possible interventions to
blunt or reverse the increase in risk [13]. For example, we may seek
to trigger alerts for patients whose mortality risk increased by at
least 50% and is now above 0.2. In practice, a hospital can tune these
alerts based on precision (or the number needed to evaluate) and
recall (or the available resources).

Given an alert, a clinician has to decide quickly what to do about
it in the presence of many competing inputs and responsibilities [15,
1https://github.com/google-research/google-research/tree/master/explaining_risk_
increase

Figure 1: Data from a health system grouped by patient
and ordered by time. Further input processing is model-
dependent. In Step 3 we focus on lab results formatted for
the input to a model prior to normalization.

Figure 2: Data from a patient in a health system ordered by
time. We see the timeline of diagnoses, procedures, medica-
tions, etc. of a patientwith the lab results at a particular time
expanded.
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Figure 3: Input data to a risk prediction model. Specifically,
a sparse representation of irregular lab results are used as
input into a recurrent neural network (RNN). By maintain-
ing an internal state, the prediction at a time depends on
all previous lab results. Each time, a new lab result arrives,
we create a sparse vector with the result at a position deter-
mined by the lab test and an indicator. This vector together
with the internal state is fed into the RNN cell followed by
a linear projection to obtain a risk score that is mapped to
the range 0 to 1 using a sigmoid function. Additionally, the
internal state is updated.

16]. A concise explanation of an alert is helpful for triaging of alerts
and clinical decision making. A good explanation should focus on
the new information since the clinician last saw her patient.

Input Data. EHR data is heterogeneous and includes diagnoses,
medications, procedures, notes from doctors, vitals and lab results
is illustrated in Fig. 1. We can select all data from a single patient
and order it by time to construct the patient’s timeline see Fig. 3.
While all of these features may be relevant for the risk assessment,
they do not all make good explanations. Medications, for example,
may be associated with a high risk without causing it. For instance,
Norepinephrine is administered to patients in shock and there-
fore accompanies but actually decreases their high risk of dying.
As a first step, we focus on lab results and vitals as explanations.
For concreteness, we describe a commonly used input representa-
tion [17–19], see Fig. 3. We set 𝑥𝑡,𝑖 to be the normalized result of a
lab test 𝑖 at time 𝑡 (or 0 when the lab test was not taken). To distin-
guish a lab result of zero from an absent result we further include
an indicator for each lab test. We also track the time between two
consecutive events as a feature. The reason to focus on lab results is
twofold. First, there is an abundance of lab results compared to any
other type of medical event in the EHR, see Fig. 3, which makes it
easy to miss important ones. They can be collected routinely but
may only be reviewed by a clinician during the morning rounds
or evening sign-outs. Second, they can give us insights into the
physiological state of the patient, with a caveat discussed next.

Challenge of confounded measurements. The existence of
a lab result is often due to a worried clinician ordering a test [20].
Patterns of lab tests can be as revealing as their results [18, 21]

and increasing the frequency of measurements leads to a risk in-
crease [22]. Furthermore, results are affected by treatments as the
following example illustrates.

Example. The tidal (lung) volume of 500ml of a patient was associ-
ated with a high risk despite the fact that 500ml is normal. This is
partially because this test is only performed on intubated patients
(generally at higher risk). But even after comparing only intubated
patients the value of 500ml was still associated with an increased
risk. The ventilation settings of a patient can be either specified
by a target volume (commonly 500ml) or by pressure (in which
case case the volume varies more widely). The first method is cho-
sen more often for serious cases and once patients get better they
may be switched to the second method. Hence, a value of 500ml is
associated with more serious cases requiring intubations.

While our methods are general and do not depend on this spe-
cific input and domain, we will discuss their ability to deal with
confounded irregular measurements.

3 RELATEDWORK
The increasing use of complex models for decision making in crit-
ical areas including health care and the criminal justice system,
has raised the question of model interpretability: We need to be
able to check the soundness of the reasoning of our models [14].
For a general overview of interpretability see the comprehensive
survey [23].

3.1 Explaining Predictions
Gradient-based methods have been applied mostly in image classifi-
cation to produce a saliencymap [7–10, 24–27]. Attention-mechanisms
have been used with recurrent neural networks (RNNs) [11]. Tech-
niques requiring only black-box access to a model use local ad-
ditive models [28], ablate features through Shapley values [29],
or maximize the mutual information of the predictions and the
explanations [30].

3.2 Model Interpretability for Health Care
In clinical practice, mostly small and simple models based on 1-5
features are deployed [31–34]. While easy to inspect, their accuracy
is limited. With rich data now digitized in EHRs [35], more features
and model architectures are being developed with improved accu-
racy [36]. These complex models raise questions of interpretability:
How can we understand these models [37–41]? How can we group
patients [38, 42, 43]? How can we explain predictions? To explain
predictions on EHR data (the focus of this paper), a variety of ap-
proaches have been explored starting with generalized additive
models [12] over discretized features, or feature crosses fitted using
gradient boosted decision trees. Subsequent work has extracted
more complex discretized features that also incorporate temporal
aspects using the maximum information gain criteria [44]. To ex-
plain a patient’s risk, statistics of these discretized features can be
used such as the odds ratio or the Rothman index [13]. Other lines
of work have studied latent Dirichlet allocation [45], convolutional
neural networks with feature ablation [46], RNNs with an attention
mechanism [47, 48], and co-distillation [49, 50].
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Our paper differs from previous work by explaining an increase
in predicted risk rather than explaining a static risk prediction. Our
methods build up on prior work and lift them to the dynamical
setting.

4 PROPOSED DYNAMICAL
GRADIENT-BASED METHODS

In this section we describe how we can lift several existing static
attributions to the dynamical setting. Some adaptions are rather
simplistic, while others provide a new perspective on the dynam-
ics. Our methods rely on a model that is trained to predict the
risk 𝑝𝑡 given inputs 𝑥0, . . . , 𝑥𝑡 and take various derivatives of the
predictions 𝑝𝑡 .

4.1 Input Gradients
A natural method [7–9] to explain the risk 𝑝𝑡1 considers the de-
rivative of the risk score with respect to an input 𝑥𝑡 at a time
step 𝑡 ≤ 𝑡1 :

𝑎
𝑡1
𝑡 =

𝜕𝑝𝑡1

𝜕𝑥𝑡
.

This captures how a small change in the input affects the prediction.
To explain a change in predictions we can apply a time restriction
to the time window of interest. The underlying assumption is that
good explanations of a change in risk from 𝑝𝑡0 to 𝑝𝑡1 should contain
recent events in (𝑡0, 𝑡1].

Definition 4.1. Given a sequence of attribution weights 𝑎0, 𝑎1, . . . ,
we define the time-restricted explanations of the change in prediction
between 𝑡0 and 𝑡1, 𝑎𝑡0→𝑡1

𝑡 , at time 𝑡 as 𝑎𝑡 for 𝑡0 < 𝑡 ≤ 𝑡1 and 0
otherwise.

There are several popular variants that improve on the basic
input gradient method [10, 24–26]. In the following, we will de-
vise variants with a greater focus on the dynamical aspect of the
problem.

4.2 Temporal Integrated Gradients
We extend the integrated gradient method [10, 27] that averages
out the gradients along the line segment between two chosen input
sequences, the target sequence𝑥 = (𝑥0, . . . ) and a baseline sequence
𝑏 = (𝑏0, . . . ), typically set to all zeros. Formally, the path-integrated
gradient of a prediction, 𝑝𝑡1 , is given by the integral

𝑆 (𝑏, 𝑥) = (𝑥 − 𝑏)
∫ 1

0

𝜕𝑝𝑡1

𝜕𝑥

����
𝑥=𝛼𝑏+(1−𝛼)𝑥

d𝛼 .

We lift path-integrated gradients to the dynamical setting by pur-
posefully constructing a suitable baseline. This allows us to explore
how intermediate values between the old and the new ones would
have affected the prediction as motivated by the following example.

Example. If a patient currently has a temperature of 102F changing
it a bit may not change the risk very much. However, if we compare
it with the value the patient had the last time the doctor came
around, say 98F, and compute the gradient of interpolations, the
predicted risk may be sensitive to values close to the fever threshold
of 100.4F.

Specifically, we construct a baseline 𝑏 = (𝑏0, . . . , 𝑏𝑡1 ) given the
actual input sequence 𝑥 = (𝑥0, . . . , 𝑥𝑡1 ) as follows. For early time
steps 𝑡 ≤ 𝑡0, we set 𝑏𝑡 = 𝑥𝑡 . Afterwards, for 𝑡 > 𝑡0, the baseline
pretends that the results have not changed since 𝑡0, that is we
substitute recently measured values of a feature after 𝑡0 with the
latest measurement of that feature until time 𝑡0. To address the
challenge of irregular measurement patterns, we consider an input
𝑥 in which not all features are measured each time. We construct 𝑏
by keeping the exact same measurement patterns of 𝑥 , replacing
all results after 𝑡0 with the most recent measurement up until 𝑡0.

In our example, for temperature measurements of 99F at noon,
100.1F at 1pm, 100.2F at 2pm, 100.9F at 3pm, the baseline to explain
the change in risk between 1:30 and 3pm is 99, 100.1, 100.1, 100.1
copying forward the last value before 1:30pm. With other intermit-
tent measurements the sequence could look like

99,⊥,⊥, 100.1,⊥, 100.2, 100.9

with a baseline of

99,⊥,⊥, 100.1,⊥, 100.1, 100.1.

4.3 Time Derivatives
Another natural approach considers the derivative of the risk score
with respect to time, 𝜕𝑝𝑡𝜕𝑡 . The naive discrete time approximation
of this derivative is 𝑝𝑡 − 𝑝𝑡−1. This allows us to assign a weight
to each time-step. We setup our input so that there is exactly one
feature 𝑖𝑡 , 0 ≤ 𝑖𝑡 < 𝑑 , present in the input at step 𝑥𝑡 . Then we
can set 𝑎𝑡 = (𝑝𝑡 − 𝑝𝑡−1) · 𝑒𝑖𝑡 with absent features receiving a 0
weight. The motivation is similar to that of time restrictions: A
good explanation of a change in predictions from 𝑝𝑡0 to 𝑝𝑡1 should
contain events between 𝑡0 and 𝑡1. At the limit, this means that the
change 𝑝𝑡 − 𝑝𝑡−1 should be attributed to the event at time 𝑡 .

Properties: The weights of events are consistent in time. That
is even as future events come in, the weights of past events do not
change. Moreover, the sum of the weights in (𝑡0, 𝑡1],

∑
𝑡0<𝑡 ≤𝑡1 𝑎𝑡 is

equal to 𝑝𝑡1 − 𝑝𝑡0 , as it is a telescoping sum.
Challenge: The discrete time derivatives perform poorly in the

presence of noise and large sampling intervals, as is well known
and has motivated much work in signal processing, see, e.g., [51].

To reduce noise, we suggest to alter the training objective of
the model. Instead of focusing solely on minimizing the loss of the
prediction 𝑝𝑡 compared to the actual risk, we additional minimize
the changes of the prediction over time by adding a smoothing
loss of the form [

∑
𝑡 (𝑝𝑡 − 𝑝𝑡−1)2 for some scalar [ > 0. We refer

to this refined method as smoothed discrete-time derivatives. The
loss term promotes a smoother sequence reducing noise. Fig. 4
illustrates the same patient’s predicted risk time series with and
without smoothing. With a smoothing loss term and [ = 0.005
much of the noise is removed while the shape is retained. Notably,
the absolute risk is lower with smoothing which may not affect the
explanations since they rely on the differences in risk.

5 ANALYSIS IN A LINEAR DYNAMICAL
SYSTEM

Although our methods apply to general differentiable time-series
models, we ground our discussion here in a simple illustrative
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Figure 4: A patient’s risk time series predicted from RNN models on the top trained without a smoothing loss term on the
bottom and on the right trained with smoothing. The blue graphs in the first column use time steps as x-axis, while red
graphs in the second column use the time relative to admission illustrating clustered activity.

example of a linear dynamical system. Recall at each time step 𝑡 ,
an input 𝑥𝑡 ∈ R𝑑 influences the evolution of the hidden state ℎ𝑡
of a stateful model and yields a new risk score 𝑝𝑡 . In our linear
dynamical system the risk score is defined recursively as

𝑝𝑡 = 0.5∥ℎ𝑡 ∥2 and
ℎ𝑡 = 𝐴ℎ𝑡−1 + 𝐵𝑥𝑡 .

In words, the risk score at time 𝑡 is the squared Euclidean norm
of a hidden state ℎ𝑡 ∈ R𝑛 that evolves from a known hidden state
ℎ0 according to a linear dynamical system specified by two lin-
ear transformations 𝐴 ∈ R𝑛×𝑛, 𝐵 ∈ R𝑛×𝑑 . For the purpose of our
example, we could replace ∥ℎ𝑡 ∥2 with any quadratic form ℎ⊤𝑡 𝑄ℎ𝑡 .

5.1 Time derivatives
In a continuous version of our linear dynamical system with

𝜕ℎ𝑡

𝜕𝑡
= 𝐴ℎ𝑡−1 + 𝐵𝑥𝑡

the continuous time derivatives are (by definition and the chain
rule)

𝜕𝑝𝑡

𝜕𝑡
= ℎ⊤𝑡 𝐴ℎ𝑡−1 + ℎ⊤𝑡 𝐵𝑥𝑡

It is very common to approximate continuous time derivatives
through discrete approximations such as 𝑝𝑡 − 𝑝𝑡−1 .

5.2 Input gradients
Applying the multivariate chain rule reveals that in our linear
system

𝜕𝑝𝑡1

𝜕𝑥𝑡
= ℎ⊤𝑡1𝐴

𝑡1−𝑡𝐵

The index 𝑡 of the input only influences the power of the ma-
trix 𝐴. For fixed 𝑡 , the gradient can grow or shrink exponentially

as 𝑡1 increases. These phenomena known as exploding/vanishing
gradients lead to the gradient method emphasizing inputs far in
the past or very recently. The issues of vanishing and exploding
gradients can be mitigated through careful design of the model, e.g.
the use of LSTMs [52], and by the time-restriction to recent inputs.

5.3 Integrated gradients
We analyze the integrated gradient in our linear dynamical system.
Denoting by ℎ𝑡1 [𝑥] the hidden state that the system attains on an
input sequence 𝑥 = (𝑥1, . . . , 𝑥𝑡1 ), the above expression simplifies
using the linearity of the integral operator and the system’s update
rule to

𝑆𝑡 (𝑏, 𝑥) =
(
(ℎ𝑡1 [𝑏] + ℎ𝑡1 [𝑥])/2

)⊤
𝐴𝑡1−𝑡𝐵

What we see is that the path-integrated gradient simplifies to the
arithmetic mean of the baseline gradient and the target gradient.
Although not too different from the basic gradient method in this
example, path-integrated gradients with carefully constructed base-
line can alleviate some of the shortcomings of the basic gradients.

6 EVALUATION
6.1 Dataset
We use data from the Medical Information Mart for Intensive Care
(MIMIC-III) [53] restricted to patients hospitalized for greater than
24 hours. MIMIC-III is widely accessible to researchers under a
data use agreement. The data has been deidentified in accordance
with Health Insurance Portability and Accountability Act (HIPAA)
standards using structured data cleansing and date shifting.

We included more than 50,000 hospitalizations, with patients ran-
domly split into training (80%), validation (10%), and test (10%) sets.
We consider the commonly studied prediction task of in-hospital
mortality [17, 46]. We predict at various time points throughout
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the hospitalization how likely a patient is to die within this hospital
stay. The in-hospital mortality rate was around 8%. In Section 6.6,
we study a different form of deterioration, namely acute-kidney
injury (AKI).

Input Data for Explanations. For the models generating ex-
planations we create a whitelist of eligible lab tests, because not
all lab results are easily interpretable. For instance, the red blood
cell distribution width is often picked up by predictive models, but
not well understood [54]. Also among highly correlated lab tests,
clinicians prefer one over the other (e.g. hemoglobin over hemat-
ocrit). Specifically, we restricted the lab tests to the following list
of roughly 40 target harmonized features: blood pressure, pulse,
respiratory rate, oxygen saturation, blood pressure mean, tempera-
ture, urine output, glucose, oxygen source, hematocrit, hemoglobin,
potassium, creatinine, bun, sodium, chloride, platelet, wbc count,
mcv, magnesium, calcium, phos, inr, pt, ptt, carbon dioxide, tbili,
ast, alt, alkphos, lactate, ionized calcium, albumin, troponin, egfr
mdrd, tsh, dbili, hgba1c, total cholesterol, HDL, LDL. We used any
codes that would map into one of these harmonized features.

We limit the lab values to the past three days.

6.2 Alert Generation
We chose a model for alerting that is separate from the various mod-
els used to generate explanations. In particular, we use a sequence
model similar to [55]. That way we can decouple the quality of the
alerts from the quality of the explanations. However, this means
that our explanations may not be faithful to the alerts. Further
research is needed to understand the interplay between the quality
of model, alert logic, and explanations. We assume the clinician
finished their rounds at 12 hours after admission at which point in
time they have assessed the patient and developed a treatment plan.
The risk predicted at this point is compared to the risk recomputed
every 2 hours up until 24 hours after admission when the evening
sign-out takes place and another team takes over. We trigger an
alert for a patient if their risk increases by at least a factor of 1.5
to at least a risk of 0.2 to largely eliminate false-positives. The cost
of human evaluation limits us to one specific setup. We randomly
selected patients that are being alerted on for the first time that
have at least 40 new events. For patients with fewer new events a
doctor could feasibly look over all of them. We excluded subsequent
alerts as the clinician may have snoozed the alert. This way of gen-
erating alerts hopefully resembles a realistic deployment scenario.
The alerts are then simply used to pick the patients and times for
which we generate and compare explanations.

6.3 Methods
We compare our gradient-based explanation methods from Sec. 4,
the standard gradients, the temporal integrated gradients with a
carefully designed baseline, and the time derivatives, to a few meth-
ods from the literature. We released our code at https://github.com/
google-research/google-research/tree/master/explaining_risk_increase.
An attention mechanism [11] for recurrent neural networks derives
weights for each input event to create a prediction. These weights
can serve directly as explanations. We apply time-restriction in
our dynamical setting. We further include two statistics commonly
used to associate risk with discretized features: The odds-ratio, e.g.

Mortality Risk
Model Precision @ 3
Random guessing 0.24 [0.16, 0.33]
Time-restricted gradients 0.31 [0.23, 0.39]
Time-restricted attention 0.33 [0.23, 0.43]
Smoothed discrete-time derivatives 0.40 [0.30, 0.50]
Time-diffed odds ratio 0.52 [0.39, 0.63]
Time-diffed Rothman index 0.52 [0.42, 0.63]
Time-restricted odds ratio 0.52 [0.42, 0.62]
Temporal integrated gradients 0.57 [0.47, 0.68]

Table 1: For mortality risk, precision of the top-3 highest
weighted lab results from distinct lab tests with a 95% boot-
strap confidence interval based on expert judgment.

in [12], and the Rothman index [13]. To explain a change in predic-
tion between time 𝑡0 and 𝑡1, we consider time-restriction (Def. 4.1)
and time-diffing. Time-diffing requires not just that the lab result
falls in the time window (𝑡0, 𝑡1] of interest, but also that something
about this test has changed since 𝑡0. For example, a continuously
high heart rate, although associated with a high risk, does not ex-
plain a change in risk. More formally, to compute the time-diffed
weight of a lab result in (𝑡0, 𝑡1], we subtract the odds-ratio/Rothman
index from results of the same test on or before 𝑡0 from the current
odds-ratio/Rothman index.

Dynamical Attention. Attention-mechanisms provide a way to
make recurrent neural networks more interpretable [11]. Attention
derives weights for each intermediate state in the RNN by combin-
ing it with the final state. The prediction is then produced from the
normalized weights sum across the states. Those weight can serve
directly as explanations and have been used in the clinical context
to identify important diagnosis codes [47, 48].

Odds Ratio and Rothman index. Two statistics commonly used
to associate risk with discretizied features, are the odds-ratio, e.g.
in [12], and the Rothman index [13].

In particular, we compute the odds of the outcome for one of the
ranges of a feature as the ratio of the number of values of the feature
that fall into the range for examples with the outcome present vs.
absent. We also compute the same odds considering values of this
feature outside the particular range and take the ratio of the two
odds.

The Rothman index is defined as the ratio of the empirical risk
associated with a particular range of a feature over the empirical
risk of the average feature value.

To lift them to the dynamical setting, in addition to requiring the
events to fall into the window of interest (𝑡0, 𝑡1], we also require
those values to have changed since 𝑡0. For example, when we try
to explain a risk increase in the past 2 hours, it is not helpful to
only point to events that happened more than 2 hours ago or values
that have not changed since. This second requirement is important
in the case of stateless models generally, since the model does not
have the ability to keep track of changes in the input.

Rather than comparing the values of a feature directly which
is sensitive to variances across examples and within an example
across time, we simply compare their associated weights.
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Definition 6.1. Given a sequence of attributionweights𝑎 = 𝑎0, . . . , 𝑎𝑡1 ,
we define the time-diffed explanations for the change from 𝑝𝑡0 to
𝑝𝑡1 at time 𝑡 (with 𝑡0 < 𝑡 ≤ 𝑡1 ) as

𝑎
𝑡0→𝑡1
𝑡 = 𝑎𝑡 − max

𝑡 ′≤𝑡0
𝑎𝑡 ′ .

Variants of this idea could replace the max over time with the
weight of the most recent value until 𝑡0. With time-diffing, expla-
nations of a risk increase from 𝑝𝑡0 to 𝑝𝑡1 are focused on features
whose odds ratio or Rothman index increased between 𝑡0 and 𝑡1 .

Properties: Users can understand how the weights are being
computed from simple counts over the dataset.

The challenge of confounded irregular measurements is being
addressed through normalization by considering the risk of the
average lab result or the odds for other results from the same test.

Random strawman. Additionally, a strawman, the random guess-
ing method randomly selects three recent inputs conditional on
having three different features.

Gradient-based Methods. We implemented an RNN using Ten-
sorFlow over normalized lab results (from which outliers were
removed) with a single new lab result per step as illustrated in
Fig. 3. We take the time-series of normalized observation values,
together with an indicator of which lab test is present and an en-
coding of the time since the last step as input to the RNN as done
previously in [17–19]. A notable difference is that no bagging is
applied and for each step in the RNN only a single lab result is
processed. We predict the label at each time step. Although this
does not affect overall accuracy, it allows us to attribute changes in
predictions to individual lab values for the time derivatives. We use
an LSTM [52] of size 64 with input (0.03), output (0.02) and recur-
rent (0.01) naive dropout [56]. For optimization we used the Adam
optimizer [57] and a learning rate of 0.002 over batches of size 16
and clipped the gradients to 6. These hyperparameters were tuned
with a proprietary Bayesian optimization framework. Training was
performed using Tensorflow with Tesla P100 GPU. An open-source
release of our code accompanies this manuscript.

6.4 Metrics of the Expert Evaluation
We obtain attribution weights for the techniques described above
and select the top lab results from 3 distinct lab tests. Our raters
included one ICU doctor and two medical students who jointly
rated a total of 40 alerts labeling more than 800 lab results. We gave
them access to the patient’s chart up until 12 hours after admission
(around 5000 lab results). We asked to which extent the new lab
results indicate that the patient’s condition deteriorated since then.
The new lab results that were selected as explanations (3 from each
method) were presented in a random order to avoid position bias.
We average the precision across patients.

The expert raters were asked to give their response on a 5-point
Likert scale from “Extremely Likely” to “Extremely Unlikely”. We
consider explanations marked as “Extremely likely” or “Very likely”
as correct. The specific instructions can be found in the Appendix
and were accompanied by an example.

AKI Detection
Model Precision @ 1
Random guessing 0.1
Time-restricted gradients 0.52
Time-restricted attention 0.3
Smoothed discrete-time derivatives 0.47
Time-diffed odds ratio 0.4
Time-diffed Rothman index 0.44
Time-restricted odds ratio 0.53
Temporal integrated gradients 0.55

Table 2: Precision of the highest weighted lab results for the
detection of indicators of acute kidney injury.

6.5 Results for Mortality Risk Prediction
6.5.1 Quantitative Results of the Expert Evaluation. We compare
the precision of the three highest weighted lab results from distinct
lab tests in Table 1. Overall we see that the temporal integrated
gradients and the statistical explanations perform best with an
average precision of the top-3 highest-weighted lab results above
0.5. The attention, gradients of the inputs, and smoothed discrete-
time derivatives do not perform as well. Their average precision is
better than random, however the confidence intervals overlap.

6.5.2 AQualitative Case Study. A qualitative account by an attend-
ing physician highlights strengths and weaknesses of the different
methods in a case study of a particular patient.

In one patient presumed sepsis, the risk increased from 62.3% to
86.2%. The time-diffed odds-ratio selected a high temperature of 102.8
degrees Fahrenheit, low urine output, and an oxygen level of 100%.
We suspect that such a high oxygen level is more commonly seen in
invasively ventilated patient (e.g. with a breathing tube), so it indicates
risk indirectly. The human rater selected the first two as convincing
evidence of a risk increase. However, we note that in each case, the prior
values were all abnormal: the prior temperature was 100.8, oxygen
saturation was 100%, and the urine output had been previously low.
In the same case, the temporal integrated gradient technique selected
low diastolic (55 mmHg) blood pressure, low mean (74 mmHg) blood
pressure, and low urine output. These blood pressures, in absolute
terms, are somewhat low but not below clinical thresholds that would
necessarily require emergent action on their own. However, in the
context of this patient, they are relatively low, which does require
urgent evaluation to determine the source of clinical change. The prior
values were normal at at 72 and 95 mmHg, respectively and had been
at those levels for multiple hours. Human raters selected all three
values as convincing evidence.

This case study highlights that the odds-ratio technique is excellent
at selecting very abnormal values as evidence of increased risk. If the
odds-ratio, however, is not adjusted, then we did see likely confound-
ing affecting the thresholds: a high oxygen level indicated high risk
because it was confounded by ventilation across the entire dataset.
The integrated technique seems, on qualitative inspection, to better
select changes in vital signs and lab values with respect to the patient’s
personal baseline.
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6.6 Evaluation of AKI Explanations
To assess the robustness of our methods, we study a second task of
AKI detection on the MIMIC-III dataset. The label is defined follow-
ing a subset of the KDIGO guidelines [58]: If the serum creatinine
increases by at least 0.3 mg/dl within the past 48 hours or if the urine
volume is less than 0.5 ml/kg/h (25ml/h, assuming 50kg weight)
for 6 hours then we say the patient has a positive label. We train
models making predictions every 3 hours during the hospital stay,
excluding cases when a patient previously had a positive prediction
within their encounter. Manual hyper-parameter tuning yielded
best results for a learning rate of 0.0003 and a batch size of 64. Other
hyper parameters remained the same and were not re-tuned. Note,
this is a simple detection task and not a prediction of the future.
Therefore, ground-truth explanations are available following the
definition of the label. In particular, we consider an explanation
correct when it selects any recent urine or creatinine value. Table 2
lists the top-1 precision for 100 randomly chosen positive examples.
The temporal integrated gradients remain the best method overall.
Other methods differ in effectiveness compared to the mortality
prediction task. In particular, all gradient-based methods perform
well.

7 CONCLUSIONS AND FUTUREWORK
While much work on model interpretability has focused on ex-
plaining risk in a static setting, we introduced a new problem of
explaining changes in predicted risk. Our new methods lift static
gradient-based attribution techniques [7–10] to this dynamical set-
ting.

We applied our methods to explain clinical alerts of increased
mortality risk by identifying three important recent lab values
and compare them to attention [11], odds ratio [12] and Rothman
index [13]. In our experiments we found that temporal integrated
gradients and lifting statistical methods had the highest precision
of above 0.5 meaning that among the top 3 explanations physicians
would roughly find half of them indicative of the patient’s condition
worsening. However, the quality of explanations from the odds
ratio over discretized lab values was almost as good. Apart from
the simple computation of odds ratios, another reason why odds
ratios may be preferable in practice is that physicians understand
their meaning and are used to considering them in their decision
making. A drawback could be that they are not necessarily truthful
to the model used to trigger alerts.

Whether a precision of 0.5 will translate to useful explanations
for clinical decision making has to be determined through a user
study [14] in a clinical setting. Before a deployment, work is needed
to ensure that the explanations are reliable [59] and neither mis-
leading [60] nor creating unjustified trust [61]. Informing clinicians
about the limitations of the techniques is a starting point. Our
study is limited to providing explanations for an increase in risk.
Understanding the interaction of model and explanation quality,
e.g. whether explanations help identifying false alerts, is left for
future work. This work is a first step towards explaining changes in
predicted risk and we hope it sparks further ideas, improvements
and applications.
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9 APPENDIX
Your task is to to judge how much each test and value raise your
concern that the patient’s health has gotten worse since rounds.
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On the right hand side are NEW values that have been collected
since you last reviewed the patient’s chart. Specifically, for each
value in column E-F (test and value), what is the likehood that this
information in indicates that the patient’s condition is worse since
you last looked at the patients chart (i.e. during rounds). You should
score your responses in column H from 1-5 with:

5 Extremely likely (i.e. extremely likely to indicate a patient’s
condition is worse)

4 Very likely
3 Unlikely (does not help me assess more or less likely)
2 Very unlikely
1 Extremely unlikely (i.e. this information likely indicates the
patient’s condition is better)

Notes. The information in columns A-C is generally sorted by
type (there are a few values out of order occasionally due to coding
issues) to help you find the data easily. Please bias AWAY from
picking 3 (explained below). Choosing 5 does not necessarily mean
you think the patient’s risk has gone up a significant amount - only
that the signal is clear that the risk has gone up unambiguously.
In the example above, the respiratory rate of 32 is scored at 4 be-
cause respiratory rates are known to be inconsistently recorded,
so measurement error might account for that value. However, if
a patient’s lactate increased from 1.4 to 3 then you should score
that as a 5 because it is clearer that the risk has actually increased.
Ignore all data not in columns A though H.
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