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·

Jaakko Hollmén1

Received: 28 February 2015 / Accepted: 28 January 2016 / Published online: 10 June 2016
© The Author(s) 2016

Abstract This paper presents an approach to semi-automated data analysis, supported by
tools for pattern construction, exploration and explanation. The proposed three-part method-
ology for multiresolution 0–1 data analysis consists of data clustering with mixture models,
extraction of rules from clusters, as well as data and rule visualization using banded matrices.
The results of the three-part process: clusters, rules from clusters, and banded structure of the
data matrix are finally merged in a unified visual banded matrix display. The incorporation
of multiresolution data is enabled by the supporting ontology, describing the relationships
between the different resolutions, which is used as background knowledge in the semantic
pattern mining process of descriptive rule induction. The presented experimental use case
highlights the usefulness of the proposed methodology for analyzing complex DNA copy
number amplification data, studied in previous research, for which we provide new insights
in terms of induced semantic patterns and cluster/pattern visualization. The methodology is
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successfully evaluated on four other publicly available data sets, which further demonstrates
the utility of the proposed approach.

Keywords Mixture models · Clustering · Semantic pattern mining · Banded matrix · Pattern
visualization

1 Introduction

Data analysis is concerned with finding ways to summarize the data to become easily under-
standable (Hand et al. 2001). The interpretation aspect is especially valued among domain
specialists who may not understand the data analysis process itself. In the current age of big
data and accompanying complex models, understandability and interpretability of the mod-
els is even more essential as, according to Richard Hamming, “the purpose of computing
is insight, not numbers” (Hamming 1986). For complex models generated from big data,
understanding these models will help to understand the data generating phenomenon and
help to make better decisions based on the data (Kuhn and Johnson 2013). Semi-automated
data analysis is hence made possible for the end-user if data analysis processes are supported
by easily accessible methodologies and tools for pattern and model construction, as well as
their exploration and explanation.

This work combines different approaches developed in our previous research, leading to
a new three-part data analysis methodology, whose utility is demonstrated in a case study
concerning the analysis of DNA copy number amplifications represented as a 0–1 (binary)
data set (Myllykangas et al. 2006). In previous work, we have successfully clustered this data
using mixture models (Myllykangas et al. 2008; Tikka et al. 2007). Furthermore, in Hollmén
and Tikka (2007), we have learned linguistic names for the patterns that coincide with the nat-
ural structure in the data, enabling domain experts to use these names to refer to the clusters or
to the patterns extracted from the clusters. In Hollmén et al. (2003) we reported that frequent
itemsets describing the clusters, or extracted from the ‘one cluster at a time’ clustered data
differ from those extracted from the whole data set. The whole set of about 100 DNA ampli-
fication patterns identified from the data have been described in Myllykangas et al. (2008).

In the proposed approach we start from our initial studies of using mixture models to
crossover unsupervised methods of probabilistic clustering with supervised methods of sub-
group discovery with the aim to determine the chromosomal locations that are responsible
for specific types of cancers. We also enrich the data with additional background knowledge
that enables the analysis of data at multiple resolution levels. Specifically, with the aim of
better explaining the initial mixture model based clusters, the proposed methodology con-
siders the cluster identifiers as class labels for descriptive rule learning (Novak et al. 2009),
using semantic pattern mining (Vavpetič et al. 2014). The resulting semantic rules are gen-
erated by the Hedwig semantic pattern mining algorithm (Vavpetič et al. 2013) performing
semantic subgroup discovery by using the incorporated background knowledge in the form
of pre-discovered patterns as well as taxonomies of features in multiresolution data. Finally,
we use a banded matrix approach to visualize the clustering result and rules obtained from
semantic subgroup discovery overlayed on the same data, thus providing holistic picture of
the data and consequently, of the data generating phenomenon.

Explaining the obtained clustering results to the users is essential. It was shown that in text
mining (Hotho et al. 2003), semantic structures can be used to explain the clustering results
at an appropriate level of granularity. Similarly, a methodology consisting of clustering and
semantic pattern mining, has already been suggested in our previous work (Langohr et al.
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2013; Vavpetič et al. 2014). However, in this work we have for the first time addressed the task
of explaining sub-symbolic mixture model patterns (clusters of instances) using symbolic
rules. To this end, we propose our previous approach (Vavpetič et al. 2014) to be enhanced
through pattern comparison by their visualization on the plots resulting from banded matrices
visualization (Garriga et al. 2011). Using different color schemes on the banded matrix
structure (induced from the original data), the mixture model clusters are first visualized,
followed by visualizing the sets of patterns (i.e. subgroups) induced by semantic pattern
mining. The proposed visualization provides new means for data and pattern exploration and
comparison. To the best of our knowledge, such a three-part exploratory approach to data
analysis has not been proposed in the data mining literature before.

The main contribution of this work is a three-part methodology for data analysis, consisting
of (i) data clustering, (ii) extraction of semantic patterns (rules) from the clusters, using an
ontology of relationships between the different resolutions of the multiresolution data, and
(iii) integration of the results in a visual display, illustrating the clusters and the identified
rules by visualizing them over the banded matrix structure, first described in Adhikari et al.
(2014). This work significantly extends our previous report on the same topic (Adhikari
et al. 2014) in many ways. First of all, we used a more elaborate experimental setting with
four additional data sets. Furthermore, we added a new section on literature survey where
we present the state-of-the-art in all three methodological parts in our contribution as well
as the holistic picture of similar methodologies, and sections detailing the model selection
procedure in mixture models and performed statistical tests for empirical verification of
stability of the clustering results. We also changed a part of the methodology, replacing one
banded matrix algorithm (the barycentric method) with another (the bidirectional MBA)
which yielded better results in our experiments.

The paper is structured as follows. The related work is presented in Sect. 2. Methodology
overview along with the details are explained in Sect. 3. Section 4 describes the experimental
data sets. Section 5 describes the experiments on the chromosomal amplification data set and
their results, while Sect. 6 presents the experiments on four additional publicly available data
sets. We present the results of the stability analysis of clustering results in Sect. 7. In Sect. 8,
we summarize the results and conclude the paper.

2 Related work

The following sections provide a brief overview of related work in mixture modeling, analysis
of multiresolution data, semantic pattern mining, and pattern visualization using banded
matrices. In the end of this section, we review some of the research that investigates at least
two aspects of our three-part methodology.

2.1 Mixture models

Mixture models have been popular in the probabilistic modeling domain because of their
flexibility in the choice of component distributions and their applicability to a wide variety of
applications. Mixture models are at the heart of model based clustering (Melnykov and Maitra
2010). Authors in Melnykov and Maitra (2010) review the model based clustering approach
in different application areas, such as text mining, proteomics, and medical data analysis.
Similarly, authors in McLachlan and Peel (2000) summarize different application areas where
mixture models have been used with plausible results such as density estimation, missing
data imputation, combining different density models, and model heterogeneity. In our earlier
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work, mixture models were used to model heterogeneous cancer patient data (Myllykangas
et al. 2008; Tikka et al. 2007).

2.2 Mixture models in copy number analysis

In the beginning, DNA copy number analysis focused in determining the copy number of
the cytogenetic bands (Knuutila et al. 1999; Pollack et al. 1999). However, in Knuutila et al.
(1999) and Pollack et al. (1999), the authors did not establish a relation between the copy
numbers and their clinical significance.

DNA copy number amplification data collected from bibliomics survey from 838 jour-
nal articles published from 1992 to 2002 was analyzed in Myllykangas et al. (2006), where
amplification patterns were determined for 73 different neoplasms and the neoplasms were
clustered according to amplification profiles thus identifying the amplification hotspots using
independent component analysis. The profiling revealed that human neoplasms formed clus-
ters based on the amplification frequency of the cancer. Similarly, authors in Myllykangas
et al. (2008) classified the human cancers based on copy number amplification using prob-
abilistic modeling. Furthermore, the authors extracted the ranges of the amplification in the
chromosome and expressed it according to the cytogentic nomenclature.

In Hollmén and Tikka (2007) and Tikka et al. (2007), the authors modeled the DNA
copy number amplifications using a mixture of multivariate Bernoulli Distributions. The
classification of 73 different neoplasms in Myllykangas et al. (2006) were extended to 95
different neoplasm types. Furthermore, in Rancoita et al. (2009), the authors have proposed the
enhancement to Bayesian Piecewise Constant Regression (BPCR), called mBPCR, changing
the segment number estimator and boundary estimator to enhance the fitting procedure. The
proposed mBPCR was more accurate in determining the true breakpoints of amplification.
More recent studies Despierre et al. (2010) and D’haene et al. (2010) have mainly focused
in cancer specific analysis of DNA copy number.

2.3 Multiresolution data analysis

Multiresolution data arises when a phenomenon is measured with varying precision (Willsky
2002). A phenomenon measured with increasing precision measures the finer details of the
phenomenon and produces the data in fine resolution. In contrast, a phenomenon measured
with decreasing precision measures the coarser details of the phenomenon and produces
data in coarse resolution. Multiresolution data are abundant in domains such as time series,
image processing, geoinformatics, and telecommunications (Willsky 2002). Multiresolution
methods are gaining popularity in recent years because of their ability to model data in
multiple dimensions within a single analysis, providing means to combine multiple data sets
and sources within a single analysis framework.

Multiresolution modeling is closely related to the scale space theory (Lindeberg 1994)
and multiscale analysis (Weinan 2011) and the terms are sometimes used interchangeably
in the literature. Multiscale representation is often generated from single resolution data
by successive smoothing and subsampling, for example, by using the pyramid structure in
image processing domain (Lindeberg 1994). Scale space representation improves over mul-
tiscale representation by providing facilities to compute representation using a desired scale
parameter, t . Scale space and multiscale methods work in the model domain where mod-
els represent single resolution data at different scales. In contrast, multiresolution modeling
problem arises in the data domain where the same data generating system is measured at
varying levels of detail. Wavelets describe mathematical phenomena, such as functions and
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signals at different levels of resolution but in a regular, consistent and homogeneous set-
ting (Jawerth and Sweldens 1994). Most of propositional machine learning and data mining
methods described in the literature are designed to work with single resolution data. Since
the dimensionality of different data resolutions is different, the usual approach is to model
each resolution separately. Scale space methods and wavelets usually use a multiresolution
analysis setting for the data sets in the same resolution. Furthermore, the multiresolution sce-
narios where wavelets and scale space methods have their usage require regular, consistent,
and homogeneous division of regions, such as the pyramid structure in the image processing
domain (Wilson 2000). In a multiresolution setting, the division is consistent but irregular
because a region in a coarse resolution is not always divided into the same number of regions
in a fine resolution like in our multiresolution chromosomal amplification data sets.

Multiresolution mixture models have been proposed in the literature. For example, a mul-
tiresolution Gaussian mixture model founded on the pyramid structure in image processing
domain models the visual motion in Wilson (2000). Authors in Mukherjee et al. (2013) incor-
porate wavelet sub-bands in a Gaussian mixture model to improve their performance thereby
providing a generic platform to use any multiresolution decomposition based Gaussian mix-
ture model for background suppression. We adapted mixture modeling for multiresolution
data in our past research. In Adhikari and Hollmén (2010), we transformed the multiresolu-
tion data to a single resolution and applied the mixture modeling algorithm on the combined
data thus increasing the performance of mixture models on single resolution data. In Adhikari
and Hollmén (2013), we showed the improvement in the modeling performance of multires-
olution mixture model by designing the structure of multiresolution components from the
domain knowledge for the mixture model such that a single multiresolution component is a
Bayesian network.

2.4 Semantic pattern mining

Rule learning, which was initially focused on building predictive models formed of sets of
classification rules, has recently shifted its focus to descriptive pattern mining. Well-known
pattern mining techniques are based on association rule learning (Agrawal and Srikant 1994;
Piatetsky-Shapiro 1991). While the initial studies in association rule mining have focused on
finding interesting patterns from large data sets in an unsupervised setting, association rules
have been used also in a supervised setting, to learn pattern descriptions from class-labeled
data (Liu et al. 1998). Building on top of the research in classification and association rule
learning, subgroup discovery has emerged as a popular data mining methodology for finding
patterns in class-labeled data. Subgroup discovery aims at finding interesting patterns as
individual rules that best describe the target variable (Klösgen 1996; Wrobel 1997).

Subgroup descriptions in the form of propositional rules are suitable descriptions of groups
of instances. However, given the abundance of taxonomies and ontologies that are readily
available, these can also be used to provide higher-level descriptors and explanations of
discovered subgroups. Especially in the domain of systems biology, the GO ontology (Gene
Ontology Consortium 2008), KEGG orthology (Ogata et al. 1999) and Entrez gene–gene
interaction data (Maglott et al. 2005) are good examples of structured domain knowledge
that can be used as additional higher-level descriptors in the induced rules.

The challenge of incorporating domain ontologies in data mining was addressed in recent
research on semantic data mining (SDM) (Lawrynowicz and Potoniec 2011; Vavpetič and
Lavrač 2013). Using ontologies, authors in Lawrynowicz and Potoniec (2011) introduce an
algorithm named Fr–ONT for frequent concept mining expressed in EL

++ DL. In Vavpetič
and Lavrač (2013), we described and evaluated the SDM toolkit that includes two semantic
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data mining systems: SDM-SEGS and SDM-Aleph. SDM-SEGS is an extension of the ear-
lier domain-specific algorithm SEGS (Trajkovski et al. 2008) which allows the application of
semantic subgroup discovery in gene expression data. SEGS constructs gene sets as combi-
nations of GO ontology (Gene Ontology Consortium 2008) terms, KEGG orthology (Ogata
et al. 1999) terms, and terms describing gene–gene interactions obtained from the Entrez
database (Maglott et al. 2005). SDM-SEGS extends and generalizes this approach by allow-
ing the user to input any set of ontologies in the OWL ontology specification language and an
empirical data collection which is annotated by domain ontology terms. SDM-SEGS employs
ontologies to constrain and guide the top-down search of a hierarchically structured space
of induced hypotheses. SDM-Aleph, which is built using the inductive logic programming
system Aleph (Srinivasan 2007), does not have the limitations of SDM-SEGS, imposed by
the domain-specific algorithm SEGS. Additionally, SDM-Aleph can accept any number of
OWL ontologies as background knowledge, which are then used in the learning process.

Based on the lessons learned in Vavpetič and Lavrač (2013), we introduced a new system
Hedwig in Vavpetič et al. (2013). The system takes the best from both SDM-SEGS and
SDM-Aleph. It uses an efficient search mechanism tailored to exploit the hierarchical nature
of ontologies. Furthermore, Hedwig can take into account background knowledge in the form
of RDF triplets. Compared to Vavpetič et al. (2013), we upgraded the original system to use
better redundancy pruning and significance tests based on Hämäläinen (2010). The latest
version of Hedwig supports also negations of unary predicates. This version of the Hedwig
system was used in the experiments described in this paper.

2.5 Related methodologies

Complex models are needed for modeling complex, non-linear relationships in the data. As
argued in Thrun (1995), however, complex models exhibit a low degree of human compre-
hensibility. Rules can be used to represent complex models, since they have the advantage
of being compact, modular, explicit and interpretable by domain experts (Tresp et al. 1997).
In our current work, we use semantic pattern mining to represent the clustered data in an
interpretable fashion. Another line of work is to summarize the clustered data in an inter-
pretable fashion in the context of topic models (Mei et al. 2007; Lau et al. 2011). Having
identified topics as clusters in a document collection, the task is to summarize the contents
of that cluster or topic in a concise way.

Work presented in Tresp et al. (1997) considers relationships between probabilistic rules,
normalized Gaussian basis functions and Gaussian mixture models, which can be seen as
different representational forms of knowledge. The work considers extracting rules out of
models, but also the use of rules to support model estimation. Rule extraction from feed-
forward neural networks is investigated in Thrun (1995). In that work, rules are extracted,
where the precondition is given by a set of intervals for the individual values and the output
is a single target category.

The aim of the research presented in Lau et al. (2011) is to automatically generate topic
labels which explicitly identify the semantics of the topic. The work in Mei et al. (2007)
proposes probabilistic approaches to automatically labeling multinomial topic models in an
objective way.

2.6 Data clustering and visualization using banded matrices

Data visualization has been an integral ingredient in the overall data mining process because
it presents insights into complex data sets by communicating their key aspects (Tufte 1986).

123



Mach Learn (2016) 105:3–39 9

Furthermore, providing information in the visual format is one of the fastest and best methods
understandable to domain experts. Data is often represented in a matrix form, and research
community has developed numerous methods for matrix visualization (Chen et al. 2004; Wu
et al. 2010). In this contribution, we use banded matrices to visualize the data and the results
of a data mining process in a way that the results become easily understandable to the domain
specialist.

While binary matrices are frequently used as input in data mining (perhaps the most
notable example of binary matrices being market basket data), the concept of banded matrices
has its origins in numerical analysis. This is because the computational effort of multiplying
matrices is much smaller when matrices are banded. The interest of the numerical community
is usually in reducing the total bandwidth of a matrix. This differs slightly from the interests
in data mining, where the goal is to find a matrix structure as close to a banded one with the
underlying assumption that the data analyzed is noisy and contains outliers. The connection
between banded matrices and their relation to data analysis was initially studied in Garriga
et al. (2011), where several algorithms were proposed to find optimal permutations of rows
(and sometimes columns) that best expose the banded structure of a matrix.

In this work, we conducted experiments with three algorithms: minimal banded aug-
mentation (MBA), bidirectional MBA (biMBA), and the barycentric method. Given that the
performance of the biMBA method, first proposed in Garriga et al. (2011), was superior to
both MBA and the barycentric method, we used this method in the visualization.

3 Methodology

This section describes the proposed three-part methodology of our contribution. The three
steps consist of clustering with mixture models, a subsequent cluster explanation through
pattern construction using semantic pattern mining, and finally pattern visualization enabling
improved pattern interpretation.

3.1 Methodology overview

The proposed methodology is illustrated in Fig. 1. The input to the methodology pipeline is the
experimental data and the background knowledge, which defines the taxonomy of attribute
values at different levels of the given multi-resolution data, with locations for various factors
that are known to contribute to cancer development or are characteristic of most cancer
types.

The first step in the methodology pipeline is mixture modeling, consisting of model selec-
tion to determine the number of mixture components and probabilistic clustering to generate
the cluster labels from the data. In the next step, data is structured using a banded matrix
approach. While the banded structure is induced from the data independently of cluster labels
and the background knowledge, the obtained banded structure can be used also to support the
visualization of the clusters obtained through mixture modeling. Next, the data (labeled by
cluster labels obtained from mixture modeling) and the background knowledge are used as
input to the Hedwig semantic pattern mining algorithm, to get the descriptions of data clusters
in the form of logical rules, whose conditions include conjunctions of background knowl-
edge concepts. Semantic pattern mining is the only modeling approach in the methodology
that uses the background knowledge and facts. Finally, all three models (the mixture model,
the banded matrix and the patterns) are joined to produce the final banded matrix-based
visualization.
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Fig. 1 Overview of the proposed three-part methodology used in the analysis of high-dimensional multires-
olution data

3.2 Mixture model clustering

Mixture models are probabilistic models for modeling complex distributions by a weighted
sum, or a mixture of simple distributions. Mixture model decomposes the complex probability
distribution into a set of component distributions (McLachlan and Peel 2000). The form of
mixture distribution is dependent on the choice of the component distributions. Distributions
from exponential family such as Gaussian and Dirichlet dominate the choice of component
distributions (McLachlan and Peel 2000). Since the data set of our interest is a 0–1 data,
we use multivariate Bernoulli distributions as component distributions to model the data.
Mathematically, this can be expressed as:

P(x) =

J
∑

j=1

π j P(x | θ j ) =

J
∑

j=1

π j

d
∏

i=1

θ
xi

j i (1 − θ j i )
1−xi . (1)

Here, j = 1, 2, . . . , J indexes the component distributions and i = 1, 2, . . . , d indexes
the dimensionality of the data. π j defines the mixing proportions or mixing coefficients
determining the weight for each of the J component distributions. The mixing coefficients
satisfy the properties of convex combination, i.e., π j ≥ 0 and

∑J
j=1 π j = 1. Individual

parameters θ j i determine the probability that a random variable in the j th component in the
i th dimension takes the value 1. Parameters for a component distribution j is denoted as
θ j = (θ j1, θ j2, . . . , θ jd). The term xi denotes the data point such that xi ∈ {0, 1}, in the data
vector x = (x1, x2, . . . xd). Therefore, the parameters of mixture models can be represented
as: Θ = {J , {π j , θ j }

J
j=1}. We can formulate Eq. 1 in log-likelihood terms according to

maximum likelihood principle (Bishop 2006), where parameter values that maximise the
log-likelihood can be defined as:

L(Θ) =

N
∑

n=1

log P(xn | Θ) =

N
∑

n=1

log

⎡

⎣

J
∑

j=1

π j

d
∏

i=1

θ
xni

j i (1 − θ j i )
1−xni

⎤

⎦ . (2)
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3.2.1 Motivation behind using mixture models

Whereas the mixture model is merely a way to represent the probability distribution of
the data, the model can be used in clustering the data into (hard) partitions, or subsets of
data instances. We can achieve this by allocating individual data vectors to mixture model
components that maximize the posterior probability of that data vector.

Among the diverse set of clustering methods of choice we chose mixture modeling because
we wanted to model the data in a probabilistic context. Probabilistic models used in clustering
provides several advantages over traditional clustering methods as they provide principled
methods to address issues such as number of clusters, and missing variables (McLachlan and
Peel 2000). Clustering methods such as k-means (which can also be interpreted as mixture
models) use simple statistical measures such as mean, or median of data items in clusters,
while we opted for mixture models that provide more complete information. When mixture
models are used in clustering, the components represent the clusters making it possible to
obtain density estimation for each cluster (Bishop 2006). Similarly, mixture model covers
the data well as the dominant patterns are captured by the components of the mixture model.
A mixture model with high likelihood results in component distributions with high peaks,
which means that the data in clusters are dense (Kononenko and Kukar 2007).

Traditional clustering algorithms such as k-means utilize unsupervised learning to group
samples that are ‘near’ each other according to predefined measure of similarity (Jain et al.
1999). These methods are more suitable for continuous data which has well defined distance
measures. Although several similarity measures are defined for binary data, their application
in binary data is not straightforward. Furthermore, our major application area was cancer
genetics and cancer is not a single disease but a heterogeneous collection of several diseases.
Mixture models are well-known for their ability to model heterogeneity (McLachlan and
Peel 2000). In the current application we have used unsupervised clustering on cancer data
sets with multiple cancer types, hence, one cluster can contain cancer types from multiple
cancers. Mixture models also provide the facility of soft clustering, however, soft clustering
is out of the scope of this work.

3.2.2 Model selection in mixture models

Expectation Maximization (EM) algorithm can be used to learn the maximum likelihood
parameters of the mixture model if the number of component distributions are known in
advance (Dempster et al. 1977). However, the number of components (i.e. number of clusters)
in the data is often unknown a priori in most real-world applications. Hence, model selection
is also an essential prerequisite of learning mixture models. Model selection is the process of
choosing a model of appropriate complexity that fits the given data set optimally (Cherkassky
and Mulier 1998; Hastie et al. 2009). The complexity parameter in mixture model is the
number of mixture components, therefore, model selection in mixture model is the choice of
appropriate number of components in the mixture model.

A plethora of criteria have been proposed in the literature to determine the appropriate
number of mixture model components (McLachlan and Peel 2000). For example, authors
in Celeux (2007), Figueiredo and Jain (2002), and Oliveira-Brochado and Martins (2005)
comprehensively review deterministic, stochastic and resampling criteria to evaluate the
performance of mixture model and therefore select the model of appropriate complexity.
Deterministic criteria consists of Akaike Information Criterion (AIC), Bayesian Information
Criterion (BIC), Minimum Description Length (MDL), and integrated classification likeli-
hood (ICL). Similarly, stochastic methods include Markov Chain Monte Carlo (MCMC),
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and resampling methods include bootstrapped likelihood ratio test (McLachlan 1987), while
authors in Woo and Sriram (2006) propose a robust approach against model mis-specification
leading to a better fitting mixture density based on minimum Hellinger distances. In addi-
tion, the authors in Chen and Khalili (2008) and Huang et al. (2013) use penalised likelihood
method for model selection in mixture model.

A popular criterion measure of the quality of mixture models is the data likelihood (Smyth
2000). In addition, cross-validation is widely used model validation technique. Therefore, we
use cross-validated likelihood to select the model of appropriate complexity as documented
in Tikka et al. (2007). A mixture model with large number of mixture components produces
larger value for the log-likelihood in Eq. 2 for training data. However, a mixture model with
large number of mixture components also overfits the data, and generalizes poorly on the
future unseen data. Additionally, mixture models with large number of components require
greater resources: both time and memory. In contrast, a mixture model with smaller number
of mixture components results in an underfitted model, and is unable to adequately represent
the underlying true data distribution. Therefore, model selection aims to optimize this trade-
off between too simple and too complex models (McLachlan and Peel 2000). A well trained
mixture model with appropriate number of mixture components estimates the underlying
data distribution better and produces high likelihood values for the unseen data which is the
primary objective of our model selection procedure (Bishop 2006).

3.3 Semantic pattern mining

The expansion of the semantic web and increasing availability of domain knowledge in the
form of ontologies have resulted in the growth of semantic data. Consequently, ontologies
are recognized as useful for encoding semantics of data also in the machine learning and data
mining communities and recent studies have shown that additional knowledge can enhance
the knowledge discovery process (Panov 2012). Note that—in contrast to the philosophical
definition of ontology—we use the plural form ontologies to emphasize that they can be
independent domain models, possibly obtained from different sources.

In our application area, ontologies come from known biological landmarks or other known
biological information. Similarly, many application areas have readily available background
information that could prove useful in the data analysis process, especially in biological and
clinical applications. Semantic data mining addresses this challenge of mining the abun-
dance of available knowledge encoded in domain ontologies to improve the process of data
mining (Vavpetič et al. 2014).

Existing semantic subgroup discovery algorithms are either specialized for a specific
domain (Trajkovski et al. 2008) or adapted from systems that do not take into the account
the hierarchical structure of background knowledge (Vavpetič and Lavrač 2013). On the
other hand, recently developed semantic subgroup discovery system Hedwig (Vavpetič et al.
2013), is designed as a general purpose semantic subgroup discovery system that uses domain
ontologies to structure the search space to formulate the hypotheses using ontology concepts.

Semantic subgroup discovery, as addressed by the Hedwig system, results in relational
descriptive rules. Hedwig uses ontologies as background knowledge and training examples in
the form of Resource Description Framework (RDF) triples. Formally, we define the semantic
data mining task addressed in this work as follows.

Given:
– the empirical data in the form of a set of training examples expressed as RDF triples,
– domain knowledge in the form of ontologies, and
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– an object-to-ontology mapping which associates each object from the RDF triplets with
appropriate ontological concepts.

Find:
– a hypothesis (a predictive model or a set of descriptive patterns), expressed by domain

ontology terms, explaining the given empirical data.

Input : Input examples E , background knowledge B, target class value c, beam size k, p-value
threshold α

Output: Set of rules

rules ← [default_rule(E, c, B)]1

while improvement(rules) do2

// Add specializations of each rule to the beam3

for rule ∈ rules do4

extend(rules, specialize(rule, B))5

end6

rules ← best(rules, k) // Select the top k rules7

end8

rules ← validate(rules, α) // Significance testing9

return rules10

Algorithm 1: Hedwig’s induce(E , B, c, k, α) procedure

Subgroup describing rules are first-order logical expressions. Consider the follow-
ing rule used to explain the format of induced subgroup describing rules, for example:
Class(X) ← C1(X),R(X,Y),C2(Y) with True Positives (T P)=80 and False Posi-

tives (F P)=20. Variables X, Y represent sets of input instances, R is a binary relation between
the examples and C1, C2 are ontological concepts. This rule is interpreted as follows: if an
example X is annotated with concept C1, and is related with an example Y via R, and Y is
annotated with concept C2, then the conclusion Class(X) holds. This rule condition is true
for 100 input instances (T P + F P , also called coverage), 80 of which are of the target class
(TP, also called support).

The Hedwig system, which implements Algorithms 1 and 2 to search for interesting
subgroups, supports ontologies and examples to be loaded as a collection of RDF triples (a
graph). The system automatically parses the RDF graph for the subClassOf hierarchy, as
well as any other user-defined binary relations. Hedwig also defines a namespace of classes
and relations for specifying the training examples to which the input must adhere.

The algorithm uses beam search, where the beam contains the best N rules found so far.
The search starts with the default rule which covers all the input examples. In every iteration
of the search, each rule from the beam is specialized via one of the four operations:

1. Replace predicate of a rule with a predicate that is a sub-class of the previous one,
2. Negate predicate of a rule,
3. Append a new unary predicate to the rule,
4. Append a new binary predicate, thus introducing a new existentially quantified variable

(note that the new variable needs to be ‘consumed’ by a literal to be conjunctively added
to this clause in the next step of rule refinement).

Rule induction via specializations is a well-established way of inducing rules, since every
specialization either maintains or reduces the current number of covered examples. A rule
will not be specialized once its coverage is zero or falls below some predetermined threshold.
When adding a new conjunction, we check that if the extended rule does not improve the
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Input : Rule to specialize rule, background knowledge B

Output: Set of specializations of rule

speciali zations ← []1

// Predicates that can be specialized2

eligible_preds ← eligible(predicates(rule))3

for predicate ∈ eligible_preds do4

// Specialize by traversing the subClassOf hierarchy5

for subclass ∈ subclasses(predicate, B) do6

new_rule ← swap(rule, predicate, subclass)7

if can_specialize(new_rule) then8

append(specializations, new_rule)9

end10

end11

// Specialize by negating12

new_rule ← negate(rule, predicate)13

if can_specialize(new_rule) then14

append(specializations, new_rule)15

end16

end17

if rule �= default_rule then18

// Specialize by adding a new unary predicate19

new_predicate ← next_non_ancestor(eligible_preds)20

new_rule ← append(rule, new_predicate)

if can_specialize(new_rule) and non_redundant(new_rule) then21

append(specializations, new_rule)22

end23

end24

if is_unary(last(predicates(rule))) then25

// Specialize by adding new binary predicates26

extend(specializations, specialize_binary(new_rule))27

end28

return specializations29

Algorithm 2: Hedwig’s specialize(rule, B) procedure

probability of the conclusion (we use the redundancy coefficient, as in Hämäläinen 2010),
then it is not added to the pool of specializations. After the specialization step is applied to
each rule in the beam, we select new set of the best scoring N rules. If no improvement is
made to the collection of rules, the search is stopped. In principle, our procedure supports any
rule scoring function. Numerous rule scoring functions (for discrete targets) are available: χ2,
precision, WRAcc (Lavrač et al. 2004), leverage and lift. The latter is the default choice and
was also used in our experiments. After the induction phase, the significance of the findings
is tested using the Fisher’s exact test (Fisher 1922). To cope with the multiple-hypothesis
testing problem, we use Holm-Bonferroni (Holm 1979) direct adjustment method with
α = 0.05.

3.4 Visualization using banded matrices

Consider a binary matrix M with N rows and d columns and two permutations, κ and π

of the first N and d integers. Matrix Mπ
κ , defined as

(

Mπ
κ

)

i, j
= Mκ(i),π( j), is constructed

by applying the permutations π and κ on the rows and columns of M . If, for some pair of
permutations π and κ , matrix Mπ

κ has the following property:
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Fig. 2 An example of a binary matrix before and after row and column permutations exposing a banded
structure

– Each row i of the matrix has the consecutive ones property. This means that the column
indices for which the value in the matrix is 1 appear consecutively, i.e. on indices ai , ai +

1, . . . , bi ,
– For each i , we have ai ≤ ai+1 and bi ≤ bi+1,

then the matrix M is fully banded. Furthermore, if matrix M is fully banded, then its transpose
M⊤ is also fully banded.

Figure 2 demonstrates the motivation behind banded matrices as it shows that finding the
banded structure of a matrix simultaneously exposes the clustered structure of the underlying
data. This means that banded matrix factorization can provide an evaluation of the clustering
results—we expect that clusters, discovered in a data set, will also be exposed by the banded
matrix visualization. Similar visual perspective can also be shown by displaying all the
clusters together, however, using independent banded matrices on them gives more validity
to the results. Allowing the samples from the same cluster to spread along the matrix will
ease pattern comparison as similar patterns from different clusters will be grouped together.
Additionally, it is easier to see the similar clusters in the data and make future decisions such
as splitting of clusters or merging of clusters for future experiments. When the reordering
selected does not depend on the cluster structure discovered, the resulting figures offer new
insight into both the data and the clustering.

For a fully banded matrix, it can be shown that a banded structure can be found in poly-
nomial time (Garriga et al. 2011). We cannot expect, however, that real world matrices,
especially those originating in a disease as heterogeneous as cancer, will be fully banded.
The problem is that, for a matrix involving noise, finding the correct row and column per-
mutations that show a structure, close to a banded one, may be computationally unfeasible.
We, therefore, need algorithms that attempt not only to find column and row permutations
that are as close to banded as possible in some sense, but also find these ‘almost banded’
structures in a decent time frame.

The method used to find the banded structure of a matrix in this article, called the bidi-
rectional minimum matrix augmentation (biMBA) method, was first proposed in Sugiyama
et al. (1981) and was first used as a method of banded matrix extraction in Garriga et al.
(2011). One step of the method consists of three substeps,
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3.4.1 Ensuring the maximum ones property

In the first step, each row of the matrix is transformed to have the consecutive ones property
by finding the smallest number of matrix elements that have to be changed (either from 1 to
0 or from 0 to 1) for the row to have the consecutive ones property.

Theorem 1 Given a matrix M, finding the correct elements to change in the i-th row of M

is equivalent to solving the maximum subarray problem for the matrix W , defined as

Wi, j =

{

+1 if Mi, j = 1

−1 if Mi, j = 0

Proof The transformation of the matrix row i into one with a consecutive ones property is
obviously an operation that results in the row having elements a, a + 1, . . . , b set to 1 and
the remaining elements set to 0 (for some pair of integers 1 ≤ a ≤ b ≤ n), so the task of
finding this transformation is equivalent to finding the correct (those that require the smallest
number of matrix element changes) values for a and b. The number of matrix element changes
assigned to each value of (a, b) is equal to

Ci (a, b) = |{ j |a ≤ j ≤ b ∧ Mi, j = 0}| + |{ j |( j < a ∨ j > b) ∧ Mi, j = 1}| (3)

The task of finding the smallest number of matrix element changes to make the row have the
consecutive ones property is therefore equivalent to finding argmina≤bCi (a, b)

On the other hand, solving the maximum subarray problem for the i-th row of matrix W is
defined as finding the subarray of the matrix for which the sum of the elements is the biggest.
Just as before, each subarray can be represented by two integers a, b which represent the
start and end point of the subarray. The maximum subarray problem is equivalent to finding
argmaxa≤b Pi (a, b), where Pi is defined as Pi (a, b) =

∑b
i=a Wi, j . We know that the elements

of W can only equal 1 or −1, so Pi (a, b) can be rewritten as

|{ j |a ≤ j ≤ b ∧ Wi, j = 1}| − |{ j |a ≤ j ≤ b ∧ Wi, j = −1}| (4)

which can, following the definition of Wi, j , be written as

Pi (a, b) = |{ j |a ≤ j ≤ b ∧ Mi, j = 1}| − |{ j |a ≤ j ≤ b ∧ Mi, j = 0}| (5)

We now consider the fact that the set Si = { j |Mi, j = 1} (which is fixed for a given i) is
the disjoint union of the sets Si,∈ = {a ≤ j ≤ b|Mi, j = 1} and Si,/∈ = {( j < a ∨ j >

b) ∧ Mi, j = 1} and we see (since |Si | = |Si,∈| + |Si,/∈|) that

Pi (a, b) = |Si,∈| − |{ j |a ≤ j ≤ b ∧ Mi, j = 0}| (6)

= |Si | − |Si,/∈| − |{ j |a ≤ j ≤ b ∧ Mi, j = 0}| = |Si | − Ci (a, b). (7)

This shows that Pi (a, b) = const. − Ci (a, b), meaning that argmin(Ci ) = argmax(Pi ),
concluding the proof.

Theorem 1 shows that for each row i , the elements which have to be changed to transform
it into a consecutive ones row can be found by solving a maximum subarray problem which
is solvable in linear time by finding, for each index j , the best subarray s j ending at j . If
Wi, j = −1, then s j is obviously equal s j−1 with the addition of j (if the sum of the elements
of s j−1 is positive) or it is an empty array with sum 0 (if the sum of the elements of s j−1 is
zero). On the other hand, if Wi, j = 1, then adding j to the subarray s j−1 clearly makes the
best possible subarray ending at j .

After transforming M into a matrix with the consecutive ones property, we denote the new
matrix M ′.
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3.4.2 Ensuring the existence of a banded structure

To ensure the existence of a banded structure for M ′, we now must further ensure that there
is no pair of rows i1, i2 such that ai1 < ai2 and bi2 < bi1 (the interval of ones in row i2 is
*completely subsumed* by the interval of ones in row i1). It is obvious that if such a pair
exists, then M ′ is not fully banded, since according to ai1 , ai2 , the row i1 should be above
row i2 ,but according to bi1 , bi2 , the row i2 should be above row i1. However, as shown in
Garriga et al. (2011), the reverse also holds: if no such pair i1, i2 exists, then the matrix is
fully banded.

This can be seen since if no such pair exists, we can sort the matrix rows by ai , then by
bi to obtain a fully banded matrix M ′′. For any row i of M ′′ (with consecutive ones between
ai and bi ), we then know that if ai = ai+1, we will have bi ≤ bi+1 by our sorting, and if
ai < ai+1, then bi > bi+1 would mean that before sorting, row i + 1 had an interval of ones
that was completely subsumed by the interval of ones in row i , which is not possible.

In order to eliminate fully subsumed pairs of rows, in the second step, the algorithm finds
each pair of rows i1, i2 such that ai1 < ai2 and bi1 > bi2 . Then, for each such pair, the
algorithm performs the minimum number of matrix element changes required so that either
ai1 = ai2 (this is done by adding ones before ai2 to row i2) or b1 = b2 (by adding ones after

bi2 to row i2) or by completely deleting all ones in row i2. Because all changes are made to
row i2, if we traverse the pairs i1, i2 in a double for loop, we can be sure that no completely
subsumed intervals will be created anew, meaning that the result of this step is a fully banded
matrix.

3.4.3 Finding the permutation to show the banded structure of M ′′

As we have shown in the previous two points, the matrix M ′′ is fully banded. Furthermore,
there exists a permutation π of the rows of M ′′ that exposes the banded structure of M ′′. This
permutation can be found by simply sorting the starting points of the intervals of ones in the
rows of M ′′ from smallest to largest, resolving ties by the endpoints of the intervals (sorting
first by ai , then by bi ).

Following the steps outlined above, Algorithm 3 calculates the best possible (in some
way) permutations of rows that will best expose the banded structure of the input matrix.
The result of the method is the original matrix M , on which we apply the permutation π .
However, the biMBA algorithm is non-optimal, heuristic, and does not find any permuta-
tion of columns (Garriga et al. 2011). To find both a permutation of columns and rows,
the alternating biMBA method transposes the resulting matrix and iteratively repeats the
described method on the transposed matrix until either convergence or reaching a predeter-
mined number of steps. The alternating biMBA method clearly finds both a permutation of
rows and a permutation of columns, however it is still (like the biMBA method) non-optimal
and heuristic in nature. Also, this second iterative step comes with some price for some of
the data described in this article: in the first data set, where neighboring columns of a matrix
represent chromosome bands that are in physical proximity to one another, the goal may be
to only find the optimal row permutation while not permuting the matrix columns.

As motivated by Fig. 2, finding a banded structure of a matrix will expose the cluster
structure of the underlying data. The image of the banded structure can then be overlaid with
a visualization of clusters, as described in Sect. 3.2. Because the rows of the matrix represent
instances, highlighting one set of instances (one cluster) means highlighting several matrix
rows. If the discovered clusters are exposed by the matrix structure, we can expect that several
adjacent matrix rows will be highlighted, forming a wide band. Highlighting of clusters need
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not be limited to only one cluster: because each instance belongs to exactly one cluster, we
can highlight them all at once. The only limitation is the number of clusters: because each
cluster is colored with its own color, too many clusters may mean that colors will be too
similar to each other to be distinguishable by the human eye.

Input : Input binary n × m matrix M

Output: Permutation π of rows of M such that Mπ is approximatelly banded

// 1. Ensuring the maximum ones property1

for i = 1, 2, . . . , n do2

ai , bi = to_consecutive_ones(Mi) // After this step, the ones in row Mi appear in3

columns ai , ai + 1, . . . , bi
end4

// 2. Ensuring the existence of a banded structure5

for i = 1, 2, . . . , n do6

for j = i, i + 1, . . . , n do7

if a j < ai ∧ b j > bi then8

ai , bi =extend_or_delete(i, j)9

end10

end11

end12

// 3. Finding the permutation to show the banded structure of M ′′13

π = argsort([(a1, b1), . . . , (an , bn)]) return π14

Algorithm 3: The bidirectional MBA algorithm

The image of the clusters can also be overlaid with a visualization of the patterns
explaining the clusters, presented in Sect. 3.3. If a chromosome band is discovered as
an important chromosome band for the characterization of a cluster, we highlight the
corresponding column. In the case of composite rules of the type

Rule 1: Cluster3(X) ← 1q43-44(X) ∧ 1q12(X) , both bands are understood as
equally important and are therefore both highlighted. If a chromosome band appears in more
than one rule, this is visualized by a stronger highlight of the corresponding matrix column.
In the case of the ideal example, shown in Fig. 2, the second cluster is completely defined
by having ones in columns 3, 4, 5, 6, and 7. We show this by highlighting these columns in
the banded matrix. It is to be noted that the banded matrix visualization helps to determine
if the clustering results are plausible. It also helps to identify the similarities and differences
between clusters with respect to the patterns in the data.

4 Experimental data

In this section, we present the data sets which were used in the experiments. We first present
a detailed explanation of multiresolution chromosomal amplification data, followed by the
presentation of selected publicly available data sets that were previously used in Ristoski and
Paulheim (2014).

4.1 Multiresolution chromosomal amplification data

A wide range of genetic mutations and molecular mechanisms known as chromosomal aberra-
tions have been identified as the hallmarks of various disorders such as cancer, schizophrenia,
and infertility (Albertson 2006; Vogelstein and Kinzler 2002). In cancer research, identifi-
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cation and characterization of chromosomal aberrations are crucial to study and understand
pathogenesis of cancer. Furthermore, study of chromosomal aberrations provides necessary
information to select the optimal target for cancer therapy on an individual level (Kirsch 1993).
Study of chromosomal aberrations also has several clinical applications such as studying mul-
tiple congenital abnormalities and identifying the family history of Down syndrome (Obe
and Vijayalaxmi 2007).

The data set we examined consists of DNA copy number amplifications in 4590 cancer
patients. The data describes 4590 patients as data instances, with attributes being chromo-
somal locations indicating amplifications in the genome. These aberrations are described as
1’s (amplification) and 0’s (no amplification). Authors in Myllykangas et al. (2006) describe
the amplification data set in detail. Amplification data is further described at two different
resolution levels (312 and 393 locations, for 24 different chromosomes).

Given the complexity of the multiresolution data, we were forced to reduce the complexity
of the learning setting to a simpler one, allowing us to develop and test the proposed method-
ology. To this end, we have reduced the size of the data set: from the initial set of instances
describing 4590 patients, each belonging to one of the 73 different cancer types, we have
focused on 34 most frequent cancer types only, as there were small numbers of instances
available for many of the rare cancer types. This reduced the data set from 4590 instances
to a 4104 instances. The choice of 34 most frequent cancers is motivated by the fact that it
covers 90 % of the entire data set. Since the original data with 393 genomic locations are high
dimensional and the results could be greatly affected by the curse of dimensionality (Bellman
1961), we partitioned the data into 24 different chromosomes and process each chromosome
at a time. Additionally, chromosome-wise processing may help us find chromosome specific
patterns for different cancer types. Nevertheless, this division is based on the assumption
that the effects of amplifications on different chromosomes, produced by a cancer type, are
independent. Similar to the experiments in Hollmén et al. (2003), which showed differences
in frequent itemsets computed from one cluster at a time to the whole data set at once, we
can expect different patterns when they are computed from one chromosome at a time to the
whole data set at once.

In addition, in the experiments we have focused on a single chromosome (chromosome
1), using as input to step 2 of the proposed methodology the data clusters obtained at coarse
resolution using a mixture modeling approach (Myllykangas et al. 2008).

When chromosomes are extracted from the data, some cancer patients show no ampli-
fications in any regions of the chromosome 1. We have removed such samples without
amplifications (zero vectors) because we are interested in the amplifications and their rela-
tion to cancers, not their absence. Considering negation cases is unsuitable because we are
only investigating one chromosome at a time. A negation result could infer that if a region
is not aberrated, it is likely to be a specific cancer which will be misleading as information
from other chromosomes are missing. This reduces the sample size, for example sample size
of chromosome 1 is reduced from 4104 to 407. While this data reduction may be an over-
simplification, finding relevant patterns in this data set is a huge challenge, given the fact that
even individual cancer types are known to consist of cancer sub-types which have not yet been
explained in the medical literature. If we consider the entire data, inferencing and density
estimation will produce degenerate results because of the curse of dimensionality (Bell-
man 1961). Additionally, the experiments performed on chromosome 1 can be seamlessly
extended to all the other chromosomes, thus efficiently using each and every sample present in
the data. Furthermore, chromosomewise analysis can generate chromosome specific patterns
for certain cancer types. The proposed methodology may prove, in future work, to become a
cornerstone in developing means through which such sub-types could be discovered, using
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automated pattern construction and innovative pattern visualization using banded matrices
visualization.

In addition to the DNA amplifications data sets, we used supplementary background
knowledge in the form of an ontology to enhance the analysis of the data set. The supplemen-
tary background knowledge consists of hierarchical structure of multiresolution amplification
data, chromosomal locations of fragile sites, virus integration sites, cancer genes, and ampli-
fication hotspots. The hierarchical structure of multiresolution data is due to International
System of Cytogenetic Nomenclature (ISCN) which allows the exact description of all
numeric and structural amplifications in genomes (Shaffer and Tommerup 2005). A frag-
ile site is a chromosomal region that tends to show a constriction or a gap and may tend to
break on metaphase chromosomes when subjected to partial replication stress, i.e. following
partial inhibition of DNA synthesis (Durkin and Glover 2007). A metaphase chromosome is
a chromosome in the stage of the cell cycle (the sequence of events in the life of a cell) when
a chromosome is most condensed, highly coiled, and aligned in the equator of the cell before
being separated into each of the two daughter cells. At this stage chromosome is easiest to
distinguish and study. Virus integration sites are also the chromosomal locations where viral
DNA inserts into host-cell DNA (Hausen 2009). Approximately, 12 % of cancers are caused
by viruses (Hausen 2009). Cancer genes are also the chromosome locations of known cancer
causing genes. The list was obtained from Futreal et al. (2004). Amplification hotspots are fre-
quently amplified chromosomal loci identified using computational modeling (Myllykangas
et al. 2006).

4.2 Publicly available data sets

In addition to the chromosomal amplifications data, we tested our methodology on four
publicly available data sets originally used in Ristoski and Paulheim (2014).

– Cities Data set describes the most and least liveable cities in the world according the
Mercer ranking.

– NY Daily Data set describes the crawled news items along with their sentiment scores.
– Tweets Data set is a collection of tweets with different features where the original task

is to identify different sports related tweets.
– Stumble Upon Data set consists of training data set used in the Kaggle competition.

To generate the hierarchical features, ‘DBpedia Direct Types’ ontology was used in the first
three experiments, and the ‘Open directory project’ ontology was used to extract categories for
each URL in the fourth data set, i.e. we used the same approach as in the original experiments
reported in Ristoski and Paulheim (2014).

Since the data sets were highly sparse, we preprocessed the data to remove highly sparse
variables. In the Cities data sets, we selected only those features which were positive in at
least 25 different samples, but also eliminated features that were very dense, i.e. those that
were positive in more than 170 instances. In the NY Daily data sets, we selected only the
features that were positive in more than 200 samples but less than 450 samples. In the Tweets
data set we selected only the features that were positive in more than 100 samples of the
Tweets data set. Finally, in the Stumble Upon data set we selected only the features that were
positive in more than 400 samples. Such preprocessing was motivated by the fact that features
that are either very sparse or too dense carry very little information for class discrimination.
Moreover, by removing these features we also mitigate the negative curse of dimensionality
effects (Bellman 1961).
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Fig. 3 Mixture model for chromosome 1. Only first 10 dimensions are shown for clarity. The figure just
depicts a collection of numbers in the mixture model, which does not provide much insight to the expert

5 Experiments on multiresolution chromosomal amplification data

The following sections describe the results of running the developed three-step method-
ology on the chromosomal amplification data. We present the experimental results, result
visualization and interpretation.

5.1 Mixture modeling

Mixture modeling itself consists of three steps: first we need to use model selection to deter-
mine the number of components (i.e. clusters) in the mixture model. Second, we need to
learn the parameters of each component distributions, and finally, use the selected model to
generate the data clusters. For the chromosomal amplification data set, we used the mixture
models trained in our earlier contribution (Myllykangas et al. 2008). Through a model selec-
tion procedure documented in Tikka et al. (2007), the number of components for modeling
chromosome 1 was set to J = 6.

Figure 3 shows a visual illustration of the mixture model parameters for chromosome 1. In
the figure, the first line denotes the number of components (J ) in the mixture model and the
data dimensionality (d). The lines beginning with # are comments and can be ignored. The
fourth line shows the parameters of component distributions (π j ) which are six probability
values summing to 1. Similarly, the last six lines of the figure denote the parameters of the
component distributions (θ j i ). Figure 3 does not provide any insight into the data as it consists
of many numbers and probability values. Therefore, we use banded matrix for visualization to
demonstrate and evaluate the results produced by the mixture models and provide additional
insights into the data set.

We clustered the data using the mixture model depicted in Fig. 3. Whereas the mixture
model defines a probability model for the generation of data and can thus be used in soft clus-
tering, allocating data vectors to the component densities that maximize the probability of data
defines a hard clustering. Here, we focus on hard clustering of the samples of chromosomal
amplification data, dividing the data set into six different clusters. The number of samples
in each cluster are the following: |Cluster 1| = 30, |Cluster 2| = 96|, |Cluster 3| = 88,
|Cluster 4| = 81, |Cluster 5| = 75, |Cluster 6| = 37.

5.2 Cluster visualization using banded matrices

We used the bidirectional minimal banded augmentation method, described in Sect. 3.4, to
extract the banded structure in the data. As explained in Sect. 3.4, we decided to only allow
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Fig. 4 Banded structure of the chromosome 1 data matrix with cluster information overlay

permutations of rows of the data matrix. In Fig. 4, the black color indicates ones in the data
and white color denotes zeros in the data. The resulting figure is then overlaid with the 6
clusters, discovered in Sect. 5.1.

By exposing the banded structure of a matrix, Fig. 4 allows a clear visualization of the
clusters discovered in the data. Examination of Figs. 3 and 4 show that each cluster captures
amplifications in some specific regions of the genome. Both figures capture a phenomenon
that the p-arm of chromosome 1 (left part of the figure) shows a comparatively smaller number
of amplifications whereas the q-arm shows a higher number of amplifications.

In Fig. 4, cluster 1 (component 1, π1) is characterized by pronounced amplifications in
the end of the q-arm (regions 1q32–q44) of chromosome 1. The figure also shows that sam-
ples in the second cluster (component 2, π2) contain sporadic amplifications spread across
both p and q-arms in different regions of chromosome 1. This cluster does not carry much
information and contains cancer samples that do not show discriminating amplifications in
chromosomes as the values of random variables are near 0.5. It is the only cluster that was
split into many separate matrix regions. In contrast, cluster 3 (component 3, π3) portrays
marked amplifications in regions 1q11–44. Cluster 4 (component 4, π4) shows amplifica-
tions in regions 1q21–25. Similarly, cluster 5 is denoted by amplifications in 1q21–25. The
visualization with banded matrices in Fig. 4 also draws a distinction between clusters number
4 and 5, which upon first viewing show no obvious difference to the human eye. Cluster 6
(component 6, π6) is defined by pronounced amplifications in the p-arm of chromosome 1.

5.3 Rules induced through semantic pattern mining

Using the method described in Sect. 3.3, we induced subgroup descriptions for each cluster
as the target class. For a selected cluster, all the other clusters represent the negative training
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Table 1 Rules induced for cluster 1 of the chromosome 1 data set

# Rules for cluster 1 TP FP Precision Lift p value

1 Cluster1(X) ← 1q43–44(X) 26 88 0.23 3.09 0.000

2 Cluster1(X) ← 1q41(X) 26 90 0.22 3.04 0.000

3 Cluster1(X) ← 1q32(X) 24 116 0.17 2.33 0.000

4 Cluster1(X) ← HotspotSite(X) 30 280 0.10 1.31 0.000

5 Cluster1(X) ← FragileSite(X) 30 317 0.09 1.17 0.002

Table 2 Rules induced for cluster 3 of the chromosome 1 data set

# Rules for cluster 3 TP FP Precision Lift p value

1 Cluster3(X) ← 1q43–44(X) 81 0 1.00 4.62 0.000

1q12(X)

2 Cluster3(X) ← 1q11(X) 78 9 0.90 4.15 0.000

3 Cluster3(X) ← 1q43–44(X) 88 26 0.77 3.57 0.000

4 Cluster3(X) ← 1q41(X) 88 28 0.76 3.51 0.000

5 Cluster3(X) ← 1q12(X) 81 43 0.65 3.02 0.000

6 Cluster3(X) ← 1q32(X) 88 52 0.63 2.91 0.000

7 Cluster3(X) ← 1q31(X) 87 54 0.62 2.85 0.000

8 Cluster3(X) ← 1q25(X) 88 64 0.58 2.68 0.000

9 Cluster3(X) ← 1q24(X) 88 97 0.48 2.20 0.000

10 Cluster3(X) ← 1q21(X) 88 134 0.40 1.83 0.000

11 Cluster3(X) ← 1q22–24(X) 88 149 0.37 1.72 0.000

12 Cluster3(X) ← HotspotSite(X) 88 222 0.28 1.31 0.000

13 Cluster3(X) ← CancerSite(X) 88 245 0.26 1.22 0.000

14 Cluster3(X) ← FragileSite(X) 88 259 0.25 1.17 0.000

examples, which resembles one-versus-all approach in multiclass classification. In this sec-
tion, we discuss the results pertaining to clusters 1 and 3 (see Tables 1 and 2), while the rules
for the other clusters, along with their visualization, are discussed in the following section.
In our experiments we have considered only rules without negations in the rule conditions,
as we are interested in the existence of amplifications characterizing the clusters and thereby
the specific cancers (note that the absence of amplifications would mainly characterize the
absence of cancers not their presence).

Tables 1 and 2 show the rules induced for clusters 1 and 3, together with their relevant
statistics. The rules presented in Table 2 quantify the clustering results obtained in Sect. 5.1
and confirmed by banded matrix visualization in Sect. 5.2. The mixture model depicted in
Fig. 3 and banded matrix visualization depicted in Figure 4 show that cluster 3 is marked by
the amplifications in the regions 1q11–44. However, the rules obtained in Table 2 show that
amplifications in all the regions 1q11–44 do not equally discriminate cluster 3. For example,
rule Rule 1: Cluster3(X) ← 1q43-44(X) ∧ 1q12(X) characterizes cluster 3 best
with a precision of 1. This means that amplifications in regions 1q43–44 and 1q12 denote
cluster 3. It also covers 81 of the 88 samples in cluster 3. Clinically, the amplifications in
these regions characterises Ependymoma (Myllykangas et al. 2008).

123



24 Mach Learn (2016) 105:3–39

Nevertheless, amplifications in regions 1q11–44 shown in Fig. 3 as discriminating regions,
appear in at least one of the rules in Table 2 with varying degree of precision. The first part
of the rule (i.e. amplifications in region 1q43–44) is the most discriminating for cluster 1 as
shown in Table 1. However, with considerably reduced precision and lift.

Although the rule: Rule 2: Cluster1(X) ← 1q43-44(X) appears in semantic
descriptions of both the clusters 1 and 3, addition of a conjunct 1q12 in the rule improves the
discriminating power for cluster 3. Rule 2 covers all 88 samples of cluster 3 with precision
of 0.77 whereas it covers 26 out of 30 samples in cluster 1 with the precision of 0.23. This
shows that amplifications in region 1q43–44 characterize both clusters 1 and 3. If the nega-
tion rules are considered, amplifications only in regions 1q43–44 would more likely make
it a candidate for cluster 1. Similarly, the second most discriminating rule for cluster 3 is:

Rule 2: Cluster3(X) ← 1q11(X) which covers 78 positive samples and 9 negative
samples.

The rules listed in Table 2 also capture the multiresolution phenomenon in the data. We
input only one resolution of data to the algorithm but the hierarchy of different resolutions is
made available to the algorithm as background knowledge. For example, the literal 1q43–44
denotes a joint region in coarse resolution thus showing that the algorithm produces results at
different resolutions. The results at different resolutions improve the understandability and
interpretability of the rules (Hollmén and Tikka 2007).

Furthermore, other information added to the background knowledge are amplification
hotspots, fragile sites, cancer genes, which are discriminating features of cancers but do not
show to discriminate any specific clusters present in the data. Therefore, such additional
information can be better utilized in situations where the data set contains not only cancer
samples but also control samples which is unfortunately not the situation here as our data set
has only cancer patients.

5.4 Visualizing semantic rules and clusters with banded matrices

The second way we can use the exposed banded structure of the data is to display columns
that were found to be important due to appearing in rules from Sect. 5.3. We achieve this by
highlighting the chromosomal regions which appear in the rules. Figure 5 depicts colored
overlays of the rules on the ordered/serialized patient-chromosome matrix. As shown in
Fig. 5, the highlighted band for cluster 1 spans chromosome regions 1q32–44. For cluster
3, the entire q-arm of the chromosome is highlighted, as indeed the instances in cluster 3
have amplifications throughout the entire arm. We can see that the regions 1q11–12 and
1q43–44 appear in rules with higher lift, in contrast to the other regions. This tells us that the
amplifications on the edges of the region are more important for the characterization of the
cluster (Table 2).

As shown in the left panel of Fig. 6, cluster 2 captures the heterogeneity in data (Table 3).
Since, we are using only chromosome 1, this cluster is more likely to capture those cancers
that are characterized by amplifications in chromosomes other than chromosome 1. The
samples from clusters are distributed in different parts by the banded matrix visualization.
The amplifications captured by this cluster are miscellaneous samples, i.e. those cancers
that do not show prominent amplifications in chromosome 1. Nevertheless, amplifications
captured by this cluster characterize glioblastoma multiforme (Myllykangas et al. 2008).

As shown in the right panel of Fig. 6, cluster 4 captures the amplifications near the begin-
ning of the q arm of chromosome 1. The rules tabulated in Table 4 show amplifications in
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Fig. 5 Clusters 1 (left) and 3 (right) of the chromosome 1 data set with relevant columns highlighted. A
highlighted column denotes that an amplification in the corresponding region characterizes the instances of
the particular cluster. A darker hue means that the region appears in more rules. The numbers on top right of
the figures correspond to rule numbers. For example, 1, 3 above rightmost column of cluster 3 indicates that
the chromosome region appears in rules 1 and 3 tabulated in Table 2

Fig. 6 Clusters 2 (left) and 4 (right) of the chromosome 1 data set with relevant columns highlighted

regions 1q21–1q25. Clinically, the amplifications in these regions of cluster 4 mark liposar-
coma (Myllykangas et al. 2008) (Table 4).

The regions and rules in Cluster 5, depicted in the left panel of Fig. 7 overlap with the
rules describing clusters 4. However, the rules describing these clusters have higher precision
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Table 3 Rules for cluster 2 of the chromosome 1 data set

# Rule TP FP Precision Lift p value

1 Cluster2(X) ← 1p31(X) 28 26 0.52 2.20 0.000

2 Cluster2(X) ← 1p32(X) 19 35 0.35 1.49 0.023

Table 4 Rules for cluster 4 of the chromosome 1 data set

# Rule TP FP Precision Lift p value

1 Cluster4(X) ← 1q24(X) 81 104 0.44 2.20 0.000

2 Cluster4(X) ← 1q25(X) 57 95 0.38 1.88 0.000

3 Cluster4(X) ← 1q22-24(X) 81 156 0.34 1.72 0.000

4 Cluster4(X) ← HotspotSite(X) 81 229 0.26 1.31 0.000

5 Cluster4(X) ← 1q21(X) 56 166 0.25 1.27 0.000

6 Cluster4(X) ← CancerSite(X) 81 252 0.24 1.22 0.000

7 Cluster4(X) ← FragileSite(X) 71 276 0.20 1.03 0.001

Fig. 7 Clusters 5 (left) and 6 (right) of the chromosome 1 data set with relevant columns highlighted

than those describing clusters 4 (Table 5). These two clusters are the prime candidates if any
two clusters need to be merged. In terms of clinical relevance, the amplifications the regions
captured by this cluster denotes malignant fibrous histiocytoma of bone (Myllykangas et al.
2008).

The amplifications in the p-arm of Chromosome 1 captured by cluster 6 are depicted in
the right panel of Fig. 7. This is clearly distinguishable from other clusters because other
clusters mainly capture the amplifications in q-arm of chromosome 1. The amplification in
these regions characterizes the phenomenon of small cell lung cancer (Myllykangas et al.
2008).

In summary, Figs. 4 and 5 together offer much more informative view of the structure
of the underlying data than simply the list of rules in Table 6 or the cluster visualization
in Fig. 3. The figure shows that most the samples in the same cluster also appear together
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Table 5 Rules for cluster 5 of the chromosome 1 data set

# Rule TP FP Precision Lift p value

1 Cluster5(X) ← 1q21(X) 75 147 0.34 1.83 0.000

2 Cluster5(X) ← 1q12(X) 33 91 0.27 1.44 0.002

3 Cluster5(X) ← 1q22-24(X) 60 177 0.25 1.37 0.000

4 Cluster5(X) ← HotspotSite(X) 75 235 0.24 1.31 0.000

5 Cluster5(X) ← CancerSite(X) 75 258 0.23 1.22 0.000

6 Cluster5(X) ← FragileSite(X) 75 272 0.22 1.17 0.000

Table 6 Rules for cluster 6 of the chromosome 1 data set

# Rule TP FP Precision Lift p value

1 Cluster6(X) ← 1p34(X) 37 8 0.82 9.04 0.000

2 Cluster6(X) ← 1p33(X) 31 12 0.72 7.93 0.000

3 Cluster6(X) ← 1p32(X) 29 25 0.54 5.91 0.000

4 Cluster6(X) ← 1p31(X) 15 39 0.28 3.06 0.000

5 Cluster6(X) ← CancerSite(X) 36 297 0.11 1.19 0.000

in the banded matrix visualization even when we only allow permutations of rows in the
data set. The figure, achieved by reordering the matrix rows by placing similar items closer
together to form a banded structure, allows an easier visualization of the clusters and rules.
It is important to reorder the rows independently of the clustering process. This is because
the reordering does not depend on the cluster structure discovered. Therefore, the resulting
figures offer new insight into both the data and the clustering.

6 Experiments on publicly available data sets

We repeated the experiments, using the developed pipeline on the publicly available data sets.
In this section, we present the experimental results, their visualizations and interpretations
for the four publicly available data sets.

6.1 Mixture modeling

Similar to the chromosome amplification data, we repeated the three steps (determining the
number of clusters, learning the parameters of each component distribution and using the
selected model to generate the clusters) for each of the publicly available data sets.

Following our previous work in Myllykangas et al. (2008), we used ten-fold cross-
validation with cross-validated likelihood as the criteria for selection of the optimal number
of clusters, similar to Tikka et al. (2007). In each data set, we trained mixture models in a
cross-validation setting for the number of components ranging from 2 to 20 (30 and 50 in
larger data sets NY Daily and Stumble Upon), with the assumption that there are at least
two clusters in the data. Similarly, another assumption is that components greater than 20
(30 and 50 in NY Daily and Stumble Upon data) would overfit the data. Mixture models are
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susceptible to local optima, therefore, we train multiple models with the same number of
components (50 in our experiments).

Figure 8 shows that for small numbers of clusters, the likelihood of mixture models
increases smoothly until reaching a noticeable peak. For ideal data sets (seen in Tikka et al.
(2007)), the peak represents a global maximum. Our experiments on real-world data sets
show that identifying structures within data sets is not straight-forward. However, taking
parsimony into account, even if larger numbers of components produce higher validataion
likelihoods, we would select mixture models with a smaller number of components as they
are computationally easier to train both in terms of time and memory and are also easily
interpretable by the domain experts (Hollmén and Tikka 2007).

By determining the smallest number of components for which the likelihood as seen in
Fig. 8 of mixture models reaches a local peak, we select 6, 7, 4, and 10 components in
the Tweets, NY Daily, Cities, and Stumble Upon data sets, respectively. Like in the case of
chromosomal amplification data, we used the mixture model parameters for each data set to
cluster it. We focused on hard clustering of the samples, dividing the data set into the number
of clusters, determined in the previous step.

6.2 Cluster visualization using banded matrices

On the publicly available data sets, we ran the alternating biMBA method to expose the
banded structure of the matrices. The choice of alternating method was motivated by the
fact that the ordering of the columns in the publicly available data sets was arbitrary. This is
unlike the amplification data set which had fixed ordering of regions in the genome.

Cities The biMBA algorithm converged after 7 iterations exposing the banded structure of
the matrix. The banded structure in Fig. 9 clearly visualizes the four clusters found by the
presented methodology. Clusters 2 and 3 are almost completely separated from clusters 1 and
4. The visualization also shows that cluster 1 and cluster 2 are both composed of two parts
which are hard to distinguish. This phenomenon was also captured during model selection
in the Cities data set because the increase in validation likelihood was minimal when the
number of components was increased from 3 to 4. When we selected four components, a
relatively homogeneous cluster is broken down into two.

Tweets The biMBA algorithm converged after 33 iterations for the Twitter data set with
credible results. The visualization provided in Fig. 10 shows that clusters 1, 2 and 3 are
clearly separable from the rest of the data set. Cluster 4, the largest of the clusters, is split
into two large parts, both of which are fairly homogeneous. However, clusters 5, 6, and 7
are relatively small with the value mixture components equal to 0.07, 0.05, and 0.03. Hence,
these clusters are not fully exposed in the visualization.

NY Daily The biMBA algorithm converged after 11 iterations for the NY Daily data set. As
seen in Fig. 11, it clearly highlights clusters 1, 2 and 6 and shows that clusters 4 and 3 are
more similar to each other. Interestingly, even though cluster 3 is split into several parts, it
can still be seen that the annotations, drawn on the left side of the visualization, are more
important for cluster 3 (meaning that splitting the two clusters was a good choice). As in
cluster 2 of the amplification data sets, the algorithm also highlights cluster 5 which does
not capture a specific pattern but patterns scattered across different columns in the data set
(Fig. 11).
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# Rule TP FP Precision Lift p-value

1

Cluster2(X)← City(X) ∧

PopulatedPlace(X) ∧

Center(X) ∧

Municipality(X)

51 0 1.00 3.47 0.00

2

Cluster2(X)← PopulatedPlace(X) ∧

City(X) ∧

Place(X) ∧

Center(X)

49 0 1.00 3.47 0.00

3

Cluster2(X)← Underspecified(X) ∧

City(X) ∧

Place(X) ∧

Center(X)

48 0 1.00 3.47 0.00

4

Cluster2(X)← PopulatedPlace(X) ∧

City(X) ∧

Place(X) ∧

Capital(X)

42 0 1.00 3.47 0.00

5

Cluster2(X)← Underspecified(X) ∧

City(X) ∧

Place(X) ∧

Capital(X)

41 0 1.00 3.47 0.00

Fig. 9 The results of the methodology for the Cities data set. Top left the banded structure of the Cities
data matrix with cluster information overlay. Top right cluster 2 of the Cities data set with relevant columns

highlighted. Bottom rules for cluster 2 of the Cities data set

Stumble Upon The Stumble Upon data set was the only data set on which our methodology
did not achieve credible results. The model selection procedure shows that both training and
validation likelihood smoothly increase until the number of components is 20. Even after the
number of components was greater than 20, even the validation likelihood did not decrease
showing that there is no apparent structure in the data as depicted in the bottom right panel
of Fig. 8. The figure does not show high variation in likelihood among different number
of components and also within each component among different runs because the number
of data samples are high to constrain the mixture model. Similarly, the biMBA algorithm
converged much more slowly than in the other data sets, taking 521 iterations to reach the
optimal banded structure. Visualizing the structure shows that the data is fractured into several
small chunks. Some clusters, like 8 and 10, are separated from the rest, but the remaining
clusters are sporadically scattered across all the rows (Fig. 12).
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# Rule TP FP Precision Lift p-value

1
Cluster1(X)← Person(X) ∧

Athlete(X)
117 30 0.80 4.21 0.00

2
Cluster1(X)← Person(X) ∧

Contestant(X)
120 32 0.79 4.18 0.00

3
Cluster1(X)← Agent(X) ∧

Athlete(X)
117 32 0.79 4.16 0.00

4
Cluster1(X)← Agent(X) ∧

Contestant(X)
120 34 0.78 4.13 0.00

5
Cluster1(X)← Person(X) ∧

LivingPeople(X)
145 46 0.76 4.02 0.00

Fig. 10 The results of the methodology for the Tweets data set. Top left the banded structure of the Tweets
data matrix with cluster information overlay. Top right cluster 1 of the Tweets data set with relevant columns

highlighted. Bottom rules for cluster 1 of the Tweets data set

6.3 Rules induced through semantic pattern mining

We ran the same semantic subgroup discovery procedure (with the same parameters) on
the publicly available data sets as on the amplification data set. Due to the large amount of
experimental results, we chose to describe one cluster and the top five rules for that cluster
for each data set (Figs. 9, 11, 10). For the Stumble Upon data set, we did not describe the dis-
covered cluster with rules because both the clustering and the banded structure visualization
performed poorly on the data set.

Cities In cities dataset, cluster 2 was chosen as an example of a very well characterized cluster
(Fig. 9). We report the top five rules, all which have 100 % precision. The first rule actually
perfectly describes the cluster, since it covers all examples from cluster 2. By investigating
the rule conjuncts it follows that this cluster contains cities that are at the same time annotated
as centers, municipalities and populated places. Furthermore, the cities data set comes with a
label describing its livability: low, medium, and high (Ristoski and Paulheim 2014). Although
clustering, rule extraction, and visualization were performed independent of the labels, the
rules and clusters mostly describe cities with medium and high livability. In the table we omit
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# Rule TP FP Precision Lift p-value

1
Cluster1(X)← Agent(X) ∧

Admin.District(X) ∧

Organism(X)

90 0 1.00 7.20 0.00

2
Cluster1(X)← Organism(X) ∧

Admin.District(X) ∧

LivingPeople(X)

87 0 1.00 7.20 0.00

3
Cluster1(X)← Agent(X) ∧

District(X) ∧

Organism(X)

92 1 0.99 7.12 0.00

4
Cluster1(X)← Organism(X) ∧

District(X) ∧

LivingPeople(X)

89 1 0.99 7.12 0.00

5
Cluster1(X)← Organism(X) ∧

Region(X) ∧

LivingPeople(X)

92 2 0.98 7.04 0.00

Fig. 11 The results of the methodology for the NY Daily data set. Top left the banded structure of the NY
Daily data matrix with cluster information overlay. Top right cluster 1 of the NY Daily data set with relevant
columns highlighted. Bottom rules for cluster 1 of the NY Daily data set

the full concept URIs for visual clarity. Nevertheless, the exact semantics of each concept can
be verified by visiting the corresponding DBpedia pages, e.g., full URI of Center is http://
dbpedia.org/class/yago/Center108523483.

NY Daily For this data sets, we report the top five rules for cluster 1 (Fig. 11). Similar to the
previous data sets, the found rules are of high precision and each covers a relatively large
portion of all examples from this cluster (a total of 107 examples). Compared to the subgroup
descriptions found for the other five clusters, this cluster contains mainly headlines annotated
with the District and Region concepts, together with Agent and Organism concepts.

Tweets For this data set we feature the top five rules for cluster 1 (Fig. 10). The rules found
were of lower precision (76–80 %), which indicates that this cluster is harder to describe
compared to the clusters mentioned in the previous two data sets. Nevertheless, the subgroup
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Fig. 12 The weakly banded structure of the Stumble Upon data set with cluster information overlay. Both
the number of clusters and lack of a highly visible banded structure suggest a lack of structure in the data set

descriptions indicate that this cluster contains mainly tweets mentioning specific athletes (i.e.
annotated with Person and Athlete concepts), and not, for example, teams or organizations,
which do appear in rules for the other clusters (e.g., Organization concept). Furthermore, the
tweets data set consists of associated class labels which denotes sports related and unrelated
tweets (Ristoski and Paulheim 2014). Although, clustering, rule extraction, and visualization
were performed independent of the label, this cluster mostly contains tweets related to sports.

6.4 Visualizing semantic rules and clusters with banded matrices

Similar to the chromosomal amplifications data sets, we also highlighted the relevant variables
captured by the rules describing each cluster on the public data sets. We visualized the top 5
rules for the three publicly available data sets on which the rule discovery algorithm was run
(the NY Daily, Cities and Tweets data sets).

Cities Cluster 2 in the data set was perfectly described by the rules, This cluster was chosen as
an example of a very well characterized cluster (Fig. 9). The visualization shows a clear band
of features, with the top instances annotated by features on the left side of the chart and the
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bottom instances annotated by features on the right. Cluster 2 in the middle is characterized
by containing instances that are annotated by features on both sides of the band, as instances
above it are not annotated by the rightmost features and instances above are not annotated by
the leftmost features. The visualization shows that all five top rules cover features on both
sides of the band.

NY Daily For this data sets, we report the top five rules for cluster 1 as shown in Fig. 11. The
visualization clearly identifies the banded structure of the data, with three distinct vertical
bands. The cluster is characterized as the cluster which contains instances, annotated by the
features in the (unlike clusters 3 and 4) second and (unlike clusters 2 and 6) third band. The
visualisation shows that all rules take this into account as all rules explain cluster 1 with at
least one conjunct covering features on the second band and one conjunct in the third band.

Tweets For this data set we feature the top five rules for cluster 1 (Fig. 10). Despite the lower
precision of rules, extracted by our methodology, the visualization still clearly shows the
most important features for cluster 1. The banded structure visualization shows us two sets
of features that are important to cluster 1. The first is the block of tweets, annotated with
the annotations Athlete and Contestant. One of these two annotations features in all
top four rules, found for this cluster. The second, larger block of features is used in all top
five rules we present. Additionally, the visualization of all clusters can also tell us why the
precision of rules, found for this data set, was lower: cluster 2 contains several instances
which are annotated by all features that also annotate features in cluster 1.

7 Stability analysis of clustering results

The success of the presented three-part methodology depends upon the results of cluster
analysis. Since mixture models and clustering are unsupervised, which might result in dif-
ferent clustering solutions in different runs of the algorithm (Von Luxburg 2010). Therefore,
it is imperative that we evaluate the stability of the results produced by our mixture mod-
els. In our experiments, we use the Expectation Maximization (EM) algorithm to learn the
maximum likelihood parameters of those mixture models. An important property of Expec-
tation Maximization algorithm is that it is deterministic for a given data set and a given
initialization (McLachlan and Krishnan 2008). In other words, given the same data sets and
same initialization, EM algorithm always converges on the same final model. However, one
of the drawbacks of Expectation Maximization algorithm is that it is susceptible to local
optima (McLachlan and Peel 2000). Therefore, we train the mixture model from random
initialization multiple times to get the final result. In model selection, we consider the mean
of the results and the dispersion to select the optimal number of components. In preparing the
final model to use it for clustering, we train 200 different models from random initialization
and select the one that produces the best likelihood as the final model for clustering.

We have empirically evaluated the stability of our clustering results. We initially trained
100 mixture models initialized at random to convergence on the same data and measure the
clustering accuracy, i.e. how often two observations belong to the same cluster. We could
assume this setting to be a classification where first clustering solution to be the known
class labels and each subsequent clustering labels as the classification produced by the model
(Von Luxburg 2010). Since, we compare 100 models to each other there will be 4950 compar-
isons in all. In addition to clustering accuracy, we have also calculated other external measures
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Fig. 13 Stability analysis of clustering results using four external measures of clustering

of clustering quality such as the Jaccard index, Rand index, and Mantel statistics to determine
the similarity in different clustering results produced by differently trained mixture models.

Results in Fig. 13 show that for unsupervised methods such as mixture models, the results
of clustering are very stable. Clustering accuracy of approximately 70 % is a very good result
in a multiclass classification setting. For example, the cities data set has 4 clusters, so a
random classifier would generate only 25 % accuracy. Jaccard index and Rand index of more
than 50 % also show that results are considerably stable. We calculate the Mantel statistics
on the clustering results. The distance input to Mantel statistics is calculated from clustering
labels obtained from two different clusterings. If two samples are in the same cluster, distance
between them is 0, 1 otherwise. The matrices are positively correlated, and the associated p

values are 0.001.

8 Summary and conclusions

The main contribution of this work is a three-part methodology for data analysis, consisting
of (i) data clustering with mixture models, (ii) extraction of semantic patterns (rules) from
the clusters, using an ontology of relationships between the different resolutions of the mul-
tiresolution data, and (iii) integration of the results in a visual display, illustrating the clusters,
and the identified rules by visualizing them over the banded matrix structure. The proposed
visualization allows us to explain the discovered patterns by combining different views of the
data, which may be difficult to compare without a unifying visual display. In our experiments,
we analyzed DNA copy number amplifications in the form of 0–1 data, where the clustering
developed in previous work was augmented by explanatory rules derived from a semantic pat-
tern mining approach combined by the facility to display the bandedness structure of the data.

Our experiments with using the proposed algorithm on the NY Daily, Tweets and Cities
data sets also demonstrate the wide usability of the algorithm which extends beyond the
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original application to DNA copy number amplifications onto any data set annotated by a
hierarchically ordered set of background knowledge nodes. The results on the Stumble Upon
data set, while at first glance a negative result, also give important insight into the data set.
Because all three algorithms (clustering, rule search and banded visualization) performed
equally badly on the data set, we can with a much higher confidence claim that no particular
structure in exists in the data set.

The proposed semi-automated methodology provides complete analysis of a complex
real-world multiresolution data. The results produced in the form of different clusters, rules,
and visualizations with the help of banded matrices are made interpretable for the domain
experts. Especially, the visualizations with banded matrix helps to understand the clustering
results and the rules generated by the semantic pattern mining algorithm. Furthermore, the
background knowledge used to supplement semantic data mining algorithm enables us to
analyze multiresolution data and garner results at different levels of multiresolution hierarchy.
Similarly, the rules obtained by semantic data mining algorithm helps to quantitatively priori-
tize chromosomal regions that are hallmarks of certain cancers among different chromosomal
regions that are amplified in those cancer patients.

The proposed approach accepts as input single-resolution data but allows for multiresolu-
tion data analysis due to the hierarchy of regions used as background knowledge in semantic
pattern mining algorithm. In the future, we plan to develop a system to directly accept mul-
tiresolution data as input. Similarly, we will consider the cancer instance labels, since in
the present work we focused only on cluster labels. In future work, we plan to formulate the
problem as a multiclass classification problem in the semantic pattern mining setting as learn-
ing from ambiguous labels or partial labels and in mixture model clustering setting as soft
clustering problem. Furthermore, another direction of research is to reformulate the banded
matrix problem to consider class labels and directly benefit from cancer or cluster labels.

Similarly, we could also reformulate the instance descriptions by adding the truth values of
the pattern alongside the original attributes and then compute the mixture model. Furthermore,
the methodology is evaluated on data sets (different data sets denoting different chromosomes)
on a single application area, i.e. chromosomal amplifications in cancer genomics.
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In M. R. Berthold, J. Shawe-Taylor, & N. Lavrač (Eds.), Proceedings of the 7th international symposium

on intelligent data analysis (IDA 2007), Lecture Notes in Computer Science (Vol. 4723, pp. 1–12).
Ljubljana, Slovenia: Springer.

Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics,
6(2), 65–70.

Hotho, A., Staab, S., & Stumme, G. (2003). Explaining text clustering results using semantic structures. In N.
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Vavpetič, A., & Lavrač, N. (2013). Semantic subgroup discovery systems and workflows in the SDM-toolkit.

The Computer Journal, 56(3), 304–320.
Vavpetič, A., Novak, P. K., Grčar, M., Mozetič, I., & Lavrač, N. (2013). Semantic data mining of financial

news articles. In J. Fürnkranz, E. Hüllermeier, & T. Higuchi (Eds.), Proceedings of sixteenth international

conference on discovery science (DS 2013), Lecture Notes in Computer Science (Vol. 8140, pp. 294–307).
Berlin, Heidelberg: Springer.
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