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Marko Robnik-Šikonja, Igor Kononenko
University of Ljubljana, Faculty of Computer and Information Science,

Ljubljana, Slovenia
{Marko.Robnik, Igor.Kononenko}@fri.uni-lj.si

Abstract

We present a method for explaining predictions for individual instances. The
presented approach is general and can be used with all classification models that
output probabilities. It is based on decomposition of a model’s predictions on in-
dividual contributions of each attribute. Our method works for so called black box
models such as support vector machines, neural networks, and nearest neighbor
algorithms as well as for ensemble methods, such as boosting and random forests.
We demonstrate that the generated explanations closely follow the learned models
and present a visualization technique which shows the utility of our approach and
enables the comparison of different prediction methods.
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1 Introduction
One of important requirements for predictors, both in classification and regression, is
the transparency of the prediction process. The user of the prediction model is often in-
terested not only in the prediction accuracy but also in the explanation of the prediction
for a given new case. For example, in our recent work on medical data physicians were
mostly interested in explanation capabilities of learned models. Expectations of a study
were to get for each new patient a prognosis and its explanation. Such an explanation
of a model’s decision on the level of individual instance is therefore main motivation of
the presented work. We propose a general explanation method that is in principle inde-
pendent of the model. The model can be generated manually or learned automatically,
it can be transparent or black box (such as support vector machines (SVM) and artifi-
cial neural networks (ANN)), and it can be a single model or an ensemble of models
(such as boosting and random forests).

We distinguish between two levels of explanation: the domain level and the model
level. The domain level tries to find the true causal relationship between the dependent
and independent variables. Typically this level is unreachable unless we are dealing
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with artificial domains where all the relations as well as the probability distributions
are known in advance. On the other hand, the model level explanation aims to make
transparent the prediction process of a particular model. The prediction accuracy and
the correctness of explanation at the model level are orthogonal: the correctness of
the explanation is independent of the correctness of the prediction. However, we may
assume that better models (with higher prediction accuracy) enable in principle better
explanation at the domain level. However, this work is interested in the explanation
at the model level and leave to the developer of the model the responsibility for its
prediction accuracy. In this paper we talk about

• instance explanation: explanation of a classification of a single instance at the
model level,

• model explanation: averages of explanations over many training instances at the
model level, which provide more general explanations of features and features’
values relevances,

• domain explanation: still unknown, although, if the accuracy of the model is
high, it should be quite similar to the model explanation.

1.1 Notation and Organization
Throughout the paper we use a notation where each of the n learning instances is repre-
sented by an ordered pair (x,y); each vector of attribute values x consists of individual
values of attributes Ai, i = 1, ...,a (a is the number of attributes), and is labeled with
y. In case of classification, y is one of the discrete class values y j, j = 1, ...,c (c is the
number of class values). We write p(y j) for the probability of the class value y j. Each
discrete attribute Ai has values a1, ...,ami (mi is the number of values of the attribute
Ai). p(a j) is a probability of value a j.

The paper is organized into 6 sections. In Section 2 we formally introduce our
explanation principle, define several interpretations and give implementation details. In
Section 3 we demonstrate the visualization method for individual instances and for the
whole model. In Section 4 we use several artificial data sets to show that explanations
are close to the models and give some advice for the use of our approach. Section 5
presents the related work and Section 6 summarizes and gives some ideas for further
work.

2 Decomposition of the Prediction
Assume for a moment that we can observe the inner workings of the decision pro-
cess which forms the relationship between the features and the predicted value. In
other words, assume that we can observe a causal effect the change of an attribute’s
value has on the predicted value. By measuring such an effect we could reason about
the importance of the attribute’s values, and we could determine which values are the
thresholds for the change of prediction. In practice, this is usually impossible, but we
can use our model and data sample and try to approximate this reasoning.
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We consider the model as a function mapping instances into numerical values
f : x 7→ f (x). For classification these numerical values are the probabilities of the
class values. An instance x has a known value for each attribute Ai. To see the effect
the attribute values have on prediction of the instance we decompose the prediction
on individual attributes’ values and observe the model’s prediction f (x\Ai). In other
words, we observe the model’s prediction for x without the knowledge of event Ai = ak
(marginal prediction), where ak is the value of Ai for our instance x. By comparing
the values f (x) and f (x\Ai) we get insight into the importance of event Ai = ak. If the
difference between f (x) and f (x\Ai) is large, the fact Ai = ak plays an important role
in the model; if this difference is small, the influence of Ai = ak in the model is minor.
The source of our explanations are therefore the decompositions

predDiffi(x) = f (x)− f (x\Ai) (1)

By restricting our reasoning to the model we provide explanations also for events
where the change in more than one attribute at once affects the predicted value. For
such events each of dependent attributes Ai affects the prediction and so also the score
predDiffi(x), therefore the explanations for all Ai are nonzero. In this way the gen-
erated explanations not only provide information about simple one-attribute-at-a-time
dependencies (as it may look at first sight) but also about complex multi-attribute de-
pendencies, as long they are expressed in a given model. We provide a worked example
at the end of this Section.

In evaluation of prediction difference (1) we have several options. For classifica-
tion we present the information difference, the weight of evidence, and the difference
between the probabilities. Normally one of these evaluations is sufficient, but each has
its favorable properties and weaknesses which we explain below and analyze also in
Section 4.

2.1 Evaluation of Prediction Differences in Classification
In classification the model is a mapping from the instance space to probabilities of the
class values. The difference can be evaluated in (at least) three different ways. The first
is based on the notion of information [1]. The second one is defined with the log odds
or equivalently the weight of evidence [2]. The third one is a direct difference between
the probabilities. Below we define these interpretations for an instance x and its value
of attribute Ai.

2.1.1 Information Difference

The information difference for the class value y is defined as the difference between the
amount of information, necessary to find out that y is true for the given instance with
the knowledge about the value of Ai, and the amount of information, necessary to find
out that y is true for the given instance without the knowledge about the value of Ai:

infDiffi(y|x) = log2 p(y|x)− log2 p(y|x\Ai) [bit] (2)
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The notion of information is frequently used, so this interpretation of the difference
in information between two events is comprehensible. Because logarithm is asymmet-
ric in the range of probabilities [0,1], we get asymmetric results for complementary
probabilities (p and 1− p) in e.g. two class problems.

2.1.2 Weight of Evidence

The odds of event z is defined as the ratio of the probability of event z and its negation:

odds(z) =
p(z)
p(z)

=
p(z)

1− p(z)

The weight of evidence for class value y is defined as the log odds of the model’s
probability with the knowledge about the value of Ai and without it:

WEi(y|x) = log2(odds(y|x))− log2(odds(y|x\Ai)) [bit] (3)

The weight of evidence is an alternative view on information [2] with similar properties
(sometimes favorable, e.g. symmetry). In logistic regression where it is commonly
used [3] it is referred to as log odds-ratio.

2.1.3 Difference of Probabilities

Another possibility is to evaluate the difference between probabilities directly. The
probability difference is the difference in prediction of the model having the knowledge
about the value of Ai and without it.

probDiffi(y|x) = p(y|x)− p(y|x\Ai) (4)

It may not be wise to use the difference between probabilities directly, without normal-
ization, as humans are known not to be very good at comprehension and evaluation of
probabilities [4]. This is especially true for probabilities close to 0 and 1. The good
thing about this method is its simplicity and the fact that we do not need any corrections
for probabilities 0 and 1.

2.2 Implementation
To get the explanation factors we have to evaluate either (2), (3), or (4). To compute
factor p(y|x) we just classify the instance x with the model. The only condition the
model has to satisfy is that it outputs class probabilities. The majority of statistical and
machine learning modeling techniques satisfy this condition directly or with appropri-
ate post-modeling calibration.

The factors p(y|x\Ai) (or f (x\Ai)) are a bit more tricky. The simplest, but not al-
ways the best option is to replace the value of attribute Ai with a special unknown value
(NA, don’t know, don’t care, etc.). This special value does not contain any information
of Ai, indeed. However, this method is appropriate only for modeling techniques which
handle unknown values naturally, e.g., naive Bayesian classificator (NB) just omits the
attribute with unknown value from the computation. For other models we have to bear
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in mind that while this approach is simple and seemingly correct, we are left to the
mercy of each method’s internal mechanism for handling these special values1. The
techniques for handling unknown values are very different: from replacement with the
most frequent value for nominal attributes and with median for numerical attributes to
complex model-based implantations. To avoid the dependence on the implementation
of the model, we propose an approach which simulates the lack of information about
Ai with several predictions.

For nominal attributes we replace the actual value Ai = ak with all possible values
of Ai, and weight each prediction by the prior probability of the value2:

p(y|x\Ai) =
mi

∑
s=1

p(Ai = as|x\Ai)p(y|x← Ai = as) (5)

p(y|x\Ai)
.=

mi

∑
s=1

p(Ai = as)p(y|x← Ai = as) (6)

Here the term p(y|x← Ai = as) represents the probability we get for y when in x we
replace the value of Ai with as. Note our simplification of the prior probability p(Ai =
as) which implies that (6) is only an approximation.

This method as it may seem ad-hoc at first sight is actually exactly what NB does.
As we mentioned, for NB to compute p(y|x\Ai), all we have to do, is to ignore the
value of attribute Ai in computation. In Appendix we prove that for NB the method (6)
is equivalent to excluding the attribute Ai from computation.

For numerical attributes the procedure is similar; we use a discretization method to
split the values of Ai into sub-intervals. The middle points of these sub-intervals are
taken as the representative replacement values in (6) for which we compute predictions
p(y|x← Ai = as). Instead of prior probabilities of single values p(Ai = as), we use
probabilities of the sub-intervals for weighting the predictions.

To avoid division by zero and logarithm of zero in evaluation of (2) and (3) we
use the Laplace correction [5]; instead of each probability p, we use the factor (pn+1)

(n+c) ,
where c is the number of class values and n is inversely proportional to the strength of
belief in uniform prior probability. For n we use the number of training instances.

The generation of explanations does not affect the learning phase; for a single in-
stance and for a particular model we need O(a) model evaluations (at least one pre-
diction for each attribute). In reality the time to generate explanations is negligible on
today’s computers.

2.3 An Example of Computing Explanations
To illustrate how the generation of explanations works we define a simple Boolean
problem with three important attributes (A1, A2, and A3) and one irrelevant one (A4).
The class value 1 is defined as C = A1 ∧ (A2 ≡ A3). The whole truth table is listed in
Table 1.

1In the R system, which we used as our testing environment, the default behavior of many learning models
is to fail when predicting an input with NA values, but of course many methods exist how to handle them.

2The use of this method therefore assumes that we have access to the prior probabilities of the values also
during explanation.
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Table 1: The data set for the problem C = A1∧ (A2 ≡ A3).
A1 A2 A3 A4 C
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 0
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 0
1 0 0 0 1
1 0 0 1 1
1 0 1 0 0
1 0 1 1 0
1 1 0 0 0
1 1 0 1 0
1 1 1 0 1
1 1 1 1 1

A decision tree model built from this data is presented in Fig. 1. In the leaves, below
the classification, the numbers of instances for each class are given. We have selected
decision trees for our example because the decision process is transparent with these
models and we can follow it from the root to the leaves.

The first instance we want an explanation for is x = (1,0,0,1), meaning A1 = 1,
A2 = 0, A3 = 0, and A4 = 1. Suppose we want explanation for class value c = 1 with
weight of evidence (3), then for each attribute Ai we have to compute

WEi(c = 1|x) = log2 odds(c = 1|x)− log2 odds(c = 1|x\Ai)

When we classify this instance with the model from Fig. 1, it ends in the bottom left-
hand leaf classified to class 1 with (0,4) as the distribution of the instances. If we
estimate probabilities with relative frequency, then p(c = 1|x) = 1. To get explanations
we have to compute also p(c = 1|x\Ai) for each attribute i using (6). For A1 its values
0 and 1 have equal probabilities 0.5 and we get p(c = 1|x\A1) =

= 0.5 · p(c = 1|(0,0,0,1))+0.5 · p(c = 1|(1,0,0,1))
= 0.5 ·0+0.5 ·1 = 0.5

For this we had to classify also the instance (0,0,0,1) (A1 with value 0), which ended
in the top left-hand side leaf with distribution (8,0), giving p(c = 1|(0,0,0,1)) = 0.
Using the Laplace correction with n = 16 we finally get explanation for A1:

WE1(c = 1|x) = log2 odds
1 ·16+1

16+2
− log2 odds

0.5 ·16+1
16+2

= log2

17
18
1
18

− log2

9
18
9
18

= 4.09−0 = 4.09

6



A1=0

0
8, 0

yes

A2 = A3

no

1
0, 4

yes

0
4, 0

no

Figure 1: A decision tree for the problem C = A1 ∧ (A2 ≡ A3). In the leaves (square
nodes) below the predicted class values the distributions of class values are given.

meaning that in the given model A1 positively influences the class 1. If we compute the
explanation for class 0, we get the complementary result:

WE1(c = 0|x) = log2 odds
0 ·16+1

16+2
− log2 odds

0.5 ·16+1
16+2

= −4.09,

indicating that A1 negatively affects the class 0. For explanation with information dif-
ference (2) we get 0.92 and -3.17 for classes 1 and 0, respectively (note the asymmetry).
For difference of probabilities (4) we get 0.5 and -0.5, respectively.

For explanation of A2 we have to compute

WE2(c = 1|x) = log2 odds(c = 1|x)− log2 odds(c = 1|x\A2)

To get p(c = 1|x\A2) we classify (1,1,0,1), getting p(c = 1|(1,1,0,1)) = 0 and p(c =
1|x\A2) =

= 0.5 · p(c = 1|(1,0,0,1))+0.5 · p(c = 1|(1,1,0,1))
= 0.5 ·1+0.5 ·0 = 0.5

We get WE2(c = 1|x) = 4.09, indicating positive (and equivalent to A1) influence of A2
on class 1 in this model.

While A3 is identical to A2, for A4 which is left out from the model, we get the same
classification for its values 0 and 1, giving p(c = 1|x) = p(c = 1|x\A4) = 1. Finally we
get WE4(c = 1|x) = 0, an indication of irrelevance.
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For another instance we would get different explanation. For example, if x=(0,1,1,0),
the explanations for class 1 for (A1,A2,A3,A4) are (−4.09,0.0,0.0,0.0). The complete
list of explanations for decision tree from Fig. 1, the weight of evidence and class 1, is
provided in Table 2.

It is interesting that for some instances with A1 = 0 and A2 6= A3, e.g., (0,0,1,0),
the explanations for all the attributes are 0. The reason for this is, that if we change
the value of any attribute, the classification will remain the same, either in the top left-
hand side, or the bottom right-hand side leaf. Note that this is due to the following
concept: “if A1 = 0 or A2 6= A3 then C = 0”. This is the main weaknesses of our
approach. Namely, the proposed methodology is not able to correctly evaluate the
utility of attributes’ values in instances where the change in more than one attribute
value at once is needed to affect the predicted value. This problem can be overcome
only by an extensive search of pairs, triples, etc. of attribute values. The exhaustive
search is of course unfeasible and a heuristic search reduction is necessary (see the
further work in Section 6).

Table 2: The explanations for class 1 for the decision tree from Fig. 1 using the weight
of evidence.

instance x explanations WEi(c = 1|x)
A1 A2 A3 A4 WE1 WE2 WE3 WE4
0 0 0 0 -4.09 0.00 0.00 0.00
0 0 0 1 -4.09 0.00 0.00 0.00
0 0 1 0 0.00 0.00 0.00 0.00
0 0 1 1 0.00 0.00 0.00 0.00
0 1 0 0 0.00 0.00 0.00 0.00
0 1 0 1 0.00 0.00 0.00 0.00
0 1 1 0 -4.09 0.00 0.00 0.00
0 1 1 1 -4.09 0.00 0.00 0.00
1 0 0 0 4.09 4.09 4.09 0.00
1 0 0 1 4.09 4.09 4.09 0.00
1 0 1 0 0.00 -4.09 -4.09 0.00
1 0 1 1 0.00 -4.09 -4.09 0.00
1 1 0 0 0.00 -4.09 -4.09 0.00
1 1 0 1 0.00 -4.09 -4.09 0.00
1 1 1 0 4.09 4.09 4.09 0.00
1 1 1 1 4.09 4.09 4.09 0.00

From our example we see some practical properties of the explanations:

1. model dependency: explanations express decision process taking place inside
the model, so if the model is wrong for a given problem, explanation will reflect
that and will be correct for the model, therefore wrong for the problem;

2. instance dependency: different instances are predicted differently, so the expla-
nations will also be different;
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3. class dependency: explanations for different classes are different, different at-
tributes may have different influence on different classes (for two class problems,
the effect is complementary);

4. capability to detect strong conditional dependencies: if the model captures strong
conditional dependency (e.g., equivalence relation in Fig. 1), the explanations
will also reflect that;

5. inability to detect and correctly evaluate the utility of attributes’ values in in-
stances where the change in more than one attribute value at once is needed to
affect the predicted value. To overcome this problem one can perform a search
over the combinations of attribute values but this is a matter of further work.

6. dependency on the type of the difference evaluation: we get different scores for
(2), (3), and (4). While the sign of the explanations is equal for all three types,
the size and the ratio between them is not. There is no single best way, each has
some advantages and some disadvantages.

3 Visualization
To make our explanation method practical we have developed a visualization method
called explainVis, which we demonstrate on the well-known Titanic data set. The
learning task is to predict the survival of a passenger in the disaster of the Titanic ship.
The three attributes report the traveling class (first, second, third, crew), age (adult or
child), and gender of the passenger. Altogether there are 2201 instances, of which
we randomly selected 50% for learning. Fig. 2 shows explanations for NB and SVM
methods for one of the first class, adult, male passengers.

We show information differences (2) on the horizontal axis. Weight of evidence
and difference of probabilities produce similar graphs and explanations, but on a dif-
ferent scale. The vertical axis contains names of the attributes on the left-hand side
and their values for the chosen instance on the right-hand side. The class probability
p(y|x) returned by the method for the given instance x is reported on the top. The
length of the thicker bars correspond to the influence of the given attribute values in
the model expressed as (2). Positive information difference is given on the right-hand
side and negative information difference is on the left-hand side. Thinner bars above
the explanation bars indicate the average value of the information difference over all
the training instances for the corresponding attribute value. Their purpose is to show
trends of particular attributes’ values. By comparing the full- and half-height bars the
user gets an impression what is the ”usual effect” of particular instance values.

For the given instance we observe that in the NB model “status = first” speaks
strongly in favor of survival and being male strongly against it, while being adult has
a tiny negative influence. Exact probabilities are displayed next to each bar. Thinner
average bars mostly agree with that (being male is on average even more dangerous
than in this case). The SVM model is more pessimistic about survival of the particular
person, giving only 22% chances of survival (NB: 50%). In classification of this case it
uses only sex and age attributes which both speak against survival. On average the first
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Data set: titanic;  model: naive Bayes
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Data set: titanic;  model: SVM
p(survived=yes|x) = 0.22;  true survived=yes

Figure 2: Explanation of NB and SVM models for one of the first class, adult, male
passengers in Titanic data set. Explanations for particular instance are depicted with
dark bars. Average positive and negative explanations for given attributes’ values are
presented with light shaded half-height bars above them.

class status has positive impact, adult a tiny negative one, and male a strong negative
one.

While in our simple example we present all the attributes, for domains with many
attributes we introduce a threshold parameter and only attributes with sufficient impact
are displayed. In some application domains (for example in medicine) experts inter-
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pret similar graphs as points in favor/against the decision. There it is expected that
a total sum of points will be 1 (or 100). Such normalization is also an option in our
visualization tool.

To get a more general view of the model we can use explanations for the training
data and visualize the averages in a summary form, which shows importance of each
feature and its value. One has to be aware that there is no single best knowledge rep-
resentation and there are many different opinions of which approach and visualization
is better. We believe that averaging the explanations over the training data and visu-
alization with a sort of evidence for/against is useful and informative. An example of
such visualizations for titanic data set are presented in Fig. 3. On top we see model
explanation for NB and on bottom there is explanation of ANN.

In each model explanation graph on the vertical axis all the attributes and their
values are listed (each attribute and its values separated by dashed lines). An average
negative and positive information difference is presented with the horizontal bar. For
attributes (a darker shade bar) an average effect of all its values is given. For both NB
and ANN sex plays the most important role, following by status and age. The attributes’
values give more precise picture. Both models roughly agree that male, adult, and third
class have a negative effect on survival. Also they agree that female, child and first
class have a positive effect, but they disagree for second class and crew. NB sees crew
as a negative indication of survival, while in neural network it has a slightly positive
effect. Second class is a positive indicator for NB, while in ANN it plays double role:
a slight positive or a much stronger negative one.

4 Closeness to the model
How can we evaluate explanations when there is no objective measure defined for it?
While our approach is practically useful and ”makes sense” for the algorithms and data
we have investigated, in this Section we also show that the explanations are close to the
model: the better the model captures the properties of the problem, the closer are the
obtained explanations to the ”correct explanations”.

Our evaluation scenario includes five different learning algorithms: NB, decision
trees (DT), nearest neighbor (kNN), SVM and ANN. We have included decision trees
in this evaluation because the learned structure of the tree already provides explanation,
and we want to compare our method with it. We constructed several artificial problems.
Each problem is tailored to the abilities of one of the learning algorithms and rather
difficult for the others. The labels of the instances in these problems can be explained
by their attribute values in a clear and unambiguous way and we can therefore talk
about correct explanation for each instance. We want to show that the explanations
of the best model for the given problem are closer to the correct explanations than the
explanations of other models. For this purpose we define the distance between correct
explanation and the explanation given by the model. We use Euclidean distance over
all the attributes of the explanations of prediction differences (1):

dexp(x) =

(
a

∑
i=1

(
1
2
(

trueExpli(x)
∑a

i=1 |trueExpli(x)|
− predDiffi(x)

∑a
i=1 |predDiffi(x)|

)
)2

) 1
2

(7)
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model: neural network

Figure 3: Model explanation of the NB (left-hand side) and ANN (right-hand side) on
the Titanic data set. Light bars are average explanation for attributes’ values and dark
bars are averages (separately for positive and negative scores) over all values of each
attribute.

Here trueExpli(x) represents the ”true explanation” weight of the contribution of
the attribute Ai to the prediction of the instance x. For an attribute Ai the trueExpli(x)
and predDiffi(x) can be either positive (if the attribute’s value supports the selected
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class) or negative (if the attribute’s value supports some other class). We want all the
instances to be equally represented so the absolute values of the model’s explanations
are normalized to 1 for each instance: we divide the trueExpli(x) and predDiffi(x) with
the sum of their respective absolute values, and multiply them by 1

2 .
Let dexp be an average of (7) over all the testing instances, than this is an indicator

of how close the model’s explanations are to the true explanations.
Below we report results for the weight of evidence (predDiffi(x) is replaced by

the weight of evidence WEi(x) (3) in the distance (7)). Information difference (2)
and difference of probabilities (4) produce similar results. All the explanations are
computed for the class 1 in each problem domain. The data sets used are:

condInd The class value is a boolean variable with 50% probability of 1. The four
important conditionally independent attributes have the same value as class in
90, 80, 70 and 60% of the cases. There are also 4 attributes unrelated to the
class (random) in this data set. Because of conditionally independent attributes
the problem suits NB method. The correct explanation (with sum normalized to
1) would assign 0.4, 0.3, 0.2, and 0.1 to important attributes and 0 to unrelated
ones.

xor We generated a data set with three important attributes describing a parity problem
of order 3. We added noise to the class value by reverting it in 10% of the cases.
There are also 3 attributes unrelated to the class in this data set. The problem
can be best captured by a decision tree, where each path from the root to the leaf
contains test on both important attributes. The true explanation assigns 0.333 to
each of the important attributes and 0 to unrelated ones.

groups Two important attributes I1 and I2 and class are visualized in Fig. 4 (values are
scattered around group centers, which define class values). We added also two
attributes unrelated to the class. Instances with class values 0, 1, and 2 are repre-
sented with circles, triangles and lines, respectively. The true explanation assigns
0.5 to each important attribute and 0 to unrelated ones. The kNN algorithm is
the most appropriate for this problem.

cross This problem with two important attributes I1 and I2 is visualized in Fig. 5. The
class value 1 (triangles) is assigned to instances where (I1− 0.5)(I2− 0.5) > 0.
We also added 4 attributes unrelated to the class. The true explanation assigns
0.5 to each of the important attributes and 0 to unrelated ones. The SVM with
polynomial kernel of order 2 is best suited for this problem as it can linearly
separate the instances.

chess Two important attributes I1 and I2 and class are visualized in Fig. 6. We have
a 4× 4 chessboard, with circles and triangles representing class value 0 and 1,
respectively. We added also two attributes unrelated to the class. The true expla-
nation assigns 0.5 to each important attribute and 0 to unrelated ones. The ANN
algorithm is the most appropriate for this problem.

For each data set we generated 1000 instances for training and another 1000 for test-
ing of explanations. Cross-validation and other sampling techniques are not necessary
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Figure 4: Visualization of two important attributes in the groups data set. Circles,
triangles, and lines represent class values 0, 1, and 2.
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Figure 5: Visualization of two important attributes in cross data set. Class values 0 and
1 are visualized as circles and triangles, respectively.

in our case. For computation of p(y|x\Ai) in explanations we used (6)3. For numeri-

3For NB using (6) is not necessary as p(y|x\Ai) can be obtained by excluding Ai from the computation.
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Figure 6: Visualization of two important attributes in chess data set. Class values 0 and
1 are visualized as circles and triangles, respectively.

cal attributes we used discretization to calculate (6). We used the prior knowledge of
each toy problem and selected the right number of intervals. We used discretization
with equal width of intervals (3 intervals for groups, 2 for cross, and 4 intervals for
attributes in chess data set).

Table 3 presents for each of the data sets and each method its accuracy (acc), area
under the ROC curve (AUC) and the average distance to the true explanation (dexp).
Other settings of the parameters could give better accuracy and AUC score for some
of the models (especially for SVM and ANN), but it is not our aim to compare the
classifiers’ accuracies but rather to test closeness of the explanations to the models.

Note that for each data set (in one column) the most suitable algorithm achieves
the highest accuracy and AUC score. It also has the lowest average distance to the true
explanation (in bold type). This is a clear confirmation that our explanations are closely
following the models; if any of the above model captures the underlying structure of
the problem, the explanations reflect that. It is also a confirmation of suitability for a
wide variety of different models.

4.1 Redundant attributes
Machine learning algorithms use different strategies when dealing with redundant and
highly correlated attributes. This issue is mostly tackled through feature subset se-
lection and feature weighting [6], which keeps only useful features and also tries to
eliminate redundant features. If redundant features are not eliminated before learning,

However, as shown in the Appendix, the two approaches are equivalent
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Table 3: Performance and average distances to the true explanation for five classifica-
tion methods on five data sets.

method condInd xor group cross chess
acc 0.90 0.51 0.35 0.50 0.50

NB AUC 0.96 0.51 0.50 0.50 0.50
dexp 0.06 0.39 0.46 0.45 0.47
acc 0.89 0.90 0.33 0.52 0.52

DT AUC 0.95 0.90 0.50 0.56 0.50
dexp 0.17 0.01 0.35 0.33 0.35
acc 0.86 0.90 0.99 0.55 0.71

kNN AUC 0.93 0.90 0.83 0.59 0.78
dexp 0.16 0.10 0.08 0.40 0.33
acc 0.89 0.58 0.66 0.98 0.53

SVM AUC 0.95 0.52 0.76 0.99 0.52
dexp 0.12 0.39 0.22 0.04 0.42
acc 0.89 0.90 0.98 0.95 0.84

ANN AUC 0.92 0.90 0.82 0.98 0.90
dexp 0.27 0.09 0.09 0.08 0.16

they may have undesirable effects on the learned models. A particular strategy for
dealing with redundant attributes used by a model is reflected in explanations. Below
we discuss this for extreme case when we have two or more identical attributes.

The NB classification is strongly affected by identical attributes, as their contribu-
tions are repeated (multiplied). The explanation gives all copies of the same attribute
equal utility. The decision tree selects one copy of the attribute in one path from root
to the leaf and ignores the others. Here the explanation gives a positive utility to the
former attribute and zero to the others. The kNN is sensitive to the distance, and as
the attribute space is deformed by additional copies of attributes, the classification per-
formance gradually deteriorates and this is also reflected in the explanations. SVM
and ANN are also sensitive to redundant attributes, but to a lesser extent. How this
affects explanations is instance dependent, as certain parts of problem space may be
treated differently by the model. We illustrate this on groups problem (see Fig. 4) with
two most suitable models for it, namely, kNN and ANN. We duplicated both impor-
tant attributes, I1 and I2. For a particular instance from class 1 (triangles) we show
explanations on Fig. 7.

Dark-shaded bars present explanations for the selected instance. Light-shaded bars
illustrate average positive and negative explanations of instances from the same value
interval. The kNN (on top) assigns both copies of important attributes the same utility.
ANN (on bottom) also assigns the same utility to both copies of I2, but uses almost
no information from the second copy of I1, which results in different instance explana-
tion for I1 and I2. Average explanations show a more general picture of this data set:
both copies of important attributes play important role in kNN and ANN. Unimportant
attributes R1 and R2 affect kNN model much stronger than ANN.

The same thing is confirmed with visualization of model level explanations on Fig.
8. As attributes are numerical in this data set, the explanations are averaged over inter-
vals of values. High scores are assigned to important attributes and their values, and
much lower to unimportant ones. We see that kNN is affected by redundant attributes

16



weight of evidence

at
tr

ib
ut

es

−10 −8 −6 −4 −2 0 2 4 6 8 10

I1
_1

I1
_2

I2
_1

I2
_2

R
1

R
2

0.
45

5
0.

45
5

0.
13

7
0.

13
7

0.
18

5
0.

90
9

Data set: modGroup2;  model: knn
p(class=1|x) = 1.00;  true class=1

weight of evidence

at
tr

ib
ut

es

−8 −6 −4 −2 0 2 4 6 8

I1
_1

I1
_2

I2
_1

I2
_2

R
1

R
2

0.
45

5
0.

45
5

0.
13

7
0.

13
7

0.
18

5
0.

90
9

Data set: modGroup2;  model: neural network
p(class=1|x) = 1.00;  true class=1

Figure 7: Explanation for one of the instances in the groups data set with duplicated
important attributes. The instance is labeled with class 1 (triangle). On the top expla-
nations are for kNN model and for ANN they are on the bottom.

much more than ANN, as the explanation scores for R1 and R2 are much larger. The
reason for that is in distortion of distances caused by multiple copies of attributes.
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Figure 8: Model explanations for kNN (top) and ANN (bottom) on the groups data
set with duplicated important attributes. As attributes are numerical, explanations are
averaged and presented for intervals.

4.2 Notes on Use
Explanations for numerical attributes are somewhat sensitive to discretization used for
computation of p(y|x\Ai) in (6). For example, when we used 3 intervals (instead of 2)
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in the cross data set the average distance for SVM and ANN increased from 0.04 and
0.08 to 0.05 and 0.12, showing a slight decrease in the quality of explanation. NB, DT,
and kNN have approximately the same (poor) performance with both discretizations.
Indeed, if discretization is allowed to blur the information of an attribute, this is likely
to reduce the quality of the explanation. If there is no other prior knowledge available,
our advice is to use more fine grained discretization. With more intervals there is less
opportunity to cover up the attribute’s information. For example, with 15 intervals in
the cross data set the average distance of SVM and ANN is again back at 0.04 and 0.08.

Note also that the computation of p(y|x\Ai) with (6) is not the only way. For NB it
is better to drop Ai from the computation and for neural networks which usually encode
discrete attributes as several binary inputs we can just simulate an empty input. Other
models may have their particular solutions, simpler than (6). One such solution for
probabilistic radial basis function networks which exploits a marginalization property
of the Gaussian distribution is presented in [7].

It may be the case that for some poorly calibrated classifier the probabilities p(y|x)
and p(y|x\Ai) computed in classification are disproportionate to their true probability.
Our explanation method which relies on this differences could be disproportionate in
that case as well. We haven’t observed that in any of our experiments, but this is a
potential problem and can be prevented by calibration of the classifiers. As reported
in [8] boosting and SVM are particularly prone to this defect, while neural networks
are already perfectly calibrated.

Our experience in classification shows that all three interpretations: information
difference (2), weight of evidence (3), and difference of probabilities (4) perform quite
similarly across different problems, especially if we normalize the effects to 1 or 100
as explained in Section 3. A notable exception are the problems where the attributes
are conditionally independent (as in condInd data set); for such problems the weight of
evidence gives explanations which are proportional to their true effect, while informa-
tion difference (which uses logarithms directly) gives nonlinear explanations. For this
reason we recommend weight of evidence as a default choice.

All the learning algorithms used are from the R Project (http://www.r-project.org/),
packages e1071, nnet, kknn, RWeka, and CORElearn. The sources code for the gener-
ation of probabilities in classification, the data sets, as well as the visualization module
can be obtained from the authors.

5 Related Work
Explanation of prediction is straightforward for symbolic models such as decision trees,
decision rules and inductive logic programming, where the model itself gives an overall
transparent knowledge in a symbolic form. Therefore, to obtain the explanation of a
prediction, one simply has to read the corresponding rule in the model. Whether such
explanation is comprehensive in the case of large trees and rule sets is questionable.

For non-symbolic models there is no such possibility. Techniques for extracting
explicit (if-then) rules from black box models (such as ANN) are described in [9–12].
In [13] a black box model is approximated with a symbolic model, such as decision
tree, by sampling additional training instances from the model. Extraction of fuzzy
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rules from trained ANN using interval propagation is suggested in [14], while an ap-
proach which can provably extract sound and also nonmonotonic rules was presented
in [15]. In [9] a search-based method has been proposed suitable for ANN with binary
units only, while application of the method proposed in [11] requires discretization of
the hidden unit activations and pruning of the ANN architecture. Främling [16] ex-
plains neural network behavior by using contextual importance and utility of attributes
which are defined as the range of changes of attribute and class values. Importance
and utility can be efficiently computed only in a special INKA network. Our approach
is based on marginalization and can be efficiently computed for any probabilistic clas-
sifier. For a more complete review of knowledge extraction methods from ANN we
refer the reader to [17], where taxonomy and criteria for evaluation of rule extraction
methods from ANN are introduced, and [18], which concentrates mostly on finite-state
machines extracted from recurrent ANN but covers also other approaches.

Some non-symbolic models enable the explanation of their decisions in the form of
weights associated with each attribute. A weight can be interpreted as the proportion of
the information contributed by the corresponding attribute value to the final prediction.
Such explanations can be easily visualized. For logistic regression a well known ap-
proach is to use nomograms, first proposed in [19]. In [20] nomograms were developed
for SVM, but they work only for a restricted class of kernels and cannot be used for
general non-linear kernels.

SVM can also be visualized using projections into lower dimensional subspaces
[21, 22], or using self-organizing maps from unsupervised learning [23]. These meth-
ods concentrate on visualization of separating hyperplane and decision surface. The
visualization of individual instances to lower dimensional projections and their posi-
tion relative to decision surface can be considered a sort of explanation.

The naive Bayesian classifier is able to explain its decisions as the sum of infor-
mation differences [24]. A straightforward visualization of NB was used in [25] while
in [26] nomograms were developed for visualization of NB decisions. We generalize
the NB list of information differences to a list of attribute weights for any prediction
model. For classification we propose three variants of weights and elaborate in more
detail the weights based on information differences and the weight of evidence.

In ExplainD framework [27] the weight of evidence and visualizations similar to
ours are used, but the explanation approach is limited to (linear) additive models, while
ours can be used for all probabilistic models and is not restricted to the weight of
evidence.

In the tools accompanying his Random Forests algorithm [28], Breiman has used
bootstrap sampling and random permutation of values to visualize the importance of
features, outliers, and also the importance of features for prediction of individual in-
stances. Due to specifics of the techniques used, the approach is limited to Random
Forests.

Madigan et al. [29] in their belief networks use each (binary or multivalued discrete)
attribute as a node in the graph. By computing ”evidence flows” in the network it is
possible to explain its decisions.

A marginal effect of an attribute is defined as the partial derivative of the event
probability with respect to the attribute of interest. A more direct measure is the change
in predicted probability for a unit change in the attribute. Marginal effects are used
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for explanation of specific models where the marginal distribution can be estimated
e.g., in logistic regression [30]. They are used also to determine causal relationships,
for example, in marginal structural models [31]. These models expect user’s input
of suspected dependencies (confounders) and do not deal with explanations on the
instance level.

6 Conclusions
We present an approach to explanation of predictions, which generates explanations of
predictions for individual instances. The presented approach is general and can be used
with any classification method that outputs class probabilities. The method is based on
the decomposition of model’s predictions (marginal prediction). These decompositions
can be interpreted as local gradients and are used to identify the individual contribution
of each attribute. We have empirically shown that proposed explanations closely follow
the models for five different classification methods. This is shown in an experiment
confirming that explanations of better models correctly reflect the learned concept.
With the presented explainVis visualization method we see effects of various features
on instance prediction. The visualization of average explanations gives information
about attributes and their values (intervals for numeric attributes) on the level of the
model. Both types of graphs enables comparison of different prediction methods.

Currently we are using the presented techniques to generate explanations in re-
gression and also to go beyond the model explanation to the domain explanation. In
particular, we are interested in the decomposition of predictions through sequential
generation of models. Another issue for further work is the problem with explanation
of instances where the change in more than one attribute value at once is needed to af-
fect the predicted value, as mentioned in Section 2.3. Namely, our methodology is not
able to correctly evaluate the utility of attribute values that appear in such instances.
This problem can be overcome only by an extensive search of pairs, triples, etc. of
attribute values. The exhaustive search is of course unfeasible and a heuristic search
reduction is necessary. The search shall probably be combined with the sequential
generation of models, i.e. models that use different subsets of attributes.

Appendix
We prove that for NB classifier Eq. (6) is sound, i.e., it is equivalent to excluding
attribute Ai from the computation.

NB calculates the probability of class y for a given instance x = (A1 = ak1 , ...,Aa =
aka) with the following formula, where it assumes the conditional independence of
attributes given the class:

p(y|x) = p(y)
a

∏
j=1

p(A j = ak j |y)
p(A j = ak j)

(8)
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When attribute Ai has unknown value, it is excluded from the computation:

p(y|x\Ai) = p(y)∏
j 6=i

p(A j = ak j |y)
p(A j = ak j)

(9)

On the other hand, if we replace the value aki of attribute Ai with value as, we get:

p(y|x← Ai = as) = p(y)
p(Ai = as|y)
p(Ai = as)

∏
j 6=i

p(A j = ak j |y)
p(A j = ak j)

(10)

Therefore we have:

p(Ai = as)p(y|x← Ai = as) =

= p(y)p(Ai = as|y)∏
j 6=i

p(A j = ak j |y)
p(A j = ak j)

= p(Ai = as|y)p(y|x\Ai)

and finally we get:

mi

∑
s=1

p(Ai = as)p(y|x← Ai = as) = (11)

= p(y|x\Ai)
mi

∑
s=1

p(Ai = as|y)

= p(y|x\Ai)

¤
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