
Explaining and Suggesting Relatedness in Knowledge

Graphs?

Giuseppe Pirrò

Institute for High Performance Computing and Networking, Italian National Research Council

(ICAR-CNR), Rende (CS), Italy

pirro@icar.cnr.it

Abstract. Knowledge graphs (KGs) are a key ingredient for searching, browsing

and knowledge discovery activities. Motivated by the need to harness knowledge

available in a variety of KGs, we face the following two problems. First, given a

pair of entities defined in some KG, find an explanation of their relatedness. We

formalize the notion of relatedness explanation and introduce different criteria to

build explanations based on information-theory, diversity and their combinations.

Second, given a pair of entities, find other (pairs of) entities sharing a similar

relatedness perspective. We describe an implementation of our ideas in a tool,

called RECAP, which is based on RDF and SPARQL. We provide an evaluation

of RECAP and a comparison with related systems on real-world data.

1 Introduction

Knowledge Graphs (KGs) maintaining structured data about entities are becoming a

common support for browsing, searching and knowledge discovery activities. Search

engines like Google, Yahoo! and Bing complement search results with facts about enti-

ties in their KGs. An even large number and variety of KGs, based on the Resource De-

scription Framework (RDF) data format, stem from the Linked Open Data project [7].

Fig. 1 (a) shows information provided by the Google KG when giving the entity F.

Lang as input; it reports some facts about the director along with relationships with

other entities. Fig. 1 (b) and Fig. 1 (c) show information, encoded in RDF, about F.

Lang taken from DBpedia and LinkedMDB, respectively. Note that the Google KG

suggests entities like T. von Harbou as related to F. Lang with a short comment saying

that T. von Harbou was F. Lang’s former spouse. However, what is the mechanism be-

hind this suggestion? What is the relationship between F. Lang and other entities like H.

Hitchcock? KGs like DBpedia and LinkedMDB also fail short when it comes to both

explain the relatedness between an arbitrary pair of entities and suggest related entities.

We contend that the usage of a standard data format (i.e., RDF) and the availability

of a standard querying infrastructure (i.e., SPARQL endpoints) open new perspectives

toward explaining relatedness and querying KGs by using pairs of entities as input.

? Part of this work was done while the author was working at the WeST institute, University

of Koblenz-Landau, Germany. This work was partially supported by the EU Framework Pro-

gramme for Research and Innovation under grant agreement no. 611242 (SENSE4US) and

by the Cyber Security Technological District financed by the Italian Ministry of Education,

University and Research.

People also search for

Ex-wife

foaf:
page

rdf:
type

lmdb:
name

lmdb:
producer

lmdb:
director

Fritz
Lang

Das
Testament

(a)

Former spouse

(c)

Fritz
Lang

dbpo:
spouse

dbpo:
influenced

dbpo:
occupation

dbpo:
producer

dbpo:
writer

dbpo:
director

Metropolis
(Film)

Thea von
Harbou

dbpo:
birthName

(b)

Fig. 1. F. Lang in the Google KG (a), DBpedia (b), and LinkedMDB (c).

The first problem that we face concerns how to build relatedness explanations. This

has applications in several areas including: terrorist networks, to uncover the connec-

tions between two suspected terrorists [19]; co-author networks, to discover interlinks

between researchers [5]; generic exploratory search. The need for relatedness expla-

nations also emerged in the context of the SENSE4US FP7 project1, which aims at

creating a toolkit to support information gathering, analysis and policy modeling. Here,

relatedness explanations are useful to investigate and show to the user topic connec-

tivity2, thus enabling to find out previously unknown information that is of relevance,

understand how it is of relevance, and navigate it.

Although the problem of finding connectivity structures between entities has been

studied (e.g., [3, 18]), existing approaches do not offer comprehensive mechanisms for

building different types of relatedness explanations and controlling the amount of infor-

mation to be included. Moreover, these approaches miss the possibility to query KGs.

The second problem that we tackle concerns querying KGs. KGs behind search en-

gines (e.g., Google) provide limited querying capabilities, typically accepting one entity

as input. KGs based on RDF (e.g., DBpedia) provide rich querying capabilities but re-

quire familiarity with languages like SPARQL [6] and the underlying data/schema [9].

Our strategy recalls the query by example approach; given a pair of entities as input, we

leverage their relatedness explanation to learn a query pattern, which is used to identify

other (pairs of) related entities. Our approach goes suggestionbeyond existing entity

mechanisms mainly based on the syntactic analysis of query logs and pages [12]. We

now provide an example about the two main challenges faced in this paper, that is, how

to build relatedness explanations and how to query KGs by giving entities as input.

1 http://www.sense4us.eu
2 A module of the SENSE4US toolkit extracts topics from policy documents

1.1 Overview of the Approach

Syd is fond of science-fiction films; he has heard about two German directors named

Fritz Lang and Thea von Harbou and is interested in their relatedness.

By giving F. Lang and T. von Harbou as input to RECAP, the tool implementing our

framework, Syd gets the explanation in Fig. 2 (a). This explanation is more informative

than the short comment (i.e., former spouse) provided by the Google KG and combines

information from Freebase and DBpedia. The explanation includes the top-20 most

informative paths (out of 240) at max. distance 2; informativeness is defined in terms

of edge labels occurrences. RECAP allows to generate different types of explanations

(Fig. 2 (b)) and also provides information about nodes/edges (Fig. 2 (c)).

RECAP goes beyond related approaches (e.g., REX [4], Explass [2]) that provide

visual information about connectivity as it allows to build different types of explana-

tions (e.g., graphs, sets of paths), thus controlling the amount of information visualized.

RECAP has the advantage of not requiring any data preprocessing; information is ob-

tained by querying (remote) SPARQL endpoints. Moreover, RECAP can combine infor-

mation from multiple KGs. In the previous example, the combination of Freebase and

DBpedia allowed to discover an additional episode of Die Nibelungen series (missing

in DBpedia), that is, Kriemhild’s Revenge, co-written by F. Lang and T. von Harbou.

Last but not least, RECAP also allows to query KGs by using pairs of entities as input.

Given a pair of entities, RECAP finds other (pairs of) related entities by learning a

SPARQL query from their relatedness explanation. By continuing our example, suppose

that Syd gives the pair (F. Lang, T. von Harbou) as input to RECAP with the aim to

discover other entities. Fig 3 (b) shows one possible explanation that RECAP uses to

learn a SPARQL query. The explanation merges paths conforming to the pattern in

Fig 3 (a). Fig 3 (c) abstracts the explanation by replacing nodes with variables.

(b)

(c)

(a)

(c)

owl:sameAs

owl:sameAs

Freebase

DBpedia

Kriemhild’s Revenge
Die Nibelungen

Kriemhild’s Revenge

Thea von Harbou

Fig. 2. The explanation perspective of the RECAP tool.

(e)

dbp:Gale_Anne_Hurd dbp:James_Cameron

dbp:Edgard_Rice_Buroughs dbp:Florence_Gilbert

dbp:Stanley_Donen dbp:Jeanne_Coyne

dbp:Ezzel_Dine_Zulficar dbp:Faten_Hamama

dbp:Vidhu_Vinod_Chopra dbp:Renu_Saluja

dbpo:spouse

dbpo:starring

d
b

p
o

:s
p

o
u
s
e

d
b

p
o

:w
rite

r

(d)

(c)

Fig. 3. The querying perspective of RECAP. Path patterns (a), explanation (b), query pattern (c),

SPARQL query (d), and suggested entities (e) ranked by popularity (PageRank [16] in this case).

The SPARQL query generated (shown in Fig 3 (d)) allows to find pairs of related

entities that can be locally ranked. The top-5 pairs of entities found by RECAP, and

ranked by their popularity, are show in Fig. 3 (e). As an example, for the pair (Gale Ann

Hurd, James Cameron) we can reconstruct a similar pattern as that shown in Fig. 3 (b):

J. Cameron was married with G. A. Hurd, he wrote the movie The Terminator where L.

Hamilton (also married to J. Cameron) starred.

1.2 Related Work

There is solid body of work about (i) finding structures (e.g., paths, subgraphs) con-

necting entities [3, 18, 11, 8, 14, 11]; (ii) learning relationships between entities; (iii)

discovering and/or visualizing connectivity information between entities [8, 4, 2]. Dif-

ferently from (i), RECAP focuses on the problem of providing concise explanations by

leveraging path informativeness and/or a diversity criterion. As for (ii), systems like

PATTY [15] mainly focus on learning semantic relationships. RECAP has a different

departure point; it explains relatedness in the form of graphs that can be dynamically

configured to include the desired amount of information. As for (iii), Table 1 compares

RECAP with related systems in terms of: KG supported (KG), output (O), filtering

capabilities (F), querying capabilities (Q), requirement of local data (L). RECAP dif-

fers from related systems in the following main respects: as for KG, RECAP is KG-

independent; it only requires the availability of a (remote) query endpoint. Moreover,

RECAP can combine information from multiple KGs. As for O and F, RECAP focuses

on building different types of explanations in the form of graphs or (sets of) paths by

leveraging informativeness (to estimate the relative importance of edges), diversity (to

include rare edges) and their combinations. Moreover, RECAP is the only approach that

can be used to query KGs (Q). As for L, neither does RECAP assume local availability

of data nor any data preprocessing. A more detailed comparison between RECAP and

related systems on real data is discussed in Section 4.

Table 1. Comparison of RECAP with closely related systems.

System KG O F Q L

REX [4] Yahoo! Graph No No Yes

RelFinder [8] DBpedia Graph No No Yes

Explass [2] DBpedia Paths Yes (only paths) No Yes

RECAP Any Graph/Paths Yes (paths and graphs) Yes No

1.3 Contributions and Outline

The framework that we are going to introduce poses several challenges, among which:

(i) how to capture the notion of relatedness explanation between entities? we leverage

informativeness of paths and a diversity criterion to construct different types of ex-

planations; (ii) how to query KGs? we isolate the structure of an explanation to learn a

SPARQL query; (iii) how to make RECAP readily available? We use RDF, the SPARQL

query language, and SPARQL endpoints. The contributions of this paper are as follows:

(i) a framework for building relatedness explanations; (ii) different path ranking strate-

gies; (iii) a mechanism to query KGs by giving entity pairs as input; (iv) a KG-agnostic

implementation of our framework; (v) an extensive experimental evaluation.

The remainder of the paper is organized as follows. Section 2 introduces the prob-

lem and gives some background. Section 3 presents the explanation framework. Sec-

tion 4 discusses an evaluation of the performance of RECAP and a comparison with

related work. We draw some conclusions and sketch future work in Section 5.

2 Problem Formalization

Motivation. The goal of this paper is to facilitate the discovery and explanation of

knowledge in knowledge graphs. Part of this research was motivated by the SENSE4US

project where explanations are a useful support to discover connectivity between topics

emerging from policy documents.

Input. We consider as input a pair (ws,wt) of entities defined in some knowledge graph

G. We focus on RDF knowledge bases K=hG,O,Ai where G is a knowledge graph

(KG), O is an ontology/schema, and A is a query endpoint.

Assumptions. The framework that we are going to introduce works on top existing

knowledge bases. Our approach has to be flexible enough to be applied to different

KGs as dictated by the SENSE4US project, which considers a variety of KGs in the

LOD cloud. Hence, we consider the access to knowledge bases via the query endpoint

A. Neither this requires local availability of the data (e.g., local copies) nor any complex

data processing infrastructure from the user side. The computations are reduced to the

evaluation of a set of queries against A plus some local refinement.

Desired output. Given K=hG,O,Ai and a pair of entities (ws, wt) 2 G, the output

can be of two different types. It can be an explanation Ge(ws, wt) ✓ G. To produce

the graph Ge, our explanation algorithm only considers nodes/edges in the set of paths

between ws and wt. Given a set of paths, we define different mechanisms to rank/select

paths to be included in Ge .

When focusing on querying KGs, the output is a set of (pairs of) entities. We isolate

the structure of an explanation into an explanation pattern. Given a graph Ge, repre-

senting an explanation, an explanation pattern considers a graph Gv
e where nodes in Ge

are replaced with variables. Gv
e is used to generate a SPARQL query that is evaluated

against A. Results of such query can be locally ranked (e.g., via PageRank [16]).

Basic Definitions and Background. We now define what a knowledge graph (KG) is

and outline the fragment of the query language supporting the implementation of our

framework. Although there are several KGs today available (e.g., Yahoo!, Google) we

will focus on those encoded in RDF3. The choice of RDF is merely practical; data in

RDF is widely and openly accessible on the Web for querying via SPARQL [6]. Let U
(URIs) and L (literals) be countably disjoint infinite sets. An RDF triple is a tuple of

the form U ⇥ U ⇥ (U [L) whose elements are referred to as subject, predicate and

object, respectively. As we are interested in discovering explanations in terms of nodes

and edges carrying semantic meaning for the user, we do not consider blank nodes.

Definition 1 (Knowledge Graph). Given a set T of RDF triples, a KG is a multigraph

G=hV, Ei where V ={s | (s, p, o) 2 T} [{o | (s, p, o) 2 T} and E = {(s, p, o) 2 T}.

For the purposes of this paper, we will consider the most basic form of SPARQL

queries, that is, Basic Graph Patterns (BGPs). We shall also make usage of the COUNT

aggregate operator. Let V be a set of SPARQL variables, that is, strings starting with

the ? symbol, U a set of URIs and L a set of literals. A triple pattern is a triple of the

form (U [L[V)⇥ (U [V)⇥ (U [L[V). BGPs are sets of triple patterns that can be

combined via algebraic operators; we will make usage of the join operator (represented

by the symbol . in the SPARQL syntax).

3 The RECAP Approach

We see an explanation as a concise representation of the relatedness between entities

in terms of edges (carrying a semantic meaning via RDF predicates) and other entities.

As graphs are a natural and flexible way to represent and visualize information about

interlinked entities in a variety of scenarios, we represent explanations as graphs.

Definition 2 (Explanation). Given a knowledge base K=hG,O,Ai and a pair of enti-

ties (ws,wt) where ws, wt2 G, an explanation is a tuple of the form E=(ws, wt, Ge),
where ws, wt 2 Ge, Ge ✓ G, and Ge is connected.

The above definition is very general; it only states that two entities are connected via

nodes and edges in a graph Ge, which is a subgraph of the knowledge graph G and has

an arbitrary structure. The challenging aspect is how to uncover the structure of Ge by

accessing G only via queries against the endpoint A. To tackle this challenge we shall

characterize the desired properties of Ge. Consider the explanation shown in Fig. 4 (a);

Ge contains two types of nodes: nodes such as n1, n3, n4 that do belong to some path

between ws and wt and other nodes such as n2 that do not.

3 A list is available at http://lod-cloud.net

Ge(a) (b) Gp

ws
n1 n4

n3

wt

n2

ws wt
?n1 ?n4

?n3
p1

p1

p4
p2

p2
?p1

?p2

?p2

?p4

Fig. 4. An explanation (a) and a pattern graph (b).

Although the edge (n2, p1, n3) can contribute to better characterize n3, it is in a

sense non-necessary as it does not directly contribute to explain how ws and wt are

related. Hence, we introduce the notion of necessary edge.

Definition 3 (Necessary Edge). An edge (ni, pk, nj)2G is necessary for an explana-

tion E=(ws, wt, Ge) if it is in a simple path (no node repetitions) between ws and wt.

The necessary edge property enables to refine the notion of explanation into that of

minimal explanation.

Definition 4 (Minimal Explanation). Given K=hG,O,Ai and a pair of entities (ws,wt)

where ws, wt2 G, a minimal explanation is an explanation E=(ws, wt, Ge) where Ge

is obtained as the merge of all simple paths between ws and wt.

Minimal explanations enable to focus only on nodes and edges that are in some path

between ws and wt thus preserving connectivity information only. The challenge is now

how to retrieve minimal explanations.

Consider the explanation shown in Fig. 4 (a) (ignoring the dashed node and edge).

Ge could be retrieved by matching the pattern graph Gp in Fig. 4 (b) (nodes and edges

are query variables) against G. If the structure of Gp were available, one could find Ge.

Unfortunately such structure, that is, the right way of joining query variables represent-

ing nodes and edges in Gp is unknown before knowing Ge. As the building blocks of

minimal explanations are paths between ws and wt, finding these paths is crucial.

Generally speaking, paths between entities can have an arbitrary length; in practice

it has been shown that for KGs like Facebook the average distance between entities is

bound by a value k 5 [20]. Considering paths of length k is also in line with the

goal of providing explanations of manageable size that can be visualized/interpreted

by users. Finally, related approaches like Explass [2] and REX [4] also considered

bounded-length paths. Fig. 5 summarizes the explanation algorithm.

3.1 Finding Paths between Entities

We now describe the structure of queries used to retrieve paths via the endpoint A.

Definition 5 (k-connectivity Pattern). Given K=hG,O,Ai, a pair of entities (ws,wt)

where ws, wt2 G and an integer k, a k-connectivity pattern is a tuple Π=hws, wt,Q, ki
where Q is a set of SPARQL queries composed by joining k triple patterns.

Algorithm 1: Building Relatedness Explanations

Input: A pair (ws,wt) of entities, an integer k, the address of a query endpoint A

Output: A graph Ge representing an explanation

(1) Find paths: we describe in Section 3.1 an approach based on SPARQL queries against A to

retrieve paths between ws and wt of length k.

(2) Rank paths: We describe in Section 3.2 different mechanisms to rank paths by considering

informativeness and diversity.

(3) Select and merge top-m paths: we discuss in Section 3.3 different ways of selecting ranked

paths to build an explanation.

Fig. 5. An overview of the relatedness explanation algorithm.

Note that SPARQL 1.1 supports property paths (PPs) [6], that is, a way for discov-

ering routes between nodes in an RDF graph. However, since variables cannot be used

as part of the path specification itself, PPs are not suitable for our purpose; we need

information about all path elements (i.e., nodes and edges) to build explanations.

Example 6 (Example of k-connectivity Pattern). The 2-connectivity pattern between
F. Lang (:FL) and T. von Harbou (:TvH) contains the following set of queries Q:

SELECT DISTINCT * WHERE{:FL ?p1 ?n1. ?n1 ?p2 :TvH}

SELECT DISTINCT * WHERE{:FL ?p1 ?n1. :TvH ?p2 ?n1}

SELECT DISTINCT * WHERE{?n1 ?p1 :FL. :TvH ?p2 ?n1}

SELECT DISTINCT * WHERE{?n1 ?p1 :FL. ?n1 ?p2 :TvH}

Definition 7 (Path). Given K=hG,O,Ai and a k-connectivity pattern Π=hws, wt,Q, ki,

a path π is a set of edges: π(ws, wt)=ws

p1

� n1

p2

� n2

p3

� n3..nq

pk

� wt, ni 2 G 8i 2 [1, q],
pj 2 G 8j 2 [1, k] and � 2 { ,!}.

3.2 Ranking Paths

The number of paths connecting two entities ws and wt can be large. Considering the

merge of all paths, as done in minimal explanations (see Definition 4), can be an ob-

stacle toward concise explanations. Therefore, we introduce different criteria to rank

paths, a subset of which (e.g., top-m) can be merged to form an explanation.

Ranking By Path Informativeness

The first approach to estimate the informativeness of a path connecting a pair of entities

(ws,wt)2 G leverages the informativeness of its constituent RDF predicates [17].

Definition 8 (Predicate Frequency Inverse Triple Frequency). Given a knowledge

graph G=hV, Ei, an entity w 2 G and a predicate p appearing in some triple involving

w, the incoming pfw
i (p) and outgoing pfw

o (p) predicate frequency are shown in equa-

tion (1) and equation (2), respectively. The Inverse Triple Frequency of p (itf(p)) and

the pfitf are shown in equation (3) and equation (4), respectively.

dbpo:

writer

dbpo:

writer
Fritz

Lang

Thea von

Harbou

Fritz

Lang

Thea von

Harbou

dbpo:

spouse

(a)
(b)k=1

k=2

dbpo:

screenplay

dbpo:

director
Fritz

Lang

Thea von

Harbouk=2

dbpo:

writer

dbpo:

editing
Fritz

Lang

Thea von

Harbou
k=2

(c)

Spione

Die Nibelungen

dbpo:

writer

dbpo:

wrtiter
Fritz

Lang

Thea von

Harbou

?v

k=2

Fritz

Lang
Thea von

Harbou

dbpo:
starring

dbpo:
director

?v1 ?v2

k=3

dbpo:
spouse

dbpo:Film

The

Indian Tomb

dbpo:Film dbpo:Person

Fig. 6. Ranking: (a) most informative paths; (b) most informative patterns; (c) most diverse paths.

pf
w
i (p,G) =

|Ei(w)|⇡(p)

|Ei(w)|
(1) pf

w
o (p,G) =

|Eo(w)|⇡(p)

|Eo(w)|
(2)

itf(p,G) = log
|E|

|E|⇡(p)

(3) pfitfx(p,G) = pfx × itf (4)

where |Ei(w)|π(p) (resp., |Eo(w)|π(p)) is the number of triples in G where the predi-

cate p is incoming (resp., outgoing) in w, |Ei(w)| (resp., |Eo(w)|) is the total number of

incoming (resp., outgoing) triples including w. |E|π(p) is the number of triples including

p. In equation (4), pfitfx(p,G) can use pfw
i (p,G) or pfw

o (p,G).

Definition 9 (Path Informativeness). Let π(ws, wt)=ws
p
�! wt be a path between

ws and wt in G of length k=1. The informativeness of π is defined as:

I(π, G) = [pfitfws

o (p,G) + pfitf
wt

i (p,G)]/2 (5)

The informativeness of the path π(ws, wt)=ws
p
 � wt can be obtained by considering

p as an incoming edge to ws. For paths having length k>1, we have:

I(π, G) =
I(π(ws, w1), G) + ...+ I(π(wk, wt), G)

k
(6)

Ranking By Pattern Informativeness

We now introduce informativeness based on path patterns. A path pattern generalizes a

path by replacing nodes with variables.

Definition 10 (Path Pattern). Given a path π(ws, wt)=ws

p1

� n1

p2

� n2..nq

pq

�wt, a path

pattern is an expression of the form π(ws, wt)=ws

p1

�?v1
p2

�?v2..?vq
pq

�wt, where ?vi i 2
{1, 2, ...q} are variables and q k.

As an example, the path in the bottom-part of Fig. 6 (a) is abstracted in the pattern in the

top-part of Fig. 6 (b). The usage of variables in place of intermediate entities enables

to represent in a more concise way information about a set of paths. The pattern in the

top-part of Fig. 6 (b) enables to capture the fact that F. Lang and T. von Harbou have

co-written 11 movies (bindings of the variable ?v) according to DBpedia. Information

in the ontology O (when available) can help to more precisely characterize the nature

of intermediate entities by considering their rdf:type (Fig. 6 (b)). RECAP includes

a pattern-based exploration of the connectivity between ws and wt along with the pos-

sibility to generate explanations including all paths matching a pattern (see Fig. 3 (a)).

Definition 11 (Path pattern informativeness). Let Pπ be the set of patterns obtained

from a set of paths Pπ . The informativeness of a path pattern π 2 Pπ is:

I(π, G) = log
|P⇡|

|(π, G)|
(7)

where |Pπ | is the number of patterns and |(π,G)| is the number of paths sharing π in G.

Ranking By Path Diversity

The most informative paths of length k=2 between F. Lang and T. von Harbour often

include predicates related to the fact that they have co-written movies (e.g., The Indian

Tomb and Metropolis); this will potentially discard other predicates appearing in paths

with low informativeness. To cope with this aspect, we introduce path diversity.

Definition 12 (Path Diversity). Given a source entity ws 2 G, a target entity wt 2 G
and two paths π1(ws, wt) and π2(ws, wt) we define path diversity as:

δ(π1,π2) =
|Labels(π1) ∩ Labels(π2)|

|Labels(π1) ∪ Labels(π2)|
(8)

where Labels(π) denotes the set of labels (RDF predicates) in a path. Fig. 6 (c)

shows the two most diverse paths at distance 2 between F. Lang and T. von Harbou. As

it can be observed, the predicate dbpo:screenplay is included; such predicate is

never present in the top-10 most informative paths.

3.3 Selecting and Merging Paths

The last step of the explanation algorithm concerns path selection. Table 2 describes

different strategies that given a value m select a subset (but E∪) of paths (patterns) ac-

cording to one of the three approaches described in Section 3.2. Moreover, two strate-

gies combine path (pattern) informativeness and diversity. The strategy in the last line

of Table 2 does not merge paths and is used by RECAP to enable pattern-based explo-

rations of the relatedness between ws and wt. We discuss an evaluation of the different

strategies in Section 4.

Table 2. Path selection/merging strategies.

Symbol Meaning

E∪ Merge all of paths

E⇡
m Merge the top-m most informative paths

E⇡
m Merge paths belonging to the top-m most informative path patterns

E� Merge paths whose value of diversity falls in [(max − r),max]

where max is the max diversity and r is a % value.

E⇡,� Merge the results of E⇡
m and E�

E⇡,� Merge the results of E⇡
m and E�

P Set of all paths (no merge)

3.4 Querying KGs by Example

We now describe the second building block of our framework, that is, an algorithm

(shown in Fig.7) to query KGs by giving a pair of entities as input. In what follows we

outline the steps, but (1), of Algorithm 2 after introducing explanation patterns.

Algorithm 2: Knowledge Graph Querying

Input: A pair (ws,wt) of entities, an integer k, the address of a query endpoint A

Output: A set of ranked (pairs of) entities

(1) Find an explanation E=(ws, wt, Ge) between ws and wt by using Algorithm 1.

(2) Build the entity query pattern Qe.

(3) Query the KG with Qe (via A) and get a set of (pairs of) entities.

(4) Rank the answers to Qe.

Fig. 7. An overview of the query answering algorithm.

Definition 13 (Explanation Pattern). Given an explanation E=hws, wt, Gei, an ex-

planation pattern is a tuple E=h?ws, ?wt, G
v
ei where Gv

e={TP1,TP2,...,TPk} is a query

graph and TPi=(U[L[V)⇥U⇥(U[L[V), 1 < i < k, is a triple pattern not containing

variables in predicate position. Moreover, for i > 1 |var(TPi)\var(TPi−1)| = 1.

In the above definition, Gv
e is the query graph obtained from Ge by replacing all

nodes into an explanation with query variables. Basically, an explanation pattern gener-

alizes the structure of an explanation by keeping edge labels only. Explanation patterns

are used to generate entity query patterns.

Definition 14 (Entity Query Pattern). An entity query pattern is a SPARQL query of

the form: SELECT DISTINCT ?ws ?wt WHERE{TP1. TP2. TPk.}

In the above definition, TPi, i 2 [1, k] are triple patterns in Gv
e and ?ws and ?wt

are variables used in lieu of the entities in input. Query patterns are automatically de-

rived; our algorithm neither requires familiarity with SPARQL nor with the underlying

data/schema. The evaluation of a query pattern returns a set of pairs of entities.

Ranking of Results

Our approach for querying KG learns an entity query pattern Qe from a relatedness ex-

planation. Since the evaluation of Qe can return a large number of results, our algorithm

includes a ranking component. The problem of ranking results of SPARQL queries has

been already studied (e.g., [1, 13]) and is not the main purpose of the present paper.

Inspired by the Google KG, we consider a simple result ranking mechanism based

on the popularity of entities; specifically, we leverage the PageRank [16] algorithm.

Given a pair of entities (w1, w2) returned when evaluating Qe (obtained from step (3)

Algorithm 2), we estimate their popularity as (PR(w1) +PR(w2)) /2, where PR(wi)
is the PageRank value of the entity i. We leave as a future work the investigation of

more sophisticated result-ranking mechanisms.

4 Implementation and Evaluation

We have implemented our ideas in the RECAP tool, which uses JavaFX4 for the GUI

and the Jena5 framework to handle RDF data and SPARQL queries.

4.1 Evaluating the Explanation Generation Component

We start by discussing the evaluation of the explanation component of RECAP.

Experimental setting. We considered two KGs: DBpedia (DB)6 and Freebase7 (FB).

We adopt the dataset of 26 pairs used to evaluate Explass [2] and set k4 as done in

Explass. We use as reference graph for the computation of informativeness scores (see

Def. 8 and Def. 11) the graph obtained by merging all paths. Experiments have been

performed on a MacBook Pro with a 2.8 GHz i7 CPU and 16GBs RAM.

Experiment 1: Performance Evaluation: we investigate the performance of RECAP

for increasing values of k8 in terms of: (i) obtaining paths; (ii) computing explanations.

Results that follow are the average of 5 runs. Fig. 8 (a) and (b) show the running times.

Clearly, the higher k the higher the running time for path retrieval. The multi-thread

implementation of RECAP allows to keep the time for finding paths on average around

6.4 secs for DB and 12 secs for FB when k4. When executing the queries sequen-

tially (results are not reported for sake of space) the running times can be up to 30

times higher. We observed in another experiment on DB (not reported for sake of space)

that local data reduces the running times by ⇠60% on average. However, this has the

disadvantage that both a local processing infrastructure and local data are required.

1"

10"

100"

1000"

10000"

1" 2" 3" 4" 5" 6" 7" 8" 9" 10"11"12"13"14"15"16"17"18"19"20"21"22"23"24"25"26"

K=1" K=2" K=3" K=4"(a)

1"

10"

100"

1000"

10000"

1" 2" 3" 4" 5" 6" 7" 8" 9" 10"11"12"13"14"15"16"17"18"19"20"21"22"23"24"25"26"

K=1" K=2" K=3" K=4"(b)

Fig. 8. Path retrieval in DB (a) and FB (b). Y-axis: time(ms) in log-scale; X-axis: entity pair.

Running times on DB for generating the different types of explanations described

in lines 1-4 of Table 2 are shown in Figs. 9 (a). We report results on DB as this KG

has been used in the (qualitative) comparison of RECAP with related approaches (see

Section 4.1). Nevertheless, we report results on the combination DB-FB in Fig. 9 (b).

4 http://docs.oracle.com/javafx/
5 https://jena.apache.org/
6 http://dbpedia.org/snorql
7 http://lod.openlinksw.com/sparql
8 In particular, for each k, all paths of length ≤k are generated

1"

100"

10000"

1" 2" 3" 4" 5" 6" 7" 8" 9" 10"11"12"13"14"15"16"17"18"19"20"21"22"23"24"25"26"

Series1" Series2" Series3" Series4" (a)
K 4

1"

100"

10000"

1" 2" 3" 4" 5" 6" 7" 8" 9" 10"11"12"13"14"15"16"17"18"19"20"21"22"23"24"25"26"

Diversity" MergeAll" Top;5;inst" Top;5;pa>erns" (b)
Combining multiple KGs

K 3

Fig. 9. Explanations in DB (a) and DB/FB (b). Y-axis: time(ms) in log-scale; X-axis: entity pair.

Generally speaking, E∪ explanations can be generated very fast; here, no path rank-

ing/filtering is performed. However, E∪ can be very big, which makes the interpretation

by users difficult, as we will discuss in Experiment 2. Eδ explanations that use diver-

sity (we considered r=25%) are more expensive as they require the computation of

distances between paths, for which RECAP leverages a multi-thread approach. Expla-

nations based on path informativeness Eπ
m (we considered m=5) require to compute

pfitf scores; RECAP computes these scores in parallel and using the merge of all

paths as reference graph thus not performing any remote query. Explanations based on

pattern informativeness Eπ
m (we considered m=5) are less expensive since they do not

analyze the informativeness of all edges in a path. The most expensive explanations

(not reported here for sake of space) are those combining path/pattern informativeness

and diversity requiring ⇠6 secs for k4. When compared to related system (see Sec-

tion 4.1), RECAP has been judged the fastest system in the overall task of generating

different types of relatedness explanation. In terms of size (results not reported for sake

of space), E∪ are the biggest one; their size can include up to 4000 paths (k4) for pair

12 (C. Bale, C. Nolan) in FB.

Explanations of type Eπ
5 are smaller; the typical size is⇠8 nodes and⇠7 edges. Eπ

5

have variable size as it depends on the number of paths for each of the top-5 most infor-

mative patterns. In general these are bigger than Eπ
5 explanations (⇠15 nodes and ⇠12

edges). Note that Eπ
5 explanations enable to focus on specific aspects as they include

all the instantiations of each of the top-5 most informative path patterns. The sizes of

Eδ are in the same order of magnitude as Eπ
5 ; however Eδ explanations guarantee to

also include rare edges potentially discarded by path or pattern informativeness. The

typical size of an explanation combining (top-5) path/pattern informativeness and di-

versity (r=25%) is ⇠20 nodes and ⇠15 edges. The possibility, featured by RECAP, to

decide the amount of information to be included into an explanation is crucial toward

understanding relatedness.

Experiment 2: Interpreting explanations: this experiment aims at: (i) investigating

whether RECAP provides useful explanations to the user; (ii) comparing RECAP against

two related systems online available9, that is, Explass [2]10 and RelFinder [8]11. We

used DB for the comparison as Explass and RelFinder only work on this KG.

9 REX [4] is not available for public usage
10 http://ws.nju.edu.cn/explass/
11 http://www.visualdataweb.org/relfinder/relfinder.php

Setting. Twenty participants were assigned each six random pairs among the 26 entity

pairs. They were shown how the three systems work and asked to use each system

(with no other support) in order to understand the relatedness between entities in a pair.

Following the methodology in [2] participants were given a set of six questions; the

response to each question was given with an agreement value from 1 (min) to 5 (max).

Q6 was not considered in [2]; we included it to understand how users perceive the

performance of the systems in terms of running time. Results are reported in Table 3.

Table 3. Questions/responses: means (standard deviation).

Question RECAP RelFinder Explass

Q1: Information overview 4.55(0.65) 3.05(0.77) 3.82(0.75)

Q2: Easiness in finding information 4.45(0.55) 4.05(0.63) 3.85(0.67)

Q3: Easiness in comparing/synthesizing info 4.62(0.62) 3.10(0.82) 4.06(0.61)

Q4: Comprehensive support 4.81(0.73) 3.42(0.77) 4.15(0.79)

Q5: Sufficient support to the task 4.67(0.81) 3.28(0.86) 4.23(0.83

Q6: Running time 4.82(0.48) 4.12(0.72) 3.18(0.52)

According to questions Q1-Q5, users perceived RECAP and Explass as better sup-

ports to the explanation task. Users reported that RelFinder does not allow the flexible

creation of explanation (e.g., by grouping paths into patterns), which makes it hard to

control the amount of information shown. In general, RECAP was judged to be a more

comprehensive solution; it provides both a graph-based and pattern-based exploration

of results and several ways of controlling the amount of information to be shown. While

RECAP and RelFinder quickly provide information immediately after retrieving paths,

Explass requires a much longer time. On Q6 Explass was judged to be the less com-

pelling system. RECAP was judged higher than the other two systems in all questions

via LSD post-hoc tests (p < 0.05). The inter-annotator agreement was of 0.85.

Combining multiple KGs. We tested RECAP on the combination of DB and FB (see

Fig. 9 (d)). Starting from DB, for the source/target entities we looked at owl:sameAs

links to the corresponding FB entities. We then merged the set of paths from each KG by

using owl:sameAs links. Users (⇠75%) perceived the combination of multiple KGs

as very useful toward more comprehensive explanations. This is especially true when

KGs cover the same domain with different levels of detail (FB was judged more com-

prehensive than DB). The combination also produces graphs of bigger size. Indeed, the

functionality of RECAP allowing to filter information to be included into an explanation

was judged very useful (participants thought E∪ were too big when k� 3).

4.2 Evaluating the Querying Component

We now discuss the evaluation of the querying component of RECAP.

Experimental setting. We used the dataset of 18 pairs defined by Jayaram et al. [10]

and considered DBpedia as KG. In order to rank query results, we compute PageRank

values for the latest version of DBpedia and stored them in a local Lucene12 index.

12 https://lucene.apache.org/

Table 4. Accuracy of RECAP (m=10).

Pair P@m nDCG Pair P@m nDCG

P1 0.91 0.94 P10 0.87 0.91

P2 0.82 0.92 P11 0.75 0.78

P3 0.73 0.87 P12 0.72 0.78

P4 0.67 0.72 P13 0.81 0.89

P5 0.74 0.83 P14 0.82 0.85

P6 0.82 0.85 P15 0.84 0.86

P7 0.72 0.81 P16 0.78 0.84

P8 0.69 0.77 P17 0.62 0.72

P9 0.81 0.85 P18 0.79 0.82

Table 5. Accuracy of RECAP (m=15).

Pair P@m nDCG Pair P@m nDCG

P1 0.78 0.82 P10 0.81 0.83

P2 0.78 0.79 P11 0.72 0.74

P3 0.71 0.72 P12 0.65 0.71

P4 0.62 0.68 P13 0.71 0.74

P5 0.68 0.73 P14 0.68 0.71

P6 0.64 0.72 P15 0.70 0.71

P7 0.62 0.71 P16 0.68 0.72

P8 0.61 0.68 P17 0.62 0.67

P9 0.78 0.81 P18 0.67 0.74

Evaluation metrics. The aim of this experiment is to measure how precise are the results

returned by RECAP as compared to a gold-standard. We measure the accuracy on a

query by considering: (i) Precision-at-m (P@m): the percentage of the top-m results in

the ground truth; (ii) Normalized Discounted Cumulative Gain (nDCG): the cumulative

gain of the top-m results is DCGm=rel1 +
Pm

1=2
reli

log2(i)
; it penalizes the results if the

ground truth result is ranked low. DCGm is normalized by IDCGm, the cumulative gain

for an ideal ranking of the top-m results. Thus nDCGm= DCGm

IDCGm
.

We report results for m=10 (in Table 4) and m=15 (in Table 5) that consider top-

10 and top-15 entity pairs, respectively. We use Eπ
10 (top-10 most informative paths)

explanations, at step (1) of Algorithm 2, to generate entity query patterns.

As it can be observed, the usage of PageRank scores, as a mechanism to weight the

importance of query results, brings acceptable performance. In the majority of the 18

pairs, the P@10 score is above 0.75. In some cases like P1 (i.e., Nike, Tiger Woods)

RECAP was able to identify almost all the other entities (in the gold standard), among

which M. Jordan, and K. Bryant (also sponsored by Nike). When the value of m in-

creases performance decreases. However, usually providing top-10 results13 is an ac-

ceptable compromise. Note that the nDCG is in most of the cases above 0.7; in this

measure, the DCG emphasizes pairs of entities that appear early in the set of results.

We leave as a future work the investigation of more sophisticated ranking mechanisms.

In terms of running time, the overhead introduced (besides explanation generation)

by Algorithm 2 consists in the access to the Lucene index to retrieve PageRank scores

and the computation of their average value. Typically, the overall running time for path

finding, explanation generation and result ranking is ⇠10 secs.

5 Concluding Remarks and Future Work

We have introduced a framework to generate different types of relatedness explana-

tions, possibly including information from multiple KGs. Our work is motived by the

SENSE4US FP7 project, where there is the need to find topic connectivity information.

We have faced another important problem: querying KGs by using entities as in-

put. As of today, either KGs provide limited querying capabilities (e.g., by accepting

13 Search engines usually provide top-10 results per page

one entity as input) or require familiarity with languages such as SPARQL besides the

underlying schema/data. We have shown how the usage of the relatedness explanation

between a pair of entities can help in learning SPARQL queries to find other pairs of

related entities. We plan to investigate optimization mechanisms to reduce the running

time for path finding. One approach could be to leverage the ontology O to generate

candidate queries according to paths between entities at the schema level, rank these

queries, and check the most promising.

References

1. K. Anyanwu, A. Maduko, and A. Sheth. SemRank: Ranking Complex Relationship Search

Results on the Semantic Web. In WWW, pages 117–127, 2005.
2. G. Cheng, Y. Zhang, and Y. Qu. Explass: Exploring Associations between Entities via Top-K

Ontological Patterns and Facets. In ISWC, pages 422–437. Springer, 2014.
3. C. Faloutsos, K. S. McCurley, and A. Tomkins. Fast Discovery of Connection Subgraphs. In

SIGKDD, pages 118–127. ACM, 2004.
4. L. Fang, A. D. Sarma, C. Yu, and P. Bohannon. REX: Explaining Relationships between

Entity Pairs. VLDB, 5(3):241–252, 2011.
5. V. Fionda, C. Gutierrez, and G. Pirrò. Knowledge Maps of Web Graphs. In KR, 2014.
6. S. Harris and A. Seaborne. SPARQL 1.1 Query Language W3C Recommendation, 2013.
7. T. Heath and C. Bizer. Linked Data: Evolving the Web into a Global Data Space. Morgan &

Claypool, 1st edition, 2011.
8. P. Heim, S. Lohmann, and T. Stegemann. Interactive Relationship Discovery via the Seman-

tic Web. In ESWC, pages 303–317. Springer, 2010.
9. H. Jagadish, A. Chapman, A. Elkiss, M. Jayapandian, Y. Li, A. Nandi, and C. Yu. Making

Database Systems Usable. In Int. Conf. on Management of Data, pages 13–24. ACM, 2007.
10. N. Jayaram, M. Gupta, A. Khan, C. Li, X. Yan, and R. Elmasri. GQBE: Querying Knowledge

Graphs by Example Entity Tuples. In ICDE, pages 1250–1253. IEEE, 2014.
11. G. Kasneci, S. Elbassuoni, and G. Weikum. Ming: Mining Informative Entity Relationship

Subgraphs. In CIKM, pages 1653–1656. ACM, 2009.
12. G. Luo, C. Tang, and Y.-l. Tian. Answering Relationship Queries on the Web. In WWW,

pages 561–570. ACM, 2007.
13. S. Magliacane, A. Bozzon, and E. Della Valle. Efficient execution of top-k sparql queries. In

The Semantic Web–ISWC 2012, pages 344–360. Springer, 2012.
14. P. N. Mendes, P. Kapanipathi, D. Cameron, and A. P. Sheth. Dynamic Associative Relation-

ships on the Linked Open Data Web. In Web Science Conference, 2010.
15. N. Nakashole, G. Weikum, and F. Suchanek. Discovering and Exploring Relations on the

Web. VLDB, 5(12):1982–1985, 2012.
16. L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank Citation Ranking: Bringing

Order to the Web. 1999.
17. G. Pirrò. REWOrD: Semantic Relatedness in the Web of Data. In 26th Conference on

Artificial Intelligence (AAAI), 2012.
18. C. Ramakrishnan, W. H. Milnor, M. Perry, and A. P. Sheth. Discovering informative connec-

tion subgraphs in multi-relational graphs. SIGKDD Newsletter, 7(2):56–63, 2005.
19. A. Sheth, B. Aleman-Meza, I. B. Arpinar, C. Bertram, Y. Warke, C. Ramakrishanan, C. Ha-

laschek, K. Anyanwu, D. Avant, F. S. Arpinar, et al. Semantic Association Identification and

Knowledge Discovery for National Security Applications. Journal of Database Manage-

ment, 16(1):33–53, 2005.
20. J. Ugander, B. Karrer, L. Backstrom, and C. Marlow. The Anatomy of the Facebook Social

Graph. arXiv preprint arXiv:1111.4503, 2011.

