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Abstract

This paper presents a method to pursue a semantic and

quantitative explanation for the knowledge encoded in a

convolutional neural network (CNN). The estimation of the

specific rationale of each prediction made by the CNN

presents a key issue of understanding neural networks, and

it is of significant values in real applications. In this study,

we propose to distill knowledge from the CNN into an ex-

plainable additive model, which explains the CNN predic-

tion quantitatively. We discuss the problem of the biased

interpretation of CNN predictions. To overcome the biased

interpretation, we develop prior losses to guide the learn-

ing of the explainable additive model. Experimental results

have demonstrated the effectiveness of our method.

1. Introduction

Convolutional neural networks (CNNs) [20, 18, 13] have

achieved superior performance in various tasks. Besides the

discrimination power of neural networks, the interpretabili-

ty of networks has received an increasing attention in recent

years. The network interpretability is directly related to the

trustworthiness of a CNN, which is crucial in critical appli-

cations. As discussed in [42], a high testing accuracy cannot

fully ensure that the CNN encodes correct logic. Instead, a

CNN may make predictions using unreliable reasons.

In this paper, we focus on the post-hoc explanation of

a well trained CNN, instead of learning a new model with

interpretable representations. Previous studies usually in-

terpreted neural networks at the pixel level, such as the net-

work visualization [40, 25, 30, 8, 10, 28] and the extraction

of pixel-level attribution/importance maps [17, 26, 23].

In contrast to above qualitative explanation of CNNs,

semantically and quantitatively clarifying the decision-

making logic of each network prediction presents a more

trustworthy way to diagnose neural networks. Fig. 1 com-
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Figure 1. Different types of explanations for CNNs. We compare

(d) our task of quantitatively and semantically explaining CNN

predictions with previous studies of interpreting CNNs, such as

(b) the grad-CAM [28] and (c) CNN visualization [25]. Given an

input image (a) Our method generates a report, which quantita-

tively explains which object parts activate the CNN and how much

these parts contribute to the prediction.

pares our explanation with previous studies.

• Semantic explanations: This study aims to explain the

logic of each network prediction using clear visual concept-

s, instead of using intermediate-layer features without clear

meanings or using raw pixels. For example, our method es-

timates the numerical contribution of specific attributes or

object parts to each prediction. Semantic explanations sat-

isfy specific demands in real applications.

• Quantitative explanations: Unlike qualitative explana-

tions or visualization of neural networks [40, 25, 8, 28], our

method decomposes the overall prediction score into scores

of compositional visual concepts, which ensures strict quan-

titative explanations of the prediction.

Quantitative explanations enable people to accurately di-

agnose feature representations inside neural networks and

help neural networks earn trust from people. As shown in

Figs. 5 and 7, we analyze the quantitative rationale of each

prediction, i.e. clarifying which visual concepts activate the

CNN and how much they contribute to the prediction. Ab-

normal explanations, which conflict with people’s common

sense, usually reflect problematic feature representations.

Above “semantic explanations” and “quantitative expla-

nations” are of considerable values in real applications.

Quantitatively decomposing the prediction score into val-
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Figure 2. Task. We distill knowledge of a performer into an explainer as a paraphrase of the performer’s representations. The explainer

decomposes the output score into value components of semantic concepts, thereby obtaining semantic explanations for the performer.

ue components of clear visual concepts represents one of

core challenges of understanding neural networks.

Method: We are given a pre-trained CNN. In this study,

we propose to learn another neural network, namely an ex-

plainer network, in order to explain the specific rationale of

each CNN prediction semantically and quantitatively. Ac-

cordingly, the target CNN is termed a performer network.

The explainer uses a set of pre-trained visual concepts

to explain the performer’s prediction. People can manually

define the set of visual concepts for explanation. People can

either use off-the-shelf models to represent these visual con-

cepts, or train new models for them. Given trained models

of these visual concepts, the learning of the explainer can

be conducted without any additional image annotations.

The explainer uses trained visual concepts to mimic the

decision-making logic inside the performer and generate

similar prediction scores. As shown in Fig. 2, the explain-

er is designed as an additive model, which decomposes the

prediction score into the sum of multiple value components

of visual concept. Note that

• The explainer is NOT a linear model. The explainer g(I)
estimates weights for different visual concepts that are spe-

cific to each input image I .

• We can roughly consider each value component as a vi-

sual concept’s contribution to the prediction score.

• Although the explainer g(I) is a black-box model, the

formulation of adding values of visual concepts to approxi-

mate the performer’s prediction score still ensures the high

transparency of the explanation.

We learn the explainer via knowledge distillation with-

out any human annotations as additional supervision. It is

because the explainer needs to objectively reflect the per-

former’s logic, instead of encoding subjective human anno-

tations and generating seemingly good explanations.

In this way, the explainer can be regarded as a semantic

paraphrase of the performer. Theoretically, manually se-

lected visual concepts usually cannot represent all logic of

the performer. The prediction score, which cannot be ex-

plained by the visual concepts, also need to be analyzed.

Thus, we quantify the difference of the prediction between

the performer and the explainer, in order to disentangle the

explainable and unexplainable information in the performer.

Post-hoc explaining black-box networks or learning

interpretable networks: Explaining black-box models has

much broader applicability than learning new interpretable

networks. It is because (i) interpretable networks usual-

ly have specific requirements for structures [27] or loss-

es [43], which limit the model flexibility; (ii) the model in-

terpretability is not equivalent to, and usually even conflicts

with the discrimination power of the model [43, 27].

Compared to forcing the performer to learn interpretable

features, our method explains the performer without affect-

ing the discrimination power of the performer. The coupling

of the performer and the explainer solves the dilemma be-

tween the interpretability and the discriminability.

Core challenges: Distilling knowledge from a pre-

trained neural network into an additive model may yield bi-

ased interpretation of the performer’s predictions. I.e. when

we use a large number of visual concepts to explain the log-

ic inside the performer, the explainer may biasedly select

very few visual concepts, instead of all visual concepts, as

the rationale of the prediction (see Fig. 6). Just like the

over-fitting problem, theoretically, the biased interpretation

may be caused by the over-parameterizations of the explain-

er and is an ill-defined problem. Therefore, we propose a

new loss for prior weights of visual concepts to overcome

the bias-interpreting problem. The loss forces the explainer

to compute a similar Jacobian of the prediction score w.r.t.

visual concepts as the performer in early epochs.

Contributions of this study are summarized as follows.

(i) In this study, we focus on a new explanation strategy, i.e.

semantically and quantitatively explaining CNN prediction-

s. (ii) We propose to distill knowledge from a pre-trained

performer into an interpretable additive explainer for expla-

nation. We develop novel losses to overcome the typical

bias-interpreting problem. Our explanation strategy does

not hurt the discrimination power of the performer. (iii)

Theoretically, the proposed method is a generic solution to

explaining neural networks. We have applied our method to

different benchmark CNNs for different applications, which

has proved the broad applicability of our method.

2. Related work

In this paper, we limit our discussion within the scope of

understanding feature representations of neural networks.

Network visualization: The visualization of feature
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representations inside a neural network is the most direct

way of opening the black-box of the neural network. Relat-

ed techniques include gradient-based visualization [40, 25,

30, 39] and up-convolutional nets [8] to invert feature maps

of conv-layers into images. However, recent visualization

results with clear semantic meanings were usually generat-

ed with strict constraints. These constraints made visual-

ization results biased towards people’s preferences. Subjec-

tively visualizing all information of a filter usually produced

chaotic results. Thus, there is still a considerable gap be-

tween network visualization and semantic explanations for

neural networks.

Network diagnosis: Some studies diagnose feature rep-

resentations inside a neural network. [38] measured fea-

tures transferability in intermediate layers of a neural net-

work. [1] visualized feature distributions of different cat-

egories in the feature space. [26, 23, 16, 10, 28] extract-

ed rough pixel-level correlations between network inputs

and outputs, i.e. estimating image regions that directly con-

tribute the network output. Zhang et al. [24, 12] and Chen et

al. [4] used the mutual information between the input and

the output/intermediate-layer feature to quantify the infor-

mation flow inside the network and extract important input

units. Network-attack methods [17, 33] computed adversar-

ial samples to diagnose a CNN. [19] discovered knowledge

blind spots of a CNN in a weakly-supervised manner. [42]

examined representations of conv-layers and automatically

discover biased representations of a CNN due to the dataset

bias. However, above methods usually analyzed a neural

network at the pixel level and did not summarize the net-

work knowledge into clear visual concepts.

[2] defined six types of semantics for CNN filters, i.e.

objects, parts, scenes, textures, materials, and colors. Then,

[46] proposed a method to compute the image-resolution

receptive field of neural activations in a feature map. Fong

and Vedaldi [9] analyzed how multiple filters jointly repre-

sented a certain semantic concept. Other studies retrieved

intermediate-layer features from CNNs representing clear

concepts. [41] mined object-part features from intermediate

layers of a CNN. [41] used an explanatory graph to repre-

sent the semantic hierarchy between object-part features of

different layers. [29] retrieved features to describe object-

s from feature maps, respectively. [46, 47] selected neural

units to describe scenes. Note that strictly speaking, each C-

NN filter usually represents a mixture of multiple semantic

concepts. Unlike previous studies, we are more interested

in analyzing the quantitative contribution of each semantic

concept to each prediction, which was not discussed in pre-

vious studies.

Learning interpretable representations: A new trend

in the scope of network interpretability is to learn inter-

pretable feature representations in neural networks [15, 32,

21] in an un-/weakly-supervised manner. Capsule nets [27]

and interpretable RCNN [37] learned interpretable features

in intermediate layers. InfoGAN [5] and β-VAE [14]

learned well-disentangled codes for generative networks.

Interpretable CNNs [43] learned filters in intermediate lay-

ers to represent object parts without given part annotations.

However, as mentioned in [2], interpretable features usually

do not have a high discrimination power. Therefore, we use

the explainer to interpret the pre-trained performer without

hurting the discriminability of the performer.

Explaining neural networks via knowledge distilla-

tion: Distilling knowledge from a black-box model into

an explainable model is an emerging direction in recen-

t years. In contrast, we pursue the explicitly quantitative

explanation for each CNN prediction. [7] learned an ex-

plainable additive model, and [35] distilled knowledge of a

network into an additive model. In order to disentangle fea-

ture representations of object parts from intermediate lay-

ers of a CNN, [44] distilled the CNN’s knowledge into an

explainer network with interpretable conv-layers, in which

each filter represented a specific object part. [11, 34, 3, 36]

distilled representations of neural networks into tree struc-

tures. These methods did not explain the network knowl-

edge using human-interpretable semantic concepts. Zhang

et al. [45] used a tree structure to approximately summa-

rize the rationale of CNN predictions into generic decision-

making logics. Compared to previous additive models [35],

our research successfully overcomes the bias-interpreting

problem, which is the core challenge when there are lots

of visual concepts for explanation.

3. Algorithm

In this section, we distill knowledge from a pre-trained

performer f to an explainable additive model. We are given

a performer f and n models {fi|i = 1, 2, . . . , n} that are

pre-trained to detect n visual concepts. The n neural net-

works may share features in low layers with the performer.

We are also given training samples for the performer f . We

learn the explainer to use inference values of the n visual

concepts to mimic the logic of the performer. We do not

need any annotations on training samples w.r.t. the task, be-

cause additional supervision will push the explainer towards

subjective annotations, instead of objective explanations for

the performer.

Let ŷ = f(I) denote the output of the performer for an

input image I . For the performer with multiple outputs (e.g.

for multi-category classification), we can learn an individ-

ual explainer to interpret each scalar output. Thus, in this

study, we assume that ŷ is a scalar without loss of generali-

ty. In particular, if the performer uses a softmax layer as the

last layer, we use the feature score before the softmax layer

as ŷ, so that ŷ’s neighboring scores will not affect ŷ. In our

experiments, we only considered the classification task and

took a single feature dimension before the softmax layer as
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Figure 3. Two typical types of neural networks. (left) A performer models interpretable visual concepts in its intermediate layers. For

example, each filter in a certain conv-layer represents a specific visual concept. (right) The performer and visual concepts are jointly

learned, and they share features in intermediate layers.

ŷ.

We design the following additive explainer model, which
uses a mixture of visual concepts to approximate the func-
tion of the performer. The explainer decomposes the pre-
diction score ŷ into value components of pre-defined visual
concepts.

ŷ ≈ gθ(I)
⊤
y + b = b+

∑
i
αi · yi

Quantitative contribution

of the i-th visual concept

α = [α1, α2, . . . , αn]
⊤ = gθ(I)

y = [y1, y2, . . . , yn]
⊤, yi = fi(I), i = 1, 2, . . . , n

(1)

where yi is given as the confidence of the detection of the

i-th visual concept. αi denotes the weight. b is a bias term.

• The additive form gθ(I)
⊤
y + b does NOT represent a

linear model, because different input images may obtain d-

ifferent weights α, which correspond to different decision-

making logic of the performer. For example, a performer

may mainly use head concept to classify a standing bird,

while it may increase the weight for the wing concept to

classify a flying bird.

Therefore, we design the explainer network gθ with pa-

rameters θ (i.e. the explainer), which uses the input image

I to estimate the n weights.

• We can regard the value of αi ·yi as the quantitative con-

tribution of the i-th visual concept to the final prediction.

• The difference between predictions of the explainer and

the performer ŷ − (gθ(I)
⊤
y + b) reflects the limit of the

representation capacity of visual concepts.

Therefore, the core task of this study is to learn the ex-
plainer gθ that estimates image-specific weights α = gθ(I)
to mimic the performer. The loss for knowledge distillation
is given as follows.

L = ‖ŷ − gθ(I)
⊤
y − b‖2 (2)

However, without any prior knowledge about the weight αi,

the learning of gθ usually suffers from the bias-interpreting

problem. The explainer g may biasedly select very few vi-

sual concepts to approximate the performer as a shortcut so-

lution, instead of sophisticatedly learning relationships be-

tween the performer output and all visual concepts.

Thus, to overcome the bias-interpreting problem, we use
a lossL for priors of α to guide the learning in early epochs.

min
θ,b

Loss, Loss = L+ λ(t) · L(α,w),

s.t. lim
t→∞

λ(t) = 0
(3)

where w denotes prior weights, which represent a rough

relationship between the performer’s prediction value and

n visual concepts. Just like α, different input images also

have different prior weights w. The loss L(α,w) penalizes

the dissimilarity between α and w.

Note that prior weights w are approximated with strong

assumptions (we will introduce two different ways of com-

puting w later). We use inaccurate w to avoid significan-

t biased interpretation, rather than pursue a high accuracy.

Thus, we set a decreasing weight for L, i.e. λ(t) = β√
t
,

where β is a scalar constant, and t denotes the epoch num-

ber. In this way, we mainly apply the prior loss L in early

epochs. Then, in late epochs, the influence of L gradually

decreases, and our method gradually shifts its attention to

the distillation loss to boost the distillation quality.

3.1. Prior weights w

In this subsection, we will discuss two typical types of

weights w that are widely used in real applications.
Type 1: In some applications, the visual concept should

be positively related to the prediction of the performer, i.e.
each weight αi must be a positive scalar (if the concept yi
is negatively related to the prediction, then the concept −yi
is positively related to the prediction). For example, the
detection score of the head part must be positively related
to the detection of the entire animal. In this case, we use the
cross-entropy between α and w as the prior loss.

L(α,w) = crossEntropy(
α

‖α‖1
,

w

‖w‖1
) (4)

where ‖ · ‖1 denotes the L-1 norm. To ensure αi ≥ 0, we

add a non-linear activation layer α = log[1+exp(x)] as the

last layer of gθ , where x is the output of the last conv-layer.
Type 2: In other applications without specific require-

ments for prior weights, the MSE loss between α and w is
used as the loss.

L(α,w) = ‖
α

‖α‖2
−

w

‖w‖2
‖22 (5)

where ‖ · ‖2 denotes the L-2 norm.

3.2. Typical cases for visual concepts

In this subsection, we will discuss two typical cases for

visual concepts in real applications.

Case 1, features in intermediate layers of the per-

former are interpretable: As shown in Fig. 3(left), learn-

ing a neural network with interpretable features is an emerg-

ing research direction in recent years. For example, [43]
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Figure 4. Visualization of interpretable filters in the top conv-layer of a CNN (Case 1), which were learned based on [43]. We projected

activation regions on the feature map of the filter onto the image plane for visualization. Each filter represented a specific object part

through different images.

proposed a method to learn CNNs for object classification,

where each filter in a high conv-layer is exclusively trig-

gered by the appearance of a specific object part (see Fig. 4).

Thus, the classification score of an object can be repre-

sented as a linear combination of elementary scores of ob-

ject parts. Because such interpretable filters are automati-

cally learned without part annotations, the quantitative ex-

planation for the performer can be divided into the follow-

ing two tasks: (i) annotating the part name of each filter,

and (ii) learning an explainer to disentangle the exact addi-

tive contribution of each filter (or each object part).

In this way, each fi is given as an interpretable filter of

the performer. According to [42], we can roughly repre-

sent the network prediction as ŷ ≈
∑

i wiyi + b, where

yi =
∑

h,w xhwi and wi = 1

Z

∑
h,w

∂ŷ
∂xhwi

. xhwi is re-

ferred to as the activation unit in the location (h,w) of the

i-th channel of the feature map x ∈ R
H×W×n of the in-

terpretable conv-layer. yi measures the confidence of the

object part w.r.t. the i-th filter. Here, we roughly use the Ja-

cobian of the network output w.r.t. the filter to approximate

prior weights w. Considering the normalization operation

in Equation (4), prior weights w can be directly used to

compute the first type of the loss without knowing the exact

value of Z.

Case 2, neural networks for visual concepts share

features in intermediate layers with the performer: As

shown in Fig. 3(right), when a neural network is learned for

multiple visual concepts, then people can directly explain a

certain concept ŷ by using all other concepts {yi}. All these

visual concepts share features in intermediate layers.

In this case, we estimate a rough numerical relationship

between ŷ and the score of each visual concept yi. Let x
be an intermediate-layer feature shared by both the target

concept and the i-th visual concept.

When we modify the feature x, the change of yi can be

represented using a Taylor series ∆yi=
∂yi
∂x

⊗∆x+O(∆2x),

where⊗ denotes the convolution operation. Thus, when we

boost yi by push x by ∆x= ǫ ∂yi
∂x

(ǫ is a small constant), the

change of yi can be approximated as ∆yi= ǫ‖ ∂yi
∂x

‖2F , where

‖ · ‖F denotes the Frobenius norm. Meanwhile, ∆x also

affects the target concept by ∆ŷ= ǫ ∂ŷ

∂x
⊗ ∂yi

∂x
. Thus, we can

roughly estimate the weight as wi=
∆ŷ

∆yi
.

4. Experiments

We designed two experiments to use our explainers to di-

agnose different benchmark CNNs oriented to two different

applications, in order to demonstrate the broad applicability

of our method. In Experiment 1, we used the detection of

object parts to explain the detection of the entire object. In

Experiment 2, we used various face attributes to explain the

prediction of another face attribute. We evaluated both the

correctness of the explanation and the limit of the represen-

tation capacity of the explainer.

4.1. Experiment 1: using object parts to explain
object classification

In this experiment, we used the method proposed in [43]

to learn a CNN, where each filter in the top conv-layer rep-

resents a specific object part. We considered the CNN as

a performer and regarded its interpretable filters in the top

conv-layer as visual concepts to interpret the classification

score. We followed standard experimental settings in [43],

which used the Pascal-Part dataset [6] to learn six CNNs

for the six animal1 categories in the dataset. Each CNN was

learned to classify a target animal from random images.

In addition, when the CNN had been learned, we further

annotated the object-part name corresponding to each fil-

ter based on visualization results (see Fig. 4 for examples).

We just annotated each filter of the top conv-layer in a per-

former once, so the total annotation cost was O(N), where

N is the filter number. Consequently, we assigned contri-

butions of filters to its corresponding part, i.e. Contrip =∑
i∈Ωp

αiyi, where Ωp denotes the set of filter indexes that

were assigned to the part p.

Four types of CNNs as performers: Following experi-

mental settings in [43], we applied our method to four type-

s of CNNs, including the AlexNet [18], the VGG-M, the

VGG-S, and the VGG-16 [31], i.e. we learned CNNs for

six categories based on each network structure. Note that

as discussed in [43], skip connections in residual networks

increased the difficulty of learning part features, so they did

not learn interpretable filters in residual networks.

Learning the explainer: The AlexNet/VGG-M/VGG-

S/VGG-16 performer had 256/512/512/512 filters in its top

1Previous studies [6, 43] usually selected animal categories to test

part localization, because animals usually contain non-rigid parts, which

present significant challenges for part localization.
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Figure 5. Quantitative explanations for the object classification made by performers. We annotated the part that was represented by each

interpretable filter in the performer, and we assigned contributions of filters αiyi to object parts. Thus, each pie chart illustrates contribu-

tions of different object parts for a specific input image. All object parts made positive contributions to the classification score. Heatmaps

correspond to the grad-CAM visualization [28] of feature maps of the performer to demonstrate the correctness of our explanations. Unlike

pixel-level attention of the grad-CAM, our method explains the network at the semantic level.
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Figure 6. We compared the distribution of absolute contributions of different visual concepts (filters) that was estimated by our method and

the distribution that was estimated by the baseline. The horizontal axis and the vertical axis denote the filter index and the contribution value,

respectively. The baseline usually used very few visual concepts to make predictions, which was a typical case of biased interpretation.

conv-layer, so we set n = 256/512/512/512 for each net-

work. We used the masked output of the top conv-layer as

x to compute {yi} following the paradigm of Case 1. We

used the 152-layer ResNet [13]2 as g to estimate weights of

visual concepts3. We set β = 10 for the learning of all ex-

plainers. Note that all interpretable filters in the performer

represented object parts of the target category on positive

images, instead of describing random (negative) images.

Intuitively, we needed to ensure a positive relationship be-

tween ŷ and yi. Thus, we filtered out negative prior weights

wi ← max{wi, 0} and applied the cross-entropy loss in E-

quation (4) to learn the explainer.

Evaluation metric: The evaluation has two aspects, i.e.

the correctness of the estimated explanations and the limit

of the explanation capacity.

• The correctness of the estimated explanations for per-

former predictions is the first aspect of the evaluation. The

first metric is the error of the estimated contributions. The

explainer estimated numerical contributions of different vi-

sual concepts to the CNN prediction. For example, in

Experiment 1, our method estimated the contribution of

each annotated semantic part p, Contrip. The error of

the estimated contribution is computed as EI∈I[|Contrip −

y∗
p |]/EI∈I[|y|], where y denotes the CNN output w.r.t. the

2Considering the small size of the input feature map, we removed the

first max-pooling layer and the last average-pooling layer.
3Note that the input of the ResNet was the feature map of the top conv-

layer, rather than the original image I in experiments, so g can be consid-

ered as a cascade of conv-layers in the AlexNet/VGGs and the ResNet.

image I; y∗
p is given as the ground-truth contribution of the

part p. Let ∆yp denote the score change of y, when we re-

moved all neural activations of filters corresponding the part

p. Then, we computed y∗
p = y

∆yp∑
p′ ∆yp′

. In our experiments,

we used semantic part annotations of the dog category to

compute errors of the estimated contributions.

In addition, we used another metric, i.e. the condition-

al entropy of the explanation, for the fine-grained filter-

level analysis of the correctness of the explanation. Let

ci = αiyi denote the estimated numerical contribution of

the i-th visual concept, c = [c1, c2, . . . , cn]
⊤. We can

represent the estimated contribution as c∗ = c + ǫ, where

c∗ = {c∗i } denotes the ground-truth contribution, and ǫ is

referred to as the residual that cannot be explained by the

current model. The conditional entropy H(c∗|c) reflects

the information loss using the estimated contributions for

explanation. We assumed ǫ ∼ Gauss(µ = 0,Σ = σ2I).

Thus, p(c∗|c) = p(ǫ) and H(c∗|c) =H(ǫ). For implementa-

tion, we used y ◦w ‖α‖
‖w‖

to approximate c∗, where ◦ denotes

the element-wise multiplication. We estimated the variance

σ2 from data to compute H(c∗|c). Besides, we assumed

c∗ ∼ Gauss(µ = 0,Σ = (σ∗)2I) and computed the entropy

of ground-truth explanations H(c∗) without additional in-

formation as a reference value. If the explainer successfully

recovered most information of c∗, then H(c∗|c) would be

significantly lower than H(c∗).

Besides the quantitative evaluation, we also showed ex-

ample explanations as a qualitative evaluation. As shown
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The quantitative explanation for the 
prediction of the attractive attribute.

Figure 7. Quantitative explanations for face-attribution predictions made by performers. Bars indicate elementary contributions αiyi from

features of different face attributes, rather than prediction values yi of these attributes. For example, the network predicts a negative goatee

attribute ygoatee < 0, and this information makes a positive contribution to the target attractive attribute, αiyi > 0.

in Fig. 5, we used grad-CAM visualization [28] of feature

maps to prove the correctness of our explanations.

• The limit of the explanation capacity also needs to be

evaluated, i.e. we measured the performer information that

could not be represented by the visual concepts. We pro-

posed three metrics for evaluation. The first metric is the

prediction accuracy. We compared the prediction accuracy

of the performer with the prediction accuracy of using the

explainer’s output y=gθ(I)
⊤y + b.

Another metric is the conditional entropy of the predic-

tion. Let ŷ = f(I) and y = gθ(I)
⊤y + b denote the ground-

truth prediction and the estimated prediction, respectively.

We can represent ŷ= y + ǫy, where ǫy reflects the informa-

tion that has not been encoded by the explainer. In this way,

we used the conditional entropy H(ŷ|y)=H(ǫy) to measure

the limit of the representation power of visual concepts. We

used the original entropy H(ŷ) as a reference value. We

assumed ŷ ∼Gauss(µ̂, σ̂2) and ǫy ∼Gauss(µǫ, σ
2

ǫ ) to com-

pute H(ŷ) and H(ŷ|y), where parameters µ̂, µǫ, σ̂
2, σ2

ǫ were

directly calculated using the data.

The third metric is the relative deviation, which mea-

sures a normalized output difference between the performer

and the explainer. The relative deviation of the image I is

normalized as |ŷI − yI |/(maxI′∈I ŷI′ − minI′∈I ŷI′), where

ŷI and yI denote predictions for the image I made by the

performer and the explainer, respectively.

Above metrics reflected knowledge, which was not mod-

eled by the explainer. Note that

(1) our objective was not to pursue an extremely low condi-

tional entropy, because the limit of the representation power

of visual concepts is an objective existence;

(2) compared to the representation power, our method paid

more attention on the correctness of the explanation.

4.2. Experiment 2: explaining face attributes based
on face attributes

In this experiment, we used the Celeba dataset [22] to

learn a CNN based on the VGG-16 structure to estimate 40

face attributes. We selected a certain attribute as the target

and used its prediction score as ŷ. Other 39 attributes were

taken as visual concepts to explain the score of ŷ (n = 39).

The target attribute was selected from global attributes of

the face, i.e. attractive, heavy makeup, male, and young. It

is because global attributes can be described by local visual

concepts, but the inverse is not. We learned an explainer for

each target attribute. We used the same 152-layer ResNet

structure as in Exp. 1 (expect for n = 39) as g to estimate

weights. We followed the Case-2 implementation in Sec-

tion 3.2 to compute prior weights w, in which we used the

4096-dimensional output of the first fully-connected layer

as the shared feature x. We set β = 3000 and used the L-2

norm loss in Equation (5) to learn all explainers. Evaluation

metrics were the same as in Exp. 1.

4.3. Experimental results and analysis

We compared our method with the traditional baseline

of only using the distillation loss to learn the explainer.

Tables 3 and 4 evaluate the biased interpretation caused

by explainers that were learned using our method and the

baseline. Our method suffered much less from the bias-

interpreting problem than the baseline. According to Ta-

bles 3 and 4, our method generated more informative expla-

nations than the baseline. More crucially, Fig. 6 illustrates

the distribution of absolute contributions of visual concepts,
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Experiment 1 Experiment 2

AlexNet VGG-M VGG-S VGG-16 attractive makeup male young Avg.

Performer 93.9 94.2 95.5 95.4 81.5 92.3 98.7 88.3 90.2

Explainer 92.6 93.6 95.4 95.6 76.8 90.0 97.8 85.0 87.4

Table 1. Classification accuracy of the explainer and the performer. We used the decrease of the classification accuracy to measure the

information that could not be explained by pre-defined visual concepts.

H(ŷ|y) Experiment 1 Experiment 2

AlexNet VGG-M VGG-S VGG-16 attrac. makeup male young Avg.

H(ŷ) 0.45 1.45 0.78 -1.54 0.11 0.80 1.33 0.28 0.63

Baseline -1.62 0.15 -0.88 -3.94 -0.51 -0.50 -0.37 -0.35 -0.43

Our method -2.33 -0.76 -1.20 -4.17 -0.33 0.05 -0.30 -0.38 -0.24

Table 2. Conditional entropy of ŷ given the explainer’s prediction,

H(ŷ|y). We used the conditional entropy to measure the informa-

tion that could not be explained by pre-defined visual concepts. The

entropy is defined on continuous variables, so it can be negative.

H(c∗|c) Experiment 1 Experiment 2

AlexNet VGG-M VGG-S VGG-16 attrac. makeup male young Avg.

H(c∗) -1.18 -1.71 -1.51 -3.74 1.62 1.00 0.83 1.20 1.16

Baseline -1.35 -1.79 -1.43 -1.96 1.59 1.60 1.76 1.65 1.65

Our method -2.39 -2.34 -2.25 -4.79 1.22 0.35 -0.40 0.77 0.48

Table 3. Conditional entropy of the explanation given the explainer’s

explanation, H(c∗|c). We used the conditional entropy to measure

the inaccuracy of the explanation generated by the explainer. The

entropy is defined on continuous variables, so it can be negative.

Number of visual concepts used for explanation

Decrease of 
classification accuracy

Relative 
deviation

Attractive
Heavy makeup
Man
Young
Average

Figure 8. Explanation capacity of using different numbers of vi-

sual concepts for explanation. We used the relative deviation and

the decrease of the classification error (i.e. the performer’s accura-

cy minus the explainer’s accuracy) using the explainer to roughly

measure the limit of the explanation capacity. Using more visual

concepts will increase the explanation capacity.

eye mouth & nose ear torso leg Avg.

Baseline 0.399 0.267 0.045 0.027 0.084 0.164

Ours (β=10) 0.202 0.140 0.033 0.032 0.092 0.100

Ours (β=25) 0.181 0.153 0.037 0.019 0.053 0.089

Table 4. Errors of the estimated object-part contributions. A lower

error of our method indicates that the explanation yielded by our

approach better fit the ground-truth rationale of a CNN prediction

than the baseline.

i.e. the distribution of {|ci|}, when we learned explainer-

s using different methods. Part contributions estimated by

our method better fit the ground truth than those estimated

by the baseline. In contrast, the distillation baseline usually

used very few visual concepts for explanation and ignored

most strongly activated interpretable filters, which could be

considered as biased interpretation.

Figs. 5 and 7 show examples of quantitative explanations

for the prediction made by the performer. In particular, we

also used the grad-CAM visualization [28] of feature maps

of the performer to demonstrate the correctness of our ex-

planations in Fig. 5. In addition, Tables 1 and 2 report the

classification accuracy and the conditional entropy of the

prediction to measure the representation capacity of visual

concepts. Because our method used an additional loss to en-

sure the correctness of explanation, our method performed

a bit worse in the regression of ŷ than the baseline. Never-

theless, considering the high entropy of H(ŷ), our method

still encoded most information of the performer.

Selection of visual concepts: How to select visual con-

cepts for explanation is an important issue. The explanation

capacity will decrease if related concepts are not selected

for explanation. Fig. 8 evaluates the change of the explana-

tion capacity, when we randomly selected different numbers

of visual concepts to learn explainers for the estimation of

face attributes. Note that during the computation of the rel-

ative deviation in Fig. 8, we set β = 0.1
n

to remove effects

of increasing the concept number for fair comparisons.

5. Conclusion and discussions

In this paper, we focus on a new explanation strategy, i.e.

explaining the logic of each CNN prediction semantically

and quantitatively, which presents considerable challenges

in the scope of understanding neural networks. We pro-

pose to distill knowledge from a pre-trained performer into

an interpretable additive explainer. We can consider that

the performer and the explainer encode similar knowledge.

The additive explainer decomposes the prediction score of

the performer into value components from semantic visu-

al concepts, in order to quantify contributions of different

concepts. The strategy of using an explainer for explana-

tion avoids decreasing the discrimination power of the per-

former. In preliminary experiments, we have applied our

method to different benchmark CNN performers to prove

its broad applicability.

Note that our objective is not to use pre-trained vi-

sual concepts to achieve super accuracy in classifica-

tion/prediction. Instead, the explainer uses these visual con-

cepts to mimic the logic of the performer.

In particular, biased interpretation is a big challenge

of using an additive explainer to diagnose another neural

network. We designed two losses to overcome the bias-

interpreting problems. Besides, we measured the amount of

the performer knowledge that could not be represented by

the visual concepts in the explainer and used various metrics

to evaluate the significance of biased interpretation.
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