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ABSTRACT: This article discusses the application of an abductive reasoning method
termed Model Generative Reasoning (MGR) to the construction of explanations for
novel events in physical systems. The MGR algorithm progressively develops
intensional domain descriptions (models) to cover problem assumptions, which are
then evaluated against domain facts as alternative explanations of queried
phenomena. lllustrations of the workings of the MGR approach are given using
concepts from process control.
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INTELLIGENT DECISION SUPPORT FOR PROCESS CONTROL
Intelligent decision aids in process control mostly employ deductive expert systems
technology. (6) As such, solutions to process control queries follow from the deductive
identification of predefined process events from system data, with domain knowledge
related to the events being used as inference rules. Decision support functions thus
essentially rely on the diagnostic capabilities of deductive inference and the reliability of
the recorded relationships between data, knowledge structures, and target events. There
are two difficulties with this approach. The first is a pragmatic problem involving
computational resources; the second is a deeper theoretical problem.
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of target events from a predefined set of system data. Nau and Reggia @ argue that,
although it is theoretically possible to achieve such identification through deduction from
data to events, the approach is computationally unattractive for many real problems. The
difficulty is that simple deduction using modus ponens on domain specific inference rules
of the form "IF conjunction of manifestations THEN disorder” will produce the set of all
disorders (process events) capable of causing any of the manifestations (data items). It
will, however, fail to identify situations where: (i) all minimum sets of disorders capable
of causing the set of manifestations should be considered as viable, (ii) all independent
minimal sets of disorders capable of causing the set of manifestations should be
considered viable. These "principles of parsimonious explanation" are important in real
diagnaosis, where they provide simplifying assumptions of proven practical value.(11)

The solution proposed by Nau and Reggia") is to exploit the abductive features of
diagnosis. In abduction, reasoning proceeds from hypothesized disorders to the possible
manifestations caused by the disorders, rather from manifestations to logically consistent
sets of disorders. The focus is thus on the construction of sets of manifestations that may
be caused by given disorders. Taking this approach, one starts with a view of explanation
[of which (i)-(ii) above are examples], and proceeds to form possible solutions in its
mold. This potentially reduces the search required to achieve a solution.

The importance of abductive reasoning in human problem solving was first discussed
by Pierce(9) in the context of scientific reasoning, but has subsequently been found to
arise in many areas of practical reasoning. Within artificial intelligence abductive
inference has been studied widely in areas ranging from diagnosis i1 to text
understanding. (2.12)

The deeper theoretical problem concerns the answering of queries about novel process
events. By novel events, we mean events that are not explicitly represented in the system
either as a whole or as some simple conjunction of parts; and as such form the acid test
for a decision aid. The requirements of problem-solvers with this capability stand in
contrast to the extensional view of knowledge commonly employed in decision support
systems. According to this view, reasoning depends on the truth-functionality of
knowledge abjects (i.e., the truth or falsity of a knowledge object with regard to the
world). Great care is therefore taken over the veracity of device and process descriptions
represented in the system, and the accuracy of logical inferences made over them.
However, the novelty implies that appropriate predefined knowledge objects will not
necessarily be available to the system to act as the objects of deduction. Moreover, even
if they can be constructed from existing knowledge, the knowledge-base will not
necessarily provide a complete set of inference rules for the required deductions, and the
system will not necessarily know the relevant classes of data to be used as axioms.

An extensional approach is inappropriate because there is a need to reason about
alternative interpretations of propositions, to synthesize such interpretations from term
definitions, to utilize partia descriptions, and to be tolerant of possible conflicts between
interpretations. These require a system that is strongly intensional (i.e., strongly
dependent on the nontruth functional semantics of descriptive terms, rather than upon
the actual existence of knowledge objects that they represent in
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the world). Before it is possible to argue about the relevance of a knowledge object to
some novel situation, the system will often have to construct a semantically coherent
object to reason about. Moreover, work on real human reasoning in process control (*)
indicates that conceptual fictions may play an important role in helping an operator
reason about a complex system, and so actual existence of a knowledge object may be
less important than the relationships it exemplifies. An extensional approach would
disallow such helpful functions.

REASONING BY MODEL GENERATION

At CRL, we have developed a reasoning paradigm-Model Generative Reasoning
(MGR)-in order to address both the pragmatic and theoretical difficulties discussed
earlier. The MGR agorithm provides a general framework for computing explanations of
a queried event. At the current stage of the research, we use a simple common sense
definition of explanation, the MGR goa being to account for an event by reproducing
symbolically the mechanism(s) by which a coherent relationship could exist between the
event (as the conclusion) and subsets of available facts, using the most parsimonious set
of linking concepts." MGR explanations are achieved by a generate-evaluate cycle, in
which intensional models of the phenomenon are constructed from definitions of domain
entities and processes, and then evaluated against system facts to determine their
extensional validity (i.e., the relevance of domain facts is evaluated in terms of their
ability to explain facts). Queries are then answered over the set of explanations. A
high-level specification of the basic algorithm is given in Figure 1.

The algorithm starts with a statement of the queried phenomenon (a query) and an
initial set of assumptions. With the basic agorithm the query will be of the form "Is
phenomenon O possible, given the assumptions?,” meaning that 0 only needs to be
supported eventually by one of the set of generated explanations. The initial assumptions
are taken from the set of available factual information about the problem world and are
selected by the user for their ability to provide the desired conceptual foundation for the
query

The assumptions are used to seed model generation. They are first interpreted using
general declarative definitions of domain entities to form, possibly multiple, structural
descriptions, which we term contexts. Contexts are then completed by the addition of
procedural information related to declarative structures (procedural overlays) to form
programs. Finally, programs are executed to produce models. Models represent
hypothetical world descriptions, which have not yet been evaluated against any factual
information about "states-of-affairs’ in the world, and are thus purely intensional
structures. Looked at another way, models represent internally coherent interpretations
of assumptions which serve as structures to be passed on for evaluation. Pairs of
concepts are judged to be "incoherent” where they both cannot be true of a designated
individual or they both can be false with respect to that individual. Thisis not the notion
of logical contradiction commonly used in automated problem-solving, but is closer to
the notion of "contrariness.”

We now come to the evaluation stage. Here, models are interpreted using factual data
to determine their validity in terms of their ability to distinguish conceptually
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Figure 1: The Basic MGR Algorithm
where: F ={facts},A = { assumptions}, Q = query,
D ={declarative definitions }, C = { contexts }

PO = { procedural overlay }, P ={ programs },
M ={ models },

CE{ candidate explanations } , E = { explanations }

define function: model-build ( A)
C =interpret (A, D)
P = proc-overlay (C,PO)
M = execute (P)

return M
define procedure MGR:
A = select (F).
M= model-build ( A)
loop
CE =evaluate (M F) ;evaluation consists of
E = query-match (CE Q ;'evaluate’, 'query-match’
if acceptable ( E, A, Q) then return SUCCEED :and 'acceptable’
else
if A' = extract (CE) then
A=A+A

M = model-build ( A)
elseif M = merge (CE) then loop
elseif M = generalize (CE) then loop
elseM =null
until empty (M)
return FAI L

coherent subsets of current factual knowledge. Where a fact is found to be conceptually
coherent with a model, the model is augmented by the fact, and the combined structure is
passed on as a candidate explanation. Finally, candidate explanations are matched
against the query to determine their value as explanations of the queried phenomenon.
Typically, asolution is not achieved in one pass through the interpreter, requiring further
cycles.

The next cycle begins by augmenting the set of assumptions with any new facts which
are found to match elements of the candidate explanations. The generation process is
then continued by production of a new set of models from the augmented assumption set.
Formally, this results in the specialization of the previous candidate explanations to
include new descriptive features. However, if there are no new facts to augment the
assumption set, then an attempt is made to merge any models which are individually
coherent but provide only partial explanations of the original



Model Generative Reasoning 91

assumptions and facts. Furthermore, if a merge fails, then a generalization procedure is
invoked in an attempt to remove those features supported by facts which block integration
of the over-specialized models. Generalization thus implements a form of honmonotonic
reasoning in MGR closely related to de Kleer's ATMS.(4) The cycle is then repeated with
the objective of generating a single model which covers, and thus explains, all of the
assumptions. This may, of course, not be passible, in which case the cycle continues until
either all assumptions are covered by the minimal number of explanations or some
user-defined default is reached. While the existence of single explanation is al that is
required for a positive answer to be given to a query in the basic algorithm presented
here, we anticipate that complex queries will require qualified answers which will
involve the evaluation of all available explanations (and possibly all candidate
explanations as well).

SYSTEM ARCHITECTURE AND
KNOWLEDGE REPRESENTATION IN MGR

The system architecture for MGR has three components. In order to generate
intensional interpretations, we have a Definitional Component. This employs an

(13)

epistemology based on schemata, after Sowa , nested in a type lattice. This arrangement
enables us to capture the pragmatics of domain knowledge, including both declarative
and procedural aspects of a term's meaning. This permits us to compose intensional
descriptions of processes and events, which can then be executed as simulations of
hypothesized world activities. The simulations reside in a second Assertional
Component of MGR. The third Factual Component represents knowledge of the world
in MGR.

In his book Conceptual Structures, John Sowa describes a knowledge representation
scheme as a means of expression of a theory of cognitive functioning. The atoms of the
scheme are concepts and conceptual relations which are arranged into conceptual graphs
according to theoretical ideas about language and the way the world works. The graphs
are formed according to a set of formation rules which govern their ultimate structure.

Presenting these rules axiomatically, Sowa gives the canon (graphs formed according

to the rules are canonical). Its parts are:

I . A type hierarchy which relates concepts according to the principles of generalization and
specialization;

2. A set of individual markers which are the internal map of real-world objects;

3. A conformity relation which ensures that individual markers are tokens of the right
concept type;

4. A finite "starter" set of graphs assumed to be canonical; and

5. A set of formation rules with which new canonical graphs can be derived from existing ones,
the main rule being the conceptual join. This rule takes two conceptual structures and unifies
them by merging common concepts to form their greatest common specialization.

Graphs acquire meaning through the notion of canonicality, and through definitional

mechanisms for new concept types. Concept definitions can be formulated as
Aristotelian types by specifying a set of necessary and sufficient conditions, or
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Figure 2: Example Type and Schema Definitions
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as schemata by expressing alternative contexts in which aterm can gain meaning. When
a concept is defined using schemata, the set of schemata are named using an empty type
label, which is then given a position in the type hierarchy. Examples of type and schema
definitions for two common objects are given in Figure 2.

Conceptua graphs, as briefly described above, express declarative knowledge. An
assertional mechanism built using such graphs would allow a collection of graphs to
represent a state of knowledge of an agent. If rules governing the assertion and
de-assertion of graphs can be expressed within the Definitional Component, then
procedural knowledge can also be incorporated. Sowa has actors behaving like functions
embedded within a graph to provide concept referents (i.e., for instan- We have extended
this representation to alow actors to be much more like "active concepts" which accept
states as preconditions and events as triggers. Having been triggered, they assert states
and enable further acts as by-products of their activity. These actors may be used to
express causality, involving states and events, and inferences, involving propositions.
They operate, when their inputs are completely determined, by supplying referents for
their output concepts (see Figure 3b).

All of MGR's knowledge structures are conceptual graphs and are represented using a
specialized knowledge engineering environment named CP (Conceptual Programming)
running on our Symbolics systems.")

GENERATING EXPLANATIONS THROUGH MGR: AN EXAMPLE

In order to illustrate the operation of a MGR interpreter, we present an abstracted
example concerned with explaining an incoherent sensor reading of water flow in a pipe.
This is taken from our work on diagnostic reasoning, where we have found that in order
to solve novel problems, we need to use a synthetic strategy, rather than the more usual
analytic methods. This provides a good illustration of the power of MGR. What follows is
a summary of a much longer account of the same problem given in Coombs and Hartley
@ Figure 4 is a pictorial representation of the sequence of models generated by the
current implementation of the MGR interpreter. The reader should refer to this diagram
for a better understanding of this brief account. The hierarchy of concept types and
embedded schema (given in angle brackets) used in the example is given in Figure 5.

The MGR goal is to integrate domain information over the problem. The interpreter is
seeded with an initial set of assumptions. In the present case, these jointly describe a
situation in which there exists a [PIPE] which: (1) contains

[WATER]; (2) has a market position [TOP]; (3) has a marked position [BTM] (4) has a
[FLOW-SENSOR: #A] located at [TOP]; (5) has a [FLOW-SENSOR: #B] located at
[BTM]; and (6) has a reading of [FLOW-DIR:#Out] for [FLOW-SEN- It may be recalled
that assumptions have the status of facts in MGR. However, at this stage of processing,
the assumed facts cannot be considered to be necessarily relevant to any explanation of
the queried event and may thus need to be removed at a later stage.

The query is recorded separately for use as a component in the evaluation of
explanations. It is not included in the set of assumptions, because we have found
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Figure 3a: An Example of an Actor

PERSON: *x @—- GIVE

PHYSOBJ POSS PERSON: *Y

POSS

Figure 3b: Actor Inputs and Outputs

Transitory Enabling Condition One-off Enabling Condition
Assert State Trigger Event
Persistent Enabling Condition Continuous Enabling Condition

Persistent Triggering Condition Transitory Triggering Condition
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Figure 4: Explanatory Sequence for the "Flow-sensor" Problem
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that query statements often over-constrain model construction, possibly blocking
unexpected solutions. In the example, we ask "Is is possible for sensor A to indicate an
opposing direction of flow?'; i.e., also the direction #Out (initial' in Figure 2). The
interpreter's task is to build intensional models of the domain from the assumptions,
which, when evaluated against domain facts, provide candidate explanations of the
gueried phenomenon, i.e., the sensor reading which does not appear to make sense.

We start with the definition of relevant domain entities and acts as hierarchically
organized types and schemata within the Definitional Component of the system.



Figure 5: Type Hierarchy for the "Flow-sensor" Problem
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Figure 6: Declarative Definitions of [PIPE-FLOW]
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Figure 7: Initial Assumption and Query
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In the present example, it would be necessary to include descriptions of the concepts
[PIPE-FLOW] and [SENSOR-CONFIG] (see Figure 6 for their graphical representation
and Figure 5 for their location in the type hierarchy). The graphical representation of the
initial assumptions and the query are given in Figure 7.

The first step is to seek interpretations of the initial set of assumptions by mapping
concepts mentioned in them to Definitions. The process then continues iteratively, each
new concept being expanded out by a definition where possible. The basic mapping
operation is the conceptual join, two concepts of the same type (schemata also have a
type designation) being represented as their greatest common specialization. Maximally
joined concepts produce the contexts mentioned above. Different contexts can be
produced because different combinations of definitions can cover the concepts contained
in the assumptions. A minimal cover (in terms of the number of definitions required)
follows the valuable principle of explanatory parsimony. This tends to produce the
simplest models first, only going on to models of greater complexity when necessary. The
single context produced during this interpretation is shown in Figure 8. Note the joins
between assumptions and the schemata for [PIPE-FLOW] and [SENSOR-CONFIG] at
[PIPE], [FLOW-SENSOR] and [WATER].

Procedural knowledge, derived from the procedural overlays of concepts with the type
ACTS, is then added to produce programs. The single program generated during the
initial attempt to solve the flow-sensor problem is given in Figure 9. The angle-bracketed
boxes (nodes) represent actors which implement the procedural aspects of [PIPE-FLOW]
related to the [PIPE] diagrammed in Figure 6. Relations on the actors representing
preconditions for the actor to fire include PEC (Persistent Enabling Condition-indicating
a relation that persists after the firing of the actor) and CEC (Continuous Enabling
Condition-an event that is required to be continuous for the actor to fire). The AS
designates the state asserted (Assert State) as aresult of an actor firing.

When executed, the programs create a model which asserts that "Sensor A islocated at
Top," "Sensor B is located at Bottom," "Sensor A registers Flowdirection In" and " Sensor
B registers Flow-direction Out.” This model is intensional and stands as an interpretation
of the situation outlined in the assumptions. It is shown in Figure 10 (Model | in Figure
4).
In addition to the declarative information, the model contains temporal relations (such
as DURING) which are inserted as a result of running the program. These relations,
based on those used by Allen(1) are further described in Coombs and Hartley.

We now enter the evaluation phase, in which models are first tested against the Facts
(Figure 11). In the example, this results in the discovery of a mapping to the concept
[BODY], which is a subtype of [PIPE]. However, when a join is attempted with the
guery, a incoherence occurs concerning the [FLOW-DIR] for [FLOW- The incoherence
serves to reject the above model, while the specialization to the concept [BODY] provides
an additional assumption for the next cycle of interpretation.

The cycle continues with the new set of assumptions, until one or more structures are
generated which both explain the query and provide an acceptable cover for
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Figure 8: The Context Produced by Joining [PIPE-FLOW] and
[SENSOR-CONFIG]
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facts and assumptions. This is achieved after four iterations with the present problem.
However, the critical models upon which the final solution is based are generated in the
second cycle and are illustrated in Figure 12. These describe water flow in two forms of
compound pipe: (1) a "water-jacket," where an inner pipe contains water which is cooled
by water flowing in an outer pipe (lain Figure 4); (2) a "T-junction,” where the stem
inputs water to the body of the pipe (2b in Figure 4).

The basic direction of model development is specialization. For example, given the
failure of the simple model generated by the first cycle, the interpreter speciaizes the
concept [PIPE] to the notion of a pipe which functions as a [BODY], and in so doing
generates two competing models. These models arise from picking up a schematic cluster
concerning flow in a compound pipe, all containing [BODY]. This pipe could be the
schemata water jacket-<[W-JJ>, or input T-junction-- These two definitions have
different procedural overlays, showing how



Figure 9: A Program Fragment Composed During the Generation of Model 1
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Figure 10: Model | With a Simple [PIPE] and [PIPE-FLOW]
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Figure 11: Domain Facts
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Figure 12: Model 2a <WJ> and Model 2b <T-IN> Generated During

the Second Interpretation cycle
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Continued

Figure 12
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Figure 13: The Definition of [ THERMOCLINE]
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the sensors can register the same direction, or opposite directions. On evaluation, it is
found that, while Model 2b explains the sensor reading aspects of the query, it does not
cover al the facts, namely the newly-discovered one that a temperature difference,
[TEMP-DIFF], may be present. The concept [TEMP-DIFF] is brought in by <[W-J]>.
However, Model 2a, which covers this fact, does not generate correct sensor readings.

The interpreter's response to the existence of two, partially satisfactory models, is to
try to merge them. This fails on the first attempt, because it is not possible to join the
definitions of simple and compound pipes. Having identified the set of concepts blocking
the merge, the system cycles again with the same set of assumptions, but this time
attempting to Generalize away the blocking concepts. Generalize supports nonmonotonic
reasoning in MGR in that it removes those facts from a model's context which are
exclusive to it. Generalize al so removes unsupported parts of models (i.e., there is no fact
to support the part). The result



Figure 14: The Final Model, Which Merges The <[T-IN]> and

[THERMOCLINE] Models
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isModel 3 (Figure 4), in which there is a thermocline in a simple pipe. The definition of
[THERMOCLINE] is brought in because of the need to explain the fact [TEMP-
previously explained by <[W-J]>. Indeed, the [THERMOCLINE] was relevant at that
stage, because it mentions [WATER], but its need was masked by the need to explain
[BODY]. More details are in Coombs and Hartley. ) The definition of
[THERMOCLINE] isgiven in Figure 13.

The [THERMOCLINE] model is now evaluated against both facts and the query. This
is successful, as no contradiction results from matching to facts, and the model explains
the incoherent sensor reading. Therefore, we now have two competing explanations, each
of which covers different facts. This drives the interpreter to attempt a further merge,
which proves successful and results in the generation of Model 4 (Figure 4). This
represents the most complete explanation of the queried phenomenon, so providing
strong evidence that, given the assumptions, "it is possible for the sensors to indicate
opposing directions of flow." The final model is given in Figure 14.

SUMMARY AND FUTURE DEVELOPMENTS

This article has presented an algorithm for automated reasoning about novel events. The
Model Generative Reasoning (MGR) algorithm replaces deductive inference with an
abductive procedure based on the generation of alternative, intensional domain
descriptions (models) to cover problem assumptions, which are then evaluated against
domain facts as alternative explanations for queried events. MGR has been applied in its
prototype form to a number of process control problems involving novel events which we
have previously found to be difficult to solve. In al these problems, the conceptual
structure which represents the solution must be composed from fragments of defined
knowledge objects, where the individual objects involved may be mutually incoherent
(e.0., Models 2a and 2b). The approach has proved, we believe, to be successful. MGR is
able to make the most out of available background knowledge and facts, as demonstrated
by its ability to construct unanticipated device structures which are coherent, support
known procedures and evaluate favorably against factual data.

In undertaking this work we have been led to consider many of the issues being
explored by others in automated problem-solving. In particular, MGR overlaps with
research on the various forms of truth maintenance system, most notably
Assumption-based Truth Maintenance, and on qualitative reasoning.

Finally, there are three main directions to explore within MGR. First, there is little
work in the literature on the decomposition and reconstruction of knowledge structures,
which are clearly a significant source of the algorithm's power. Second, there is a set of
related issues concerning the structure of explanations judged to be of value to a given
problem area, their relationship to notions of conceptual coherence, and their use in
controlling model generation. Third, given the essentially parallel nature of the
algorithm, there are issues of parallel implementation. These provide topics for future
work, which, from current evidence, promises to provide a better foundation for
automated decision support.
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NOTE
1. The parsimony principle currently used in MGR is to take "all minimal sets of concepts
from definitions capable of jointly covering all of the concepts in the assumptions.”
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