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Explaining machine learning decisions 

 

Abstract 

 

The operations of deep networks are widely acknowledged to be inscrutable. The growing 

field of “Explainable AI” (XAI) has emerged in direct response to this problem. However, 

owing to the nature of the opacity in question, XAI has been forced to prioritise 

interpretability at the expense of completeness, and even realism, so that its explanations 

are frequently interpretable without being underpinned by more comprehensive 

explanations faithful to the way a network computes its predictions. While this has been 

taken to be a shortcoming of the field of XAI, I argue that it is broadly the right approach 

to the problem.  
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1. Introduction 

 

The operations of the most advanced machine learning (ML) systems in use today are 

widely acknowledged to be “opaque,” “inscrutable,” or “black boxes” when compared 

with more traditional forms of ML. The growing field of “Explainable AI” (XAI) has 

emerged in direct response to this problem. XAI can be seen to espouse three overriding 

aims for explanations of ML decisions: (1) completeness or depth; (2) realism/fidelity; and 

(3) interpretability. In XAI, complete explanations are those which purport to be 

exhaustive, bringing to light the architectural innards of a tool and their systematic 

operations. As I am using the word “deep,” exhaustive explanations will also be deep, but 

explanations in XAI can be deep without being exhaustive, most straightforwardly by 

bringing to light the operations of parts of a learning tool only, e.g. specific input features, 

parameters or calculations (Lipton 2017). Real explanations are those which are faithful to 

the way a system computes its predictions (Rudin 2019; Guidotti 2018). Lastly, as I shall 

be using the term “interpretable,” an interpretable explanation is one which can be 

understood by a decision subject, often through deployment of agent-level or folk-

psychological categories.1 Interpretability is a feature of explanation that is especially 

important when the subject of an automated decision needs to know how a particular 

decision regarding them was reached (e.g. for the purposes of challenge or appeal), and 

 
1 As I have defined it, interpretability is a property of explanation, not of a system or its operations. 

Occasionally in the XAI literature the predicate “interpretable” modifies a system or its operations rather than 

an explanation. 
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indeed in this paper I shall be concerned solely with the desiderata of explanations that 

purport to justify automated decisions. This is because most of the research effort in XAI is 

concerned with explainability as a means for enabling interested parties to assess whether 

an automated decision is justified (Selbst and Barocas 2018). Other goals which might be 

served by the use of explainable systems, such as control over and improvement of these 

systems, have tended to be secondary, if still in the background (e.g. Adadi and Berrada 

2018). 

Even though interpretability may not be compatible with either completeness or 

realism, in the sense that an explanation that is interpretable will most likely not also be 

complete or realistic, still it is generally accepted that an interpretable explanation should 

ideally be underpinned by (and referable to) a more complete and faithful explanation 

(Rudin 2019; Leslie 2019; Guidotti 2018; Lipton 2017). In fact, however, complete 

explanations are only possible for certain types of ML systems, namely, those whose 

operations are fathomable or in some other way intelligible to a trained expert. Because the 

operations of the most advanced ML systems are not fathomable, nor even readily 

intelligible, in many cases XAI prioritises interpretability at the expense of completeness, 

and sometimes even realism, so that explanations are frequently interpretable without 

being underpinned by more comprehensive explanations that are faithful to the logic of the 

system. While this might be—and has been—taken to be a shortcoming of the field of XAI 

(Rudin 2019; Leslie 2019), I argue that it is broadly the right approach to the problem. In 

particular, I argue that two features of action explanation are in many cases jointly 
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sufficient for being able to assess whether an automated decision is justified2: the 

intentional structure of the proffered explanation (or, as I explain in Section 4.5, something 

approximating this structure), as well as the ability the explanation affords for tracking the 

system’s behaviour. 

The paper can be understood as a philosophical defence of a significant body of 

work in XAI—a body of work which, whether consciously or otherwise, aims to explain 

ML systems by reducing their operations to a form that is amenable to belief-desire 

representation. I submit that this philosophical defence is both timely and worthwhile 

because extant criticisms of XAI explanations seem to assume that such explanations are 

deficient as forms of justifying explanations precisely because they lack 

completeness/depth and realism. That is to say, XAI explanations are considered deficient 

for having only those features of belief-desire explanations that I contend are (often) 

sufficient to qualify a given explanation as a justifying explanation. 

The paper is organized as follows. Section 2 will briefly survey the principal ML 

techniques I have in mind, and show why, relative to earlier expert systems and simple 

linear models, they are thought to pose unique challenges for explainability. Section 3 will 

briefly describe Daniel Dennett’s intentional systems theory, which may be understood as 

an analysis and (qualified) defence of folk psychology. A folk psychological model is not 

the only model one might adopt for interpreting human action, but as models of human 

action go it is unquestionably the most prevalent form. Most importantly—so far as the 

 
2 I use the words “action,” “decision,” and “recommendation” interchangeably. 
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present discussion is concerned—reasons for decisions, including official and even high-

stakes decisions, are generally expressed in the vernacular of folk psychology. In light of 

this, Section 4 argues that in assessing whether an automated decision is justified it will 

often be sufficient for its explanation to have some kind of intentional structure that is able 

to track the system’s behaviour. Section 5 considers when explanations deeper than those 

offered by the intentional stance will be required. I conclude in Section 6. 

 

2. Why explanation is hard for machine learning 

 

2.1 Types of machine learning 

 

Machine learning is a form of data processing that identifies statistical patterns from large 

quantities of information. Instead of being programmed with predetermined responses to a 

set of conditions—the dominant approach to AI up until fairly recently—a ML system is 

set up to “learn” its own suitable responses to those conditions under a training regime. 

Many tasks for which no straightforward sequence of “if-then” rules can be formulated 

may be handled more efficiently, and indeed more effectively, by a system able to draw its 

own inferences from a database of instances. 

There are two main classes of ML systems: “supervised” and “unsupervised.” 

Generally speaking, supervised ML systems assist with prediction—involving, in the 

simplest case, a mapping from some known input x to an unknown output y. This mapping 

is made possible through training, which in turn takes place on a set of pre-labeled input-
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output pairs (xi , yi). If we wanted to train a system to recognise the image of a dog or cat, 

for example, we might conceive of xi as a feature vector (consisting of all the notable 

features of the object in question, e.g. ear, tail, fur, nose, etc.), and conceive of yi as the set 

of class designations corresponding to those features (we can specify that y takes one value 

in {1, …, C}, where C stands for the number of classes; here C = 2, i.e. DOG or CAT). In this 

example, “supervision” would consist of a human labeler “telling” the system which 

features pertain to a dog and which to a cat. If D = {(xi , yi)}, where D is the training set, 

then we can say that as the size of D grows, the more “experience” the system acquires and 

the more accurate the system will be in its predictions when used on unseen data. The 

difference with unsupervised learning is that there is no similar process of labeling—no 

output data yi used in training—so D = {xi}. (Unsupervised learning is thus concerned less 

with prediction than with description, or the discovery of patterns in datasets.) My focus in 

this paper will be on supervised ML systems, because these are the kinds being 

increasingly used to supplant or supplement human decision-making, particularly in areas 

such as criminal justice (e.g. when determining risk of flight or recidivism in bail and 

parole hearings), legal practice (when assessing a client’s prospects of success), medicine 

(for diagnosing a patient’s illness), finance (in assessing a loan applicant’s credit-

worthiness), and public administration (for passport verification, assessing welfare 

recipient entitlements, etc.). 

 

2.2 The challenge posed by neural networks 
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Not all ML systems are thought to be opaque. In the main it has only been neural networks 

which have been considered to pose serious problems for explanation. Linear and logistic 

regression techniques, decision trees, and even random forest forecasting, do not pose the 

sorts of difficulties which plague neural networks. 

The opacity of a ML model is often defined by reference to the properties of 

linearity and dimensionality. Linearity and low dimensionality together can be said to 

make a system and/or its operations fathomable, in the sense that “a person can 

contemplate the entire model at once” (Lipton 2017, 4). Thus for a system to be 

fathomable, “a human should be able to take the input data together with the parameters of 

the model and in reasonable time step through every calculation required to produce a 

prediction” (Lipton 2017, 4-5).3 But when dimensionality increases considerably, even a 

linear model will cease to be fathomable. Dense linear models, extensive rule lists and 

large ensemble methods are really of intermediate complexity, and in many cases too 

cumbersome for a person to work through step-wise in real time without losing their 

footing. Nonetheless, so long as linearity is a feature of the model, it will still be 

intelligible—i.e. inspectable—without necessarily being fathomable—i.e. inspectable all at 

once. 

The most complex systems, such as deep learning networks, are inscrutable to the 

extent that they model relationships which are not linear and incorporate extremely large 

feature spaces. Their operations are thus neither fathomable nor intelligible, in the above 

 
3 Lipton (2017) himself describes such models as “simulatable,” which is an apt choice, but I prefer the 

epistemic connotations of “fathomable.” 
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senses. There is also the added complication that their model parameters are learned quasi-

independently, even in supervised learning scenarios. These characteristics combine to 

render neural networks opaque in a way that is categorically different from the way 

complex linear models may be difficult to parse. When the relationships within linear 

models are obscure, they are obscure by reason of the merely practical and attentional 

limitations posed by human cognition, such as working memory. For this reason, they may 

still be considered intelligible (if not fathomable). There is a sense in which the opacity of 

neural networks is an in principle opacity, because it is practically impossible to appreciate 

how their inputs relate to their outputs and to disentangle the multifarious effects of 

multiple input interactions. This does not mean, however, that such systems are a ding un 

sich. From a purely formal point of view, black box systems constitute a “mathematical 

glass box.” Even when a neural network takes into account many millions of parameters, 

still “an algorithmic model is a closed system of effectively computable operations….In 

this restricted sense, all AI and machine learning models are…transparent…” (Leslie 2019, 

41). I shall call this property the tractability of a system. It is a property that all technical 

systems share, from the simplest to the most complex. But the kind of epistemic access 

into the operations of a system which tractability affords does not permit us to explain how 

the system reasons through to its conclusions, and thus how it decides matters in particular 

cases. Put otherwise, the formal explanation of a system would not constitute a semantic 

explanation, which does allow us to understand “the functions of the individual parts of the 

algorithmic system in the generation of its output” (Leslie 2019, 41-42). 
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Some of the issues in play here can be clarified by reflecting on the experiences of 

connectionists with the first neural networks developed in the 1980s. The computational 

psychologist, David Marr (1977), noted a distinction between what he called “Type 1” 

theories and “Type 2” theories. Type 1 theories model those aspects of phenomena that 

yield to systematic task analysis. In later work, Marr (1982) would adumbrate a general 

methodology for Type 1 investigation, involving his well-known “computational,” 

“algorithmic” and “hardware” levels. By contrast, Type 2 theories model such aspects of 

phenomena as depend on “the simultaneous action of a considerable number of processes, 

whose interaction is its own simplest description” (Marr 1977, 38). These include high-

level cognitive tasks, and range anywhere from medical diagnosis to literary composition 

(Boden 1990). In general, Type 2 theories are less likely to be discovered than Type 1 

theories, and Marr thought that if a phenomenon is too complex to yield to Type 2 

explanation, the hope of its being comprehensively understood must be abandoned. Human 

expertise and literary appreciation are among tasks that could be considered so complex 

that any Type 2 explanation of them would be unintelligible (Boden 1990). 

In retrospect, it can be seen that Marr’s Type 2 explanations are akin to 

“mathematical glass box” explanations, which may be unintelligible though formally 

precise (see Table 1). Moreover, while connectionist networks may be amenable to Type 2 

explanation (e.g. in terms of synaptic weights, Boltzman equations, etc.), they do not 

readily submit to Type 1 task analysis (Clark 1990). I have been calling a system which 

yields solely to Type 2 explanation one that is merely tractable without also being 

intelligible or fathomable; but we could just as well call such systems “Type 2 systems.” 
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To repeat, these are systems which do not yield to semantic explanation: they defy most 

systematic attempts to comprehend them. In the 1980s, this was basically conceded. But 

there was, pace Marr, judged to be a way around the conundrum. The best hope of 

explaining Type 2 systems lay in being pragmatic about what counts as a suitable 

explanation. This in turn required entertaining “the explanatory role of elucidating various 

structural possibilities, within which natural phenomena must lie and in terms of which 

they can be systematically compared” (Boden 1990, 9-10). In what Andy Clark (1990, 

211) called “the methodology of connectionist explanation,” the a priori, logicist and 

typically ad hoc axiomatisation of a domain of intelligence was eschewed. Because a 

network is constructed in advance of any such axiom system being devised, and the 

successful reproduction of intelligent behaviour is key, explanation can afford to be post 

hoc—abstract principles will be discovered a posteriori. But neither Type 1 nor Type 2 

theories were considered appropriate. Instead, a battery of techniques was recommended as 

the occasion dictated: deliberate interventions on a network’s architecture to see what will 

happen (“network pathology”); “local” or “cluster” analyses of activation patterns within 

specific systems; and so on. As we shall see in Section 4.5, this connectionist methodology 

does not just resemble, it positively characterises a significant family of approaches used to 

produce interpretable explanations in XAI today. 
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Epistemic access afforded 
 

TRACTABILITY INTELLIGIBILITY FATHOMABILITY 

 
 
 
 
 
 
 
System 

SIMPLE 
 

e.g. simple linear 
regression 

 

X X X 

INTERMEDIATE 
 

e.g. regression 
extensions, long rule 

lists, boosted 
decision trees, 
random forests 

 

X X  

COMPLEX/ 
“TYPE 2” 

 
e.g. convolutional 
networks, support 
vector machines, 

humans 
 

X   

Table 1: The terrain of ML systems and the nature of the epistemic access each affords 

 

3. Framing human interpretability in terms of the intentional stance 

 

Without doubt, the most prevalent and user-friendly model for interpreting human action is 

everyday “mentalistic,” “commonsense” or “folk” psychology—an interpretation of action 

which traffics in the familiar beliefs, hopes, expectations, hunches, loves, wishes, desires 

and longings of ordinary human striving. It is the most natural idiom for humans to adopt 

when seeking to explain their actions to one another (as well as to themselves), and, far 

from being limited to merely informal settings, frames the dialogic structure of much 

judicial, administrative, and even commercial decision-making (“Offender X was given a 
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lenient sentence because Judge Y believed X was remorseful, and genuinely wanted to 

rehabilitate,” “Company X wanted to expand into this new area of the market to forestall 

what it believed was its competitor’s attempts to take advantage of renewed customer 

satisfaction regarding Product Y,” etc.). In short, the syntax of folk psychology is a 

paradigm of practical reasoning. 

Perhaps the best attempt to make sense of how this kind of explanation fits in 

with—and fares in relation to—other systems of explanation is Daniel Dennett’s 

intentional systems theory (Dennett 1971; 1987; 1991; 2009). In accounting for the 

efficacy of folk psychological explanation in practical reason, Dennett’s account situates 

folk psychological explanation within a framework of three systems of explanation, the 

categories of which are only accessible by adopting one of three “stances” towards an 

explanandum. Folk psychological vocabulary and the efficient, user-friendly explanations 

it makes possible are accessible by adopting what Dennett calls the intentional stance: 

“The intentional stance is the strategy of interpreting the behaviour of an entity (person, 

animal, artifact, whatever) by treating it as if it were a rational agent who governed its 

‘choice’ of ‘action’ by a ‘consideration’ of its ‘beliefs’ and ‘desires’” (2009, 339). An 

intentional system is, by definition, “Anything that is usefully and voluminously 

predictable from the intentional stance” (2009, 339)—in other words, any explanandum for 

which the intentional stance pays dividends: humans most obviously.4 

 
4 In Dennett’s own writings, the intentional strategy has been variously applied to mammals, birds, fish, 

reptiles, insects, spiders, clams, computers and thermostats (e.g. Dennett 1987). 
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 The intentional stance packs a powerful punch, and this can be seen most clearly 

when it is set against the two other stances (or “strategies of prediction”) Dennett 

describes. The physical stance “is simply the standard laborious method of the physical 

sciences in which we use whatever we know about the laws of physics and the physical 

constitution of the things in question to devise our prediction” (2009, 340). Mass, velocity, 

atoms and molecules are the stuff of physical stance explanations. And since everything is 

at least a physical system, everything’s behaviour can be predicted from this stance. The 

only drawback is cost. The physical stance can be a tedious affair, and “seldom practical” 

for anything exhibiting design, such as artifacts and living creatures. Enter, therefore, a 

“fancier style of prediction”: that made possible by adopting the design stance. From this 

perspective, the fine-grained detail of a system’s physical constitution can be screened off, 

so that much more abstract, essentially functional, features now explain how the parts of a 

system contribute to the end in view of which the system exhibits design. In Dennett’s 

words: “Nobody would prefer to fall back on the fundamental laws of physics to predict 

the behaviour of a chainsaw when there was a handy diagram of its moving parts available 

to consult instead” (2009, 340). 

To inhabit the intentional stance is to inhabit a still more rarefied point of view, in 

which “the designed thing is treated as an agent of sorts, with beliefs and desires and 

enough rationality to do what it ought to do given those beliefs and desires” (2009, 340). 

This posture is not warranted when an artifact is relatively simple, such as an alarm clock, 

but becomes “well-nigh obligatory” when the artifact approaches a certain level of 
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complexity. Over many years (e.g. 1971; 2009), Dennett’s preferred examples for making 

this case have always been chess-playing computers: 

 

just think of them as rational agents who want to win, and who know the rules and 

principles of chess and the positions of the pieces on the board. Instantly your 

problem of predicting and interpreting their behaviour is made vastly easier than it 

would be if you tried to use the physical or the design stance. (Dennett 1971, 340) 

 

Dennett in this passage helpfully cites both predicting and interpreting the computer. The 

one complements the other. As for prediction: knowing the computer’s “beliefs,” such as 

those regarding which moves in the game are legal, as well as its “desires,” in this case 

winning the game (taking the king), we can predict with a fair degree of accuracy what its 

next move will be. Taking stock of the chessboard and noting all the legal moves the 

computer could take would give you a roster of the system’s beliefs. In light of the 

computer’s goal of winning the game, you could then pretty straightforwardly rank the 20 

or 30 moves in the offing from wisest/most rational to least wisest/most stupid. On the 

assumption that you are dealing with a rational agent, your prediction would be that the 

computer will choose perhaps any of the top-four-ranked moves. In a game setting, this 

counts as “tremendous predictive leverage” (2009, 341). As for interpreting the computer’s 

move ex post—i.e. after it has made its move—a good explanation here then need only 

reference the system’s beliefs and desires, for a “good” explanation is simply one that 

gives you what we need to assess the quality of the action. To be told that the computer 
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chose to move its knight because that move ranked ahead of all other available moves 

(once the risks and gains attendant on all other moves are factored in) is to be offered a 

justification for the move, albeit one that is fully comprehensible only in light of the norms 

of competent chess-playing. More precisely, it is to be furnished with reasons for action 

which, in normal circumstances, will suffice to determine whether an action was justified. 

No doubt the most accurate predictions would stoop to the microstructural kinds of 

the physical stance, and entail such activities as “calculating the flow of electrons that 

results from pressing the computer’s keys,” or get on just as successfully—and much more 

easily—from the design stance, “considering the millions of lines of computer code that 

you can calculate will be streaming through the CPU of the computer after you make your 

move” (2009, 341). But both these options, whether of adopting the design stance or the 

physical stance, come “at a tremendous cost of time and effort,” with the predictive 

leverage thus gained worth neither the time nor the effort. The intentional stance, by 

contrast, affords a respectable predictive strategy that is also, by its very compendious 

abstractness, considerably easier to handle: the set of complex factors from which human 

choices actually arise are conveniently compressed and even idealized, much like the 

cleaner, sharper—if imperfect—patterns “dimly discernible” in a noisier bit map image 

(Dennett 1991). In Section 4 I shall argue that an intentional explanation, in virtue of these 

very structural and behaviour-tracking properties, satisfies two conditions which are, at 

least in many cases, jointly sufficient for assessing the justifiability of a decision. 
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4. Interpretability in XAI 

 

4.1 Outline 

 

I have said that in assessing whether an automated decision is justified it will often be 

sufficient for its explanation to have some kind of intentional structure that is able to track 

the automated system’s behaviour. I shall now defend this position more systematically. 

The argument moves in four steps: first, I defend the claim as a consequence of the fact 

that automated decision systems function in loco hominum (i.e. in the place of a human), 

and since these features of explanation are generally taken to suffice for explanations of 

human decisions, prima facie they ought to suffice for explanations of machine learning 

decisions; second, I argue for the sufficiency of these features of explanation in their own 

right, i.e. without regard to their salience in human practical reasoning; third, I defend the 

adoption of an intentional stance towards ML systems; finally, I illustrate through various 

examples from XAI how explanations of ML decisions might be intentionally structured 

and track system behaviour. 

 

4.2 Parity of humans and machines in loco hominum 

 

So long as we install machines in human offices (in loco hominum), there seems to be a 

prima facie case for holding them to the same norms governing human occupancy of such 

offices. This position seems especially reasonable when exercise of the decision-making 
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function that an ML system is given necessarily affects the rights or interests of a human 

subject. Thus if intentional explanations are considered good enough for assessing human 

decisions, they should be considered prima facie good enough for assessing automated 

decisions. This consideration is defeasible, as there may occasionally be competing 

considerations that outweigh it, perhaps arising from features specific to certain automated 

systems (see e.g. Section 5.2). But as a prima facie rule it seems plausible.  

However, it is not just the fact that machines are placed in loco hominum. It is 

significant too, that a certain kind of machine is being so placed. The automated systems 

we have been contemplating are Type 2 systems. But then the human practical reasoning 

system is also a Type 2 system—indeed it was the original Type 2 system, from which 

earlier connectionist models merely derived their Type 2 status (connectionist systems 

were, after all, loosely inspired by the microanatomy of the human brain). Absent 

countervailing considerations (see Section 5), it makes little sense to impose radically 

different standards of explanation on systems which afford the same kind of epistemic 

access—systems, in other words, which have parity not only in respect of how they are 

situated, as decision agents, but also in respect of the epistemic access they afford. And 

one way that their Type 2 status manifests is in the somewhat eclectic (and satisficing) 

“methodology of connectionist explanation” that provides the most promising avenue for 

understanding them (see Section 2.2). 
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4.3 Brevity and predictive accuracy 

 

Intentional structure and behaviour-tracking, quite apart from their salience in explanations 

of human action, can be jointly sufficient in accounting for action in their own right.  

Firstly, intentional structure confers brevity, or “maximum information with the 

least cognitive effort,” which in turn reduces the explanandum to “behaviourally and 

cognitively usable proportions” (Rosch 1978, 28). A municipal authority that resolves to 

ban the construction of buildings above a certain height could (let us imagine) require each 

of its voting members to have their brains scanned, with a view to producing high-fidelity 

images of the state of each voting member’s brain at crucial moments in the lead up to the 

vote. Or they could much more easily—and much more usefully—note the two or three 

key considerations weighing with the majority of voting members, expressed explicitly, as 

they might well be, in terms of beliefs and desires: “The Council believes that this action is 

necessary to preserve the amenity of recreational facilities in the area, which it wishes to 

safeguard….” 

This is not to say that deeper explanations of action are always irrelevant to 

normative assessment (see Section 5). The point is rather that the cases in which they are 

required for assessing an action’s merits are exceptional, especially where a compressed 

explanation facilitates accurate prediction (see below). At the limit, a formal “glass box” 

explanation of a network’s decisions would provide so much detail as to obscure what 

really needs to be conveyed to the decision subject—who must, in the end, be leveled with 

as a fellow agent—namely, the semantic rationale of the decision, which allows the subject 



John Zerilli, “Explaining Machine Learning Decisions,” 
Philosophy of Science (forthcoming) 

 - 19 - 

to gain an appreciation “of how and why things work the way they do and what they mean” 

(Leslie 2019, 40, emphasis added). In other words, brevity is important to justification 

insofar as it allows the subject to form a genuine understanding of why an action was 

taken. 

Secondly, the behaviour-tracking feature of intentional explanation enables us to 

make accurate predictions about the agent’s future behaviour. More precisely, it enables 

us to predict, at a level of accuracy significantly better than chance, what outputs a system 

will yield from specified inputs, including inputs which, from the system’s point of view, 

may not have been previously encountered. But how does our being able to predict what a 

rational agent will do relate to the explanation of actions already done? What does 

prediction have to do with justification? 

It is helpful to note that, in the sphere of practical reason, predictions function as a 

kind of ex ante explanation, and explanations as a kind of ex post prediction. To proclaim 

an action was justified, we would need to know why it was done, but knowing why it was 

done requires knowing that the particular set of factors adduced to explain the action was 

in fact operative, i.e. the set of factors from which we could reliably predict the same 

outcome if events were replayed. Predictions thus serve to verify explanations, and 

common intuitions reflect this. It is understood, for instance, that explanations under law 

“should permit an observer to determine the extent to which a particular input was 

determinative or influential on the output” (Doshi-Velez and Kortz 2017, 3). So in citing 

beliefs and desires—items that can support reasonable predictions, assuming the agent in 
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question is rational and truthful5—intentional explanations fulfil a basic requirement of 

justifying explanations. 

At this point, however, one might wonder how a standard of accuracy could be 

settled upon for prediction, i.e. what does predicting “reliably,” or “at a level of accuracy 

significantly better than chance,” actually mean when the explanandum is a neural 

network? Given that—so far as we are concerned—explanations of such systems are 

intended for ultimate consumption by decision subjects, it makes sense to insist that the 

predictive accuracy of these explanations fare no worse than the accuracy of explanations 

provided by human decision-makers to decision subjects. Of course it may be impossible 

to determine quantitatively just how faithfully human reasons reflect human motivations: 

perhaps knowing the putative reasons why a human decision-maker chooses as they do 

rarely enables an observer to predict such choices retrospectively. But there is no basis for 

thinking that the “reasons” of a supervised ML system would be even less faithful guides 

to its behaviour than human reasons are to human behaviour. For one thing, such systems 

are not sophisticated enough to harbour deceptive motivations, so the assumption of good 

faith is, at least for them, unproblematic. And for another thing, such systems—for all that 

they may be Type 2 systems—are unlikely to be more complex than human brains. 

Notice that predictive power alone would be insufficient in accounting for action. 

In the right circumstances one could merely simulate an agent’s behaviour, predict with 

high confidence how it would behave when presented with particular inputs, and be no 

 
5 But see next paragraph and Section 4.5. 
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closer to understanding why it behaved in that way. The compression forced on an 

explanation by dint of its intentional structure allows the explanation to assume a more 

meaningful form. 

Notice also that nothing I have so far said implies that intentional explanations are 

ultimately justifying. Clearly for a decision to count as a good decision, its explanation 

needs to be more than just interpretable and verifiable—it also needs to be reasonable or 

advisable according to the standards of some domain of expertise or knowledge. 

Intentional explanations may be sufficient for justification only in the sense that they 

would enable someone pre-equipped with relevant domain knowledge—knowledge of the 

norms of competent chess-playing, or fair and reasonable criminal sentencing, or prudent 

commercial lending practice, or whatever—to assess a decision’s merits. In this sense, 

“justifying explanations” are explanations which merely purport to justify an agent’s 

action.  

Together these two properties of an explanation, i.e. its interpretability (brevity) 

and verifiability (predictive accuracy), imply that the absence of a comprehensive account 

of action need have no bearing on an explanation’s acceptability. Furthermore, that an 

explanation having such properties does not faithfully represent the subdoxastic states it is 

presumed to index need be no impediment to its acceptability either: there is nothing to 

prevent an intentional explanation being highly idealized, so long as it can reliably track 

the behaviour sought to be explained. 
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4.4 An intentional stance on machine learning? 

 

It is one thing to say that the intentional stance pays off where humans are concerned. It is 

quite another to say that it pays off when dealing with ML systems. My aim in this 

subsection is to make more headway on the idea that we can adopt an intentional stance 

towards ML systems—i.e. to show in what sense it could pay dividends to do so. This is 

just to make the claim that ML systems are rational (much like Dennett’s example-in-

chief, the chess-playing computer programme). (Once again, the observations following 

relate to supervised learning systems, and neural networks in particular.) 

 But first, it may be wise to clear the air. I do not maintain that machines literally 

possess beliefs and desires, yet nor do I intend the use of such terms to be merely 

figurative or metaphorical. The idea is rather that by adopting the intentional stance 

towards a machine, something like what plays the role of a belief or desire in the 

interpretation of a person’s behaviour could be seen to play that same role in the 

interpretation of the machine’s behaviour. This is perhaps more aptly described as an 

analogical use, for it assumes that it makes sense to attribute the functional role 

equivalents—analogues—of beliefs and desires to any object for which the intentional 

strategy pays off. If the strategy does pay off, no further metaphysical assumptions need be 

made about what, au fond, beliefs are.6 In like fashion, although Dennett often places terms 

 
6 The beliefs we ascribe when adopting the intentional stance do not purport to exist as such somewhere 

deeper below the surface of behaviour, although Jerry Fodor’s “industrial-strength Realism” does assume as 

much (see Fodor 1987; Dennett 1991). In a word, that the intentional stance pays off is more important to the 
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like “belief” and “desire” in scare quotes when referring to the beliefs and desires of 

artifacts—suggesting he has a merely figurative or metaphorical sense in mind—strictly 

speaking he considers a distinction between literal and metaphorical applications of 

intentional vocabulary to be “ill-motivated” (2009, 342, 343). This is consistent with his 

using the terms in what I have called an analogical manner (i.e. functionally). Obviously 

the precise nature of a belief will differ from agent-kind to agent-kind, and indeed from 

agent to agent, but as Dennett notes, intentional systems theory allows us to set aside the 

“standard connotations” of mentalistic terms precisely “in the interests of exploiting their 

central features: their role in practical reasoning, and hence in the prediction of the 

behaviour of practical reasoners” (Dennett 2009, 339). 

 What could the neural network analogues of beliefs and desires be? If we adopt the 

intentional stance, the answer is obvious: whatever beliefs and desires it would make sense 

to attribute to a human agent performing the same task as the network. The more important 

question is whether the attribution of such states makes the job of interpreting the 

behaviour of a ML system any easier. I think the answer is “yes,” but it is worthwhile 

noting how beliefs and desires may fare somewhat differently on this measure. 

 

 
issue of justification than why it pays off. Whether it works because belief-desire attributions correspond to 

real counterparts in the model, or (as Dennett would have it) merely to “patterns” in the model, or to 

schemata under some theory of instrumental explanation, the issue of concern for justification is whether the 

attribution itself makes the job of predicting a system’s behaviour any easier. 
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Figure 1. A three-layer neural network which receives 80 recidivism-relevant input variables to classify 

offenders as either posing recidivism risk or not. Source: Ozkan 2017, 49. 

 

Take a neural network that assigns risk scores to prison inmates who are up for 

parole. It might compute over such variables as past offence type/s (on a scale of 

seriousness), current offence type, number of prior arrests, age at first arrest, sex and age. 

Ozkan (2017) describes a network that has three hidden layers (each consisting of 10, 40 

and 4 neurons each) whose first layer takes 80 such recidivism-relevant input variables 

(see Figure 1). These inputs function in much the same way as a player’s chess moves in a 

chess programme, in that they form part of the roster of the system’s beliefs regarding the 

situation it is confronting. But there will be more in the network’s roster than such input 

variables can account for, just as in the chess programme there were, in addition to beliefs 

about the position of the pieces, other beliefs that were built in to the system (rather than 

fed in), such as beliefs about which moves in the game are legal and which moves are 

optimal given particular configurations of the board. For a network trained on a 

sufficiently large set of previous offender statistics, the equivalent of its built-in beliefs 
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will necessarily encompass all the generalisations it acquired during learning (and 

represents implicitly in patterns of synaptic weights). Very crudely, such generalisations 

might include the following: 

 

IF offence seriousness > m AND age > b THEN high-risk 

ELSE low-risk 

 

IF EpisodeCount > n THEN high-risk 

ELSE low-risk 

 

IF behaved well THEN low risk 

ELSE high risk 

 

Unlike with chess programmes and expert systems, however, the main challenge for XAI 

lies precisely in tabulating that part of the roster of a network’s beliefs which contains its 

learned generalisations (see Section 4.5).7 But that the discovery of these generalisations 

would be a boon for any attempt at predicting how the network will behave is obvious 

(even if, as in the chess example earlier, such predictions are rarely foolproof). For 

instance, given just a few facts about an offender, the job of predicting what score a risk 

 
7 It is also worth bearing in mind that such beliefs are unlikely to hold globally rather than merely locally (see 

Section 4.5 on “local” explanation). In other words, because these beliefs are primarily intended to be useful 

insofar as they shed light on specific decisions made by a network, they may not hold more generally, and 

may therefore contradict other (global) beliefs of the system. 
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assessment tool will assign to them is easy if we assume that the above generalisations 

constitute the tool’s entire belief system. If the category of offence seriousness ranges from 

1 to 10, m = 8 and b = 21, we can easily predict that a well-behaved 18-year-old first-time 

offender who commits a category 7 offence will be classed as low risk. The example is 

rather simplistic, but it is not altogether fanciful. One risk assessment tool used by various 

state law enforcement agencies in the United States was found to be predictable with as 

few variables as the offender’s age and number of previous convictions, despite explicitly 

utilizing 137 variables (Dressel and Farid 2018).8 And to underscore the point that such 

beliefs are usually sufficient to assess justification, imagine if the tool correlated your 

Hispanic heritage, and sibling with a previous conviction for union picketing, with high 

criminality. These beliefs would be enough to mount a case against the legality of its 

decision to assign you a high risk score. 

Desires pose a different problem. When understood as agent goals, they can be 

quite simple (for a chess programme, “win the game,” for a thermostat, “keep the 

temperature at 22 degrees Celsius,” etc.). The desires (or goals) of supervised ML 

networks are to make very specific kinds of predictions. For a recidivism risk assessment 

tool, for example, the goal would be to assign a risk score to a prisoner, and the objective 

to correlate the system’s various beliefs about the prisoner with their likelihood of 

 
8 As it happens, the tool Dressel and Farid discuss does not (as far as we know) employ a neural network to 

generate risk scores, but this has little bearing on the point I am making here, which is simply that a belief 

system need not be especially rich to confer genuine predictive insight into the behaviour of the agent whose 

beliefs it describes. 
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reoffending if released. But these might be thought too simple to stand in for desires, and 

far from being too hard to formulate, they may be thought too easy. 

It is true that the aim to “assign a risk score” is not a goal state of the kind we could 

relatively easily attribute to a chess-playing computer programme, or even a thermostat—a 

state, in other words, which the system wants to be in (in the sense that it seeks to maintain 

the state in the face of perturbation), achieved by means of a reinforcement learning 

algorithm (in the case of a chess programme) or simple feedback/PID controller (in the 

case of a thermostat). A recidivism tool simply reproduces the responses it is trained on. 

And while it could be said that it wants to reproduce such response patterns, this reduces to 

saying that the system’s goal is “to do [what the system does].”9 None of this, however, 

implies that the tool lacks goals in the relevant sense. Recall that the central premise of 

intentional systems theory is that if by treating a system as having beliefs and desires one 

is enabled to predict its behaviour more efficiently than by attending to features of its 

constitution and design, then one can simply say that it has those beliefs and desires. And 

the fact remains that only in light of both its beliefs about recidivism and its broader 

functional rationale can we make predictions about what score the tool will assign in a 

given case. For in addition to the system’s roster of beliefs, it is the system’s broader 

purpose or function of assigning risk scores to prisoners presenting with particular criminal 

histories that structures, however trivially or innocuously, our expectations regarding the 

 
9 On the other hand, we could also say that if the network encodes a strong belief that the current situation is 

of category C, because of some input v, but other input w tries and fails to override this belief, the network 

wants to assign category C in a sense of “want” more approximate to the chess programme’s or thermostat’s. 
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system’s behaviour. The fact that I believe that attributes p, q, and r correlate strongly with 

recidivism does not tell you what I will do next, unless you also know that my job involves 

sitting on a parole board and that my aim is to determine, as fairly and accurately as 

possible, whether prisoners coming up for parole should be released. That my goal, 

trivially, is “to do [my job],” does not mean that my goal does no extra work on top of 

what I happen to believe about how best to do my job. Indeed, though it is natural to do so, 

to assume that my goal as a parole officer is to give effect to my beliefs about recidivism 

by forming accurate assessments of risk is not without its hazards. I may be venal, or have 

ulterior motives besides. I may, for instance, have an undisclosed association with a 

prisoner from whose clement treatment I stand to benefit—despite what my beliefs about 

recidivism imply about their risk of reoffending. If so, my parole determinations will 

remain obscure until my true motivations are exposed. ML systems do not have such 

ulterior motives, of course, so in knowing a system’s beliefs about recidivism it is always 

safe to assume that its goal will be to give effect to those beliefs. But the assumption’s 

safety in the circumstances does not negate the distinction between a system’s beliefs and 

desires. The nub of the worry, then, is not so much that supervised ML systems lack the 

sorts of aims which make adopting the intentional stance worthwhile, as that their desire 

states are going to be somewhat trivial when compared with their vastly richer belief states. 

But this much can be conceded. 
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4.5 Examples of interpretable explanations in XAI 

 

XAI is a heterogeneous movement, but a significant focus of research within it centres on 

the production of post hoc explanations (Rudin 2019; Leslie 2019; Guidotti 2018; Adadi 

and Berrada 2018; Selbst and Barocas 2018; Lipton 2017). These, in essence, are 

simplified models of an underlying model explanandum (“models of a model”), as a 

consequence of which they tend to be partial, schematic and idealized: they do not 

necessarily aspire to provide models that mimic the actual logic of the systems being 

explained (Rudin 2019; Leslie 2019; Lipton 2017). An important strand of this enterprise, 

in turn, can be understood as attempting to formulate a network’s built-in beliefs 

accurately, so that reliable predictions can be made about what it will recommend given a 

set of inputs (i.e. its fed-in beliefs). We could cite “explanations by example” as a case in 

point, in which a network’s classification of a tumour as malignant might be explained by 

reference to the similarities the tumour exhibits with others the network has been trained to 

recognise as malignant. As Lipton (2017, 6) observes: “This sort of explanation…has 

precedent in how humans sometimes justify actions by analogy. For example, doctors 

often refer to case studies to support a planned treatment protocol.” But equally striking is 

the intentional structure of the explanation. The network’s classification is, in effect, 

explained in terms of its belief that the tumour looks like other tumours it believes to be 

malignant. 

 A subset of post hoc techniques are described as “local” or “ex post,” meaning that 

instead of treating the system as a whole as an explanandum, these techniques treat a 
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system’s specific decisions or outputs as the explanandum (Leslie 2019; Selbst and 

Barocas 2018). The thought underlying this approach is that despite what may be the very 

real complexity of a decision function, it can nonetheless be interpreted through analysis of 

specific data points or regions within its larger feature space (Leslie 2019). Local 

interpretability methods therefore seek to establish a feature’s importance to a decision, 

and they do this by “iteratively varying the value of that feature while holding the value of 

other features constant” (Selbst and Barocas 2018, 1114). Sensitivity analysis, for example, 

tries to gauge which of the various features comprising an input vector xi has the greatest 

bearing on an output variable. For our dog and cat classifier, this would amount to 

revealing which of the set of input-output pairs (xi , yi) has the strongest association. While 

the question is answered ex post for specific output variables (i.e. only in the wake of 

specific classifications), the technique does have the potential to reveal a network’s learned 

generalisations by revealing that the network encodes strong beliefs that this or that feature 

of an image is strongly suggestive of a cat and not a dog (for example). Much the same 

could be said for the related technique of saliency mapping, except that the network’s 

beliefs are represented visually in a heat or pixel attribution map. Perhaps the most high-

profile local interpretability method is LIME (short for “Local Interpretable Model-

Agnostic Explanation”). Ribeiro et al. (2016) were able to show that a deep learning model 

trained on images of wolves and huskies used the presence or absence of snow in an image 

to distinguish between them (a classic case of a model overfitting its training data—

reflecting the fact that wolf images in the training set generally had snow in the 

background while husky images did not). This is a very pure case of intentional 
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explanation (“I believe that snow in an image indicates a wolf; image X had snow in it, so I 

concluded it must be a wolf”). It also starkly exhibits the essential ingredients of a 

(putatively) justifying explanation. Because snow is not a property of the class WOLF, the 

cited reason for the classification is spurious, and may be dismissed as unjustified. But 

crucially, the explanation gives us everything we need to determine this. 

Each of these techniques exemplifies the kind of explanation that I have argued is 

often sufficient for assessing justification. More generally, the explanations mirror the 

format of interpersonal explanations, including those promoting accountability under law, 

which are “about answering how certain factors were used to come to the outcome in a 

specific situation….rather than an explanation of the system’s behavior overall” (Doshi-

Velez and Kortz 2017, 7). Still, this is not to say that these explanations are always ideal 

exemplars of the strategy I have defended. For instance, the local methods so far devised 

will likely fall short where a feature space incorporates many features that contribute 

equivalently to an outcome (Selbst and Barocas 2018). Listing any fewer than the correct 

number of features in such a case may not allow us to generate reliable predictions, but 

listing the correct number could defeat the purpose of striving for an interpretable 

explanation in the first place. In another vein, a local explanation would be misleading if it 

tracked an excluded feature instead of a proxy that actually determined a model’s 

prediction. Thus a post hoc explanation of a recidivism model in which criminal history 

and age are correlated with race, but in which race itself does not feature, would be in 

some measure misleading if the explanation cited race as the reason for a high risk score. 

(However, so long as it predicted risk scores accurately by citing race, it would be a 
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valuable explanation nonetheless: it would be latching onto the fact that criminal history 

and age are, for a variety of sociological reasons—including discrimination—correlated 

with race in most datasets.) LIME too, has received its fair share of criticism, mostly 

revolving around such issues as how best to define the region of the input space to which 

its explanations apply, and the distorting effects of very small perturbations on the 

underlying model. But while worries about local and other post hoc methods generating 

misleading explanations cannot be lightly brushed aside, it is important to be clear about 

why they risk being misleading. It is not because they are idealized, or (pace Rudin 2019, 

3) lack “perfect fidelity with respect to the original model.” 

I conclude this section by acknowledging that an intentional approach to 

interpretability is not the only one available. It can be set against another approach in 

which interpretable accounts of ML systems may be given that do not resort to agentive 

vocabulary at all. The most obvious examples here would be the explanations of 

fathomable and other intelligible systems—systems, in other words, utilising regression 

techniques, decision trees, rule lists, and the like. It may be easy to explain how a linear 

regression model has optimized its parameters, and thus to explain why the model has 

generated a particular outcome in a particular case, and yet it would be a mistake to assume 

that such ease of exposition must be attributable to the use of agentive vocabulary. But 

actually the same can be said of Type 2 systems. Many of the pragmatic post hoc 

techniques that were advocated in the 1980s for connectionist systems (see Section 2.2) 

could be understood as generating interpretable explanations that were not also intentional. 

These explanations would, presumably no less than intentional explanations, suffice to 
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enable an assessment of an automated decision’s justification. On my account, what is 

crucial for explanations of ML decisions is brevity and predictive accuracy; so if some 

non-intentional explanations of ML decisions happen to offer these same features, so much 

the better for them (i.e. they too may be sufficient to justify action). 

 

5. When deeper explanations are needed 

 

5.1 Outline 

 

There certainly are occasions when design-level explanations of automated decisions will 

be required before a proper assessment of their justification is possible. The most obvious 

would be where an intentional explanation devised in XAI was not yet up to scratch, for 

example because it did not facilitate reliable prediction. But there are two important cases 

worth mentioning apart from this where deeper (design-level) explanations of automated 

decisions will be required before their justification can be assessed: the first has to do with 

the degree of sophistication of the system in question, the second with gaps in our 

knowledge of the context in which a system is deployed. 

 

5.2 Simplicity 

 

Although decision systems might unproblematically qualify as functional kinds, and be 

multiply realizable in principle, it may be that some putative ML decision systems simply 
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cannot count as genuine realizations of such systems, there being nothing they would be 

able to generate at the level of practical deliberation that adequately resembles a 

“decision.” Perhaps an elementary rule of thumb might then be that, by and large, the 

simpler that a decision system is—i.e. the less proximate to a “decision” its deliberations 

amount to—the deeper the explanation we should expect from it.10 This accords with 

prevailing practices around linear and simple logic-based decision systems. Their 

operations are fathomable precisely because they are simple, but perhaps it is because they 

are simple that we have demanded the exhaustive explanations from them that they readily, 

as it happens, provide. Putting the point slightly differently: these systems qualify as 

rational by the lights of intentional systems theory, and so can have their decisions 

adequately assessed via intentional explanation; but perhaps it is this very simplicity that 

renders their intentional explanation adequate—they are simple enough for their 

intentional explanation to offer a deep account of their operations. 

 

5.3 Knowledge gaps 

 

In some cases we may know what reasons a system has for deciding something but be 

none the wiser about what to make of them. This will be the case where an automated 

decision system recommends a course of action on the basis of a correlation that appears 

 
10 Obviously this rule will not apply when the stakes are low: to clinch some matters we might be happy to 

toss a coin, and would never insist on being able to obtain a full reckoning of the coin’s trajectory before 

doing so. 
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contrary to human intuition, and that cannot further be illuminated by existing knowledge 

(Selbst and Barocas 2018). 

Often a baffling association can be explained away without too much trouble. A 

system might, for instance, detect a statistically significant correlation between asthma and 

recovery from pneumonia. The true cause is unlikely to be that asthmatics are more robust 

to infection, but rather that they are targeted for more aggressive treatment upon clinical 

presentation with pneumonia, which then enhances their odds of recovery (Caruana et al. 

2015). The full explanation of the system’s mechanism of discovery would encompass 

information not just about the existence of the association, but about what common third 

factor likely accounts for it. Such an explanation would then furnish all the resources 

needed to determine whether a recommendation of the system was justified.  

The problem, however, is that not all counterintuitive associations can be explained 

away by further evidence that some third factor mediates between correlated variables. 

Sometimes a full explanation—so far as existing knowledge is able to provide it—stops at 

the discovery of the correlation. In these cases, even a fairly rich explanation of the system 

may not provide a reviewer with enough information to assess the value of the explanation, 

and thus to assess whether any decision of the system was justified. Yet it would be rash to 

dismiss the system’s findings tout court just because they did not comport with human 

intuition. 
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5.4 Malfunctions and alternative explanatory goals 

 

A different consideration entirely is the potential for system malfunctions, which may 

require intensive understanding of a system before they can be remediated. More 

generally, design-level explanations are sought in the interests of control (i.e. to prevent 

malfunctions) and improving performance, as well as for general understanding (Adadi 

and Berrada 2018). 

 

6. Conclusion 

 

I have argued that in accounting for the decisions of automated systems, it will not always 

be necessary to have recourse to deep and exhaustive accounts of the system’s 

operations—for example, of the kind to which we became accustomed when much simpler 

ML and logic-based systems were the norm. These simpler systems divulged their inner 

processing logic to a degree that it is not reasonable, or even necessarily desirable, to 

expect from today’s neural networks. So long as we are concerned with the evaluation of 

decisions, the formal prerequisites of explanation are in many cases satisfied by the 

quotidian form of explanation that practical reasoning assumes. That human practical 

reasoning takes this form is instructive for the kinds of explanations we can reasonably 

demand of ML systems because such systems function in loco hominum, and indeed have 

parity with humans not only in respect of how they are situated, as decision agents, but 

also in respect of the epistemic status they afford, as Type 2 systems. When the necessity 
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for deeper and more comprehensive explanations of automated decisions is urgent, as in 

some cases it may be, we should naturally expect them, in whatever form is considered 

practicable by the standards of XAI. But where no such necessity arises, a satisficing 

explanation of an automated decision ought to suffice for assessing its credentials. 
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