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SUMMARY

Exploring the possible reasons for heterogeneity between studies is an important aspect of conducting
a meta-analysis. This paper compares a number of methods which can be used to investigate whether
a particular covariate, with a value de"ned for each study in the meta-analysis, explains any heterogeneity.
The main example is from a meta-analysis of randomized trials of serum cholesterol reduction, in which the
log-odds ratio for coronary events is related to the average extent of cholesterol reduction achieved in each
trial. Di!erent forms of weighted normal errors regression and random e!ects logistic regression are
compared. These analyses quantify the extent to which heterogeneity is explained, as well as the e!ect of
cholesterol reduction on the risk of coronary events. In a second example, the relationship between
treatment e!ect estimates and their precision is examined, in order to assess the evidence for publication
bias. We conclude that methods which allow for an additive component of residual heterogeneity should be
used. In weighted regression, a restricted maximum likelihood estimator is appropriate, although a number
of other estimators are also available. Methods which use the original form of the data explicitly, for example
the binomial model for observed proportions rather than assuming normality of the log-odds ratios, are now
computationally feasible. Although such methods are preferable in principle, they often give similar results in
practice. Copyright ( 1999 John Wiley & Sons, Ltd.

1. INTRODUCTION

Meta-analysis aims to compare and possibly combine estimates of e!ect across related studies.
For example, in a meta-analysis of clinical trials, the overall e!ect of a treatment is often expressed
as an estimated odds ratio together with its con"dence interval. Methods for providing such an
overall estimate are well known, and have been extensively discussed from both classical and
Bayesian perspectives.1,2 Methods which incorporate a between-study component of variance for
the treatment e!ect are based on random e!ects models;3 the between-study variance represents
the excess variation in observed treatment e!ects over that expected from the imprecision of
results within each study. Another term for such between study variation is heterogeneity.

It is now generally agreed that meta-analysis can and should go further than simply producing
overall summaries of e!ect.4 In particular, understanding the possible causes of any heterogeneity
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can increase both the scienti"c value and clinical relevance of the results from a meta-analysis.5,6
While this is accepted in principle, there has been little discussion of statistical methods which are
appropriate for addressing this issue. The purpose of this paper is to exemplify and compare
di!erent methods for investigating the extent to which a particular covariate, with a value de"ned
for each study in a meta-analysis, might explain any heterogeneity. Such analysis is sometimes
termed &meta-regression'. The methods di!er in a number of respects, including how they allow
for residual heterogeneity, that is heterogeneity which remains unexplained by the covariate.
They also extend a method previously proposed by Berkey et al.7

The relevance of this work is clear from applied medical papers, where a variety of methods are
being used with little apparent understanding of their statistical basis. For example, linear
regression may be used without it being clear whether it was appropriately weighted,8 or indeed
weighted at all,9 or whether there was any allowance for residual heterogeneity.10,11 Similarly, for
binary outcome data, logistic regression may be used,12 or subgroup analyses according to
a categorical covariate carried out,13 without residual heterogeneity being taken into account.

The next section introduces the data for the principal example used in the paper, relating to
trials of serum cholesterol reduction. Then possible methods for investigating heterogeneity are
described, together with some comments on their di!erent assumptions and limitations. These
methods are applied to the cholesterol lowering trials, and the results obtained discussed.
A second example follows, in which estimated treatment e!ects are related to their precision to
assess the evidence for publication bias. Finally, the issues raised are considered, recommenda-
tions made for choice of method in applied work, and extensions to the methods outlined.

2. THE TRIALS OF SERUM CHOLESTEROL REDUCTION

Using data from the randomized trials of serum cholesterol reduction, the purpose here is to
quantify how the average cholesterol reduction achieved in each trial relates to the reduction in
the risk of ischaemic heart disease (IHD) events observed. Both fatal IHD and non-fatal
myocardial infarction were included as IHD events, and the analysis is based on the 28 trials and
the data therein as reviewed by Law et al.,14 omitting trial results that have become available
more recently. In these trials, cholesterol had been reduced by a variety of means, namely dietary
intervention, drugs, and, in one case, surgery. One motivation for this analysis is that if increased
bene"t in terms of IHD risk reduction were associated with greater reduction in serum choles-
terol, this would lend support to the e$cacy of these therapies. Moreover it would allow
prediction of the expected IHD risk reduction consequent upon a speci"ed decrease in serum
cholesterol.

The data are given in Table I, using the odds ratio of IHD as a summary of the results in each
trial. Each odds ratio was estimated as the cross-product of cell counts in the corresponding 2]2
table, with the variance of the log-odds ratio equal to the sum of the reciprocal cell counts, as
usual. In the two trials with no events in one group, 0)5 was added to each cell for these
calculations.15 The two active treatment arms in one three-arm trial were combined, and the
corresponding cholesterol reductions averaged. The cholesterol reduction was derived as the
reduction in the treated group minus that in the control group, averaged over the follow-up
period of the trial. This average extent of cholesterol reduction varied widely across the trials,
from 0)3 to 1)5 mmol/l. The estimated log-odds ratios of IHD are plotted against the serum
cholesterol reduction in Figure 1. In the following analyses, a linear relationship between the
log-odds ratio of IHD and cholesterol reduction is investigated.
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Table I. Data on IHD events from 28 randomized trials of serum cholesterol reduction

Trial* Control group Treated group Odds Log-odds Variance Cholesterol
ratio ratio of y

i
reduction
(mmol/l)

(i) Events No events Events No events (y
i
) (l

i
) (x

i
)

1 210 5086 173 5158 0)81 !0)208 0)0109 0)55
2 85 168 54 190 0)56 !0)577 0)0415 0)68
3 75 292 54 296 0)71 !0)342 0)0387 0)85
4 936 1853 676 1546 0)87 !0)144 0)0037 0)55
5 69 215 42 103 1)27 0)239 0)0527 0)59
6 101 175 73 206 0)61 !0)488 0)0342 0)84
7 193 1707 157 1749 0)79 !0)231 0)0127 0)65
8 11 61 6 65 0)51 !0)670 0)2894 0)85
9 42 1087 36 1113 0)84 !0)178 0)0534 0)49

10 2 28 2 86 0)33 !1)122 1)0473 0)68
11 84 1946 56 1995 0)65 !0)430 0)0308 0)69
12 5 89 1 93 0)19 !1)653 1)2220 1)35
13 121 4395 131 4410 1)08 0)076 0)0164 0)70
14 65 357 52 372 0)77 !0)264 0)0401 0)87
15 52 142 45 154 0)80 !0)226 0)0550 0)95
16 81 148 61 168 0)66 !0)410 0)0414 1)13
17 24 213 37 184 1)78 0)579 0)0788 0)31
18 11 41 8 20 1)49 0)399 0)2903 0)61
19 50 84 47 83 0)95 !0)050 0)0652 0)57
20 125 292 82 339 0)57 !0)571 0)0266 1)43
21 20 1643 62 6520 0)78 !0)247 0)0669 1)08
22 0 52 2 92 2)84 1)043 2)4299 1)48
23 0 29 1 22 3.93 1)369 2)7450 0)56
24 5 25 3 57 0)26 !1)335 0)5909 1)06
25 144 871 132 886 0)90 !0)104 0)0168 0)26
26 24 293 35 276 1)55 0)437 0)0773 0)76
27 4 74 3 76 0)73 !0)314 0)6100 0)54
28 19 60 7 69 0)32 !1)138 0)2266 0)68

* Data and original trials' references are provided in Law et al.14

3. WEIGHTED REGRESSION METHODS FOR INVESTIGATING HETEROGENEITY

First methods that use normal errors regression are considered. The observed log-odds ratio of
IHD in each trial (y

i
say in trial i, for trial i"12k) is assumed to follow a normal distribution.

The regression needs to be weighted to take into account the precision of the log-odds ratio
estimate in each trial. The cholesterol reduction in each trial is denoted by x

i
. All summations

below are over i"12k; in this example k"28.
In the "rst model, it is assumed that y

i
are independently distributed as

y
i
&N(a#bx

i
, l

i
) (1)

where l
i
is the variance of the log-odds ratio within trial i, b represents the change in log-odds

ratio of IHD per unit change in cholesterol reduction, and a the log-odds ratio at a cholesterol
reduction of zero. Maximum likelihood (ML) estimates of a and b can be obtained by least
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Figure 1. Estimated odds ratios of IHD events in 28 randomized trials of serum cholesterol reduction according to the
extent of cholesterol reduction achieved in each trial. The circle corresponding to each trial has area inversely
proportional to the variance (l

i
) of the log-odds ratio. The superimposed line is obtained by weighted regression using an

REML estimate of the residual heterogeneity variance (method (3c))

squares regression of y
i
on x

i
with weights w

i
"1/l

i
. If model (1) truly represents the data, then

the output from conventional weighted regression programs has to be modi"ed by forcing the
mean square error (MSE) to be unity.16,17 The correct standard errors (SEs) of the regression
coe$cients are thus obtained by dividing those given by the square root of the reported MSE. In
this model, no allowance for residual heterogeneity has been made and the SEs obtained will thus
in general be too small.

One method to incorporate residual heterogeneity into the model is to allow a multiplicative
factor, greater than 1, to apply to each of the variances l

i
. The model then becomes

y
i
&N(a#bx

i
, ul

i
) (2)

where u is an overdispersion parameter. Here ML estimates of a and b are obtained as before,
u can be estimated as the MSE reported by the weighted regression program, and no modi"ca-
tions to the reported SEs of the regression coe$cients should be made. This is conventional
weighted regression, where the weights are taken as inversely proportional to the variances
l
i
rather than necessarily equal to the reciprocal of the variances.
Another method of incorporating residual heterogeneity is to include an additive between-

study variance component q2. The model is then

y
i
&N(a#bx

i
, l

i
#q2 ). (3)

ML estimates of a and b are obtained by least squares regression of y
i

on x
i
with weights

w*
i
"1/(l

i
#q2 ). q2 must be explicitly estimated in order to undertake the weighted regression;

a number of estimators have been proposed and are described below.
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A moment estimator of between-study variance is conventionally used in meta-analysis when
no covariate is being considered.3 Although the extension to the case where there is a covariate is
not straightforward, a moment estimator of q2 can be derived from the heterogeneity statistic
Q"+ w

i
(y

i
!aL !bLx

i
)2 where aL and bL are estimated as in (1).18 In the case of a single covariate

qL 2"
Q!(k!2)

F (w, x)
if Q'k!2, or 0 otherwise (3a)

where

F (w, x)"+ w
i
!

+ w2
i
+ w

i
x2
i
!2 + w2

i
x
i
+ w

i
x
i
#+ w

i
+ w2

i
x2
i

+ w
i
+ w

i
x2
i
!(+ w

i
x
i
)2

.

Then a weighted regression is carried out with weights w*
i
"1/(l

i
#qL 2) to provide new estimates

of a and b. This estimator of q2 is unbiased if the constraint qL 2*0 is removed, and the
corresponding formula when there is no covariate18 reduces to the standard moment estimator.3

Other methods which have been proposed for estimating q2 require an iterative scheme.7,19 An
ML estimate of q2 is provided by solving the iterative equation20

q2"+ w*2
i

M(y
i
!aL !bL x

i
)2!l

i
N/+ w*2

i
(3b)

where w*
i
"1/(l

i
#q2). Starting with q2"0, a regression using weights w*

i
, then equal to

w
i
"1/l

i
, gives initial estimates of a and b. The right hand side of (3b) is evaluated to yield a new

value of q2 (subject to the constraint that negative values are set to zero). This then provides
modi"ed weights w*

i
for a regression, leading to new estimates of a and b, and thence of q2. The

procedure continues until convergence. In practice convergence can be slow, and needs to be
checked carefully.

The use of restricted maximum likelihood (REML) estimates overcomes the tendency of ML
methods to underestimate variances. In this context, an REML estimate of q2 is obtained by
modifying the right hand side of (3b) using a factor k/(k!p), allowing for the p parameters
estimated in the regression. In this case, where a and b are estimated and p"2, the equation
becomes

q2"+ w*2
i

M[k/(k!2)] (y
i
!aL !bL x

i
)2!l

i
N/+ w*2

i
. (3c)

An iterative solution is sought as before.
These same ML and REML estimates have been proposed in another context,19 but using

di!erent iterative formulae. They are mentioned in this form by Berkey et al.,7 who instead
concentrate on an empirical Bayes estimate of q2 obtained by replacing w*2

i
by w*

i
in (3c):21

q2"+ w*
i

M[k/(k!2)] (y
i
!aL !bL x

i
)2!l

i
N/+ w*

i
. (3d)

When the value of q2 has been estimated, either non-iteratively (method (3a)) or iteratively
(methods (3b)}(3d)), the weights w*

i
used in the regression are equal to the (estimated) reciprocal

variances. The reported SEs should therefore be adjusted using the reported MSE, as for
model (1).

The methods (3a) to (3d) su!er from the disadvantage that, while the SEs of aL and bL take into
account the estimate of q2, they consider q2 as known and equal to its estimated value. When the
number of studies is limited, as often is the case in meta-analysis, the estimate of q2 is imprecise.
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Taking account of this imprecision, which would be expected to increase the SEs of aL and bL , can
be achieved in a full Bayes analysis. This can be done using the BUGS implementation of Markov
chain Monte Carlo density estimation,2,22 writing model (3) equivalently as

y
i
&N(m

i
, t

i
)

m
i
"a#bx

i
(3e)

t
i
"l

i
#q2.

Priors are needed for the parameters a, b and q2. In our analyses, non-informative priors suitable
for log-odds ratios were used, namely N(0, 100) for a, N(0, 10000) for b, and an inverse
gamma(0)001, 0)001) for q2 as advocated elsewhere.2 A &burn-in' of 5000 iterations was used, and
the posterior distributions of the parameters derived from the following 5000 iterations.22 The
posterior medians and SDs of these distributions provide the equivalent of the estimates and SEs
from classical analysis methods. In addition 95 per cent credible intervals are available which do
not rely on asymptotic SEs. This method is referred to as &full Bayes', in contrast to the empirical
Bayes method (3d); however it simply uses non-informative priors to approximate a likelihood-
based analysis.

All these methods based on weighted regression, numbered (1) to (3e), su!er some theoretical
disadvantages. First, it has been assumed that the log-odds ratios have normal distributions. This
may be inadequate when, as in the cholesterol trials example (Table I), results of some studies are
based on small numbers of events. In particular, when there is a zero count in a cell of the 2]2
table, the odds ratio and variance estimates are not "nite. Here 0)5 has been added to all the cells
of the 2]2 table in which there is a zero cell, as suggested by others,15 to circumvent this
problem. None of the methods takes account of the fact that the l

i
are estimated from the data

rather than known. This again will be of particular concern for small studies. These problems are
overcome by the logistic regression methods that follow (methods (4) to (6b)). Also accounting for
the fact that the residual heterogeneity parameter q2 has been estimated is only addressed in the
full Bayes analysis (method (6b)).

4. LOGISTIC REGRESSION METHODS FOR INVESTIGATING HETEROGENEITY

In this section, models which use the binomial structure of the data directly are described. Let
n
ij

denote the true risk of IHD events in the jth group ( j"0 control, j"1 treated) of trial i, z
j
an

indicator variable for treatment group (0 for control, 1 for treated), and x
ij

the cholesterol
reduction achieved in the jth group of trial i (relative to the control group). The data provide the
number of IHD events (y

ij
) and number of subjects (n

ij
) in the jth group of trial i; the form of the

data used is shown in Table II.
Conventional logistic regression uses the model

logit(n
ij
)"c

i
#az

j
#bx

ij
. (4)

Here the parameters a and b are interpreted as before, while the inclusion of "xed parameters c
i

(i"1,2, k) provides for an analysis strati"ed by study, preserving the comparison of randomized
groups as is appropriate.23 This model gives the log-odds ratio in trial i as
logit(n

i1
)!logit(n

i0
)"a#b (x

i1
!x

i0
). We express the cholesterol reduction relative to the

control group, so that x
i0
"0, only for convenience. Standard logistic regression programs will

provide ML estimates of the parameters of the model, together with asymptotic SEs. However,
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Table II. Data for the "rst two trials of Table I, arranged in
a format suitable for logistic regression

Trial Group ( j) z
j

Events Total Cholesterol
(i) (y

ij
) subjects reduction

(n
ij
) (mmol/l) (x

ij
)

1 Control 0 210 5296 0
1 Treatment 1 173 5331 0)55
2 Control 0 85 253 0
2 Treatment 1 54 244 0)68

there is no allowance for residual heterogeneity (usually termed overdispersion in the context of
generalized linear model such as this).

A simple &correction' for overdispersion is to multiply the reported SEs by a scale factor
adjustment.24 Here it is assumed that

var(y
ij
)"un

ij
n
ij
(1!n

ij
). (5)

The parameter u can be estimated as the Pearson s2 statistic divided by the residual degrees of
freedom of the model. The SEs are multiplied by JuL . However the reliability of this adjustment is
in doubt when there are small expected (that is, "tted) values. Moreover, the imprecision in
estimating the scale factor is not taken into account.

Multi-level models25 are one way of allowing for an additive component of between trial
variability. An appropriate model can be written

logit(n
ij
)"c

i
#az

j
#bx

ij
#a

i
z
j

(6a)

where a
i
are random parameters with mean zero expressing how the log-odds ratio in trial

i deviates from the overall average a. It is assumed that the a
i
are distributed as N(0, q2 ); q2 is

estimated rather than the individual a
i
. Using restricted iterative generalized least squares

(RIGLS) under predictive quasi-likelihood (PQL) with second-order approximations,26 the
software MLwiN (formerly MLn)27 provides approximate REML estimates of the parameters,
together with asymptotic SEs. However the SEs of the estimates of the "xed parameters a and
b do not take into account the imprecision in estimating q2.28 This problem is overcome by the
full Bayes method which follows.

A Bayesian analysis of the above random e!ects logistic regression model can be obtained
using BUGS.2,22 Here

y
ij
&Binomial(n

ij
, n

ij
)

logit (n
i0
)"c

i

logit (n
i1

)"c
i
#d

i
(6b)

d
i
"a#b (x

i1
!x

i0
)#e

i

e
i
&Normal(0, q2)
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with x
ij

de"ned as in Table II, so that x
i0
"0. This is the same model as (6a), but written in a form

for direct implementation in BUGS. In the analyses which follow, the same priors as in method
(3e) were used, with additionally N(0, 100) priors for c

i
. For this analysis, 5000 iterations in BUGS

took about 4 minutes on a Pentium 120 processor.

5. APPLICATION OF METHODS TO TRIALS OF SERUM CHOLESTEROL
REDUCTION

The above methods were applied to the cholesterol trials data. The results are presented in
Table III, numbered by models (1) to (6b) as in Sections 3 and 4.

The "rst weighted regression did not take any account of residual heterogeneity, and so the SEs
were the smallest of any of those obtained by the weighted regression methods. In the second
regression, the SEs were increased by a multiplicative factor of 1)21 (the square root of the MSE
which was 1)46). In the third set of methods, the SEs were also generally larger, but by di!erent
extents for the estimates of a and b, and the estimates themselves were also altered. The ML
estimate of q2 was zero, and so this analysis gave the same results as method (1). However the bias
in the ML estimate is indicated by a positive, albeit small, REML estimate of q2, while the
moment and empirical Bayes estimates were substantially larger. The full Bayes estimate was
close to the REML estimate. The varying estimates of a and b, and their SEs, given by the
di!erent methods re#ect the estimates of q2 obtained.

In none of these weighted regression analyses was there convincing evidence that a was
non-zero. Hence the data are compatible with an odds ratio of unity at zero cholesterol reduction.
The estimate of b was convincingly negative, so that the IHD risk reduction indeed increases
according to extent of cholesterol reduction. The estimate of q2, in comparison to that when the
covariate is omitted, allows the proportion of the heterogeneity variance explained by
the covariate to be calculated. From the results of the REML analysis (method (3c))

Table III. Estimates of the linear regression relationship between log-odds ratio of IHD and extent of serum
cholesterol reduction (mmol/l) in 28 randomized trials, obtained by di!erent methods (see Figure 1)

Method* Residual Esimates (SEs) Heterogeneity
heterogeneity Intercept (a) Slope (b) Multiplicative (u) Additive (q2)

=eighted regression
(1) None 0)121 (0)097) !0)475 (0)138) 1 0
(2) Multiplicative 0)121 (0)117) !0)475 (0)167) 1)46 }

(3a) Additive (MM) 0)160 (0)137) !0)521 (0)180) } 0)017
(3b) Additive (ML) 0)121 (0)097) !0)475 (0)138) } 0
(3c) Additive (REML) 0)135 (0)112) !0)492 (0)153) } 0)005
(3d) Additive (EB) 0)177 (0)156) !0)541 (0)203) } 0)029
(3e) Additive (FB) 0)148 (0)130) !0)508 (0)175) } 0)007

¸ogistic regression
(4) None 0)121 (0)097) !0)476 (0)137) 1 0
(5) Multiplicative 0)121 (0)120) !0)476 (0)171) 1)55 }

(6a) Additive (MLM) 0)148 (0)126) !0)509 (0)167) } 0)011
(6b) Additive (FB) 0)117 (0)122) !0)469 (0)162) } 0)007

* Number of model or equation in text, } not applicable, MM method of moments, ML maximum likelihood, REML
restricted maximum likelihood, EB empirical Bayes, FB full Bayes, MLM multi-level model
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Figure 2. Normal plot of the treatment e!ect residuals (a
i
) from a multi-level model analysis (method (6a)) for the 28 trials

of serum cholesterol reduction

for the cholesterol reduction covariate, this proportion was 84 per cent. From this analysis, each
1 mmol/l cholesterol reduction was estimated to reduce the odds ratio of IHD by 39 per cent, that
is 1!exp(!0)492); this relation is depicted in Figure 1. For a 1 mmol/l absolute cholesterol
reduction, the 95 per cent range of true odds ratios for di!erent studies is estimated as
exp(0)135!0)492$2 qL ), that is from 0)61 to 0)80.

In the logistic regression analyses, the conventional and scale factor adjusted methods yielded
almost identical results compared to the "rst two weighted regression methods. Thus the use of
normal approximations for the log-odds ratios was adequate in this example. The multi-level
model (6a) corresponds to the REML method (3c), but gave somewhat bigger estimates of q2.
Figure 2 shows the normal plot for the random treatment e!ect parameters a

i
, obtained as

shrunken residuals from the multi-level model;25 these appear to satisfy at least approximate
normality. In the full Bayes analysis, the SEs of aL and bL are similar to those in the multi-level
model analysis despite the smaller estimate of q2 obtained. This re#ects the full Bayes analysis
allowing for the imprecision in qL 2. The 95 per cent credible intervals for a and b in the Bayesian
analysis were !0)115 to 0)382 and !0)813 to !0)167, respectively, showing little di!erence
from those that would be derived under the assumption of asymptotic normality. The 95 per cent
credible interval for q2 was 0)0006 to 0)061, re#ecting therefore very considerable uncertainty in
the estimate. The di!erences between the estimates for q2 obtained by di!erent methods in
Table III should thus be viewed with this perspective.

The full Bayes analysis (method (6b)) estimated the 95 per cent range of true odds ratios per
1 mmol/l absolute cholesterol reduction for di!erent studies as 0)59 to 0)83. This is slightly wider
than the range given above as obtained from the REML analysis (3c) because the estimate of q2
was larger in the Bayesian analysis. As a check of robustness for the choice of prior for q2, we
replaced the inverse gamma (0)001, 0)001) prior for q2 by "rst a positive half Normal (0, 10) and
then a positive half Normal (0, 100) prior for q. The estimates of q2 were somewhat greater, 0)015
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and 0)013, respectively, and bL and its SE correspondingly greater, !0)534 (0)177) and !0)504
(0)191), respectively. This exempli"es that there is very little information about q2 in the data set
and the resulting estimate is very imprecise. The consequence is that choice of prior, although all
intended to be non-informative, makes some di!erence to the results obtained.

In this example there is only a moderate degree of heterogeneity between trials, either before or
after including the extent of cholesterol reduction as a covariate in the analysis. Hence the
di!erences in results between those methods which do not encompass residual heterogeneity and
those which do is not extreme, although the latter yield somewhat larger SEs as expected. If the
residual heterogeneity had been more substantial, the di!erences would have been more marked;
this is shown in the second example that follows in the next section. Although there are some
small numbers of events amongst the trial data in Table I, the overall analysis is dominated by the
results of the larger trials. Hence the assumption of normality of the log-odds ratios seems
adequate in this example. The results obtained from the two methods assuming multiplicative
residual heterogeneity are similar to each other, as are (in general) the results from those which
assume additive residual heterogeneity. One advantage of the multi-level model and full Bayes
analyses is that it is easy to inspect the distribution of the random treatment e!ects, for example,
using a normal plot as in Figure 2, thus investigating an important assumption of the model.

Any of the above analyses could have been further pursued by restricting a to be zero, although
this would require a di!erent formula for the moment estimator (3a). This would then have
focused on the e!ect of cholesterol reduction per se, with the assumption that zero reduction in
cholesterol in the trials was associated with no change in the risk of IHD.23 With a unrestricted,
the analysis focuses more on the particular regimens used to lower cholesterol so that, even with
a zero cholesterol reduction, there could still be a bene"t or hazard of the intervention.
Alternatively, the assumption of linearity of the e!ect of cholesterol reduction on the log-odds
ratio of IHD could have been investigated, for example, by including a quadratic term. One of
the trials was in fact a multi-arm trial, with a di!erent cholesterol reduction achieved in each
treated group. Only the logistic regression methods (4) to (6b) could have been extended to
incorporate this facet of the original data; here each line of data (Table II) refers to one group
within a trial, rather than one trial as in Table I, and so the extension is straightforward.23 The use
of post-randomization data, necessary to calculate the cholesterol reduction covariate, rather
than simply baseline values or trial characteristics, is akin to evaluating how changes in
a surrogate marker relate to changes in clinical outcomes.29

6. APPLICATION OF METHODS TO TRIALS OF SCLEROTHERAPY

Pagliaro et al.30 performed a meta-analysis of 19 randomized trials assessing the e!ectiveness of
endoscopic sclerotherapy for the prevention of bleeding and death in patients with cirrhosis and
oesophagogastric varices. We also considered these data in investigating whether there was
a relationship between underlying risk and treatment bene"t.31 Here the various weighted and
logistic regression methods described in Sections 3 and 4 are used to assess the evidence of
publication bias for the bleeding outcome in these trials, by investigating the linear relationship
between treatment e!ect estimate and precision (as given by the standard error of the estimate).
This provides a regression analysis for a funnel plot,32 and is an objective way of assessing the
evidence for publication bias rather than having to rely on unreliable subjective assessment of
funnel plot asymmetry.33 When there is no heterogeneity, the analysis is equivalent to that
proposed by Egger et al.11 who performed an unweighted regression of standard normal deviate
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Figure 3. Estimated odds ratios of bleeding in 19 randomized trials of sclerotherapy according to precision (standard
error of log-odds ratio). The circle corresponding to each trial has area inversely proportional to the variance (l

i
) of the

log-odds ratio. The superimposed line is obtained by weighted regression using an REML estimate of the residual
heterogeneity variance (method (3c))

(treatment e!ect estimate divided by its SE) on the reciprocal of the SE, equivalent to a regression
on a Galbraith plot.34 The slope in the analysis below is equivalent to the intercept in Egger's
analysis; a non-zero value provides evidence for publication or other small study bias. The
following analysis however extends Egger's by appropriately allowing for the possibility of
residual heterogeneity.

The original data for the 19 sclerotherapy trials is provided by Thompson et al.,31 the number
of subjects in the di!erent trials ranged from 29 to 281, and the number of bleeding outcomes
from 3 to 54. There was evidence of substantial heterogeneity between trials in the odds ratios of
bleeding comparing sclerotherapy to control.31 In the regressions we use log-odds ratios, as in the
previous example. In two trials with zero events in one randomized group, 0)5 was added to each
of the cells of the 2]2 table as before in order to calculate odds ratio estimates for the weighted
regression methods and SEs. A plot of log-odds ratios against precision is shown in Figure 3.

The results of the di!erent analyses are shown in Table IV. Methods (1) and (4), which do not
allow for heterogeneity, gave some evidence of publication bias, since the slope estimate was
negative and larger than its SE. However, the multiplicative heterogeneity variance factors in
methods (2) and (5) were much greater in this example than in the cholesterol trials example, so
the SEs were more substantially increased as compared to methods (1) and (4). Any evidence for
publication bias is removed after allowing for residual heterogeneity. In contrast to the previous
example, the direct use of the binomial structure of the data (methods (4) and (5)) here gave results
which were noticeably di!erent from those which assumed normality of the log-odds ratios
(methods (1) and (2)), because there were more trials with small numbers of events and fewer large
trials.

The results using an additive component of variance (methods (3) and (6)) gave generally
similar results to each other, but in this example rather di!erent from those when using
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Table IV. Estimates of the linear regression relationship between log-odds ratio of bleeding and precision
(standard error of log odds ratio) in 19 randomized trials of sclerotherapy, obtained by di!erent methods (see

Figure 3)

Method* Residual Esimates (SEs) Heterogeneity
heterogeneity Intercept (a) Slope (b) Multiplicative (u) Additive (q2)

=eighted regression
(1) None 0)056 (0)341) !1)113 (0)656) 1 0
(2) Multiplicative 0)056 (0)734) !1)113 (1)411) 4)62 }

(3a) Additive (MM) !0)587 (0)665) !0)040 (1)037) } 0)994
(3b) Additive (ML) !0)594 (0)674) !0)028 (1)048) } 1)037
(3c) Additive (REML) !0)621 (0)712) 0)016 (1)093) } 1)225
(3d) Additive (EB) !0)639 (0)741) 0)046 (1)128) } 1)378
(3e) Additive (FB) !0)582 (0)738) !0)034 (1)121) } 1)210

¸ogistic regression
(4) None !0)153 (0)320) !0)818 (0)599) 1 0
(5) Multiplicative !0)153 (0)767) !0)818 (1)435) 5)74 }

(6a) Additive (MLM) !0)642 (0)744) !0)122 (1)137) } 1)367
(6b) Additive (FB) !0)527 (0)745) !0)192 (1)061) } 1)578

* Number of model or equation in text, } not applicable, MM method of moments, ML maximum likelihood, REML
restricted maximum likelihood, EB empirical Bayes, FB full Bayes, MLM multi-level model

multiplicative heterogeneity (methods (2) and (5)). There was some di!erence in the slope estimate
when using the binomial structure of the data (method (6)) rather than summary estimates
(method (3)). The estimates of q2 were fairly similar from the di!erent methods, the ML and MM
estimates being the lowest, and the empirical and full Bayes estimates being the largest. The fact
that the full Bayes analyses allow for the imprecision in the estimate of q2 is illustrated clearly in
this example; the estimate of q2 in the full Bayes analysis using summary statistics (method (3e)) is
less than that in the REML analysis (method (3c)) but the SEs of aL and bL are greater.

In this example there is only any evidence of publication bias, as expressed by a relationship
between log-odds ratio estimate and precision, when residual heterogeneity is ignored. This
shows the importance of allowing for residual heterogeneity in such analyses. Two further
technical issues are not addressed here. The "rst is that the estimated SE of a log-odds ratio and
the estimated log-odds ratio itself may be artefactually correlated because they are both derived
from the same 2]2 table;7 the second is that, since the estimated SE is imprecise, its use as
a covariate in a regression analysis may lead to underestimation of the true regression relation-
ship, through regression dilution bias.35,36

7. DISCUSSION

Analyses which investigate whether particular variables may explain some of the heterogeneity of
results in meta-analysis are becoming more common. They are prompted both by the desire for
a full scienti"c understanding of the results of meta-analyses, and by the increasingly comprehens-
ive information on the studies which are available. Such methods can also be applicable in the
analysis of multi-centre trials.20 Thus it has become relevant to discuss the appropriate statistical
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techniques for carrying out such analyses, especially as a variety of di!erent methods are being
used in practice. The paper has addressed the simplest situation, where one trial-level covariate is
being investigated.

All analyses have assumed that it is a prerequisite to take into account the precision of the
estimated e!ects within each trial. On statistical grounds, the inverse variance of the estimated
e!ects in each trial has been used directly rather than the number of events in each trial, as has
been done in some applied papers.8 Most fundamentally this paper shows that it is also important
to take into account the possibility of residual heterogeneity, that is, heterogeneity not explained
by the covariate. Ignoring such residual heterogeneity will underestimate the SEs of the regres-
sion coe$cients, and thus overstate the importance of the covariate. The use of appropriate SEs
would also be important, for example, in calculating a prediction interval for the treatment e!ect
around the estimated regression line.

The rationale for using a multiplicative factor for variance in#ation is weak. The idea that the
variance of the estimated e!ect within each study should be multiplied by some constant has little
intuitive appeal, and leads to the same dominance of large studies over small studies that has
been critized in the context of "xed e!ect meta-analysis.37 Thus, despite the fact that such
analyses are easy to carry out, and might therefore be used as a quick and approximate way of
assessing the impact of residual heterogeneity on the results, we do not recommended them in
practice. The use of an additive component of variance to represent heterogeneity between studies
is more intuitively appealing, and of course is the usual way of representing heterogeneity in meta-
analysis without covariates3 as well as in many other situations.25

The choice of method for estimating the additive component of variance q2 is less straightfor-
ward. As has been shown in the results, it is the often value of q2 that primarily in#uences the
parameter estimates and SEs obtained. In meta-analysis without covariates, a moment estimator
of q2 is most often used in practice because it is simple to calculate, being non-iterative. The
calculations become more di$cult when a covariate is introduced, as in (3a), and indeed involve
matrix manipulation if more than one covariate were considered.18 Moreover, ML methods,
which are asymptotically e$cient, are preferable, but the downward bias of the estimate of q2
suggests that an REML estimate is more appropriate here as in other situations.25 The empirical
Bayes estimate, although supported by simulation studies for one particular meta-analysis,7 gave
substantially larger estimates than the other methods, including the full Bayes method. For the
methods using the binary data directly, the multi-level REML estimates as implemented in
MLwiN27 may sometimes underestimate the residual heterogeneity variance if the data are
sparse.26 Conversely there is a possibility that the use of a strictly positive prior for q2 in the full
Bayes method may produce in#ated estimates when q2 is close to zero. The full Bayes analysis,
like some analyses proposed for meta-analysis without covariates,20,38 has the advantage that the
SEs of the regression estimates take into account the imprecision in estimating q2. However the
e!ect of this in practice often appears to be small, as has been observed in other circumstances.20
Therefore a recommendation to use an REML estimate of q2 may be most appropriate in
practice. A Stata program to "t models (3a) to (3d) is now available.39 Similar stand-alone
programs are also available from Belmont Research.40

In the "rst example considered in this paper, the methods making direct use of the binary data
structure produced almost identical results to those using summary estimates of log-odds ratios.
Although some small trials with few events were included, their impact was very limited because
of the dominating presence of some large trials, as depicted in Figure 1. In the second example, all
the trials were relatively small; in this case there was a noticeable di!erence between these
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methods, although this was not substantial enough to change the interpretation. Thus it would
only be in cases when all the trials were small that taking the binary nature of the data into
account might be important, or possibly where small trials were at the extremes of the range of the
covariate, these then being highly in#uential in the analysis. Thus in general, despite the current
availability of specialist software for multi-level logistic regression, its use is in practice likely to
give similar results to those from methods based on summary data. The use of individual data
would of course become necessary in the developing area where individual-level rather than trial
covariates were being investigated,41 and both the multi-level method (6a) and full Bayes method
(6b) naturally extend to this case.

In this paper it has been assumed that the covariate being investigated has been speci"ed in
advance of data inspection. In such a case the question of whether the covariate explains any of
the observed heterogeneity can be answered from a simple hypothesis testing perspective.
However, in practice there may be many such covariates to choose from, or the ones selected may
have been chosen with knowledge of the results of some of the studies. While all the methods we
have described extend to the inclusion of multiple covariates, the interpretation needs to be more
cautious to take into account the dangers of post hoc data-dredging.5 In the extreme case, any set
of (k!1) non-linearly dependent trial-level covariates will &explain' all the heterogeneity between
the results of k trials. In practice, near-collinearity of categorical variables describing trial
characteristics can also be a problem.10

In applied papers, investigation of heterogeneity often proceeds by division of the set of
trials into subgroups according to some characteristic. The methods proposed here are
applicable to binary or categorical covariates, as well as continuous covariates such as those
presented in the examples. In general, because of the imprecision of the estimated residual
heterogeneity variance, it may be preferable to estimate a single variance, rather than, for
example, allowing this variance to vary according to subgroups as de"ned by the categorical
covariate.

Results have been shown for analyses where e!ect sizes are on the log-odds ratio scale. The
methods which employ summary data could be used for any scale of measuring outcome that
yields approximate normality. These include mean di!erences for continuous data, or log relative
risks or absolute risk di!erences for binary outcomes. It is also possible to use &smoothed'
estimates of the variances of log-odds ratios, to reduce the correlation between the estimates and
their variances,7 but we have not pursued this in this paper. In computer software, a standard
Normal distribution has been used to derive statistical tests and con"dence intervals from the
estimated SEs obtained by these methods.39 Others have advocated a t-distribution; based on
simulations for one data set a t

k~p~4
distribution was suggested.7 However, the issue as to which

is the better approximation is currently unresolved, and is likely to depend on the particular
characteristics of the data set being analysed. This problem can be avoided in the full Bayes
analyses since 95 per cent credible intervals can be directly obtained from the posterior distribu-
tions simulated.

Extensions of methods (6a) and (6b) to individual-level data for means of continuous outcomes
is straightforward, but their development for use on binary outcome data on scales other than the
log-odds ratio is problematic. The Bayesian approach (6b) however has the advantage that it can
be extended to allow for distributions other than Normal for the random e!ects; for example,
t-distributions can be used to encompass heavy tailed distributions.42 The methods presented in
this paper should not however be used for the more complex issue of whether the treatment e!ects
across a set of trials depend on underlying risk, where for example underlying risk is assessed from
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the observed risk in the control group in each trial, because of the problems induced by regression
to the mean.31,43,44

The associations between trial-level covariates and estimates of treatment e!ect are between-
trial associations, and thus observational in nature. Hence they do not necessarily have the causal
interpretation that can be ascribed to treatment comparisons within randomized trials. In
particular, the relationship between treatment e!ects and average covariates at the trial level does
not have the same interpretation as a relationship derived from data on individuals.45 Moreover,
if the covariate is measured imprecisely, the strength of the regression relationship will be
underestimated; in some contexts it will be important to allow for this regression dilution bias.29
Any evidence for causality in such associations is not direct, and alternative explanations in terms
of confounding have always to be considered.
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