
Explaining Counterexamples Using Causality�

Ilan Beer1, Shoham Ben-David2, Hana Chockler1, Avigail Orni1, and Richard Trefler2

1 IBM Research
Mount Carmel, Haifa 31905, Israel

{beer,hanac,ornia}@il.ibm.com
2 David R. Cheriton School of Computer Science
University of Waterloo, Waterloo, Ontario, Canada
{s3bendav,trefler}@cs.uwaterloo.ca

Abstract. When a model does not satisfy a given specification, a counterexam-
ple is produced by the model checker to demonstrate the failure. A user must
then examine the counterexample trace, in order to visually identify the failure
that it demonstrates. If the trace is long, or the specification is complex, finding
the failure in the trace becomes a non-trivial task. In this paper, we address the
problem of analyzing a counterexample trace and highlighting the failure that it
demonstrates. Using the notion of causality, introduced by Halpern and Pearl, we
formally define a set of causes for the failure of the specification on the given
counterexample trace. These causes are marked as red dots and presented to the
user as a visual explanation of the failure. We study the complexity of computing
the exact set of causes, and provide a polynomial-time algorithm that approxi-
mates it. This algorithm is implemented as a feature in the IBM formal verifica-
tion platform RuleBase PE, where these visual explanations are an integral part
of every counterexample trace. Our approach is independent of the tool that pro-
duced the counterexample, and can be applied as a light-weight external layer to
any model checking tool, or used to explain simulation traces.

1 Introduction

Model checking [9,27] is a method for verifying that a finite-state concurrent system (a
model) is correct with respect to a given specification. An important feature of model
checking tools is their ability to provide, when the specification does not hold in a
model, a counterexample [10]: a trace that demonstrates the failure of the specifica-
tion in the model. This allows the user to analyze the failure, understand its source(s),
and fix the specification or model accordingly. In many cases, however, the task of un-
derstanding the counterexample is challenging, and may require a significant manual
effort.

There are different aspects of understanding a counterexample. In recent years, the
process of finding the source of a bug has attracted significant attention. Many works
have approached this problem (see [12,24,14,3,19,20,6,29,32,18,30,31] for a partial
list), addressing the question of finding the root cause of the failure in the model, and

� This work was supported in part by the Natural Sciences and Engineering Research Council
of Canada.

A. Bouajjani and O. Maler (Eds.): CAV 2009, LNCS 5643, pp. 94–108, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Explaining Counterexamples Using Causality 95

proposing automatic ways to extract more information about the model, to ease the de-
bugging procedure. Naturally, the algorithms proposed in the above mentioned works
involve implementation in a specific tool (for example, the BDD procedure of [24]
would not work for a SAT based model checker like those of [19,3]).

We address a different, more basic aspect of understanding a counterexample: the
task of finding the failure in the trace itself. To motivate our approach, consider a verifi-
cation engineer, who is formally verifying a hardware design written by a logic designer.
The verification engineer writes a specification — a temporal logic formula — and runs
a model checker, in order to check the formula on the design. If the formula fails on the
design-under-test (DUT), a counterexample trace is produced and displayed in a trace
viewer. The verification engineer does not attempt to debug the DUT implementation
(since that is the responsibility of the the logic designer who wrote it). Her goal is to
look for some basic information about the manner in which the formula fails on the
specific trace. For example, if the formula is a safety property, the first question is when
the formula fails (at what cycle in the trace). If the formula is a complex combination
of several conditions, she needs to know which of these conditions has failed. These
basic questions are prerequisites to deeper investigations of the failure.

Answering these questions can be done without any knowledge about the inner work-
ings of the DUT, relying only on the given counterexample and the failed formula.
Moreover, even in the given trace, only the signals that appear in the formula are rel-
evant for these basic questions, and any other signals may be ignored. If the failed
specification is simple enough, the preliminary analysis can be done manually without
much effort. For example, if the failed specification is ERROR never occurs, then the
user can visually scan the behavior of the signal ERROR in the trace, and find a time
point at which ERROR holds, i.e., a place where the Boolean invariant ¬ERROR fails. In
practice, however, the Boolean invariant in the specification may be complex, involving
multiple signals and Boolean operations between them, in which case the visual scan
becomes non-trivial. If the specification involves temporal operators (such as an LTL
formula with operators X or U), then the visual scan becomes even more difficult,
since relations between several trace cycles must be considered. This is the point where
trace explanations come into play. Explanations show the user the points in the trace
that are relevant for the failure, allowing her to focus on these points and ignore other
parts of the trace. They are displayed visually in a trace viewer.

We present a method and a tool for explaining the trace itself, without involving
the model from which it was extracted. Thus, our approach has the advantage of being
light-weight (no size problems are involved, as only one trace is considered at a time)
as well as independent: it can be added as an external layer to any model-checking tool,
or applied to explanation of simulation traces.

An explanation of a counterexample deals with the question: what values on the
trace cause it to falsify the specification? Thus, we face the problem of causality. The
philosophy literature, going back to Hume [23], has long been struggling with the prob-
lem of what it means for one event to cause another. We relate the formal definition of
causality of Halpern and Pearl [22] to explanations of counterexamples. The definition
of causality used in [22], like other definitions of causality in the philosophy literature,
is based on counterfactual dependence. Event A is said to be a cause of event B if,

96 I. Beer et al.

had A not happened (this is the counterfactual condition, since A did in fact happen)
then B would not have happened. Unfortunately, this definition does not capture all
the subtleties involved with causality. The following story, presented by Hall in [21],
demonstrates some of the difficulties in this definition. Suppose that Suzy and Billy
both pick up rocks and throw them at a bottle. Suzy’s rock gets there first, shattering the
bottle. Since both throws are perfectly accurate, Billy’s would have shattered the bottle
had it not been preempted by Suzy’s throw. Thus, according to the counterfactual con-
dition, Suzy’s throw is not a cause for shattering the bottle (because if Suzy wouldn’t
have thrown her rock, the bottle would have been shattered by Billy’s throw). Halpern
and Pearl deal with this subtlety by, roughly speaking, takingA to be a cause of B if B
counterfactually depends on A under some contingency. For example, Suzy’s throw is
a cause of the bottle shattering because the bottle shattering counterfactually depends
on Suzy’s throw, under the contingency that Billy doesn’t throw.

We adapt the causality definition of Halpern and Pearl from [22] to the analysis of a
counterexample trace π with respect to a temporal logic formula ϕ. We view a trace as
a matrix of values, where an entry (i, j) corresponds to the value of variable i at time
j. We look for those entries in the matrix that are causes for the first failure of ϕ on
π, according to the definition in [22]. To demonstrate our approach, let us consider the
following example.

Example. A transaction begins when START is asserted, and ends when END is as-
serted. Some unbounded number of time units later, the signal STATUS VALID is
asserted. Our specification requires that a new transaction must not begin before the
STATUS VALID of the previous transaction has arrived and READY is indicated1. A
counterexample for this specification may look like the computation path π shown in
Fig. 1.

Fig. 1. A counterexample with explanations

In this example, the failure of the specification on the trace is not trivially evident.
Our explanations, displayed as red dots2, attract the user’s attention to the relevant
places, to help in identifying the failure. Note that each dot r is a cause of the fail-
ure of ϕ on the trace: switching the value of r would, under some contingency on the

1 The precise specification is slightly more complex, and can be written in LTL as G((¬START ∧
¬STATUS VALID ∧ END) → X[¬START U (STATUS VALID ∧ READY)]).

2 We refer to these explanations as red dots, since this is their characteristic color in Rule-
Base PE.

Explaining Counterexamples Using Causality 97

other values, change the value of ϕ on π. For example, if we switch the value of START
in state 9 from 1 to 0, ϕ would not fail on the given trace anymore (in this case, no con-
tingency on the other values is needed). Thus the matrix entry of the variable START at
time 9 is indicated as a cause.

We show that the complexity of detecting an exact causal set is NP-complete, based
on the complexity result for causality in binary models (see [17]). We then present an
over-approximation algorithm whose complexity is linear in the size of the formula and
in the length of the trace. The implementation of this algorithm is a feature in IBM’s
formal verification platform RuleBase PE [28]. We demonstrate that it produces the
exact causal set for practical examples.

The rest of the paper is organized as follows. In Section 2 we give definitions.
Section 3 is the main section of the paper, where we define causality in counterexamples,
analyze the complexity of its computation and provide an efficient over-approximation
algorithm to compute a causal set. In Section 4 we discuss the implementation of our
algorithm on top of RuleBase PE. We show the graphical visualization used in practice,
and present experimental results, demonstrating the usefulness of the method. Section 5
discusses related work, and Section 6 concludes the paper. Due to the lack of space,
proofs are omitted from this version, and appear in the technical report [4].

2 Preliminaries

Kripke Structures

Let V be a set of Boolean variables. A Kripke structure K over V is a tuple K =
(S, I,R, L) where S is a finite set of states, I ⊆ S is the set of initial states, R ⊆ S×S
is a transition relation that must be total, that is, for every state s ∈ S there is a state
s′ ∈ S such that R(s, s′). The labeling function L : S → 2V labels each state with the
set of variables true in that state. We say that π = s0, s1, ... is a path in K if s0 ∈ I
and ∀i, (si, si+1) ∈ R. We denote π[j..k] a sub-path of π, that starts at sj and ends at
state sk. The concatenation of a finite prefix π[0..k] with an infinite path ρ is denoted
(π[0..k]) · ρ. We sometimes use the term “signals” for variables and the term “traces”
for paths (as common in the terminology of hardware design).

Linear Temporal Logic (LTL)

Formulas of LTL are built from a set V of Boolean variables and constants true and
false using Boolean operators ¬, →, ∧ and ∨, and the temporal operators X, U ,W,
G,F (see [11] for the definition of LTL semantics). An occurrence of a sub-formula
ψ of ϕ is said to have a positive polarity if it appears in ϕ under an even number of
negations, and a negative polarity otherwise (note that an antecedent of an implication
is considered to be under negation).

3 Causality in Counterexamples

In this section, we define causality in counterexamples based on the definition of causal-
ity by Halpern and Pearl [22]. We demonstrate our definitions on several examples, dis-
cuss complexity of computing causality in counterexamples, and present a linear-time

98 I. Beer et al.

over-approximation algorithm for computing the set of causes. The original definition
of [22] can be found in the appendix.

3.1 Defining Causality in Counterexamples

A counterexample to an LTL formula ϕ in a Kripke structure K is a computation path
π = s0, s1, . . . such that π �|= ϕ. For a state si and a variable v, the labeling function
L of K maps the pair 〈si, v〉 to {0, 1} in a natural way: L(〈si, v〉) = 1 if v ∈ si, and 0
otherwise. For a pair 〈s, v〉 in π, we denote by 〈ŝ, v〉 the pair that is derived from 〈s, v〉
by switching the labeling of v in s. Let π be a path, s a state in π and v a variable in the
labeling function. We denote π〈ŝ,v〉 the path derived from π by switching the labeling
of v in s on π. This definition can be extended for a set of pairs A: we denote Â the set
{〈ŝ, v〉|〈s, v〉 ∈ A}. The path πÂ is then derived from π by switching the values of v in
s for all pairs 〈s, v〉 ∈ A. The definition below is needed in the sequel.

Definition 1 (Bottom value). For a Kripke structure K = (S, I,R, L), a path π in K ,
and a formula ϕ, a pair 〈s, v〉 is said to have a bottom value for ϕ in π, if, for at least
one of the occurrences of v in ϕ, L(〈s, v〉) = 0 and v has a positive polarity in ϕ, or
L(〈s, v〉) = 1 and v has a negative polarity in ϕ.

Note that while the value of a pair 〈s, v〉 depends on the computation path π only,
determining whether 〈s, v〉 has a bottom value depends also on the polarity of v in ϕ.
Thus, if v appears in multiple polarities in ϕ, then 〈s, v〉 has both a bottom value (with
respect to one of the occurrences) and a non-bottom value (with respect to a different
occurrence) for any state s.

Before we formally define causes in counterexamples we need to deal with one sub-
tlety: the value of ϕ on finite paths. While computation paths are infinite, it is often
possible to determine that π �|= ϕ after a finite prefix of the path. Thus, a counterexam-
ple produced by a model checker may demonstrate a finite execution path.

In this paper, we use the semantics of LTL model checking on truncated paths as
defined by Eisner et al. in [16]. The main advantage of this semantics is that it preserves
the complexity of LTL model checking. Since it is quite complicated to explain, instead
we present a simpler definition (due to [16]), which coincides with the definition of
Eisner et al. on almost all formulas.

Definition 2. Let π[0..k] be a finite path and ϕ an LTL formula. We say that:

1. The value of ϕ is true in π[0..k] (denoted π[0..k] |=f ϕ, where |=f stands for
“finitely models”) iff for all infinite computations ρ, we have π[0..k] · ρ |= ϕ;

2. The value of ϕ is false in π[0..k] (denoted π[0..k] |=/f ϕ, where |=/f stands for
“finitely falsifies”) iff for all infinite computations ρ, we have π[0..k] · ρ �|= ϕ;

3. The value of ϕ in π is unknown (denoted π[0..k] ? ϕ) iff there exist two infinite
computations ρ1 and ρ2 such that π[0..k] · ρ1 |= ϕ and π[0..k] · ρ2 �|= ϕ.

Let ϕ be an LTL formula that fails on an infinite path π = s0, s1, . . ., and let k be the

smallest index such that π[0..k] |=/f ϕ. If ϕ does not fail on any finite prefix of π, we
take k = ∞ (then π[0..∞] naturally stands for π, and we have π �|= ϕ). We can now
define the following.

Explaining Counterexamples Using Causality 99

Definition 3 (Criticality in counterexample traces). A pair 〈s, v〉 is critical for the

failure of ϕ on π[0..k] if π[0..k] |=/f ϕ, but either π〈ŝ,v〉[0..k] |=f ϕ or π〈ŝ,v〉[0..k] ? ϕ.

That is, switching the value of v in s changes the value of ϕ on π[0..k] (to either true
or unknown). As a simple example, consider the formula ϕ = Gp, on π = s0, s1, s2,

labeled p·p·¬p. Then, π[0..2] |=/f ϕ, and 〈s2, p〉 is critical for this failure, since switching
the value of p in state s2 changes the value of ϕ on π〈ŝ2,p〉 to unknown.

Definition 4 (Causality in counterexample traces). A pair 〈s, v〉 is a cause of the first

failure of ϕ on π[0..k] if k is the smallest index such that π[0..k] |=/f ϕ, and there exists
a set A of bottom-valued pairs, such that 〈s, v〉 �∈ A, and the following hold:

– πÂ[0..k] |=/f ϕ, and
– 〈s, v〉 is critical for the failure of ϕ on πÂ[0..k].

A pair 〈s, v〉 is defined to be a cause for the first failure of ϕ on π, if it can be made
critical for this failure by switching the values of some bottom-valued pairs. Note that
according to this definition, only bottom-valued pairs can be causes.

Note that a trace π may have more than one failure, as we demonstrate in the exam-
ples below. Our experience shows that the first failure is the most interesting one for the
user. Also, focusing on one failure naturally reduces the set of causes, and thus makes
it easier for the user to understand the explanation.

Examples

1. Consider ϕ1 = Gp and a path π1 = s0, s1, s2, s3, (s4)ω labeled as (p) · (p) · (¬p) ·
(¬p) · (p)ω . The shortest prefix of π1 on which ϕ1 fails is π1[0..2]. 〈s2, p〉 is critical
for the failure of ϕ on π1[0..2], because changing its value from 0 to 1 changes the
value of ϕ on π1[0..2] from false to unknown. Also, there are no other bottom-
valued pairs in π1[0..2], thus there are no other causes, which indeed meets our
intuition.

2. Consider ϕ2 = Fp and a path π2 = (s0)ω = (¬p)ω. The formula ϕ2 fails in π2,
yet it does not fail on any finite prefix of π2. Note that changing the value of any
〈si, p〉 for i ≥ 0 results in the satisfaction of ϕ on π, thus all pairs {〈si, p〉 : i ∈ IN}
are critical and hence are causes for the failure of ϕ2 on π2.

3. The following example demonstrates the difference between criticality and causal-
ity. Consider ϕ=G(a ∧ b ∧ c) and a path π3 = s0, s1, s2, . . . labeled as (∅)ω (see
Figure 2). The formula ϕ3 fails on s0, however, changing the value of any sig-
nal in one state does not change the value of ϕ3. There exists, however, a set A
of bottom-valued pairs whose change makes the value of a in s0 critical: A =
{〈s0, b〉, 〈s0, c〉}. Similarly, 〈s0, b〉 and 〈s0, c〉 are also causes.

3.2 Complexity of Computing Causality in Counterexamples

The complexity of computing causes for counterexamples follows from the complexity
of computing causality in binary causal models defined in [22] (see Section 2).

Lemma 5 . Computing the set of causes for falsification of a linear-time temporal spec-
ification on a single trace is NP-complete.

100 I. Beer et al.

Fig. 2. Counterexample traces

Proof Sketch. Informally, the proof of NP-hardness is based on the reduction from
computing causality in binary causal models to computing causality in counterexam-
ples. The problem of computing causality in binary causal models is NP-complete [17].
The reduction from binary causal models to Boolean circuits and from Boolean cir-
cuits to model-checking, shown in [8], is based on the automata-theoretic approach to
branching-time model checking ([25]), and proves that computing causality in model
checking of branching time specifications is NP-complete. On a single trace linear-time
and branching temporal logics coincide, and computing the causes for satisfaction is
easily reducible to computing the causes for falsification.

The proof of membership in NP is straightforward: given a path π and a formula ϕ
that is falsified on π, the number of pairs 〈s, v〉 is |ϕ| · |π|; for a pair 〈s, v〉, we can non-
deterministically choose a set A of bottom-valued pairs; checking whether changing L
on S makes 〈s, v〉 critical for the falsification of ϕ requires model-checking ϕ on the
modified π twice, and thus can be done in linear time.3 ��
The problem of computing the exact set of causes can be translated into a SAT problem
using the reduction from [17], with small changes due to the added semantics of satis-
fiability on finite paths. However, the natural usage of explanation of a counterexample
is in an interactive tool (and indeed this is the approach we use in our implementation),
and therefore the computation of causes should be done while the user is waiting. Thus,
it is important to make the algorithm as efficient as possible. We describe an efficient
approximation algorithm for computing the set of causes in Section 3.3, and its imple-
mentation results are shown in Section 4.

3.3 An Approximation Algorithm

The counterexamples we work with have a finite number of states. When representing
an infinite path, the counterexample will contain a loop indication, i.e., an indication
that the last state in the counterexample is equal to one of the earlier states.

Let ϕ be a formula, given in negation normal form, and let π[0..k] = s0, s1, ..., sk be
a non-empty counterexample for it, consisting of a finite number of states and a possible
loop indication.

We denote by π[i..k] the suffix of π[0..k] that starts at si. The procedure C be-
low produces C(π[i..k], ψ), the approximation of the set of causes for the failure of a

3 Note that the proof of membership in NP relies on model-checking of truncated paths having
the same complexity as model-checking of infinite paths [16].

Explaining Counterexamples Using Causality 101

sub-formula ψ on the suffix of π[0..k] that starts with si. We invoke the procedure C
with the arguments (π[0..k], ϕ) to produce the set of causes for the failure of ϕ on
π[0..k].

If the path π[0..k] has a loop indication, the invocation of C is preceded by a pre-
processing stage, in which we unwrap the loop |ϕ| + 1 times. This gives us a different
finite representation, π′[0..k′] (with k′ ≥ k), for the same infinite path4. We then exe-
cute C(π′[i..k′], ϕ), which returns a set of causes that are pairs in π′[0..k′]. These pairs
can then be (optionally) mapped back to pairs in the original representation π[0..k], by
shifting each index to its corresponding index in the first copy of the loop5.

During the computation ofC(π[i..k], ϕ), we use the auxiliary function val, that eval-
uates sub-formulas of ϕ on the given path. It returns 0 if the sub-formula fails on the
path and 1 otherwise. The computation of val is done in parallel with the computation
of the causality set, and relies on recursively computed causality sets for sub-formulas
of ϕ. The value of val is computed as follows:

– val(π[i..k], true) = 1
– val(π[i..k], false) = 0
– For any formula ϕ �∈ {true, false}, val(π[i..k], ϕ) = 1 iff C(π[i..k], ϕ) = ∅

Algorithm 6 (Causality Set). An over-approximated causality set C for π[i..k] and ψ
is computed as follows

– C(π[i..k], true) = C(π[i..k], false) = ∅
– C(π[i..k], p) =

{ {〈si, p〉} if p �∈ L(si)
∅ otherwise

– C(π[i..k],¬p) =

{ {〈si, p〉} if p ∈ L(si)
∅ otherwise

– C(π[i..k],Xϕ) =

{
C(π[i+ 1..k], ϕ) if i < k
∅ otherwise

– C(π[i..k], ϕ ∧ ψ) = C(π[i..k], ϕ) ∪ C(π[i..k], ψ)
– C(π[i..k], ϕ ∨ ψ) ={

C(π[i..k], ϕ) ∪ C(π[i..k], ψ) if val(π[i..k], ϕ) = 0 and val(π[i..k], ψ) = 0
∅ otherwise

– C(π[i..k],Gϕ) =⎧⎨
⎩
C(π[i..k], ϕ) if val(π[i..k], ϕ) = 0
C(π[i+ 1..k],Gϕ) if val(π[i..k], ϕ) = 1 and i < k and val(π[i..k],XGϕ) = 0
∅ otherwise

– C(π[i..k], [ϕUψ]) =⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

C(π[i..k], ψ) ∪ C(π[i..k], ϕ) if val(π[i..k], ϕ)=0 and val(π[i..k], ψ)=0
C(π[i..k], ψ) if val(π[i..k], ϕ)=1 and val(π[i..k], ψ)=0

and i = k
C(π[i..k], ψ) ∪ C(π[i+ 1..k], [ϕUψ]) if val(π[i..k], ϕ)=1 and val(π[i..k], ψ)=0

and i < k and val(π[i..k],X[ϕUψ]) = 0
∅ otherwise

4 It can be shown, by straightforward induction, that ϕ fails on the finite path with |ϕ| + 1
repetitions of the loop iff it fails on the infinite path.

5 This mapping is necessary for presenting the set of causes graphically on the original path
π[0..k].

102 I. Beer et al.

The procedure above recursively computes a set of causes for the given formula ϕ on
the suffix of a counterexample π[i..k]. At the proposition level, p is considered a cause
in the current state if and only if it has a bottom-value in the state. At every level of
the recursion, a sub-formula is considered relevant (that is, its exploration can produce
causes for falsification of the whole specification) if it has a value of false at the current
state.

Lemma 7 . The complexity of Algorithm 6 is linear in k and in |ϕ|.

Proof Sketch. The complexity follows from the fact that each subformula ψ of ϕ is
evaluated at most once at each state si of the counterexample π. Similarly to global
CTL model checking, the decision at each state is made based on the local information.

For paths with a loop, unwrapping the loop |ϕ| + 1 times does not add to this com-
plexity, since each subformula ψ is evaluated on a single copy of the loop, based on its
depth in ϕ. ��

Theorem 8. The set of pairs produced by Algorithm 6 for a formula ϕ on a path π is
an over-approximation of the set of causes for ϕ on π according to Definition 4.

Proof Sketch. The proof uses the automata-theoretic approach to branching-time model
checking6 introduced in [25], where model checking is reduced to evaluating an AND-
OR graph with nodes labeled with pairs 〈 state s of π, subformula ψ of ϕ〉. The leaves
are labeled with 〈s, l〉, with l being a literal (variable or its negation), and the root is
labeled with 〈s0, ϕ〉. The values of leaves are determined by the labeling function L,
and the value of each inner node is 0 or 1 according to the evaluation of its successors.
Since ϕ fails on π, the value of the root is 0. A path that starts from a bottom-valued
leaf, and on the way up visits only nodes with value 0, is called a failure path. The
proof is based on the following fact: if 〈s, v〉 is a cause of failure of ϕ on π according to
Definition 4, then it is a bottom-valued pair and there exists a failure path from the leaf
labeled with 〈s, v〉 to the root. By examining Algorithm 6, it can be proved that the set
of pairs that is the result of the algorithm is exactly the set of bottom-valued leaves from
which there exists a failure path to the root. Thus, it contains the exact set of causes. ��
We note that not all bottom-valued leaves that have a failure path to the root are causes
(otherwise Algorithm 6 would always give accurate results!). In our experience, Al-
gorithm 6 gives accurate results for the majority of real-life examples. As an exam-
ple of a formula on which Algorithm 6 does not give an accurate result, consider
ϕ4 = aU (bU c) and a trace π4 = s0, s1, s2, . . . labeled as a · (∅)ω (see Figure 2).
The formula ϕ4 fails on π4, and π4[0..1] is the shortest prefix on which it fails. What is
the set of causes for failure of ϕ4 on π4[0..1]? The pair 〈s0, a〉 is not a cause, since it is
not bottom-valued. Checking all possible changes of sets of bottom-valued pairs shows
that 〈s0, b〉 is not a cause. On the other hand, 〈s1, a〉 and 〈s1, b〉 are causes because
changing the value of a in s1 from 0 to 1 makes ϕ4 unknown on π4[0..1], and similarly
for 〈s1, b〉. The pairs 〈s0, c〉 and 〈s1, c〉 are causes because changing the value of c in
either s0 or s1 from 0 to 1 changes the value of ϕ4 to true on π4[0..1]. The values of

6 Recall, that on a single trace LTL and CTL coincide.

Explaining Counterexamples Using Causality 103

Fig. 3. Counterexample for aU (bU c)

signals in s2 are not causes because the first failure of ϕ4 happens in s1. The causes are
represented graphically as red dots in Figure 2. By examining the algorithm, we can see
that on ϕ4 and π4 it outputs the set of pairs that contains, in addition to the exact set
of causes, the pair 〈s0, b〉. The results of running the implementation of Algorithm 6 on
ϕ4 are presented in Figure 3.

4 Implementation and Experimental Results

Visual counterexample explanation is an existing feature in RuleBase PE, IBM’s formal
verification platform. When the formal verification tool displays a counterexample in
its trace viewer, it shows trace explanations as red dots at several 〈position, signal〉
locations on the trace.

The approximation algorithm presented in Section 3.3 is applied to every counterex-
ample produced by the model checker7. The algorithm receives the counterexample
trace and formula as input, and outputs a set of 〈position, signal〉 pairs. This set of
pairs is passed on to the tool’s built-in trace viewer, which displays the red dots at the
designated locations.

Users of the formal verification tool may select one or more model-checking engines
with which to check each formula. Each engine uses a different model-checking algo-
rithm, as described in [5]. When a formula fails, the engine that finds the failure is also
responsible for producing a counterexample trace. Thus, a counterexample viewed by
a user may have been generated by any one of the various algorithms. The red dots
computation procedure runs independently on any counterexample, and is oblivious to
the method by which the trace was obtained.

The red dots are a routine part of the workflow for users. The red dots computation
is performed automatically by the tool, behind the scenes, with no user intervention.
Displaying the red dots on the trace is also done automatically, every time a user ac-
tivates the trace viewer. User feedback indicates that red dots are seen as helpful and
important, and are relied on as an integral part of trace visualization.

Experimental Results

We ran the RuleBase PE implementation of Algorithm 6 on the following pairs of
formulas and counterexamples. These formulas are based on real-world specifications
from [1]. In all cases presented below, the output of the approximation algorithm is the
exact causality set, according to Definition 4.

7 Commercially available versions of RuleBase PE implement an older version of this algorithm.

104 I. Beer et al.

1. We consider a formula with a complex Boolean invariant

G ((STATUS VALID ∧ ¬LARGE PACKET MODE ∧ LONG FRAME RECEIVED) →
((LONG FRAME ERROR ∧ ¬STATUS OK) ∨ TRANSFER STOPPED))

The trace in Figure 4 was produced by a SAT-based BMC engine, which was con-
figured to increase its bound by increments of 20. As a result, the trace is longer
than necessary, and the failure does not occur on the last cycle of the trace. The red
dots point us to the first failure, at cycle 12. Note that the Boolean invariant also
fails at cycle 15, but this later failure is not highlighted. The execution time for the
red dots computation on the trace in Figure 4 is less than 1 second. Running with
the same formula, but with traces of up to 5000 cycles, gives execution times that
are still under 2 seconds.

Fig. 4. Counterexample for a Boolean invariant

2. For a liveness property, the model checking engine gives a counterexample with a
loop. This is marked by the signal LOOP in the trace viewer, as seen in the trace in
Figure 5, which is a counterexample for the formula

G (P1 ACTIVE → F P2 ACTIVE)

The LOOP signal rises at cycle 9, indicating that the loop starts at that cycle, and
that the last cycle (cycle 11) is equal to cycle 9. The point at which the loop begins
is marked with a red dot, in addition to the red dots computed by Algorithm 6. The
execution time, when running on the trace in Figure 5, is less than 1 second. On
a counterexample of 1000 cycles for the same formula, the execution time is less
than 2 seconds. For 5000 cycles, the execution time reaches 20 seconds.

Fig. 5. Counterexample for a liveness property

3. In the introduction, we demonstrated red dot explanations for the formula

G((¬START ∧ ¬STATUS VALID ∧ END) →
X[¬START U (STATUS VALID ∧ READY)])

Explaining Counterexamples Using Causality 105

This formula contains a combination of temporal operators and Boolean conditions,
which makes it difficult to visually identify a failure on the counterexample. The red
dots produced by the approximation algorithm are shown in Figure 1. The execution
time on the trace in Figure 1 is less than 1 second. For the same formula and a
counterexample of 1000 cycles, the execution time is 70 seconds.

5 Related Work

There are several works that tie the definition of causality by Halpern and Pearl to for-
mal verification. Most closely related to our work is the paper by Chockler et. al [8],
in which causality and its quantitative measure, responsibility, are viewed as a refine-
ment of coverage in model checking. Causality and responsibility have also been used
to improve the refinement techniques of symbolic trajectory evaluation (STE) [7].

As discussed in the introduction, there has been much previous work addressing
various aspects of understanding a counterexample. The most relevant to our work is a
method that uses minimal unsatisfiable cores [13,31]8 to aid in debugging.

We note that minimal unsatisfiable cores differ from our notion of causality in two
main aspects. First, a single unsatisfiable core does not give all relevant information for
understanding the failure. For example, for the path π3 in Figure 2 and the specification
ϕ3 = G(a ∧ b ∧ c), there are three minimal unsatisfiable cores: {〈s0, a〉}, {〈s0, b〉},
and {〈s0, c〉}. None of them gives the full information needed to explain the failure. In
contrast, the set of causes is {〈s0, a〉, 〈s0, b〉, 〈s0, c〉}, consisting of all pairs that can be
made critical for the failure of ϕ3 on π3.

The second difference is that our definition of causality refers to the first failure of the
formula on the given path. Consider, for example, a specification ϕ = G(req → Xack)
and a trace π = (req) · (ack) · (req) · (req) · (∅)ω (that is, a trace that is labeled with req
in s0, s2, and s3, and with ack in s1). The minimal unsatisfiable cores in this example
are {〈s2, req〉, 〈s3, ack〉} and {〈s3, req〉, 〈s4, ack〉}. In contrast, the set of causes for
the first failure of ϕ on π is {〈s2, req〉, 〈s3, ack〉}. Unlike the previous example, here
the set of causes differs from the union of minimal unsatisfiable cores.

We conjecture that if a given counterexample trace is of minimal length needed to
demonstrate the failure, then the union of the minimal unsatisfiable cores is equal to the
set of causes as defined in this paper. We note though, that computing the union of min-
imal unsatisfiable cores is a considerably harder task, both in the worst case complexity
and in practice, than computing the set of causes directly. Indeed, it is easy to see that
the problem of counting the number of all unsatisfiable cores for a given specification
and a counterexample trace is complete in #P , similarly to the problem of counting
all satisfying assignments to a SAT problem. In practice, extracting several minimal
unsatisfiable cores is done sequentially, each time backtracking from the current solu-
tion provided by the SAT solver and forcing it to look for a different solution (see, for
example, [31]). In contrast, the problem of computing the set of causes is “only” NP-
complete, making even the brute-force algorithm feasible for small specifications and

8 An unsatisfiable core of an unsatisfiable CNF formula is a subset of clauses that is in itself
unsatisfiable. A minimal unsatisfiable core is an unsatisfiable core such that removing any one
of its clauses makes it satisfiable.

106 I. Beer et al.

short traces. Essentially, computing the union of minimal unsatisfiable cores by com-
puting all unsatisfiable cores separately is an “overkill”: it gives us a set of sets, whereas
we are only interested in one set - the union.

6 Conclusion and Future Directions

We have shown how the causality definition of Halpern and Pearl [22] can be applied to
the task of explaining a counterexample. Our method is implemented as part of the IBM
formal verification platform RuleBase PE [28], and it is applied to every counterexam-
ple presented by the tool. Experience shows that when visually presented as described
in Section 4, the causality information substantially speeds up the time needed for the
understanding of a counterexample. Since the causality algorithm is applied to a single
counterexample and ignores the model from which it was extracted, no size issues are
involved, and the execution time is negligible. An important advantage of our method is
the fact that it is independent of the tool that produced the counterexample. When more
than one model checking “engine” is invoked to verify a formula, as described in [5],
the independence of the causality algorithm is especially important.

The approach presented in this paper defines and (approximately) detects a set of
causes for the first failure of a formula on a trace. While we believe that this information
is the most beneficial for the user, there can be circumstances where the sets of causes
for other failures are also desirable. A very small and straightforward enhancement of
the algorithm will allow to compute the (approximate) sets of causes of all or a subset
of failures of the given counterexample.

As a future work, the relation between causes and unsatisfiable cores should be inves-
tigated further. Specifically, a conclusive answer should be provided for the conjecture
mentioned in Section 5, about the union of unsatisfiable cores on a traceof minimal length.

In a different direction, it is interesting to see whether there exist subsets of LTL for
which the computation of the exact set of causes is polynomial. Natural candidates for
being such “easy” sublogics of LTL are the PSL simple subset defined in [15], and the
common fragment of LTL and ACTL, called LTLdet (see [26]). Finally, we note that
our approach, though demonstrated here for LTL specifications, can be applied to other
linear temporal logics as well, with slight modifications. This is because our definition
of cause holds for any monotonic temporal logic. It will be interesting to see whether it
can also be extended to full PSL without significantly increasing its complexity.

Acknowledgments. We thank Cindy Eisner for helpful discussions on the truncated
semantics. We thank the anonymous reviewers for important comments.

References

1. Prosyd: Property-Based System Design (2005), http://www.prosyd.org/
2. Armoni, R., Bustan, D., Kupferman, O., Vardi, M.Y.: Resets vs. aborts in linear temporal

logic. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 65–80. Springer,
Heidelberg (2003)

3. Ball, T., Naik, M., Rajamani, S.: From symptom to cause: Localizing errors in counterexam-
ple traces. In: Proc. of POPL, pp. 97–105 (2003)

http://www.prosyd.org/

Explaining Counterexamples Using Causality 107

4. Beer, I., Ben-David, S., Chockler, H., Orni, A., Trefler, R.: Explaining Counterexamples
Using Causality. IBM technical report number H-0266,
http://domino.watson.ibm.com/library/cyberdig.nsf/Home

5. Ben-David, S., Eisner, C., Geist, D., Wolfsthal, Y.: Model checking at IBM. FMSD 22(2),
101–108 (2003)

6. Chechik, M., Gurfinkel, A.: A framework for counterexample generation and exploration. In:
Cerioli, M. (ed.) FASE 2005. LNCS, vol. 3442, pp. 217–233. Springer, Heidelberg (2005)

7. Chockler, H., Grumberg, O., Yadgar, A.: Efficient automatic STE refinement using responsi-
bility. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 233–248.
Springer, Heidelberg (2008)

8. Chockler, H., Halpern, J.Y., Kupferman, O.: What causes a system to satisfy a specification?
ACM TOCL 9(3) (2008)

9. Clarke, E., Emerson, E.: Design and synthesis of synchronization skeletons using branching
time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981. LNCS, vol. 131, pp. 52–71.
Springer, Heidelberg (1981)

10. Clarke, E., Grumberg, O., McMillan, K., Zhao, X.: Efficient generation of counterexamples
and witnesses in symbolic model checking. In: Proc. 32nd DAC, pp. 427–432 (1995)

11. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge (1999)
12. Copty, F., Irron, A., Weissberg, O., Kropp, N., Kamhi, G.: Efficient debugging in a for-

mal verification environment. In: Margaria, T., Melham, T.F. (eds.) CHARME 2001. LNCS,
vol. 2144, pp. 275–292. Springer, Heidelberg (2001)

13. Dershowitz, N., Hanna, Z., Nadel, A.: A scalable algorithm for minimal unsatisfiable core ex-
traction. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 36–41. Springer,
Heidelberg (2006)

14. Dong, Y., Ramakrishnan, C.R., Smolka, S.A.: Model checking and evidence exploration. In:
Proc. of ECBS, pp. 214–223 (2003)

15. Eisner, C., Fisman, D.: A Practical Introduction to PSL. Series on Integrated Circuits and
Systems (2006)

16. Eisner, C., Fisman, D., Havlicek, J., Lustig, Y., McIsaac, A., Campenhout, D.V.: Reasoning
with temporal logic on truncated paths. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003.
LNCS, vol. 2725, pp. 27–39. Springer, Heidelberg (2003)

17. Eiter, T., Lukasiewicz, T.: Complexity results for structure-based causality. In: Proc. 7th
IJCAI, pp. 35–40 (2001)

18. Griesmayer, A., Staber, S., Bloem, R.: Automated fault localization for c programs.
ENTCS 174(4), 95–111 (2007)

19. Groce, A.: Error explanation with distance metrics. In: Jensen, K., Podelski, A. (eds.) TACAS
2004. LNCS, vol. 2988, pp. 108–122. Springer, Heidelberg (2004)

20. Groce, A., Kroening, D.: Making the most of BMC counterexamples. In: SGSH (July 2004)
21. Hall, N.: Two concepts of causation. Causation and Counterfactuals. MIT Press, Cambridge

(2002)
22. Halpern, J., Pearl, J.: Causes and explanations: A structural-model approach — part I: Causes.

In: Proc. of 17th UAI, pp. 194–202. Morgan Kaufmann Publishers, San Francisco (2001)
23. Hume, D.: A treatise of human nature. John Noon, London (1939)
24. Jin, H., Ravi, K., Somenzi, F.: Fate and free will in error traces. In: Katoen, J.-P., Stevens, P.

(eds.) TACAS 2002. LNCS, vol. 2280, pp. 445–458. Springer, Heidelberg (2002)
25. Kupferman, O., Vardi, M., Wolper, P.: An automata-theoretic approach to branching-time

model checking. JACM 47(2), 312–360 (2000)
26. Maidl, M.: The common fragment of CTL and LTL. In: Proc. of FOCS, pp. 643–652 (2000)
27. Queille, J., Sifakis, J.: Specification and verification of concurrent systems in Cesar. In:

Dezani-Ciancaglini, M., Montanari, U. (eds.) Programming 1982. LNCS, vol. 137, pp. 337–
351. Springer, Heidelberg (1981)

http://domino.watson.ibm.com/library/cyberdig.nsf/Home

108 I. Beer et al.

28. RuleBase PE homepage,
http://www.haifa.il.ibm.com/projects/verification/RB Homepage

29. Shen, S., Qin, Y., Li, S.: A faster counterexample minization algorithm based on refutation
analysis. In: Proc. of DATE, pp. 672–677 (2005)

30. Staber, S., Bloem, R.: Fault localization and correction with QBF. In: Marques-Silva, J.,
Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 355–368. Springer, Heidelberg (2007)

31. Sülflow, A., Fey, G., Bloem, R., Drechsler, R.: Using unsatisfiable cores to debug multiple
design errors. In: Proc. of Symp. on VLSI, pp. 77–82 (2008)

32. Wang, C., Yang, Z., Ivancic, F., Gupta, A.: Whodunit? causal analysis for counterexamples.
In: Graf, S., Zhang, W. (eds.) ATVA 2006. LNCS, vol. 4218, pp. 82–95. Springer, Heidelberg
(2006)

A Causality Background

The formal definition of causality used in this paper was first introduced in the Artificial
Intelligence community in [22]. Our definitions in Section 3 are based on a restricted
(and much simpler) version that applies to binary causal models, where the range of all
variables is binary [17]. We present the definition of a binary causal model below.

Definition 9 (Binary causal model). A binary causal model M is a tuple 〈V ,F〉,
where V is the set of Boolean variables and F associates with every variable X ∈ V a
function FX that describes how the value of X is determined by the values of all other
variables in V . A context �u is a legal assignment for the variables in V .

A causal modelM is conveniently described by a causal network, which is a graph with
nodescorresponding to thevariables inV and an edge from anode labeledX to one labeled
Y if FY depends on the value ofX . We restrict our attention to what are called recursive
models. These are ones whose associated causal network is a directed acyclic graph.

A causal formula η is a Boolean formula over the set of variablesV . A causal formula
η is true or false in a causal model given a context. We write (M,�u) |= η if η is true inM
given a context �u. We write (M,�u) |= [�Y ← �y](X = x) if the variableX has value x in
the modelM given the context �u and the assignment �y to the variables in the set �Y ⊂ V .

For the ease of presentation, we borrow from [8] the definition of criticality in binary
causal models, that captures the notion of counterfactual causal dependence.

Definition 10 (Critical variable [8]). Let M be a model, �u the current context, and
η a Boolean formula. Let (M,�u) |= η, and X a Boolean variable in M that has the
value x in the context �u, and x̄ the other possible value (0 or 1). We say that (X = x)
is critical for η in (M,�u) iff (M,�u) |= (X ← ¬x)¬η. That is, changing the value of X
to ¬x falsifies η in (M,�u).

We can now give the definition of a cause in binary causal models from [22,17].

Definition 11 (Cause). We say that X = x is a cause of η in (M,�u) if the following
conditions hold:

AC1. (M,�u) |= (X = x) ∧ η.
AC2. There exists a subset �W of V with X �∈ �W and some setting �w′ of the variables

in �W such that setting the variables in �W to the values �w′ makes (X = x) critical
for the satisfaction of η.

http://www.haifa.il.ibm.com/projects/verification/RB_Homepage
http://www.haifa.il.ibm.com/projects/verification/RB_Homepage

	Explaining Counterexamples Using Causality
	Introduction
	Preliminaries
	Causality in Counterexamples
	Defining Causality in Counterexamples
	Complexity of Computing Causality in Counterexamples
	An Approximation Algorithm

	Implementation and Experimental Results
	Related Work
	Conclusion and Future Directions
	References
	Causality Background

